pseries: Consolidate construction of /vdevice device tree node
[qemu.git] / hw / ppc / spapr.c
blob34846da81ca65ac7091f428ae91f32a0b9386f99
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
61 #include "exec/address-spaces.h"
62 #include "hw/usb.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "trace.h"
66 #include "hw/nmi.h"
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
73 #include <libfdt.h>
75 /* SLOF memory layout:
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
81 * and more
83 * We load our kernel at 4M, leaving space for SLOF initial image
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
93 #define MIN_RMA_SLOF 128UL
95 #define PHANDLE_XICP 0x00001111
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99 static XICSState *try_create_xics(const char *type, int nr_servers,
100 int nr_irqs, Error **errp)
102 Error *err = NULL;
103 DeviceState *dev;
105 dev = qdev_create(NULL, type);
106 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
107 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
108 object_property_set_bool(OBJECT(dev), true, "realized", &err);
109 if (err) {
110 error_propagate(errp, err);
111 object_unparent(OBJECT(dev));
112 return NULL;
114 return XICS_COMMON(dev);
117 static XICSState *xics_system_init(MachineState *machine,
118 int nr_servers, int nr_irqs, Error **errp)
120 XICSState *xics = NULL;
122 if (kvm_enabled()) {
123 Error *err = NULL;
125 if (machine_kernel_irqchip_allowed(machine)) {
126 xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
127 &err);
129 if (machine_kernel_irqchip_required(machine) && !xics) {
130 error_reportf_err(err,
131 "kernel_irqchip requested but unavailable: ");
132 } else {
133 error_free(err);
137 if (!xics) {
138 xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
141 return xics;
144 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
145 int smt_threads)
147 int i, ret = 0;
148 uint32_t servers_prop[smt_threads];
149 uint32_t gservers_prop[smt_threads * 2];
150 int index = ppc_get_vcpu_dt_id(cpu);
152 if (cpu->cpu_version) {
153 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
154 if (ret < 0) {
155 return ret;
159 /* Build interrupt servers and gservers properties */
160 for (i = 0; i < smt_threads; i++) {
161 servers_prop[i] = cpu_to_be32(index + i);
162 /* Hack, direct the group queues back to cpu 0 */
163 gservers_prop[i*2] = cpu_to_be32(index + i);
164 gservers_prop[i*2 + 1] = 0;
166 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
167 servers_prop, sizeof(servers_prop));
168 if (ret < 0) {
169 return ret;
171 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
172 gservers_prop, sizeof(gservers_prop));
174 return ret;
177 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
179 int ret = 0;
180 PowerPCCPU *cpu = POWERPC_CPU(cs);
181 int index = ppc_get_vcpu_dt_id(cpu);
182 uint32_t associativity[] = {cpu_to_be32(0x5),
183 cpu_to_be32(0x0),
184 cpu_to_be32(0x0),
185 cpu_to_be32(0x0),
186 cpu_to_be32(cs->numa_node),
187 cpu_to_be32(index)};
189 /* Advertise NUMA via ibm,associativity */
190 if (nb_numa_nodes > 1) {
191 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
192 sizeof(associativity));
195 return ret;
198 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
200 int ret = 0, offset, cpus_offset;
201 CPUState *cs;
202 char cpu_model[32];
203 int smt = kvmppc_smt_threads();
204 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
206 CPU_FOREACH(cs) {
207 PowerPCCPU *cpu = POWERPC_CPU(cs);
208 DeviceClass *dc = DEVICE_GET_CLASS(cs);
209 int index = ppc_get_vcpu_dt_id(cpu);
211 if ((index % smt) != 0) {
212 continue;
215 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
217 cpus_offset = fdt_path_offset(fdt, "/cpus");
218 if (cpus_offset < 0) {
219 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
220 "cpus");
221 if (cpus_offset < 0) {
222 return cpus_offset;
225 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
226 if (offset < 0) {
227 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
228 if (offset < 0) {
229 return offset;
233 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
234 pft_size_prop, sizeof(pft_size_prop));
235 if (ret < 0) {
236 return ret;
239 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
240 if (ret < 0) {
241 return ret;
244 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
245 ppc_get_compat_smt_threads(cpu));
246 if (ret < 0) {
247 return ret;
250 return ret;
253 static hwaddr spapr_node0_size(void)
255 MachineState *machine = MACHINE(qdev_get_machine());
257 if (nb_numa_nodes) {
258 int i;
259 for (i = 0; i < nb_numa_nodes; ++i) {
260 if (numa_info[i].node_mem) {
261 return MIN(pow2floor(numa_info[i].node_mem),
262 machine->ram_size);
266 return machine->ram_size;
269 static void add_str(GString *s, const gchar *s1)
271 g_string_append_len(s, s1, strlen(s1) + 1);
274 static void *spapr_create_fdt_skel(sPAPRMachineState *spapr)
276 void *fdt;
277 char *buf;
279 fdt = g_malloc0(FDT_MAX_SIZE);
280 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
282 _FDT((fdt_finish_reservemap(fdt)));
284 /* Root node */
285 _FDT((fdt_begin_node(fdt, "")));
286 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
287 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
288 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
291 * Add info to guest to indentify which host is it being run on
292 * and what is the uuid of the guest
294 if (kvmppc_get_host_model(&buf)) {
295 _FDT((fdt_property_string(fdt, "host-model", buf)));
296 g_free(buf);
298 if (kvmppc_get_host_serial(&buf)) {
299 _FDT((fdt_property_string(fdt, "host-serial", buf)));
300 g_free(buf);
303 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
305 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
306 if (qemu_uuid_set) {
307 _FDT((fdt_property_string(fdt, "system-id", buf)));
309 g_free(buf);
311 if (qemu_get_vm_name()) {
312 _FDT((fdt_property_string(fdt, "ibm,partition-name",
313 qemu_get_vm_name())));
316 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
317 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
319 _FDT((fdt_end_node(fdt))); /* close root node */
320 _FDT((fdt_finish(fdt)));
322 return fdt;
325 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
326 hwaddr size)
328 uint32_t associativity[] = {
329 cpu_to_be32(0x4), /* length */
330 cpu_to_be32(0x0), cpu_to_be32(0x0),
331 cpu_to_be32(0x0), cpu_to_be32(nodeid)
333 char mem_name[32];
334 uint64_t mem_reg_property[2];
335 int off;
337 mem_reg_property[0] = cpu_to_be64(start);
338 mem_reg_property[1] = cpu_to_be64(size);
340 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
341 off = fdt_add_subnode(fdt, 0, mem_name);
342 _FDT(off);
343 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
344 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
345 sizeof(mem_reg_property))));
346 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
347 sizeof(associativity))));
348 return off;
351 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
353 MachineState *machine = MACHINE(spapr);
354 hwaddr mem_start, node_size;
355 int i, nb_nodes = nb_numa_nodes;
356 NodeInfo *nodes = numa_info;
357 NodeInfo ramnode;
359 /* No NUMA nodes, assume there is just one node with whole RAM */
360 if (!nb_numa_nodes) {
361 nb_nodes = 1;
362 ramnode.node_mem = machine->ram_size;
363 nodes = &ramnode;
366 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
367 if (!nodes[i].node_mem) {
368 continue;
370 if (mem_start >= machine->ram_size) {
371 node_size = 0;
372 } else {
373 node_size = nodes[i].node_mem;
374 if (node_size > machine->ram_size - mem_start) {
375 node_size = machine->ram_size - mem_start;
378 if (!mem_start) {
379 /* ppc_spapr_init() checks for rma_size <= node0_size already */
380 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
381 mem_start += spapr->rma_size;
382 node_size -= spapr->rma_size;
384 for ( ; node_size; ) {
385 hwaddr sizetmp = pow2floor(node_size);
387 /* mem_start != 0 here */
388 if (ctzl(mem_start) < ctzl(sizetmp)) {
389 sizetmp = 1ULL << ctzl(mem_start);
392 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
393 node_size -= sizetmp;
394 mem_start += sizetmp;
398 return 0;
401 /* Populate the "ibm,pa-features" property */
402 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
404 uint8_t pa_features_206[] = { 6, 0,
405 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
406 uint8_t pa_features_207[] = { 24, 0,
407 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
408 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
409 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
410 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
411 uint8_t *pa_features;
412 size_t pa_size;
414 switch (env->mmu_model) {
415 case POWERPC_MMU_2_06:
416 case POWERPC_MMU_2_06a:
417 pa_features = pa_features_206;
418 pa_size = sizeof(pa_features_206);
419 break;
420 case POWERPC_MMU_2_07:
421 case POWERPC_MMU_2_07a:
422 pa_features = pa_features_207;
423 pa_size = sizeof(pa_features_207);
424 break;
425 default:
426 return;
429 if (env->ci_large_pages) {
431 * Note: we keep CI large pages off by default because a 64K capable
432 * guest provisioned with large pages might otherwise try to map a qemu
433 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
434 * even if that qemu runs on a 4k host.
435 * We dd this bit back here if we are confident this is not an issue
437 pa_features[3] |= 0x20;
439 if (kvmppc_has_cap_htm() && pa_size > 24) {
440 pa_features[24] |= 0x80; /* Transactional memory support */
443 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
446 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
447 sPAPRMachineState *spapr)
449 PowerPCCPU *cpu = POWERPC_CPU(cs);
450 CPUPPCState *env = &cpu->env;
451 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
452 int index = ppc_get_vcpu_dt_id(cpu);
453 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
454 0xffffffff, 0xffffffff};
455 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
456 : SPAPR_TIMEBASE_FREQ;
457 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
458 uint32_t page_sizes_prop[64];
459 size_t page_sizes_prop_size;
460 uint32_t vcpus_per_socket = smp_threads * smp_cores;
461 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
462 sPAPRDRConnector *drc;
463 sPAPRDRConnectorClass *drck;
464 int drc_index;
466 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
467 if (drc) {
468 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
469 drc_index = drck->get_index(drc);
470 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
473 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
474 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
476 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
477 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
478 env->dcache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
480 env->dcache_line_size)));
481 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
482 env->icache_line_size)));
483 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
484 env->icache_line_size)));
486 if (pcc->l1_dcache_size) {
487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
488 pcc->l1_dcache_size)));
489 } else {
490 error_report("Warning: Unknown L1 dcache size for cpu");
492 if (pcc->l1_icache_size) {
493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
494 pcc->l1_icache_size)));
495 } else {
496 error_report("Warning: Unknown L1 icache size for cpu");
499 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
500 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
501 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
502 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
503 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
504 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
506 if (env->spr_cb[SPR_PURR].oea_read) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
510 if (env->mmu_model & POWERPC_MMU_1TSEG) {
511 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
512 segs, sizeof(segs))));
515 /* Advertise VMX/VSX (vector extensions) if available
516 * 0 / no property == no vector extensions
517 * 1 == VMX / Altivec available
518 * 2 == VSX available */
519 if (env->insns_flags & PPC_ALTIVEC) {
520 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
522 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
525 /* Advertise DFP (Decimal Floating Point) if available
526 * 0 / no property == no DFP
527 * 1 == DFP available */
528 if (env->insns_flags2 & PPC2_DFP) {
529 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
532 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
533 sizeof(page_sizes_prop));
534 if (page_sizes_prop_size) {
535 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
536 page_sizes_prop, page_sizes_prop_size)));
539 spapr_populate_pa_features(env, fdt, offset);
541 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
542 cs->cpu_index / vcpus_per_socket)));
544 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
545 pft_size_prop, sizeof(pft_size_prop))));
547 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
550 ppc_get_compat_smt_threads(cpu)));
553 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
555 CPUState *cs;
556 int cpus_offset;
557 char *nodename;
558 int smt = kvmppc_smt_threads();
560 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
561 _FDT(cpus_offset);
562 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
563 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
566 * We walk the CPUs in reverse order to ensure that CPU DT nodes
567 * created by fdt_add_subnode() end up in the right order in FDT
568 * for the guest kernel the enumerate the CPUs correctly.
570 CPU_FOREACH_REVERSE(cs) {
571 PowerPCCPU *cpu = POWERPC_CPU(cs);
572 int index = ppc_get_vcpu_dt_id(cpu);
573 DeviceClass *dc = DEVICE_GET_CLASS(cs);
574 int offset;
576 if ((index % smt) != 0) {
577 continue;
580 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
581 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
582 g_free(nodename);
583 _FDT(offset);
584 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
590 * Adds ibm,dynamic-reconfiguration-memory node.
591 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
592 * of this device tree node.
594 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
596 MachineState *machine = MACHINE(spapr);
597 int ret, i, offset;
598 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
599 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
600 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
601 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
602 memory_region_size(&spapr->hotplug_memory.mr)) /
603 lmb_size;
604 uint32_t *int_buf, *cur_index, buf_len;
605 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
608 * Don't create the node if there is no hotpluggable memory
610 if (machine->ram_size == machine->maxram_size) {
611 return 0;
615 * Allocate enough buffer size to fit in ibm,dynamic-memory
616 * or ibm,associativity-lookup-arrays
618 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
619 * sizeof(uint32_t);
620 cur_index = int_buf = g_malloc0(buf_len);
622 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
624 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
625 sizeof(prop_lmb_size));
626 if (ret < 0) {
627 goto out;
630 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
631 if (ret < 0) {
632 goto out;
635 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
636 if (ret < 0) {
637 goto out;
640 /* ibm,dynamic-memory */
641 int_buf[0] = cpu_to_be32(nr_lmbs);
642 cur_index++;
643 for (i = 0; i < nr_lmbs; i++) {
644 uint64_t addr = i * lmb_size;
645 uint32_t *dynamic_memory = cur_index;
647 if (i >= hotplug_lmb_start) {
648 sPAPRDRConnector *drc;
649 sPAPRDRConnectorClass *drck;
651 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
652 g_assert(drc);
653 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
655 dynamic_memory[0] = cpu_to_be32(addr >> 32);
656 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
657 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
658 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
659 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
660 if (memory_region_present(get_system_memory(), addr)) {
661 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
662 } else {
663 dynamic_memory[5] = cpu_to_be32(0);
665 } else {
667 * LMB information for RMA, boot time RAM and gap b/n RAM and
668 * hotplug memory region -- all these are marked as reserved
669 * and as having no valid DRC.
671 dynamic_memory[0] = cpu_to_be32(addr >> 32);
672 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
673 dynamic_memory[2] = cpu_to_be32(0);
674 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
675 dynamic_memory[4] = cpu_to_be32(-1);
676 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
677 SPAPR_LMB_FLAGS_DRC_INVALID);
680 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
682 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
683 if (ret < 0) {
684 goto out;
687 /* ibm,associativity-lookup-arrays */
688 cur_index = int_buf;
689 int_buf[0] = cpu_to_be32(nr_nodes);
690 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
691 cur_index += 2;
692 for (i = 0; i < nr_nodes; i++) {
693 uint32_t associativity[] = {
694 cpu_to_be32(0x0),
695 cpu_to_be32(0x0),
696 cpu_to_be32(0x0),
697 cpu_to_be32(i)
699 memcpy(cur_index, associativity, sizeof(associativity));
700 cur_index += 4;
702 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
703 (cur_index - int_buf) * sizeof(uint32_t));
704 out:
705 g_free(int_buf);
706 return ret;
709 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
710 target_ulong addr, target_ulong size,
711 bool cpu_update, bool memory_update)
713 void *fdt, *fdt_skel;
714 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
715 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
717 size -= sizeof(hdr);
719 /* Create sceleton */
720 fdt_skel = g_malloc0(size);
721 _FDT((fdt_create(fdt_skel, size)));
722 _FDT((fdt_begin_node(fdt_skel, "")));
723 _FDT((fdt_end_node(fdt_skel)));
724 _FDT((fdt_finish(fdt_skel)));
725 fdt = g_malloc0(size);
726 _FDT((fdt_open_into(fdt_skel, fdt, size)));
727 g_free(fdt_skel);
729 /* Fixup cpu nodes */
730 if (cpu_update) {
731 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
734 /* Generate ibm,dynamic-reconfiguration-memory node if required */
735 if (memory_update && smc->dr_lmb_enabled) {
736 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
739 /* Pack resulting tree */
740 _FDT((fdt_pack(fdt)));
742 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
743 trace_spapr_cas_failed(size);
744 return -1;
747 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
748 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
749 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
750 g_free(fdt);
752 return 0;
755 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
757 int rtas;
758 GString *hypertas = g_string_sized_new(256);
759 GString *qemu_hypertas = g_string_sized_new(256);
760 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
761 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
762 memory_region_size(&spapr->hotplug_memory.mr);
763 uint32_t lrdr_capacity[] = {
764 cpu_to_be32(max_hotplug_addr >> 32),
765 cpu_to_be32(max_hotplug_addr & 0xffffffff),
766 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
767 cpu_to_be32(max_cpus / smp_threads),
770 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
772 /* hypertas */
773 add_str(hypertas, "hcall-pft");
774 add_str(hypertas, "hcall-term");
775 add_str(hypertas, "hcall-dabr");
776 add_str(hypertas, "hcall-interrupt");
777 add_str(hypertas, "hcall-tce");
778 add_str(hypertas, "hcall-vio");
779 add_str(hypertas, "hcall-splpar");
780 add_str(hypertas, "hcall-bulk");
781 add_str(hypertas, "hcall-set-mode");
782 add_str(hypertas, "hcall-sprg0");
783 add_str(hypertas, "hcall-copy");
784 add_str(hypertas, "hcall-debug");
785 add_str(qemu_hypertas, "hcall-memop1");
787 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
788 add_str(hypertas, "hcall-multi-tce");
790 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
791 hypertas->str, hypertas->len));
792 g_string_free(hypertas, TRUE);
793 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
794 qemu_hypertas->str, qemu_hypertas->len));
795 g_string_free(qemu_hypertas, TRUE);
797 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
798 refpoints, sizeof(refpoints)));
800 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
801 RTAS_ERROR_LOG_MAX));
802 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
803 RTAS_EVENT_SCAN_RATE));
805 if (msi_nonbroken) {
806 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
810 * According to PAPR, rtas ibm,os-term does not guarantee a return
811 * back to the guest cpu.
813 * While an additional ibm,extended-os-term property indicates
814 * that rtas call return will always occur. Set this property.
816 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
818 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
819 lrdr_capacity, sizeof(lrdr_capacity)));
821 spapr_dt_rtas_tokens(fdt, rtas);
824 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
826 MachineState *machine = MACHINE(spapr);
827 int chosen;
828 const char *boot_device = machine->boot_order;
829 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
830 size_t cb = 0;
831 char *bootlist = get_boot_devices_list(&cb, true);
832 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
834 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
836 /* Set Form1_affinity */
837 _FDT(fdt_setprop(fdt, chosen, "ibm,architecture-vec-5",
838 vec5, sizeof(vec5)));
840 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
841 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
842 spapr->initrd_base));
843 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
844 spapr->initrd_base + spapr->initrd_size));
846 if (spapr->kernel_size) {
847 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
848 cpu_to_be64(spapr->kernel_size) };
850 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
851 &kprop, sizeof(kprop)));
852 if (spapr->kernel_le) {
853 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
856 if (boot_menu) {
857 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
859 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
860 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
861 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
863 if (cb && bootlist) {
864 int i;
866 for (i = 0; i < cb; i++) {
867 if (bootlist[i] == '\n') {
868 bootlist[i] = ' ';
871 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
874 if (boot_device && strlen(boot_device)) {
875 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
878 if (!spapr->has_graphics && stdout_path) {
879 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
882 g_free(stdout_path);
883 g_free(bootlist);
886 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
888 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
889 * KVM to work under pHyp with some guest co-operation */
890 int hypervisor;
891 uint8_t hypercall[16];
893 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
894 /* indicate KVM hypercall interface */
895 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
896 if (kvmppc_has_cap_fixup_hcalls()) {
898 * Older KVM versions with older guest kernels were broken
899 * with the magic page, don't allow the guest to map it.
901 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
902 sizeof(hypercall))) {
903 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
904 hypercall, sizeof(hypercall)));
909 static void *spapr_build_fdt(sPAPRMachineState *spapr,
910 hwaddr rtas_addr,
911 hwaddr rtas_size)
913 MachineState *machine = MACHINE(qdev_get_machine());
914 MachineClass *mc = MACHINE_GET_CLASS(machine);
915 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
916 int ret;
917 void *fdt;
918 sPAPRPHBState *phb;
920 fdt = g_malloc(FDT_MAX_SIZE);
922 /* open out the base tree into a temp buffer for the final tweaks */
923 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
925 /* /interrupt controller */
926 spapr_dt_xics(spapr->xics, fdt, PHANDLE_XICP);
928 ret = spapr_populate_memory(spapr, fdt);
929 if (ret < 0) {
930 error_report("couldn't setup memory nodes in fdt");
931 exit(1);
934 /* /vdevice */
935 spapr_dt_vdevice(spapr->vio_bus, fdt);
937 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
938 ret = spapr_rng_populate_dt(fdt);
939 if (ret < 0) {
940 error_report("could not set up rng device in the fdt");
941 exit(1);
945 QLIST_FOREACH(phb, &spapr->phbs, list) {
946 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
947 if (ret < 0) {
948 error_report("couldn't setup PCI devices in fdt");
949 exit(1);
953 /* cpus */
954 spapr_populate_cpus_dt_node(fdt, spapr);
956 if (smc->dr_lmb_enabled) {
957 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
960 if (mc->query_hotpluggable_cpus) {
961 int offset = fdt_path_offset(fdt, "/cpus");
962 ret = spapr_drc_populate_dt(fdt, offset, NULL,
963 SPAPR_DR_CONNECTOR_TYPE_CPU);
964 if (ret < 0) {
965 error_report("Couldn't set up CPU DR device tree properties");
966 exit(1);
970 /* /event-sources */
971 spapr_dt_events(fdt, spapr->check_exception_irq);
973 /* /rtas */
974 spapr_dt_rtas(spapr, fdt);
976 /* /chosen */
977 spapr_dt_chosen(spapr, fdt);
979 /* /hypervisor */
980 if (kvm_enabled()) {
981 spapr_dt_hypervisor(spapr, fdt);
984 /* Build memory reserve map */
985 if (spapr->kernel_size) {
986 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
988 if (spapr->initrd_size) {
989 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
992 return fdt;
995 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
997 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1000 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1002 CPUPPCState *env = &cpu->env;
1004 if (msr_pr) {
1005 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1006 env->gpr[3] = H_PRIVILEGE;
1007 } else {
1008 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1012 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1013 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1014 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1015 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1016 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1019 * Get the fd to access the kernel htab, re-opening it if necessary
1021 static int get_htab_fd(sPAPRMachineState *spapr)
1023 if (spapr->htab_fd >= 0) {
1024 return spapr->htab_fd;
1027 spapr->htab_fd = kvmppc_get_htab_fd(false);
1028 if (spapr->htab_fd < 0) {
1029 error_report("Unable to open fd for reading hash table from KVM: %s",
1030 strerror(errno));
1033 return spapr->htab_fd;
1036 static void close_htab_fd(sPAPRMachineState *spapr)
1038 if (spapr->htab_fd >= 0) {
1039 close(spapr->htab_fd);
1041 spapr->htab_fd = -1;
1044 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1046 int shift;
1048 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1049 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1050 * that's much more than is needed for Linux guests */
1051 shift = ctz64(pow2ceil(ramsize)) - 7;
1052 shift = MAX(shift, 18); /* Minimum architected size */
1053 shift = MIN(shift, 46); /* Maximum architected size */
1054 return shift;
1057 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1058 Error **errp)
1060 long rc;
1062 /* Clean up any HPT info from a previous boot */
1063 g_free(spapr->htab);
1064 spapr->htab = NULL;
1065 spapr->htab_shift = 0;
1066 close_htab_fd(spapr);
1068 rc = kvmppc_reset_htab(shift);
1069 if (rc < 0) {
1070 /* kernel-side HPT needed, but couldn't allocate one */
1071 error_setg_errno(errp, errno,
1072 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1073 shift);
1074 /* This is almost certainly fatal, but if the caller really
1075 * wants to carry on with shift == 0, it's welcome to try */
1076 } else if (rc > 0) {
1077 /* kernel-side HPT allocated */
1078 if (rc != shift) {
1079 error_setg(errp,
1080 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1081 shift, rc);
1084 spapr->htab_shift = shift;
1085 spapr->htab = NULL;
1086 } else {
1087 /* kernel-side HPT not needed, allocate in userspace instead */
1088 size_t size = 1ULL << shift;
1089 int i;
1091 spapr->htab = qemu_memalign(size, size);
1092 if (!spapr->htab) {
1093 error_setg_errno(errp, errno,
1094 "Could not allocate HPT of order %d", shift);
1095 return;
1098 memset(spapr->htab, 0, size);
1099 spapr->htab_shift = shift;
1101 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1102 DIRTY_HPTE(HPTE(spapr->htab, i));
1107 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1109 bool matched = false;
1111 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1112 matched = true;
1115 if (!matched) {
1116 error_report("Device %s is not supported by this machine yet.",
1117 qdev_fw_name(DEVICE(sbdev)));
1118 exit(1);
1122 static void ppc_spapr_reset(void)
1124 MachineState *machine = MACHINE(qdev_get_machine());
1125 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1126 PowerPCCPU *first_ppc_cpu;
1127 uint32_t rtas_limit;
1128 hwaddr rtas_addr, fdt_addr;
1129 void *fdt;
1130 int rc;
1132 /* Check for unknown sysbus devices */
1133 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1135 /* Allocate and/or reset the hash page table */
1136 spapr_reallocate_hpt(spapr,
1137 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1138 &error_fatal);
1140 /* Update the RMA size if necessary */
1141 if (spapr->vrma_adjust) {
1142 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1143 spapr->htab_shift);
1146 qemu_devices_reset();
1149 * We place the device tree and RTAS just below either the top of the RMA,
1150 * or just below 2GB, whichever is lowere, so that it can be
1151 * processed with 32-bit real mode code if necessary
1153 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1154 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1155 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1157 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1159 spapr_load_rtas(spapr, fdt, rtas_addr);
1161 rc = fdt_pack(fdt);
1163 /* Should only fail if we've built a corrupted tree */
1164 assert(rc == 0);
1166 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1167 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1168 fdt_totalsize(fdt), FDT_MAX_SIZE);
1169 exit(1);
1172 /* Load the fdt */
1173 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1174 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1175 g_free(fdt);
1177 /* Set up the entry state */
1178 first_ppc_cpu = POWERPC_CPU(first_cpu);
1179 first_ppc_cpu->env.gpr[3] = fdt_addr;
1180 first_ppc_cpu->env.gpr[5] = 0;
1181 first_cpu->halted = 0;
1182 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1186 static void spapr_create_nvram(sPAPRMachineState *spapr)
1188 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1189 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1191 if (dinfo) {
1192 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1193 &error_fatal);
1196 qdev_init_nofail(dev);
1198 spapr->nvram = (struct sPAPRNVRAM *)dev;
1201 static void spapr_rtc_create(sPAPRMachineState *spapr)
1203 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1205 qdev_init_nofail(dev);
1206 spapr->rtc = dev;
1208 object_property_add_alias(qdev_get_machine(), "rtc-time",
1209 OBJECT(spapr->rtc), "date", NULL);
1212 /* Returns whether we want to use VGA or not */
1213 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1215 switch (vga_interface_type) {
1216 case VGA_NONE:
1217 return false;
1218 case VGA_DEVICE:
1219 return true;
1220 case VGA_STD:
1221 case VGA_VIRTIO:
1222 return pci_vga_init(pci_bus) != NULL;
1223 default:
1224 error_setg(errp,
1225 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1226 return false;
1230 static int spapr_post_load(void *opaque, int version_id)
1232 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1233 int err = 0;
1235 /* In earlier versions, there was no separate qdev for the PAPR
1236 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1237 * So when migrating from those versions, poke the incoming offset
1238 * value into the RTC device */
1239 if (version_id < 3) {
1240 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1243 return err;
1246 static bool version_before_3(void *opaque, int version_id)
1248 return version_id < 3;
1251 static const VMStateDescription vmstate_spapr = {
1252 .name = "spapr",
1253 .version_id = 3,
1254 .minimum_version_id = 1,
1255 .post_load = spapr_post_load,
1256 .fields = (VMStateField[]) {
1257 /* used to be @next_irq */
1258 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1260 /* RTC offset */
1261 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1263 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1264 VMSTATE_END_OF_LIST()
1268 static int htab_save_setup(QEMUFile *f, void *opaque)
1270 sPAPRMachineState *spapr = opaque;
1272 /* "Iteration" header */
1273 qemu_put_be32(f, spapr->htab_shift);
1275 if (spapr->htab) {
1276 spapr->htab_save_index = 0;
1277 spapr->htab_first_pass = true;
1278 } else {
1279 assert(kvm_enabled());
1283 return 0;
1286 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1287 int64_t max_ns)
1289 bool has_timeout = max_ns != -1;
1290 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1291 int index = spapr->htab_save_index;
1292 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1294 assert(spapr->htab_first_pass);
1296 do {
1297 int chunkstart;
1299 /* Consume invalid HPTEs */
1300 while ((index < htabslots)
1301 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1302 index++;
1303 CLEAN_HPTE(HPTE(spapr->htab, index));
1306 /* Consume valid HPTEs */
1307 chunkstart = index;
1308 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1309 && HPTE_VALID(HPTE(spapr->htab, index))) {
1310 index++;
1311 CLEAN_HPTE(HPTE(spapr->htab, index));
1314 if (index > chunkstart) {
1315 int n_valid = index - chunkstart;
1317 qemu_put_be32(f, chunkstart);
1318 qemu_put_be16(f, n_valid);
1319 qemu_put_be16(f, 0);
1320 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1321 HASH_PTE_SIZE_64 * n_valid);
1323 if (has_timeout &&
1324 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1325 break;
1328 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1330 if (index >= htabslots) {
1331 assert(index == htabslots);
1332 index = 0;
1333 spapr->htab_first_pass = false;
1335 spapr->htab_save_index = index;
1338 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1339 int64_t max_ns)
1341 bool final = max_ns < 0;
1342 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1343 int examined = 0, sent = 0;
1344 int index = spapr->htab_save_index;
1345 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1347 assert(!spapr->htab_first_pass);
1349 do {
1350 int chunkstart, invalidstart;
1352 /* Consume non-dirty HPTEs */
1353 while ((index < htabslots)
1354 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1355 index++;
1356 examined++;
1359 chunkstart = index;
1360 /* Consume valid dirty HPTEs */
1361 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1362 && HPTE_DIRTY(HPTE(spapr->htab, index))
1363 && HPTE_VALID(HPTE(spapr->htab, index))) {
1364 CLEAN_HPTE(HPTE(spapr->htab, index));
1365 index++;
1366 examined++;
1369 invalidstart = index;
1370 /* Consume invalid dirty HPTEs */
1371 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1372 && HPTE_DIRTY(HPTE(spapr->htab, index))
1373 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1374 CLEAN_HPTE(HPTE(spapr->htab, index));
1375 index++;
1376 examined++;
1379 if (index > chunkstart) {
1380 int n_valid = invalidstart - chunkstart;
1381 int n_invalid = index - invalidstart;
1383 qemu_put_be32(f, chunkstart);
1384 qemu_put_be16(f, n_valid);
1385 qemu_put_be16(f, n_invalid);
1386 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1387 HASH_PTE_SIZE_64 * n_valid);
1388 sent += index - chunkstart;
1390 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1391 break;
1395 if (examined >= htabslots) {
1396 break;
1399 if (index >= htabslots) {
1400 assert(index == htabslots);
1401 index = 0;
1403 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1405 if (index >= htabslots) {
1406 assert(index == htabslots);
1407 index = 0;
1410 spapr->htab_save_index = index;
1412 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1415 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1416 #define MAX_KVM_BUF_SIZE 2048
1418 static int htab_save_iterate(QEMUFile *f, void *opaque)
1420 sPAPRMachineState *spapr = opaque;
1421 int fd;
1422 int rc = 0;
1424 /* Iteration header */
1425 qemu_put_be32(f, 0);
1427 if (!spapr->htab) {
1428 assert(kvm_enabled());
1430 fd = get_htab_fd(spapr);
1431 if (fd < 0) {
1432 return fd;
1435 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1436 if (rc < 0) {
1437 return rc;
1439 } else if (spapr->htab_first_pass) {
1440 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1441 } else {
1442 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1445 /* End marker */
1446 qemu_put_be32(f, 0);
1447 qemu_put_be16(f, 0);
1448 qemu_put_be16(f, 0);
1450 return rc;
1453 static int htab_save_complete(QEMUFile *f, void *opaque)
1455 sPAPRMachineState *spapr = opaque;
1456 int fd;
1458 /* Iteration header */
1459 qemu_put_be32(f, 0);
1461 if (!spapr->htab) {
1462 int rc;
1464 assert(kvm_enabled());
1466 fd = get_htab_fd(spapr);
1467 if (fd < 0) {
1468 return fd;
1471 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1472 if (rc < 0) {
1473 return rc;
1475 } else {
1476 if (spapr->htab_first_pass) {
1477 htab_save_first_pass(f, spapr, -1);
1479 htab_save_later_pass(f, spapr, -1);
1482 /* End marker */
1483 qemu_put_be32(f, 0);
1484 qemu_put_be16(f, 0);
1485 qemu_put_be16(f, 0);
1487 return 0;
1490 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1492 sPAPRMachineState *spapr = opaque;
1493 uint32_t section_hdr;
1494 int fd = -1;
1496 if (version_id < 1 || version_id > 1) {
1497 error_report("htab_load() bad version");
1498 return -EINVAL;
1501 section_hdr = qemu_get_be32(f);
1503 if (section_hdr) {
1504 Error *local_err = NULL;
1506 /* First section gives the htab size */
1507 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1508 if (local_err) {
1509 error_report_err(local_err);
1510 return -EINVAL;
1512 return 0;
1515 if (!spapr->htab) {
1516 assert(kvm_enabled());
1518 fd = kvmppc_get_htab_fd(true);
1519 if (fd < 0) {
1520 error_report("Unable to open fd to restore KVM hash table: %s",
1521 strerror(errno));
1525 while (true) {
1526 uint32_t index;
1527 uint16_t n_valid, n_invalid;
1529 index = qemu_get_be32(f);
1530 n_valid = qemu_get_be16(f);
1531 n_invalid = qemu_get_be16(f);
1533 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1534 /* End of Stream */
1535 break;
1538 if ((index + n_valid + n_invalid) >
1539 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1540 /* Bad index in stream */
1541 error_report(
1542 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1543 index, n_valid, n_invalid, spapr->htab_shift);
1544 return -EINVAL;
1547 if (spapr->htab) {
1548 if (n_valid) {
1549 qemu_get_buffer(f, HPTE(spapr->htab, index),
1550 HASH_PTE_SIZE_64 * n_valid);
1552 if (n_invalid) {
1553 memset(HPTE(spapr->htab, index + n_valid), 0,
1554 HASH_PTE_SIZE_64 * n_invalid);
1556 } else {
1557 int rc;
1559 assert(fd >= 0);
1561 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1562 if (rc < 0) {
1563 return rc;
1568 if (!spapr->htab) {
1569 assert(fd >= 0);
1570 close(fd);
1573 return 0;
1576 static void htab_cleanup(void *opaque)
1578 sPAPRMachineState *spapr = opaque;
1580 close_htab_fd(spapr);
1583 static SaveVMHandlers savevm_htab_handlers = {
1584 .save_live_setup = htab_save_setup,
1585 .save_live_iterate = htab_save_iterate,
1586 .save_live_complete_precopy = htab_save_complete,
1587 .cleanup = htab_cleanup,
1588 .load_state = htab_load,
1591 static void spapr_boot_set(void *opaque, const char *boot_device,
1592 Error **errp)
1594 MachineState *machine = MACHINE(qdev_get_machine());
1595 machine->boot_order = g_strdup(boot_device);
1599 * Reset routine for LMB DR devices.
1601 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1602 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1603 * when it walks all its children devices. LMB devices reset occurs
1604 * as part of spapr_ppc_reset().
1606 static void spapr_drc_reset(void *opaque)
1608 sPAPRDRConnector *drc = opaque;
1609 DeviceState *d = DEVICE(drc);
1611 if (d) {
1612 device_reset(d);
1616 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1618 MachineState *machine = MACHINE(spapr);
1619 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1620 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1621 int i;
1623 for (i = 0; i < nr_lmbs; i++) {
1624 sPAPRDRConnector *drc;
1625 uint64_t addr;
1627 addr = i * lmb_size + spapr->hotplug_memory.base;
1628 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1629 addr/lmb_size);
1630 qemu_register_reset(spapr_drc_reset, drc);
1635 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1636 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1637 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1639 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1641 int i;
1643 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1644 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1645 " is not aligned to %llu MiB",
1646 machine->ram_size,
1647 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1648 return;
1651 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1652 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1653 " is not aligned to %llu MiB",
1654 machine->ram_size,
1655 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1656 return;
1659 for (i = 0; i < nb_numa_nodes; i++) {
1660 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1661 error_setg(errp,
1662 "Node %d memory size 0x%" PRIx64
1663 " is not aligned to %llu MiB",
1664 i, numa_info[i].node_mem,
1665 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1666 return;
1671 /* pSeries LPAR / sPAPR hardware init */
1672 static void ppc_spapr_init(MachineState *machine)
1674 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1675 MachineClass *mc = MACHINE_GET_CLASS(machine);
1676 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1677 const char *kernel_filename = machine->kernel_filename;
1678 const char *initrd_filename = machine->initrd_filename;
1679 PCIHostState *phb;
1680 int i;
1681 MemoryRegion *sysmem = get_system_memory();
1682 MemoryRegion *ram = g_new(MemoryRegion, 1);
1683 MemoryRegion *rma_region;
1684 void *rma = NULL;
1685 hwaddr rma_alloc_size;
1686 hwaddr node0_size = spapr_node0_size();
1687 long load_limit, fw_size;
1688 char *filename;
1689 int smt = kvmppc_smt_threads();
1690 int spapr_cores = smp_cpus / smp_threads;
1691 int spapr_max_cores = max_cpus / smp_threads;
1693 if (mc->query_hotpluggable_cpus) {
1694 if (smp_cpus % smp_threads) {
1695 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1696 smp_cpus, smp_threads);
1697 exit(1);
1699 if (max_cpus % smp_threads) {
1700 error_report("max_cpus (%u) must be multiple of threads (%u)",
1701 max_cpus, smp_threads);
1702 exit(1);
1706 msi_nonbroken = true;
1708 QLIST_INIT(&spapr->phbs);
1710 cpu_ppc_hypercall = emulate_spapr_hypercall;
1712 /* Allocate RMA if necessary */
1713 rma_alloc_size = kvmppc_alloc_rma(&rma);
1715 if (rma_alloc_size == -1) {
1716 error_report("Unable to create RMA");
1717 exit(1);
1720 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1721 spapr->rma_size = rma_alloc_size;
1722 } else {
1723 spapr->rma_size = node0_size;
1725 /* With KVM, we don't actually know whether KVM supports an
1726 * unbounded RMA (PR KVM) or is limited by the hash table size
1727 * (HV KVM using VRMA), so we always assume the latter
1729 * In that case, we also limit the initial allocations for RTAS
1730 * etc... to 256M since we have no way to know what the VRMA size
1731 * is going to be as it depends on the size of the hash table
1732 * isn't determined yet.
1734 if (kvm_enabled()) {
1735 spapr->vrma_adjust = 1;
1736 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1739 /* Actually we don't support unbounded RMA anymore since we
1740 * added proper emulation of HV mode. The max we can get is
1741 * 16G which also happens to be what we configure for PAPR
1742 * mode so make sure we don't do anything bigger than that
1744 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1747 if (spapr->rma_size > node0_size) {
1748 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1749 spapr->rma_size);
1750 exit(1);
1753 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1754 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1756 /* Set up Interrupt Controller before we create the VCPUs */
1757 spapr->xics = xics_system_init(machine,
1758 DIV_ROUND_UP(max_cpus * smt, smp_threads),
1759 XICS_IRQS_SPAPR, &error_fatal);
1761 if (smc->dr_lmb_enabled) {
1762 spapr_validate_node_memory(machine, &error_fatal);
1765 /* init CPUs */
1766 if (machine->cpu_model == NULL) {
1767 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
1770 ppc_cpu_parse_features(machine->cpu_model);
1772 if (mc->query_hotpluggable_cpus) {
1773 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1775 if (type == NULL) {
1776 error_report("Unable to find sPAPR CPU Core definition");
1777 exit(1);
1780 spapr->cores = g_new0(Object *, spapr_max_cores);
1781 for (i = 0; i < spapr_max_cores; i++) {
1782 int core_id = i * smp_threads;
1783 sPAPRDRConnector *drc =
1784 spapr_dr_connector_new(OBJECT(spapr),
1785 SPAPR_DR_CONNECTOR_TYPE_CPU,
1786 (core_id / smp_threads) * smt);
1788 qemu_register_reset(spapr_drc_reset, drc);
1790 if (i < spapr_cores) {
1791 Object *core = object_new(type);
1792 object_property_set_int(core, smp_threads, "nr-threads",
1793 &error_fatal);
1794 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1795 &error_fatal);
1796 object_property_set_bool(core, true, "realized", &error_fatal);
1799 g_free(type);
1800 } else {
1801 for (i = 0; i < smp_cpus; i++) {
1802 PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1803 if (cpu == NULL) {
1804 error_report("Unable to find PowerPC CPU definition");
1805 exit(1);
1807 spapr_cpu_init(spapr, cpu, &error_fatal);
1811 if (kvm_enabled()) {
1812 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1813 kvmppc_enable_logical_ci_hcalls();
1814 kvmppc_enable_set_mode_hcall();
1816 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1817 kvmppc_enable_clear_ref_mod_hcalls();
1820 /* allocate RAM */
1821 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1822 machine->ram_size);
1823 memory_region_add_subregion(sysmem, 0, ram);
1825 if (rma_alloc_size && rma) {
1826 rma_region = g_new(MemoryRegion, 1);
1827 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1828 rma_alloc_size, rma);
1829 vmstate_register_ram_global(rma_region);
1830 memory_region_add_subregion(sysmem, 0, rma_region);
1833 /* initialize hotplug memory address space */
1834 if (machine->ram_size < machine->maxram_size) {
1835 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1837 * Limit the number of hotpluggable memory slots to half the number
1838 * slots that KVM supports, leaving the other half for PCI and other
1839 * devices. However ensure that number of slots doesn't drop below 32.
1841 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1842 SPAPR_MAX_RAM_SLOTS;
1844 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1845 max_memslots = SPAPR_MAX_RAM_SLOTS;
1847 if (machine->ram_slots > max_memslots) {
1848 error_report("Specified number of memory slots %"
1849 PRIu64" exceeds max supported %d",
1850 machine->ram_slots, max_memslots);
1851 exit(1);
1854 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1855 SPAPR_HOTPLUG_MEM_ALIGN);
1856 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1857 "hotplug-memory", hotplug_mem_size);
1858 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1859 &spapr->hotplug_memory.mr);
1862 if (smc->dr_lmb_enabled) {
1863 spapr_create_lmb_dr_connectors(spapr);
1866 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1867 if (!filename) {
1868 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1869 exit(1);
1871 spapr->rtas_size = get_image_size(filename);
1872 if (spapr->rtas_size < 0) {
1873 error_report("Could not get size of LPAR rtas '%s'", filename);
1874 exit(1);
1876 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1877 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1878 error_report("Could not load LPAR rtas '%s'", filename);
1879 exit(1);
1881 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1882 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1883 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1884 exit(1);
1886 g_free(filename);
1888 /* Set up EPOW events infrastructure */
1889 spapr_events_init(spapr);
1891 /* Set up the RTC RTAS interfaces */
1892 spapr_rtc_create(spapr);
1894 /* Set up VIO bus */
1895 spapr->vio_bus = spapr_vio_bus_init();
1897 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1898 if (serial_hds[i]) {
1899 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1903 /* We always have at least the nvram device on VIO */
1904 spapr_create_nvram(spapr);
1906 /* Set up PCI */
1907 spapr_pci_rtas_init();
1909 phb = spapr_create_phb(spapr, 0);
1911 for (i = 0; i < nb_nics; i++) {
1912 NICInfo *nd = &nd_table[i];
1914 if (!nd->model) {
1915 nd->model = g_strdup("ibmveth");
1918 if (strcmp(nd->model, "ibmveth") == 0) {
1919 spapr_vlan_create(spapr->vio_bus, nd);
1920 } else {
1921 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1925 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1926 spapr_vscsi_create(spapr->vio_bus);
1929 /* Graphics */
1930 if (spapr_vga_init(phb->bus, &error_fatal)) {
1931 spapr->has_graphics = true;
1932 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1935 if (machine->usb) {
1936 if (smc->use_ohci_by_default) {
1937 pci_create_simple(phb->bus, -1, "pci-ohci");
1938 } else {
1939 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1942 if (spapr->has_graphics) {
1943 USBBus *usb_bus = usb_bus_find(-1);
1945 usb_create_simple(usb_bus, "usb-kbd");
1946 usb_create_simple(usb_bus, "usb-mouse");
1950 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1951 error_report(
1952 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1953 MIN_RMA_SLOF);
1954 exit(1);
1957 if (kernel_filename) {
1958 uint64_t lowaddr = 0;
1960 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
1961 NULL, NULL, &lowaddr, NULL, 1,
1962 PPC_ELF_MACHINE, 0, 0);
1963 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1964 spapr->kernel_size = load_elf(kernel_filename,
1965 translate_kernel_address, NULL, NULL,
1966 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1967 0, 0);
1968 spapr->kernel_le = spapr->kernel_size > 0;
1970 if (spapr->kernel_size < 0) {
1971 error_report("error loading %s: %s", kernel_filename,
1972 load_elf_strerror(spapr->kernel_size));
1973 exit(1);
1976 /* load initrd */
1977 if (initrd_filename) {
1978 /* Try to locate the initrd in the gap between the kernel
1979 * and the firmware. Add a bit of space just in case
1981 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
1982 + 0x1ffff) & ~0xffff;
1983 spapr->initrd_size = load_image_targphys(initrd_filename,
1984 spapr->initrd_base,
1985 load_limit
1986 - spapr->initrd_base);
1987 if (spapr->initrd_size < 0) {
1988 error_report("could not load initial ram disk '%s'",
1989 initrd_filename);
1990 exit(1);
1995 if (bios_name == NULL) {
1996 bios_name = FW_FILE_NAME;
1998 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1999 if (!filename) {
2000 error_report("Could not find LPAR firmware '%s'", bios_name);
2001 exit(1);
2003 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2004 if (fw_size <= 0) {
2005 error_report("Could not load LPAR firmware '%s'", filename);
2006 exit(1);
2008 g_free(filename);
2010 /* FIXME: Should register things through the MachineState's qdev
2011 * interface, this is a legacy from the sPAPREnvironment structure
2012 * which predated MachineState but had a similar function */
2013 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2014 register_savevm_live(NULL, "spapr/htab", -1, 1,
2015 &savevm_htab_handlers, spapr);
2017 /* Prepare the device tree */
2018 spapr->fdt_skel = spapr_create_fdt_skel(spapr);
2019 assert(spapr->fdt_skel != NULL);
2021 /* used by RTAS */
2022 QTAILQ_INIT(&spapr->ccs_list);
2023 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2025 qemu_register_boot_set(spapr_boot_set, spapr);
2028 static int spapr_kvm_type(const char *vm_type)
2030 if (!vm_type) {
2031 return 0;
2034 if (!strcmp(vm_type, "HV")) {
2035 return 1;
2038 if (!strcmp(vm_type, "PR")) {
2039 return 2;
2042 error_report("Unknown kvm-type specified '%s'", vm_type);
2043 exit(1);
2047 * Implementation of an interface to adjust firmware path
2048 * for the bootindex property handling.
2050 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2051 DeviceState *dev)
2053 #define CAST(type, obj, name) \
2054 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2055 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2056 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2058 if (d) {
2059 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2060 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2061 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2063 if (spapr) {
2065 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2066 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2067 * in the top 16 bits of the 64-bit LUN
2069 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2070 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2071 (uint64_t)id << 48);
2072 } else if (virtio) {
2074 * We use SRP luns of the form 01000000 | (target << 8) | lun
2075 * in the top 32 bits of the 64-bit LUN
2076 * Note: the quote above is from SLOF and it is wrong,
2077 * the actual binding is:
2078 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2080 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2081 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2082 (uint64_t)id << 32);
2083 } else if (usb) {
2085 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2086 * in the top 32 bits of the 64-bit LUN
2088 unsigned usb_port = atoi(usb->port->path);
2089 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2090 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2091 (uint64_t)id << 32);
2095 if (phb) {
2096 /* Replace "pci" with "pci@800000020000000" */
2097 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2100 return NULL;
2103 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2105 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2107 return g_strdup(spapr->kvm_type);
2110 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2112 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2114 g_free(spapr->kvm_type);
2115 spapr->kvm_type = g_strdup(value);
2118 static void spapr_machine_initfn(Object *obj)
2120 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2122 spapr->htab_fd = -1;
2123 object_property_add_str(obj, "kvm-type",
2124 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2125 object_property_set_description(obj, "kvm-type",
2126 "Specifies the KVM virtualization mode (HV, PR)",
2127 NULL);
2130 static void spapr_machine_finalizefn(Object *obj)
2132 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2134 g_free(spapr->kvm_type);
2137 static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, void *arg)
2139 cpu_synchronize_state(cs);
2140 ppc_cpu_do_system_reset(cs);
2143 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2145 CPUState *cs;
2147 CPU_FOREACH(cs) {
2148 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, NULL);
2152 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2153 uint32_t node, Error **errp)
2155 sPAPRDRConnector *drc;
2156 sPAPRDRConnectorClass *drck;
2157 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2158 int i, fdt_offset, fdt_size;
2159 void *fdt;
2161 for (i = 0; i < nr_lmbs; i++) {
2162 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2163 addr/SPAPR_MEMORY_BLOCK_SIZE);
2164 g_assert(drc);
2166 fdt = create_device_tree(&fdt_size);
2167 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2168 SPAPR_MEMORY_BLOCK_SIZE);
2170 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2171 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2172 addr += SPAPR_MEMORY_BLOCK_SIZE;
2174 /* send hotplug notification to the
2175 * guest only in case of hotplugged memory
2177 if (dev->hotplugged) {
2178 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2182 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2183 uint32_t node, Error **errp)
2185 Error *local_err = NULL;
2186 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2187 PCDIMMDevice *dimm = PC_DIMM(dev);
2188 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2189 MemoryRegion *mr = ddc->get_memory_region(dimm);
2190 uint64_t align = memory_region_get_alignment(mr);
2191 uint64_t size = memory_region_size(mr);
2192 uint64_t addr;
2194 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2195 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2196 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2197 goto out;
2200 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2201 if (local_err) {
2202 goto out;
2205 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2206 if (local_err) {
2207 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2208 goto out;
2211 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2213 out:
2214 error_propagate(errp, local_err);
2217 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2218 sPAPRMachineState *spapr)
2220 PowerPCCPU *cpu = POWERPC_CPU(cs);
2221 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2222 int id = ppc_get_vcpu_dt_id(cpu);
2223 void *fdt;
2224 int offset, fdt_size;
2225 char *nodename;
2227 fdt = create_device_tree(&fdt_size);
2228 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2229 offset = fdt_add_subnode(fdt, 0, nodename);
2231 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2232 g_free(nodename);
2234 *fdt_offset = offset;
2235 return fdt;
2238 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2239 DeviceState *dev, Error **errp)
2241 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2243 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2244 int node;
2246 if (!smc->dr_lmb_enabled) {
2247 error_setg(errp, "Memory hotplug not supported for this machine");
2248 return;
2250 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2251 if (*errp) {
2252 return;
2254 if (node < 0 || node >= MAX_NODES) {
2255 error_setg(errp, "Invaild node %d", node);
2256 return;
2260 * Currently PowerPC kernel doesn't allow hot-adding memory to
2261 * memory-less node, but instead will silently add the memory
2262 * to the first node that has some memory. This causes two
2263 * unexpected behaviours for the user.
2265 * - Memory gets hotplugged to a different node than what the user
2266 * specified.
2267 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2268 * to memory-less node, a reboot will set things accordingly
2269 * and the previously hotplugged memory now ends in the right node.
2270 * This appears as if some memory moved from one node to another.
2272 * So until kernel starts supporting memory hotplug to memory-less
2273 * nodes, just prevent such attempts upfront in QEMU.
2275 if (nb_numa_nodes && !numa_info[node].node_mem) {
2276 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2277 node);
2278 return;
2281 spapr_memory_plug(hotplug_dev, dev, node, errp);
2282 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2283 spapr_core_plug(hotplug_dev, dev, errp);
2287 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2288 DeviceState *dev, Error **errp)
2290 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2292 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2293 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2294 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2295 if (!mc->query_hotpluggable_cpus) {
2296 error_setg(errp, "CPU hot unplug not supported on this machine");
2297 return;
2299 spapr_core_unplug(hotplug_dev, dev, errp);
2303 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2304 DeviceState *dev, Error **errp)
2306 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2307 spapr_core_pre_plug(hotplug_dev, dev, errp);
2311 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2312 DeviceState *dev)
2314 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2315 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2316 return HOTPLUG_HANDLER(machine);
2318 return NULL;
2321 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2323 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2324 * socket means much for the paravirtualized PAPR platform) */
2325 return cpu_index / smp_threads / smp_cores;
2328 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2330 int i;
2331 HotpluggableCPUList *head = NULL;
2332 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2333 int spapr_max_cores = max_cpus / smp_threads;
2335 for (i = 0; i < spapr_max_cores; i++) {
2336 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2337 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2338 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2340 cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2341 cpu_item->vcpus_count = smp_threads;
2342 cpu_props->has_core_id = true;
2343 cpu_props->core_id = i * smp_threads;
2344 /* TODO: add 'has_node/node' here to describe
2345 to which node core belongs */
2347 cpu_item->props = cpu_props;
2348 if (spapr->cores[i]) {
2349 cpu_item->has_qom_path = true;
2350 cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2352 list_item->value = cpu_item;
2353 list_item->next = head;
2354 head = list_item;
2356 return head;
2359 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2360 uint64_t *buid, hwaddr *pio,
2361 hwaddr *mmio32, hwaddr *mmio64,
2362 unsigned n_dma, uint32_t *liobns, Error **errp)
2365 * New-style PHB window placement.
2367 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2368 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2369 * windows.
2371 * Some guest kernels can't work with MMIO windows above 1<<46
2372 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2374 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2375 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2376 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2377 * 1TiB 64-bit MMIO windows for each PHB.
2379 const uint64_t base_buid = 0x800000020000000ULL;
2380 const int max_phbs =
2381 (SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / SPAPR_PCI_MEM64_WIN_SIZE - 1;
2382 int i;
2384 /* Sanity check natural alignments */
2385 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2386 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2387 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2388 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2389 /* Sanity check bounds */
2390 QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_IO_WIN_SIZE) > SPAPR_PCI_MEM32_WIN_SIZE);
2391 QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_MEM32_WIN_SIZE) > SPAPR_PCI_MEM64_WIN_SIZE);
2393 if (index >= max_phbs) {
2394 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2395 max_phbs - 1);
2396 return;
2399 *buid = base_buid + index;
2400 for (i = 0; i < n_dma; ++i) {
2401 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2404 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2405 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2406 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2409 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2411 MachineClass *mc = MACHINE_CLASS(oc);
2412 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2413 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2414 NMIClass *nc = NMI_CLASS(oc);
2415 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2417 mc->desc = "pSeries Logical Partition (PAPR compliant)";
2420 * We set up the default / latest behaviour here. The class_init
2421 * functions for the specific versioned machine types can override
2422 * these details for backwards compatibility
2424 mc->init = ppc_spapr_init;
2425 mc->reset = ppc_spapr_reset;
2426 mc->block_default_type = IF_SCSI;
2427 mc->max_cpus = 255;
2428 mc->no_parallel = 1;
2429 mc->default_boot_order = "";
2430 mc->default_ram_size = 512 * M_BYTE;
2431 mc->kvm_type = spapr_kvm_type;
2432 mc->has_dynamic_sysbus = true;
2433 mc->pci_allow_0_address = true;
2434 mc->get_hotplug_handler = spapr_get_hotplug_handler;
2435 hc->pre_plug = spapr_machine_device_pre_plug;
2436 hc->plug = spapr_machine_device_plug;
2437 hc->unplug = spapr_machine_device_unplug;
2438 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2440 smc->dr_lmb_enabled = true;
2441 smc->tcg_default_cpu = "POWER8";
2442 mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2443 fwc->get_dev_path = spapr_get_fw_dev_path;
2444 nc->nmi_monitor_handler = spapr_nmi;
2445 smc->phb_placement = spapr_phb_placement;
2448 static const TypeInfo spapr_machine_info = {
2449 .name = TYPE_SPAPR_MACHINE,
2450 .parent = TYPE_MACHINE,
2451 .abstract = true,
2452 .instance_size = sizeof(sPAPRMachineState),
2453 .instance_init = spapr_machine_initfn,
2454 .instance_finalize = spapr_machine_finalizefn,
2455 .class_size = sizeof(sPAPRMachineClass),
2456 .class_init = spapr_machine_class_init,
2457 .interfaces = (InterfaceInfo[]) {
2458 { TYPE_FW_PATH_PROVIDER },
2459 { TYPE_NMI },
2460 { TYPE_HOTPLUG_HANDLER },
2465 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2466 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2467 void *data) \
2469 MachineClass *mc = MACHINE_CLASS(oc); \
2470 spapr_machine_##suffix##_class_options(mc); \
2471 if (latest) { \
2472 mc->alias = "pseries"; \
2473 mc->is_default = 1; \
2476 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2478 MachineState *machine = MACHINE(obj); \
2479 spapr_machine_##suffix##_instance_options(machine); \
2481 static const TypeInfo spapr_machine_##suffix##_info = { \
2482 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2483 .parent = TYPE_SPAPR_MACHINE, \
2484 .class_init = spapr_machine_##suffix##_class_init, \
2485 .instance_init = spapr_machine_##suffix##_instance_init, \
2486 }; \
2487 static void spapr_machine_register_##suffix(void) \
2489 type_register(&spapr_machine_##suffix##_info); \
2491 type_init(spapr_machine_register_##suffix)
2494 * pseries-2.8
2496 static void spapr_machine_2_8_instance_options(MachineState *machine)
2500 static void spapr_machine_2_8_class_options(MachineClass *mc)
2502 /* Defaults for the latest behaviour inherited from the base class */
2505 DEFINE_SPAPR_MACHINE(2_8, "2.8", true);
2508 * pseries-2.7
2510 #define SPAPR_COMPAT_2_7 \
2511 HW_COMPAT_2_7 \
2513 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
2514 .property = "mem_win_size", \
2515 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
2516 }, \
2518 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
2519 .property = "mem64_win_size", \
2520 .value = "0", \
2523 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
2524 uint64_t *buid, hwaddr *pio,
2525 hwaddr *mmio32, hwaddr *mmio64,
2526 unsigned n_dma, uint32_t *liobns, Error **errp)
2528 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
2529 const uint64_t base_buid = 0x800000020000000ULL;
2530 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
2531 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
2532 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
2533 const uint32_t max_index = 255;
2534 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
2536 uint64_t ram_top = MACHINE(spapr)->ram_size;
2537 hwaddr phb0_base, phb_base;
2538 int i;
2540 /* Do we have hotpluggable memory? */
2541 if (MACHINE(spapr)->maxram_size > ram_top) {
2542 /* Can't just use maxram_size, because there may be an
2543 * alignment gap between normal and hotpluggable memory
2544 * regions */
2545 ram_top = spapr->hotplug_memory.base +
2546 memory_region_size(&spapr->hotplug_memory.mr);
2549 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
2551 if (index > max_index) {
2552 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2553 max_index);
2554 return;
2557 *buid = base_buid + index;
2558 for (i = 0; i < n_dma; ++i) {
2559 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2562 phb_base = phb0_base + index * phb_spacing;
2563 *pio = phb_base + pio_offset;
2564 *mmio32 = phb_base + mmio_offset;
2566 * We don't set the 64-bit MMIO window, relying on the PHB's
2567 * fallback behaviour of automatically splitting a large "32-bit"
2568 * window into contiguous 32-bit and 64-bit windows
2572 static void spapr_machine_2_7_instance_options(MachineState *machine)
2574 spapr_machine_2_8_instance_options(machine);
2577 static void spapr_machine_2_7_class_options(MachineClass *mc)
2579 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2581 spapr_machine_2_8_class_options(mc);
2582 smc->tcg_default_cpu = "POWER7";
2583 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
2584 smc->phb_placement = phb_placement_2_7;
2587 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
2590 * pseries-2.6
2592 #define SPAPR_COMPAT_2_6 \
2593 HW_COMPAT_2_6 \
2595 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2596 .property = "ddw",\
2597 .value = stringify(off),\
2600 static void spapr_machine_2_6_instance_options(MachineState *machine)
2602 spapr_machine_2_7_instance_options(machine);
2605 static void spapr_machine_2_6_class_options(MachineClass *mc)
2607 spapr_machine_2_7_class_options(mc);
2608 mc->query_hotpluggable_cpus = NULL;
2609 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2612 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2615 * pseries-2.5
2617 #define SPAPR_COMPAT_2_5 \
2618 HW_COMPAT_2_5 \
2620 .driver = "spapr-vlan", \
2621 .property = "use-rx-buffer-pools", \
2622 .value = "off", \
2625 static void spapr_machine_2_5_instance_options(MachineState *machine)
2627 spapr_machine_2_6_instance_options(machine);
2630 static void spapr_machine_2_5_class_options(MachineClass *mc)
2632 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2634 spapr_machine_2_6_class_options(mc);
2635 smc->use_ohci_by_default = true;
2636 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2639 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2642 * pseries-2.4
2644 #define SPAPR_COMPAT_2_4 \
2645 HW_COMPAT_2_4
2647 static void spapr_machine_2_4_instance_options(MachineState *machine)
2649 spapr_machine_2_5_instance_options(machine);
2652 static void spapr_machine_2_4_class_options(MachineClass *mc)
2654 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2656 spapr_machine_2_5_class_options(mc);
2657 smc->dr_lmb_enabled = false;
2658 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2661 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2664 * pseries-2.3
2666 #define SPAPR_COMPAT_2_3 \
2667 HW_COMPAT_2_3 \
2669 .driver = "spapr-pci-host-bridge",\
2670 .property = "dynamic-reconfiguration",\
2671 .value = "off",\
2674 static void spapr_machine_2_3_instance_options(MachineState *machine)
2676 spapr_machine_2_4_instance_options(machine);
2677 savevm_skip_section_footers();
2678 global_state_set_optional();
2679 savevm_skip_configuration();
2682 static void spapr_machine_2_3_class_options(MachineClass *mc)
2684 spapr_machine_2_4_class_options(mc);
2685 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2687 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2690 * pseries-2.2
2693 #define SPAPR_COMPAT_2_2 \
2694 HW_COMPAT_2_2 \
2696 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2697 .property = "mem_win_size",\
2698 .value = "0x20000000",\
2701 static void spapr_machine_2_2_instance_options(MachineState *machine)
2703 spapr_machine_2_3_instance_options(machine);
2704 machine->suppress_vmdesc = true;
2707 static void spapr_machine_2_2_class_options(MachineClass *mc)
2709 spapr_machine_2_3_class_options(mc);
2710 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2712 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2715 * pseries-2.1
2717 #define SPAPR_COMPAT_2_1 \
2718 HW_COMPAT_2_1
2720 static void spapr_machine_2_1_instance_options(MachineState *machine)
2722 spapr_machine_2_2_instance_options(machine);
2725 static void spapr_machine_2_1_class_options(MachineClass *mc)
2727 spapr_machine_2_2_class_options(mc);
2728 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2730 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2732 static void spapr_machine_register_types(void)
2734 type_register_static(&spapr_machine_info);
2737 type_init(spapr_machine_register_types)