target/arm: Don't allow guest to make System space executable for M profile
[qemu.git] / target / arm / helper.c
blobf0299c5282f40feb14b779ebf1bc7e33c4cecb6f
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD 0x8
36 #define PMCRC 0x4
37 #define PMCRE 0x1
38 #endif
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
42 int nregs;
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
64 return 0;
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
69 int nregs;
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
89 return 0;
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
139 } else {
140 return CPREG_FIELD32(env, ri);
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
157 return (char *)env + ri->fieldoffset;
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
169 } else {
170 return raw_read(env, ri);
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t v)
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
182 if (ri->type & ARM_CP_CONST) {
183 return;
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
188 } else {
189 raw_write(env, ri, v);
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
211 return true;
214 bool write_cpustate_to_list(ARMCPU *cpu)
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 if (!ri) {
226 ok = false;
227 continue;
229 if (ri->type & ARM_CP_NO_RAW) {
230 continue;
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
234 return ok;
237 bool write_list_to_cpustate(ARMCPU *cpu)
239 int i;
240 bool ok = true;
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!ri) {
249 ok = false;
250 continue;
252 if (ri->type & ARM_CP_NO_RAW) {
253 continue;
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 ok = false;
264 return ok;
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
283 static void count_cpreg(gpointer key, gpointer opaque)
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
302 if (aidx > bidx) {
303 return 1;
305 if (aidx < bidx) {
306 return -1;
308 return 0;
311 void init_cpreg_list(ARMCPU *cpu)
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
316 GList *keys;
317 int arraylen;
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
322 cpu->cpreg_array_len = 0;
324 g_list_foreach(keys, count_cpreg, cpu);
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
336 assert(cpu->cpreg_array_len == arraylen);
338 g_list_free(keys);
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
350 bool isread)
352 bool secure = arm_is_secure_below_el3(env);
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
358 return CP_ACCESS_OK;
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
363 bool isread)
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
368 return CP_ACCESS_OK;
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
390 /* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
396 int el = arm_current_el(env);
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
405 return CP_ACCESS_OK;
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
414 int el = arm_current_el(env);
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
423 return CP_ACCESS_OK;
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
432 int el = arm_current_el(env);
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
441 return CP_ACCESS_OK;
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
450 int el = arm_current_el(env);
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
459 return CP_ACCESS_OK;
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
464 ARMCPU *cpu = arm_env_get_cpu(env);
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
472 ARMCPU *cpu = arm_env_get_cpu(env);
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
478 tlb_flush(CPU(cpu));
479 raw_write(env, ri, value);
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
486 ARMCPU *cpu = arm_env_get_cpu(env);
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
494 tlb_flush(CPU(cpu));
496 raw_write(env, ri, value);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
505 tlb_flush(CPU(cpu));
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
523 tlb_flush(CPU(cpu));
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
539 CPUState *cs = ENV_GET_CPU(env);
541 tlb_flush_all_cpus_synced(cs);
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 CPUState *cs = ENV_GET_CPU(env);
549 tlb_flush_all_cpus_synced(cs);
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
555 CPUState *cs = ENV_GET_CPU(env);
557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
563 CPUState *cs = ENV_GET_CPU(env);
565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
571 CPUState *cs = ENV_GET_CPU(env);
573 tlb_flush_by_mmuidx(cs,
574 ARMMMUIdxBit_S12NSE1 |
575 ARMMMUIdxBit_S12NSE0 |
576 ARMMMUIdxBit_S2NS);
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
582 CPUState *cs = ENV_GET_CPU(env);
584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
585 ARMMMUIdxBit_S12NSE1 |
586 ARMMMUIdxBit_S12NSE0 |
587 ARMMMUIdxBit_S2NS);
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
599 CPUState *cs = ENV_GET_CPU(env);
600 uint64_t pageaddr;
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603 return;
606 pageaddr = sextract64(value << 12, 0, 40);
608 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
614 CPUState *cs = ENV_GET_CPU(env);
615 uint64_t pageaddr;
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618 return;
621 pageaddr = sextract64(value << 12, 0, 40);
623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
624 ARMMMUIdxBit_S2NS);
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
630 CPUState *cs = ENV_GET_CPU(env);
632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
638 CPUState *cs = ENV_GET_CPU(env);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
649 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
659 ARMMMUIdxBit_S1E2);
662 static const ARMCPRegInfo cp_reginfo[] = {
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694 REGINFO_SENTINEL
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
701 /* MMU Domain access control / MPU write buffer control */
702 { .name = "DACR",
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723 REGINFO_SENTINEL
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
728 * over-broad.
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
732 REGINFO_SENTINEL
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747 .resetvalue = 0 },
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750 .resetvalue = 0 },
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754 .resetvalue = 0 },
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767 .type = ARM_CP_NO_RAW },
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770 .type = ARM_CP_NO_RAW },
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773 .type = ARM_CP_NO_RAW },
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776 .type = ARM_CP_NO_RAW },
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781 REGINFO_SENTINEL
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
787 uint32_t mask = 0;
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
801 value |= (1 << 31);
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810 value |= (1 << 30);
813 value &= mask;
815 env->cp15.cpacr_el1 = value;
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819 bool isread)
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
833 return CP_ACCESS_OK;
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837 bool isread)
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
844 return CP_ACCESS_OK;
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861 .access = PL0_W, .type = ARM_CP_NOP },
862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863 .access = PL1_RW,
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
866 .resetvalue = 0, },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetvalue = 0, .writefn = cpacr_write },
876 REGINFO_SENTINEL
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880 bool isread)
882 /* Performance monitor registers user accessibility is controlled
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
886 int el = arm_current_el(env);
888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889 return CP_ACCESS_TRAP;
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
899 return CP_ACCESS_OK;
902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
904 bool isread)
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910 && isread) {
911 return CP_ACCESS_OK;
914 return pmreg_access(env, ri, isread);
917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
919 bool isread)
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925 && !isread) {
926 return CP_ACCESS_OK;
929 return pmreg_access(env, ri, isread);
932 #ifndef CONFIG_USER_ONLY
934 static CPAccessResult pmreg_access_selr(CPUARMState *env,
935 const ARMCPRegInfo *ri,
936 bool isread)
938 /* ER: event counter read trap control */
939 if (arm_feature(env, ARM_FEATURE_V8)
940 && arm_current_el(env) == 0
941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942 return CP_ACCESS_OK;
945 return pmreg_access(env, ri, isread);
948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949 const ARMCPRegInfo *ri,
950 bool isread)
952 /* CR: cycle counter read trap control */
953 if (arm_feature(env, ARM_FEATURE_V8)
954 && arm_current_el(env) == 0
955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956 && isread) {
957 return CP_ACCESS_OK;
960 return pmreg_access(env, ri, isread);
963 static inline bool arm_ccnt_enabled(CPUARMState *env)
965 /* This does not support checking PMCCFILTR_EL0 register */
967 if (!(env->cp15.c9_pmcr & PMCRE)) {
968 return false;
971 return true;
974 void pmccntr_sync(CPUARMState *env)
976 uint64_t temp_ticks;
978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
981 if (env->cp15.c9_pmcr & PMCRD) {
982 /* Increment once every 64 processor clock cycles */
983 temp_ticks /= 64;
986 if (arm_ccnt_enabled(env)) {
987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992 uint64_t value)
994 pmccntr_sync(env);
996 if (value & PMCRC) {
997 /* The counter has been reset */
998 env->cp15.c15_ccnt = 0;
1001 /* only the DP, X, D and E bits are writable */
1002 env->cp15.c9_pmcr &= ~0x39;
1003 env->cp15.c9_pmcr |= (value & 0x39);
1005 pmccntr_sync(env);
1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1010 uint64_t total_ticks;
1012 if (!arm_ccnt_enabled(env)) {
1013 /* Counter is disabled, do not change value */
1014 return env->cp15.c15_ccnt;
1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1020 if (env->cp15.c9_pmcr & PMCRD) {
1021 /* Increment once every 64 processor clock cycles */
1022 total_ticks /= 64;
1024 return total_ticks - env->cp15.c15_ccnt;
1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028 uint64_t value)
1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033 * accessed.
1035 env->cp15.c9_pmselr = value & 0x1f;
1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039 uint64_t value)
1041 uint64_t total_ticks;
1043 if (!arm_ccnt_enabled(env)) {
1044 /* Counter is disabled, set the absolute value */
1045 env->cp15.c15_ccnt = value;
1046 return;
1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1052 if (env->cp15.c9_pmcr & PMCRD) {
1053 /* Increment once every 64 processor clock cycles */
1054 total_ticks /= 64;
1056 env->cp15.c15_ccnt = total_ticks - value;
1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060 uint64_t value)
1062 uint64_t cur_val = pmccntr_read(env, NULL);
1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1067 #else /* CONFIG_USER_ONLY */
1069 void pmccntr_sync(CPUARMState *env)
1073 #endif
1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076 uint64_t value)
1078 pmccntr_sync(env);
1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080 pmccntr_sync(env);
1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1084 uint64_t value)
1086 value &= (1 << 31);
1087 env->cp15.c9_pmcnten |= value;
1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
1093 value &= (1 << 31);
1094 env->cp15.c9_pmcnten &= ~value;
1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098 uint64_t value)
1100 env->cp15.c9_pmovsr &= ~value;
1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107 * PMSELR value is equal to or greater than the number of implemented
1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1110 if (env->cp15.c9_pmselr == 0x1f) {
1111 pmccfiltr_write(env, ri, value);
1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 return env->cp15.pmccfiltr_el0;
1122 } else {
1123 return 0;
1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128 uint64_t value)
1130 if (arm_feature(env, ARM_FEATURE_V8)) {
1131 env->cp15.c9_pmuserenr = value & 0xf;
1132 } else {
1133 env->cp15.c9_pmuserenr = value & 1;
1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
1140 /* We have no event counters so only the C bit can be changed */
1141 value &= (1 << 31);
1142 env->cp15.c9_pminten |= value;
1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146 uint64_t value)
1148 value &= (1 << 31);
1149 env->cp15.c9_pminten &= ~value;
1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153 uint64_t value)
1155 /* Note that even though the AArch64 view of this register has bits
1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157 * architectural requirements for bits which are RES0 only in some
1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1161 raw_write(env, ri, value & ~0x1FULL);
1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167 * For bits that vary between AArch32/64, code needs to check the
1168 * current execution mode before directly using the feature bit.
1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1172 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173 valid_mask &= ~SCR_HCE;
1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176 * supported if EL2 exists. The bit is UNK/SBZP when
1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178 * when EL2 is unavailable.
1179 * On ARMv8, this bit is always available.
1181 if (arm_feature(env, ARM_FEATURE_V7) &&
1182 !arm_feature(env, ARM_FEATURE_V8)) {
1183 valid_mask &= ~SCR_SMD;
1187 /* Clear all-context RES0 bits. */
1188 value &= valid_mask;
1189 raw_write(env, ri, value);
1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1194 ARMCPU *cpu = arm_env_get_cpu(env);
1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197 * bank
1199 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200 ri->secure & ARM_CP_SECSTATE_S);
1202 return cpu->ccsidr[index];
1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
1208 raw_write(env, ri, value & 0xf);
1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 CPUState *cs = ENV_GET_CPU(env);
1214 uint64_t ret = 0;
1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217 ret |= CPSR_I;
1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220 ret |= CPSR_F;
1222 /* External aborts are not possible in QEMU so A bit is always clear */
1223 return ret;
1226 static const ARMCPRegInfo v7_cp_reginfo[] = {
1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229 .access = PL1_W, .type = ARM_CP_NOP },
1230 /* Performance monitors are implementation defined in v7,
1231 * but with an ARM recommended set of registers, which we
1232 * follow (although we don't actually implement any counters)
1234 * Performance registers fall into three categories:
1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242 .access = PL0_RW, .type = ARM_CP_ALIAS,
1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244 .writefn = pmcntenset_write,
1245 .accessfn = pmreg_access,
1246 .raw_writefn = raw_write },
1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249 .access = PL0_RW, .accessfn = pmreg_access,
1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1253 .access = PL0_RW,
1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255 .accessfn = pmreg_access,
1256 .writefn = pmcntenclr_write,
1257 .type = ARM_CP_ALIAS },
1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260 .access = PL0_RW, .accessfn = pmreg_access,
1261 .type = ARM_CP_ALIAS,
1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263 .writefn = pmcntenclr_write },
1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266 .accessfn = pmreg_access,
1267 .writefn = pmovsr_write,
1268 .raw_writefn = raw_write },
1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271 .access = PL0_RW, .accessfn = pmreg_access,
1272 .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274 .writefn = pmovsr_write,
1275 .raw_writefn = raw_write },
1276 /* Unimplemented so WI. */
1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279 #ifndef CONFIG_USER_ONLY
1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281 .access = PL0_RW, .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284 .raw_writefn = raw_write},
1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287 .access = PL0_RW, .accessfn = pmreg_access_selr,
1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289 .writefn = pmselr_write, .raw_writefn = raw_write, },
1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293 .accessfn = pmreg_access_ccntr },
1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1297 .type = ARM_CP_IO,
1298 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1299 #endif
1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302 .writefn = pmccfiltr_write,
1303 .access = PL0_RW, .accessfn = pmreg_access,
1304 .type = ARM_CP_IO,
1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306 .resetvalue = 0, },
1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314 /* Unimplemented, RAZ/WI. */
1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317 .accessfn = pmreg_access_xevcntr },
1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321 .resetvalue = 0,
1322 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327 .resetvalue = 0,
1328 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330 .access = PL1_RW, .accessfn = access_tpm,
1331 .type = ARM_CP_ALIAS,
1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1333 .resetvalue = 0,
1334 .writefn = pmintenset_write, .raw_writefn = raw_write },
1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337 .access = PL1_RW, .accessfn = access_tpm,
1338 .type = ARM_CP_IO,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340 .writefn = pmintenset_write, .raw_writefn = raw_write,
1341 .resetvalue = 0x0 },
1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345 .writefn = pmintenclr_write, },
1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenclr_write },
1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358 offsetof(CPUARMState, cp15.csselr_ns) } },
1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360 * just RAZ for all cores:
1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365 /* Auxiliary fault status registers: these also are IMPDEF, and we
1366 * choose to RAZ/WI for all cores.
1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374 /* MAIR can just read-as-written because we don't implement caches
1375 * and so don't need to care about memory attributes.
1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1380 .resetvalue = 0 },
1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384 .resetvalue = 0 },
1385 /* For non-long-descriptor page tables these are PRRR and NMRR;
1386 * regardless they still act as reads-as-written for QEMU.
1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1389 * allows them to assign the correct fieldoffset based on the endianness
1390 * handled in the field definitions.
1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395 offsetof(CPUARMState, cp15.mair0_ns) },
1396 .resetfn = arm_cp_reset_ignore },
1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400 offsetof(CPUARMState, cp15.mair1_ns) },
1401 .resetfn = arm_cp_reset_ignore },
1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405 /* 32 bit ITLB invalidates */
1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412 /* 32 bit DTLB invalidates */
1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419 /* 32 bit TLB invalidates */
1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1428 REGINFO_SENTINEL
1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432 /* 32 bit TLB invalidates, Inner Shareable */
1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438 .type = ARM_CP_NO_RAW, .access = PL1_W,
1439 .writefn = tlbiasid_is_write },
1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441 .type = ARM_CP_NO_RAW, .access = PL1_W,
1442 .writefn = tlbimvaa_is_write },
1443 REGINFO_SENTINEL
1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
1449 value &= 1;
1450 env->teecr = value;
1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454 bool isread)
1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457 return CP_ACCESS_TRAP;
1459 return CP_ACCESS_OK;
1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465 .resetvalue = 0,
1466 .writefn = teecr_write },
1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469 .accessfn = teehbr_access, .resetvalue = 0 },
1470 REGINFO_SENTINEL
1473 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476 .access = PL0_RW,
1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479 .access = PL0_RW,
1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482 .resetfn = arm_cp_reset_ignore },
1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485 .access = PL0_R|PL1_W,
1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487 .resetvalue = 0},
1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489 .access = PL0_R|PL1_W,
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492 .resetfn = arm_cp_reset_ignore },
1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1495 .access = PL1_RW,
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498 .access = PL1_RW,
1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501 .resetvalue = 0 },
1502 REGINFO_SENTINEL
1505 #ifndef CONFIG_USER_ONLY
1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508 bool isread)
1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511 * Writable only at the highest implemented exception level.
1513 int el = arm_current_el(env);
1515 switch (el) {
1516 case 0:
1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518 return CP_ACCESS_TRAP;
1520 break;
1521 case 1:
1522 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523 arm_is_secure_below_el3(env)) {
1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525 return CP_ACCESS_TRAP_UNCATEGORIZED;
1527 break;
1528 case 2:
1529 case 3:
1530 break;
1533 if (!isread && el < arm_highest_el(env)) {
1534 return CP_ACCESS_TRAP_UNCATEGORIZED;
1537 return CP_ACCESS_OK;
1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541 bool isread)
1543 unsigned int cur_el = arm_current_el(env);
1544 bool secure = arm_is_secure(env);
1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1547 if (cur_el == 0 &&
1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549 return CP_ACCESS_TRAP;
1552 if (arm_feature(env, ARM_FEATURE_EL2) &&
1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555 return CP_ACCESS_TRAP_EL2;
1557 return CP_ACCESS_OK;
1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561 bool isread)
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567 * EL0[PV]TEN is zero.
1569 if (cur_el == 0 &&
1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571 return CP_ACCESS_TRAP;
1574 if (arm_feature(env, ARM_FEATURE_EL2) &&
1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577 return CP_ACCESS_TRAP_EL2;
1579 return CP_ACCESS_OK;
1582 static CPAccessResult gt_pct_access(CPUARMState *env,
1583 const ARMCPRegInfo *ri,
1584 bool isread)
1586 return gt_counter_access(env, GTIMER_PHYS, isread);
1589 static CPAccessResult gt_vct_access(CPUARMState *env,
1590 const ARMCPRegInfo *ri,
1591 bool isread)
1593 return gt_counter_access(env, GTIMER_VIRT, isread);
1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597 bool isread)
1599 return gt_timer_access(env, GTIMER_PHYS, isread);
1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603 bool isread)
1605 return gt_timer_access(env, GTIMER_VIRT, isread);
1608 static CPAccessResult gt_stimer_access(CPUARMState *env,
1609 const ARMCPRegInfo *ri,
1610 bool isread)
1612 /* The AArch64 register view of the secure physical timer is
1613 * always accessible from EL3, and configurably accessible from
1614 * Secure EL1.
1616 switch (arm_current_el(env)) {
1617 case 1:
1618 if (!arm_is_secure(env)) {
1619 return CP_ACCESS_TRAP;
1621 if (!(env->cp15.scr_el3 & SCR_ST)) {
1622 return CP_ACCESS_TRAP_EL3;
1624 return CP_ACCESS_OK;
1625 case 0:
1626 case 2:
1627 return CP_ACCESS_TRAP;
1628 case 3:
1629 return CP_ACCESS_OK;
1630 default:
1631 g_assert_not_reached();
1635 static uint64_t gt_get_countervalue(CPUARMState *env)
1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1644 if (gt->ctl & 1) {
1645 /* Timer enabled: calculate and set current ISTATUS, irq, and
1646 * reset timer to when ISTATUS next has to change
1648 uint64_t offset = timeridx == GTIMER_VIRT ?
1649 cpu->env.cp15.cntvoff_el2 : 0;
1650 uint64_t count = gt_get_countervalue(&cpu->env);
1651 /* Note that this must be unsigned 64 bit arithmetic: */
1652 int istatus = count - offset >= gt->cval;
1653 uint64_t nexttick;
1654 int irqstate;
1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1658 irqstate = (istatus && !(gt->ctl & 2));
1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1661 if (istatus) {
1662 /* Next transition is when count rolls back over to zero */
1663 nexttick = UINT64_MAX;
1664 } else {
1665 /* Next transition is when we hit cval */
1666 nexttick = gt->cval + offset;
1668 /* Note that the desired next expiry time might be beyond the
1669 * signed-64-bit range of a QEMUTimer -- in this case we just
1670 * set the timer for as far in the future as possible. When the
1671 * timer expires we will reset the timer for any remaining period.
1673 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674 nexttick = INT64_MAX / GTIMER_SCALE;
1676 timer_mod(cpu->gt_timer[timeridx], nexttick);
1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1678 } else {
1679 /* Timer disabled: ISTATUS and timer output always clear */
1680 gt->ctl &= ~4;
1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682 timer_del(cpu->gt_timer[timeridx]);
1683 trace_arm_gt_recalc_disabled(timeridx);
1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688 int timeridx)
1690 ARMCPU *cpu = arm_env_get_cpu(env);
1692 timer_del(cpu->gt_timer[timeridx]);
1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1697 return gt_get_countervalue(env);
1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706 int timeridx,
1707 uint64_t value)
1709 trace_arm_gt_cval_write(timeridx, value);
1710 env->cp15.c14_timer[timeridx].cval = value;
1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715 int timeridx)
1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1720 (gt_get_countervalue(env) - offset));
1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724 int timeridx,
1725 uint64_t value)
1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1729 trace_arm_gt_tval_write(timeridx, value);
1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731 sextract64(value, 0, 32);
1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736 int timeridx,
1737 uint64_t value)
1739 ARMCPU *cpu = arm_env_get_cpu(env);
1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1742 trace_arm_gt_ctl_write(timeridx, value);
1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744 if ((oldval ^ value) & 1) {
1745 /* Enable toggled */
1746 gt_recalc_timer(cpu, timeridx);
1747 } else if ((oldval ^ value) & 2) {
1748 /* IMASK toggled: don't need to recalculate,
1749 * just set the interrupt line based on ISTATUS
1751 int irqstate = (oldval & 4) && !(value & 2);
1753 trace_arm_gt_imask_toggle(timeridx, irqstate);
1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1760 gt_timer_reset(env, ri, GTIMER_PHYS);
1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1766 gt_cval_write(env, ri, GTIMER_PHYS, value);
1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1771 return gt_tval_read(env, ri, GTIMER_PHYS);
1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775 uint64_t value)
1777 gt_tval_write(env, ri, GTIMER_PHYS, value);
1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 uint64_t value)
1783 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1788 gt_timer_reset(env, ri, GTIMER_VIRT);
1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 gt_cval_write(env, ri, GTIMER_VIRT, value);
1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1799 return gt_tval_read(env, ri, GTIMER_VIRT);
1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1805 gt_tval_write(env, ri, GTIMER_VIRT, value);
1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1811 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1819 trace_arm_gt_cntvoff_write(value);
1820 raw_write(env, ri, value);
1821 gt_recalc_timer(cpu, GTIMER_VIRT);
1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1826 gt_timer_reset(env, ri, GTIMER_HYP);
1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
1832 gt_cval_write(env, ri, GTIMER_HYP, value);
1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1837 return gt_tval_read(env, ri, GTIMER_HYP);
1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1843 gt_tval_write(env, ri, GTIMER_HYP, value);
1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1849 gt_ctl_write(env, ri, GTIMER_HYP, value);
1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1854 gt_timer_reset(env, ri, GTIMER_SEC);
1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1860 gt_cval_write(env, ri, GTIMER_SEC, value);
1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1865 return gt_tval_read(env, ri, GTIMER_SEC);
1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 uint64_t value)
1871 gt_tval_write(env, ri, GTIMER_SEC, value);
1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 gt_ctl_write(env, ri, GTIMER_SEC, value);
1880 void arm_gt_ptimer_cb(void *opaque)
1882 ARMCPU *cpu = opaque;
1884 gt_recalc_timer(cpu, GTIMER_PHYS);
1887 void arm_gt_vtimer_cb(void *opaque)
1889 ARMCPU *cpu = opaque;
1891 gt_recalc_timer(cpu, GTIMER_VIRT);
1894 void arm_gt_htimer_cb(void *opaque)
1896 ARMCPU *cpu = opaque;
1898 gt_recalc_timer(cpu, GTIMER_HYP);
1901 void arm_gt_stimer_cb(void *opaque)
1903 ARMCPU *cpu = opaque;
1905 gt_recalc_timer(cpu, GTIMER_SEC);
1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909 /* Note that CNTFRQ is purely reads-as-written for the benefit
1910 * of software; writing it doesn't actually change the timer frequency.
1911 * Our reset value matches the fixed frequency we implement the timer at.
1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914 .type = ARM_CP_ALIAS,
1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1924 /* overall control: mostly access permissions */
1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1927 .access = PL1_RW,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929 .resetvalue = 0,
1931 /* per-timer control */
1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933 .secure = ARM_CP_SECSTATE_NS,
1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935 .accessfn = gt_ptimer_access,
1936 .fieldoffset = offsetoflow32(CPUARMState,
1937 cp15.c14_timer[GTIMER_PHYS].ctl),
1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1940 { .name = "CNTP_CTL(S)",
1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942 .secure = ARM_CP_SECSTATE_S,
1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944 .accessfn = gt_ptimer_access,
1945 .fieldoffset = offsetoflow32(CPUARMState,
1946 cp15.c14_timer[GTIMER_SEC].ctl),
1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952 .accessfn = gt_ptimer_access,
1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954 .resetvalue = 0,
1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959 .accessfn = gt_vtimer_access,
1960 .fieldoffset = offsetoflow32(CPUARMState,
1961 cp15.c14_timer[GTIMER_VIRT].ctl),
1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967 .accessfn = gt_vtimer_access,
1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969 .resetvalue = 0,
1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974 .secure = ARM_CP_SECSTATE_NS,
1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976 .accessfn = gt_ptimer_access,
1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1979 { .name = "CNTP_TVAL(S)",
1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983 .accessfn = gt_ptimer_access,
1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994 .accessfn = gt_vtimer_access,
1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2003 /* The counter itself */
2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006 .accessfn = gt_pct_access,
2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016 .accessfn = gt_vct_access,
2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2024 /* Comparison value, indicating when the timer goes off */
2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026 .secure = ARM_CP_SECSTATE_NS,
2027 .access = PL1_RW | PL0_R,
2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030 .accessfn = gt_ptimer_access,
2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034 .secure = ARM_CP_SECSTATE_S,
2035 .access = PL1_RW | PL0_R,
2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038 .accessfn = gt_ptimer_access,
2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043 .access = PL1_RW | PL0_R,
2044 .type = ARM_CP_IO,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046 .resetvalue = 0, .accessfn = gt_ptimer_access,
2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050 .access = PL1_RW | PL0_R,
2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053 .accessfn = gt_vtimer_access,
2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058 .access = PL1_RW | PL0_R,
2059 .type = ARM_CP_IO,
2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061 .resetvalue = 0, .accessfn = gt_vtimer_access,
2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2064 /* Secure timer -- this is actually restricted to only EL3
2065 * and configurably Secure-EL1 via the accessfn.
2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070 .accessfn = gt_stimer_access,
2071 .readfn = gt_sec_tval_read,
2072 .writefn = gt_sec_tval_write,
2073 .resetfn = gt_sec_timer_reset,
2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077 .type = ARM_CP_IO, .access = PL1_RW,
2078 .accessfn = gt_stimer_access,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080 .resetvalue = 0,
2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085 .type = ARM_CP_IO, .access = PL1_RW,
2086 .accessfn = gt_stimer_access,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2090 REGINFO_SENTINEL
2093 #else
2094 /* In user-mode none of the generic timer registers are accessible,
2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096 * so instead just don't register any of them.
2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2099 REGINFO_SENTINEL
2102 #endif
2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2106 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107 raw_write(env, ri, value);
2108 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109 raw_write(env, ri, value & 0xfffff6ff);
2110 } else {
2111 raw_write(env, ri, value & 0xfffff1ff);
2115 #ifndef CONFIG_USER_ONLY
2116 /* get_phys_addr() isn't present for user-mode-only targets */
2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119 bool isread)
2121 if (ri->opc2 & 4) {
2122 /* The ATS12NSO* operations must trap to EL3 if executed in
2123 * Secure EL1 (which can only happen if EL3 is AArch64).
2124 * They are simply UNDEF if executed from NS EL1.
2125 * They function normally from EL2 or EL3.
2127 if (arm_current_el(env) == 1) {
2128 if (arm_is_secure_below_el3(env)) {
2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2131 return CP_ACCESS_TRAP_UNCATEGORIZED;
2134 return CP_ACCESS_OK;
2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138 int access_type, ARMMMUIdx mmu_idx)
2140 hwaddr phys_addr;
2141 target_ulong page_size;
2142 int prot;
2143 uint32_t fsr;
2144 bool ret;
2145 uint64_t par64;
2146 MemTxAttrs attrs = {};
2147 ARMMMUFaultInfo fi = {};
2149 ret = get_phys_addr(env, value, access_type, mmu_idx,
2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151 if (extended_addresses_enabled(env)) {
2152 /* fsr is a DFSR/IFSR value for the long descriptor
2153 * translation table format, but with WnR always clear.
2154 * Convert it to a 64-bit PAR.
2156 par64 = (1 << 11); /* LPAE bit always set */
2157 if (!ret) {
2158 par64 |= phys_addr & ~0xfffULL;
2159 if (!attrs.secure) {
2160 par64 |= (1 << 9); /* NS */
2162 /* We don't set the ATTR or SH fields in the PAR. */
2163 } else {
2164 par64 |= 1; /* F */
2165 par64 |= (fsr & 0x3f) << 1; /* FS */
2166 /* Note that S2WLK and FSTAGE are always zero, because we don't
2167 * implement virtualization and therefore there can't be a stage 2
2168 * fault.
2171 } else {
2172 /* fsr is a DFSR/IFSR value for the short descriptor
2173 * translation table format (with WnR always clear).
2174 * Convert it to a 32-bit PAR.
2176 if (!ret) {
2177 /* We do not set any attribute bits in the PAR */
2178 if (page_size == (1 << 24)
2179 && arm_feature(env, ARM_FEATURE_V7)) {
2180 par64 = (phys_addr & 0xff000000) | (1 << 1);
2181 } else {
2182 par64 = phys_addr & 0xfffff000;
2184 if (!attrs.secure) {
2185 par64 |= (1 << 9); /* NS */
2187 } else {
2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189 ((fsr & 0xf) << 1) | 1;
2192 return par64;
2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2197 int access_type = ri->opc2 & 1;
2198 uint64_t par64;
2199 ARMMMUIdx mmu_idx;
2200 int el = arm_current_el(env);
2201 bool secure = arm_is_secure_below_el3(env);
2203 switch (ri->opc2 & 6) {
2204 case 0:
2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206 switch (el) {
2207 case 3:
2208 mmu_idx = ARMMMUIdx_S1E3;
2209 break;
2210 case 2:
2211 mmu_idx = ARMMMUIdx_S1NSE1;
2212 break;
2213 case 1:
2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215 break;
2216 default:
2217 g_assert_not_reached();
2219 break;
2220 case 2:
2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222 switch (el) {
2223 case 3:
2224 mmu_idx = ARMMMUIdx_S1SE0;
2225 break;
2226 case 2:
2227 mmu_idx = ARMMMUIdx_S1NSE0;
2228 break;
2229 case 1:
2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231 break;
2232 default:
2233 g_assert_not_reached();
2235 break;
2236 case 4:
2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238 mmu_idx = ARMMMUIdx_S12NSE1;
2239 break;
2240 case 6:
2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242 mmu_idx = ARMMMUIdx_S12NSE0;
2243 break;
2244 default:
2245 g_assert_not_reached();
2248 par64 = do_ats_write(env, value, access_type, mmu_idx);
2250 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 uint64_t value)
2256 int access_type = ri->opc2 & 1;
2257 uint64_t par64;
2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2261 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265 bool isread)
2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268 return CP_ACCESS_TRAP;
2270 return CP_ACCESS_OK;
2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2276 int access_type = ri->opc2 & 1;
2277 ARMMMUIdx mmu_idx;
2278 int secure = arm_is_secure_below_el3(env);
2280 switch (ri->opc2 & 6) {
2281 case 0:
2282 switch (ri->opc1) {
2283 case 0: /* AT S1E1R, AT S1E1W */
2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285 break;
2286 case 4: /* AT S1E2R, AT S1E2W */
2287 mmu_idx = ARMMMUIdx_S1E2;
2288 break;
2289 case 6: /* AT S1E3R, AT S1E3W */
2290 mmu_idx = ARMMMUIdx_S1E3;
2291 break;
2292 default:
2293 g_assert_not_reached();
2295 break;
2296 case 2: /* AT S1E0R, AT S1E0W */
2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298 break;
2299 case 4: /* AT S12E1R, AT S12E1W */
2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2301 break;
2302 case 6: /* AT S12E0R, AT S12E0W */
2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2304 break;
2305 default:
2306 g_assert_not_reached();
2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2311 #endif
2313 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315 .access = PL1_RW, .resetvalue = 0,
2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317 offsetoflow32(CPUARMState, cp15.par_ns) },
2318 .writefn = par_write },
2319 #ifndef CONFIG_USER_ONLY
2320 /* This underdecoding is safe because the reginfo is NO_RAW. */
2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322 .access = PL1_W, .accessfn = ats_access,
2323 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2324 #endif
2325 REGINFO_SENTINEL
2328 /* Return basic MPU access permission bits. */
2329 static uint32_t simple_mpu_ap_bits(uint32_t val)
2331 uint32_t ret;
2332 uint32_t mask;
2333 int i;
2334 ret = 0;
2335 mask = 3;
2336 for (i = 0; i < 16; i += 2) {
2337 ret |= (val >> i) & mask;
2338 mask <<= 2;
2340 return ret;
2343 /* Pad basic MPU access permission bits to extended format. */
2344 static uint32_t extended_mpu_ap_bits(uint32_t val)
2346 uint32_t ret;
2347 uint32_t mask;
2348 int i;
2349 ret = 0;
2350 mask = 3;
2351 for (i = 0; i < 16; i += 2) {
2352 ret |= (val & mask) << i;
2353 mask <<= 2;
2355 return ret;
2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370 uint64_t value)
2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2384 if (!u32p) {
2385 return 0;
2388 u32p += env->cp15.c6_rgnr;
2389 return *u32p;
2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393 uint64_t value)
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2398 if (!u32p) {
2399 return;
2402 u32p += env->cp15.c6_rgnr;
2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2404 *u32p = value;
2407 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2409 ARMCPU *cpu = arm_env_get_cpu(env);
2410 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2412 if (!u32p) {
2413 return;
2416 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2419 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420 uint64_t value)
2422 ARMCPU *cpu = arm_env_get_cpu(env);
2423 uint32_t nrgs = cpu->pmsav7_dregion;
2425 if (value >= nrgs) {
2426 qemu_log_mask(LOG_GUEST_ERROR,
2427 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2428 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2429 return;
2432 raw_write(env, ri, value);
2435 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2436 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2437 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2438 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2439 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2440 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2441 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2442 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2443 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2444 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2445 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2446 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2447 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2448 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2449 .access = PL1_RW,
2450 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2451 .writefn = pmsav7_rgnr_write },
2452 REGINFO_SENTINEL
2455 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2456 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2457 .access = PL1_RW, .type = ARM_CP_ALIAS,
2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2459 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2460 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2461 .access = PL1_RW, .type = ARM_CP_ALIAS,
2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2463 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2464 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2465 .access = PL1_RW,
2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2467 .resetvalue = 0, },
2468 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2469 .access = PL1_RW,
2470 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2471 .resetvalue = 0, },
2472 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2473 .access = PL1_RW,
2474 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2475 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2476 .access = PL1_RW,
2477 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2478 /* Protection region base and size registers */
2479 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2480 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2481 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2482 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2483 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2484 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2485 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2486 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2487 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2488 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2489 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2490 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2491 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2492 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2493 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2494 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2495 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2496 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2497 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2500 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2503 REGINFO_SENTINEL
2506 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2507 uint64_t value)
2509 TCR *tcr = raw_ptr(env, ri);
2510 int maskshift = extract32(value, 0, 3);
2512 if (!arm_feature(env, ARM_FEATURE_V8)) {
2513 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2514 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2515 * using Long-desciptor translation table format */
2516 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2517 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2518 /* In an implementation that includes the Security Extensions
2519 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2520 * Short-descriptor translation table format.
2522 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2523 } else {
2524 value &= TTBCR_N;
2528 /* Update the masks corresponding to the TCR bank being written
2529 * Note that we always calculate mask and base_mask, but
2530 * they are only used for short-descriptor tables (ie if EAE is 0);
2531 * for long-descriptor tables the TCR fields are used differently
2532 * and the mask and base_mask values are meaningless.
2534 tcr->raw_tcr = value;
2535 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2536 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2539 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2540 uint64_t value)
2542 ARMCPU *cpu = arm_env_get_cpu(env);
2544 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2545 /* With LPAE the TTBCR could result in a change of ASID
2546 * via the TTBCR.A1 bit, so do a TLB flush.
2548 tlb_flush(CPU(cpu));
2550 vmsa_ttbcr_raw_write(env, ri, value);
2553 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2555 TCR *tcr = raw_ptr(env, ri);
2557 /* Reset both the TCR as well as the masks corresponding to the bank of
2558 * the TCR being reset.
2560 tcr->raw_tcr = 0;
2561 tcr->mask = 0;
2562 tcr->base_mask = 0xffffc000u;
2565 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566 uint64_t value)
2568 ARMCPU *cpu = arm_env_get_cpu(env);
2569 TCR *tcr = raw_ptr(env, ri);
2571 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2572 tlb_flush(CPU(cpu));
2573 tcr->raw_tcr = value;
2576 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2577 uint64_t value)
2579 /* 64 bit accesses to the TTBRs can change the ASID and so we
2580 * must flush the TLB.
2582 if (cpreg_field_is_64bit(ri)) {
2583 ARMCPU *cpu = arm_env_get_cpu(env);
2585 tlb_flush(CPU(cpu));
2587 raw_write(env, ri, value);
2590 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2591 uint64_t value)
2593 ARMCPU *cpu = arm_env_get_cpu(env);
2594 CPUState *cs = CPU(cpu);
2596 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2597 if (raw_read(env, ri) != value) {
2598 tlb_flush_by_mmuidx(cs,
2599 ARMMMUIdxBit_S12NSE1 |
2600 ARMMMUIdxBit_S12NSE0 |
2601 ARMMMUIdxBit_S2NS);
2602 raw_write(env, ri, value);
2606 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2607 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2608 .access = PL1_RW, .type = ARM_CP_ALIAS,
2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2610 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2611 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2612 .access = PL1_RW, .resetvalue = 0,
2613 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2614 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2615 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2616 .access = PL1_RW, .resetvalue = 0,
2617 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2618 offsetof(CPUARMState, cp15.dfar_ns) } },
2619 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2620 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2621 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2622 .resetvalue = 0, },
2623 REGINFO_SENTINEL
2626 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2627 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2628 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2629 .access = PL1_RW,
2630 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2631 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2632 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2633 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2634 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2635 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2636 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2637 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2638 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2639 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2640 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2641 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2642 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2644 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2645 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2646 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2647 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2648 .raw_writefn = vmsa_ttbcr_raw_write,
2649 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2650 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2651 REGINFO_SENTINEL
2654 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2655 uint64_t value)
2657 env->cp15.c15_ticonfig = value & 0xe7;
2658 /* The OS_TYPE bit in this register changes the reported CPUID! */
2659 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2660 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2663 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2664 uint64_t value)
2666 env->cp15.c15_threadid = value & 0xffff;
2669 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670 uint64_t value)
2672 /* Wait-for-interrupt (deprecated) */
2673 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2676 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2677 uint64_t value)
2679 /* On OMAP there are registers indicating the max/min index of dcache lines
2680 * containing a dirty line; cache flush operations have to reset these.
2682 env->cp15.c15_i_max = 0x000;
2683 env->cp15.c15_i_min = 0xff0;
2686 static const ARMCPRegInfo omap_cp_reginfo[] = {
2687 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2689 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2690 .resetvalue = 0, },
2691 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2692 .access = PL1_RW, .type = ARM_CP_NOP },
2693 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2694 .access = PL1_RW,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2696 .writefn = omap_ticonfig_write },
2697 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2698 .access = PL1_RW,
2699 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2700 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2701 .access = PL1_RW, .resetvalue = 0xff0,
2702 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2703 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2704 .access = PL1_RW,
2705 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2706 .writefn = omap_threadid_write },
2707 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2708 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2709 .type = ARM_CP_NO_RAW,
2710 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2711 /* TODO: Peripheral port remap register:
2712 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2713 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2714 * when MMU is off.
2716 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2717 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2718 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2719 .writefn = omap_cachemaint_write },
2720 { .name = "C9", .cp = 15, .crn = 9,
2721 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2722 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2723 REGINFO_SENTINEL
2726 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727 uint64_t value)
2729 env->cp15.c15_cpar = value & 0x3fff;
2732 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2733 { .name = "XSCALE_CPAR",
2734 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2735 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2736 .writefn = xscale_cpar_write, },
2737 { .name = "XSCALE_AUXCR",
2738 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2739 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2740 .resetvalue = 0, },
2741 /* XScale specific cache-lockdown: since we have no cache we NOP these
2742 * and hope the guest does not really rely on cache behaviour.
2744 { .name = "XSCALE_LOCK_ICACHE_LINE",
2745 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2746 .access = PL1_W, .type = ARM_CP_NOP },
2747 { .name = "XSCALE_UNLOCK_ICACHE",
2748 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2749 .access = PL1_W, .type = ARM_CP_NOP },
2750 { .name = "XSCALE_DCACHE_LOCK",
2751 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2752 .access = PL1_RW, .type = ARM_CP_NOP },
2753 { .name = "XSCALE_UNLOCK_DCACHE",
2754 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2755 .access = PL1_W, .type = ARM_CP_NOP },
2756 REGINFO_SENTINEL
2759 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2760 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2761 * implementation of this implementation-defined space.
2762 * Ideally this should eventually disappear in favour of actually
2763 * implementing the correct behaviour for all cores.
2765 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2766 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2767 .access = PL1_RW,
2768 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2769 .resetvalue = 0 },
2770 REGINFO_SENTINEL
2773 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2774 /* Cache status: RAZ because we have no cache so it's always clean */
2775 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2776 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2777 .resetvalue = 0 },
2778 REGINFO_SENTINEL
2781 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2782 /* We never have a a block transfer operation in progress */
2783 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2784 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2785 .resetvalue = 0 },
2786 /* The cache ops themselves: these all NOP for QEMU */
2787 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2788 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2790 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2794 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2796 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2797 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2798 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2799 REGINFO_SENTINEL
2802 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2803 /* The cache test-and-clean instructions always return (1 << 30)
2804 * to indicate that there are no dirty cache lines.
2806 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2807 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2808 .resetvalue = (1 << 30) },
2809 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2810 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2811 .resetvalue = (1 << 30) },
2812 REGINFO_SENTINEL
2815 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2816 /* Ignore ReadBuffer accesses */
2817 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2818 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2819 .access = PL1_RW, .resetvalue = 0,
2820 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2821 REGINFO_SENTINEL
2824 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2826 ARMCPU *cpu = arm_env_get_cpu(env);
2827 unsigned int cur_el = arm_current_el(env);
2828 bool secure = arm_is_secure(env);
2830 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2831 return env->cp15.vpidr_el2;
2833 return raw_read(env, ri);
2836 static uint64_t mpidr_read_val(CPUARMState *env)
2838 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2839 uint64_t mpidr = cpu->mp_affinity;
2841 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2842 mpidr |= (1U << 31);
2843 /* Cores which are uniprocessor (non-coherent)
2844 * but still implement the MP extensions set
2845 * bit 30. (For instance, Cortex-R5).
2847 if (cpu->mp_is_up) {
2848 mpidr |= (1u << 30);
2851 return mpidr;
2854 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2856 unsigned int cur_el = arm_current_el(env);
2857 bool secure = arm_is_secure(env);
2859 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2860 return env->cp15.vmpidr_el2;
2862 return mpidr_read_val(env);
2865 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2866 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2867 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2868 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2869 REGINFO_SENTINEL
2872 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2873 /* NOP AMAIR0/1 */
2874 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2875 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2876 .access = PL1_RW, .type = ARM_CP_CONST,
2877 .resetvalue = 0 },
2878 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2879 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2880 .access = PL1_RW, .type = ARM_CP_CONST,
2881 .resetvalue = 0 },
2882 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2883 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2885 offsetof(CPUARMState, cp15.par_ns)} },
2886 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2887 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2888 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2889 offsetof(CPUARMState, cp15.ttbr0_ns) },
2890 .writefn = vmsa_ttbr_write, },
2891 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2892 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2893 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2894 offsetof(CPUARMState, cp15.ttbr1_ns) },
2895 .writefn = vmsa_ttbr_write, },
2896 REGINFO_SENTINEL
2899 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2901 return vfp_get_fpcr(env);
2904 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2905 uint64_t value)
2907 vfp_set_fpcr(env, value);
2910 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2912 return vfp_get_fpsr(env);
2915 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2918 vfp_set_fpsr(env, value);
2921 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2922 bool isread)
2924 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2925 return CP_ACCESS_TRAP;
2927 return CP_ACCESS_OK;
2930 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931 uint64_t value)
2933 env->daif = value & PSTATE_DAIF;
2936 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2937 const ARMCPRegInfo *ri,
2938 bool isread)
2940 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2941 * SCTLR_EL1.UCI is set.
2943 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2944 return CP_ACCESS_TRAP;
2946 return CP_ACCESS_OK;
2949 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2950 * Page D4-1736 (DDI0487A.b)
2953 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
2956 CPUState *cs = ENV_GET_CPU(env);
2958 if (arm_is_secure_below_el3(env)) {
2959 tlb_flush_by_mmuidx(cs,
2960 ARMMMUIdxBit_S1SE1 |
2961 ARMMMUIdxBit_S1SE0);
2962 } else {
2963 tlb_flush_by_mmuidx(cs,
2964 ARMMMUIdxBit_S12NSE1 |
2965 ARMMMUIdxBit_S12NSE0);
2969 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2972 CPUState *cs = ENV_GET_CPU(env);
2973 bool sec = arm_is_secure_below_el3(env);
2975 if (sec) {
2976 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2977 ARMMMUIdxBit_S1SE1 |
2978 ARMMMUIdxBit_S1SE0);
2979 } else {
2980 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2981 ARMMMUIdxBit_S12NSE1 |
2982 ARMMMUIdxBit_S12NSE0);
2986 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987 uint64_t value)
2989 /* Note that the 'ALL' scope must invalidate both stage 1 and
2990 * stage 2 translations, whereas most other scopes only invalidate
2991 * stage 1 translations.
2993 ARMCPU *cpu = arm_env_get_cpu(env);
2994 CPUState *cs = CPU(cpu);
2996 if (arm_is_secure_below_el3(env)) {
2997 tlb_flush_by_mmuidx(cs,
2998 ARMMMUIdxBit_S1SE1 |
2999 ARMMMUIdxBit_S1SE0);
3000 } else {
3001 if (arm_feature(env, ARM_FEATURE_EL2)) {
3002 tlb_flush_by_mmuidx(cs,
3003 ARMMMUIdxBit_S12NSE1 |
3004 ARMMMUIdxBit_S12NSE0 |
3005 ARMMMUIdxBit_S2NS);
3006 } else {
3007 tlb_flush_by_mmuidx(cs,
3008 ARMMMUIdxBit_S12NSE1 |
3009 ARMMMUIdxBit_S12NSE0);
3014 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3015 uint64_t value)
3017 ARMCPU *cpu = arm_env_get_cpu(env);
3018 CPUState *cs = CPU(cpu);
3020 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3023 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 ARMCPU *cpu = arm_env_get_cpu(env);
3027 CPUState *cs = CPU(cpu);
3029 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3032 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3035 /* Note that the 'ALL' scope must invalidate both stage 1 and
3036 * stage 2 translations, whereas most other scopes only invalidate
3037 * stage 1 translations.
3039 CPUState *cs = ENV_GET_CPU(env);
3040 bool sec = arm_is_secure_below_el3(env);
3041 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3043 if (sec) {
3044 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3045 ARMMMUIdxBit_S1SE1 |
3046 ARMMMUIdxBit_S1SE0);
3047 } else if (has_el2) {
3048 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3049 ARMMMUIdxBit_S12NSE1 |
3050 ARMMMUIdxBit_S12NSE0 |
3051 ARMMMUIdxBit_S2NS);
3052 } else {
3053 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3054 ARMMMUIdxBit_S12NSE1 |
3055 ARMMMUIdxBit_S12NSE0);
3059 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3060 uint64_t value)
3062 CPUState *cs = ENV_GET_CPU(env);
3064 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3067 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3068 uint64_t value)
3070 CPUState *cs = ENV_GET_CPU(env);
3072 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3075 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3076 uint64_t value)
3078 /* Invalidate by VA, EL1&0 (AArch64 version).
3079 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3080 * since we don't support flush-for-specific-ASID-only or
3081 * flush-last-level-only.
3083 ARMCPU *cpu = arm_env_get_cpu(env);
3084 CPUState *cs = CPU(cpu);
3085 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3087 if (arm_is_secure_below_el3(env)) {
3088 tlb_flush_page_by_mmuidx(cs, pageaddr,
3089 ARMMMUIdxBit_S1SE1 |
3090 ARMMMUIdxBit_S1SE0);
3091 } else {
3092 tlb_flush_page_by_mmuidx(cs, pageaddr,
3093 ARMMMUIdxBit_S12NSE1 |
3094 ARMMMUIdxBit_S12NSE0);
3098 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3099 uint64_t value)
3101 /* Invalidate by VA, EL2
3102 * Currently handles both VAE2 and VALE2, since we don't support
3103 * flush-last-level-only.
3105 ARMCPU *cpu = arm_env_get_cpu(env);
3106 CPUState *cs = CPU(cpu);
3107 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3109 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3112 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113 uint64_t value)
3115 /* Invalidate by VA, EL3
3116 * Currently handles both VAE3 and VALE3, since we don't support
3117 * flush-last-level-only.
3119 ARMCPU *cpu = arm_env_get_cpu(env);
3120 CPUState *cs = CPU(cpu);
3121 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3123 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3126 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3127 uint64_t value)
3129 ARMCPU *cpu = arm_env_get_cpu(env);
3130 CPUState *cs = CPU(cpu);
3131 bool sec = arm_is_secure_below_el3(env);
3132 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3134 if (sec) {
3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3136 ARMMMUIdxBit_S1SE1 |
3137 ARMMMUIdxBit_S1SE0);
3138 } else {
3139 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3140 ARMMMUIdxBit_S12NSE1 |
3141 ARMMMUIdxBit_S12NSE0);
3145 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3146 uint64_t value)
3148 CPUState *cs = ENV_GET_CPU(env);
3149 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3151 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3152 ARMMMUIdxBit_S1E2);
3155 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3156 uint64_t value)
3158 CPUState *cs = ENV_GET_CPU(env);
3159 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3161 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3162 ARMMMUIdxBit_S1E3);
3165 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3166 uint64_t value)
3168 /* Invalidate by IPA. This has to invalidate any structures that
3169 * contain only stage 2 translation information, but does not need
3170 * to apply to structures that contain combined stage 1 and stage 2
3171 * translation information.
3172 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3174 ARMCPU *cpu = arm_env_get_cpu(env);
3175 CPUState *cs = CPU(cpu);
3176 uint64_t pageaddr;
3178 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3179 return;
3182 pageaddr = sextract64(value << 12, 0, 48);
3184 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3187 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3188 uint64_t value)
3190 CPUState *cs = ENV_GET_CPU(env);
3191 uint64_t pageaddr;
3193 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3194 return;
3197 pageaddr = sextract64(value << 12, 0, 48);
3199 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3200 ARMMMUIdxBit_S2NS);
3203 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3204 bool isread)
3206 /* We don't implement EL2, so the only control on DC ZVA is the
3207 * bit in the SCTLR which can prohibit access for EL0.
3209 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3210 return CP_ACCESS_TRAP;
3212 return CP_ACCESS_OK;
3215 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3217 ARMCPU *cpu = arm_env_get_cpu(env);
3218 int dzp_bit = 1 << 4;
3220 /* DZP indicates whether DC ZVA access is allowed */
3221 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3222 dzp_bit = 0;
3224 return cpu->dcz_blocksize | dzp_bit;
3227 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3228 bool isread)
3230 if (!(env->pstate & PSTATE_SP)) {
3231 /* Access to SP_EL0 is undefined if it's being used as
3232 * the stack pointer.
3234 return CP_ACCESS_TRAP_UNCATEGORIZED;
3236 return CP_ACCESS_OK;
3239 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3241 return env->pstate & PSTATE_SP;
3244 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3246 update_spsel(env, val);
3249 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3250 uint64_t value)
3252 ARMCPU *cpu = arm_env_get_cpu(env);
3254 if (raw_read(env, ri) == value) {
3255 /* Skip the TLB flush if nothing actually changed; Linux likes
3256 * to do a lot of pointless SCTLR writes.
3258 return;
3261 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3262 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3263 value &= ~SCTLR_M;
3266 raw_write(env, ri, value);
3267 /* ??? Lots of these bits are not implemented. */
3268 /* This may enable/disable the MMU, so do a TLB flush. */
3269 tlb_flush(CPU(cpu));
3272 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3273 bool isread)
3275 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3276 return CP_ACCESS_TRAP_FP_EL2;
3278 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3279 return CP_ACCESS_TRAP_FP_EL3;
3281 return CP_ACCESS_OK;
3284 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3285 uint64_t value)
3287 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3290 static const ARMCPRegInfo v8_cp_reginfo[] = {
3291 /* Minimal set of EL0-visible registers. This will need to be expanded
3292 * significantly for system emulation of AArch64 CPUs.
3294 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3295 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3296 .access = PL0_RW, .type = ARM_CP_NZCV },
3297 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3298 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3299 .type = ARM_CP_NO_RAW,
3300 .access = PL0_RW, .accessfn = aa64_daif_access,
3301 .fieldoffset = offsetof(CPUARMState, daif),
3302 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3303 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3304 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3305 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3306 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3307 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3308 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3309 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3311 .access = PL0_R, .type = ARM_CP_NO_RAW,
3312 .readfn = aa64_dczid_read },
3313 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3314 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3315 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3316 #ifndef CONFIG_USER_ONLY
3317 /* Avoid overhead of an access check that always passes in user-mode */
3318 .accessfn = aa64_zva_access,
3319 #endif
3321 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3323 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3324 /* Cache ops: all NOPs since we don't emulate caches */
3325 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3326 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3327 .access = PL1_W, .type = ARM_CP_NOP },
3328 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3329 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3330 .access = PL1_W, .type = ARM_CP_NOP },
3331 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3333 .access = PL0_W, .type = ARM_CP_NOP,
3334 .accessfn = aa64_cacheop_access },
3335 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3336 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3337 .access = PL1_W, .type = ARM_CP_NOP },
3338 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3339 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3340 .access = PL1_W, .type = ARM_CP_NOP },
3341 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3343 .access = PL0_W, .type = ARM_CP_NOP,
3344 .accessfn = aa64_cacheop_access },
3345 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3347 .access = PL1_W, .type = ARM_CP_NOP },
3348 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3350 .access = PL0_W, .type = ARM_CP_NOP,
3351 .accessfn = aa64_cacheop_access },
3352 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3354 .access = PL0_W, .type = ARM_CP_NOP,
3355 .accessfn = aa64_cacheop_access },
3356 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3358 .access = PL1_W, .type = ARM_CP_NOP },
3359 /* TLBI operations */
3360 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3362 .access = PL1_W, .type = ARM_CP_NO_RAW,
3363 .writefn = tlbi_aa64_vmalle1is_write },
3364 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3366 .access = PL1_W, .type = ARM_CP_NO_RAW,
3367 .writefn = tlbi_aa64_vae1is_write },
3368 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3369 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3370 .access = PL1_W, .type = ARM_CP_NO_RAW,
3371 .writefn = tlbi_aa64_vmalle1is_write },
3372 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3373 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3374 .access = PL1_W, .type = ARM_CP_NO_RAW,
3375 .writefn = tlbi_aa64_vae1is_write },
3376 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3377 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3378 .access = PL1_W, .type = ARM_CP_NO_RAW,
3379 .writefn = tlbi_aa64_vae1is_write },
3380 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3382 .access = PL1_W, .type = ARM_CP_NO_RAW,
3383 .writefn = tlbi_aa64_vae1is_write },
3384 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3385 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3386 .access = PL1_W, .type = ARM_CP_NO_RAW,
3387 .writefn = tlbi_aa64_vmalle1_write },
3388 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3389 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3390 .access = PL1_W, .type = ARM_CP_NO_RAW,
3391 .writefn = tlbi_aa64_vae1_write },
3392 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3393 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3394 .access = PL1_W, .type = ARM_CP_NO_RAW,
3395 .writefn = tlbi_aa64_vmalle1_write },
3396 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3397 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3398 .access = PL1_W, .type = ARM_CP_NO_RAW,
3399 .writefn = tlbi_aa64_vae1_write },
3400 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3402 .access = PL1_W, .type = ARM_CP_NO_RAW,
3403 .writefn = tlbi_aa64_vae1_write },
3404 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3405 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3406 .access = PL1_W, .type = ARM_CP_NO_RAW,
3407 .writefn = tlbi_aa64_vae1_write },
3408 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3410 .access = PL2_W, .type = ARM_CP_NO_RAW,
3411 .writefn = tlbi_aa64_ipas2e1is_write },
3412 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3414 .access = PL2_W, .type = ARM_CP_NO_RAW,
3415 .writefn = tlbi_aa64_ipas2e1is_write },
3416 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3418 .access = PL2_W, .type = ARM_CP_NO_RAW,
3419 .writefn = tlbi_aa64_alle1is_write },
3420 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3421 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3422 .access = PL2_W, .type = ARM_CP_NO_RAW,
3423 .writefn = tlbi_aa64_alle1is_write },
3424 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3426 .access = PL2_W, .type = ARM_CP_NO_RAW,
3427 .writefn = tlbi_aa64_ipas2e1_write },
3428 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3430 .access = PL2_W, .type = ARM_CP_NO_RAW,
3431 .writefn = tlbi_aa64_ipas2e1_write },
3432 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3433 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3434 .access = PL2_W, .type = ARM_CP_NO_RAW,
3435 .writefn = tlbi_aa64_alle1_write },
3436 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3437 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3438 .access = PL2_W, .type = ARM_CP_NO_RAW,
3439 .writefn = tlbi_aa64_alle1is_write },
3440 #ifndef CONFIG_USER_ONLY
3441 /* 64 bit address translation operations */
3442 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3443 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3444 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3445 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3446 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3447 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3448 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3450 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3451 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3452 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3453 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3454 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3456 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3457 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3459 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3460 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3462 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3463 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3465 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3467 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3468 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3469 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3470 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3471 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3472 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3473 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3474 .type = ARM_CP_ALIAS,
3475 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3476 .access = PL1_RW, .resetvalue = 0,
3477 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3478 .writefn = par_write },
3479 #endif
3480 /* TLB invalidate last level of translation table walk */
3481 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3482 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3483 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3484 .type = ARM_CP_NO_RAW, .access = PL1_W,
3485 .writefn = tlbimvaa_is_write },
3486 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3487 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3488 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3489 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3490 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3491 .type = ARM_CP_NO_RAW, .access = PL2_W,
3492 .writefn = tlbimva_hyp_write },
3493 { .name = "TLBIMVALHIS",
3494 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3495 .type = ARM_CP_NO_RAW, .access = PL2_W,
3496 .writefn = tlbimva_hyp_is_write },
3497 { .name = "TLBIIPAS2",
3498 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3499 .type = ARM_CP_NO_RAW, .access = PL2_W,
3500 .writefn = tlbiipas2_write },
3501 { .name = "TLBIIPAS2IS",
3502 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3503 .type = ARM_CP_NO_RAW, .access = PL2_W,
3504 .writefn = tlbiipas2_is_write },
3505 { .name = "TLBIIPAS2L",
3506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3507 .type = ARM_CP_NO_RAW, .access = PL2_W,
3508 .writefn = tlbiipas2_write },
3509 { .name = "TLBIIPAS2LIS",
3510 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3511 .type = ARM_CP_NO_RAW, .access = PL2_W,
3512 .writefn = tlbiipas2_is_write },
3513 /* 32 bit cache operations */
3514 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3515 .type = ARM_CP_NOP, .access = PL1_W },
3516 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3517 .type = ARM_CP_NOP, .access = PL1_W },
3518 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3519 .type = ARM_CP_NOP, .access = PL1_W },
3520 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3521 .type = ARM_CP_NOP, .access = PL1_W },
3522 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3523 .type = ARM_CP_NOP, .access = PL1_W },
3524 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3525 .type = ARM_CP_NOP, .access = PL1_W },
3526 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3527 .type = ARM_CP_NOP, .access = PL1_W },
3528 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3529 .type = ARM_CP_NOP, .access = PL1_W },
3530 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3531 .type = ARM_CP_NOP, .access = PL1_W },
3532 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3537 .type = ARM_CP_NOP, .access = PL1_W },
3538 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3539 .type = ARM_CP_NOP, .access = PL1_W },
3540 /* MMU Domain access control / MPU write buffer control */
3541 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3542 .access = PL1_RW, .resetvalue = 0,
3543 .writefn = dacr_write, .raw_writefn = raw_write,
3544 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3545 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3546 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3547 .type = ARM_CP_ALIAS,
3548 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3549 .access = PL1_RW,
3550 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3551 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3552 .type = ARM_CP_ALIAS,
3553 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3554 .access = PL1_RW,
3555 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3556 /* We rely on the access checks not allowing the guest to write to the
3557 * state field when SPSel indicates that it's being used as the stack
3558 * pointer.
3560 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3561 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3562 .access = PL1_RW, .accessfn = sp_el0_access,
3563 .type = ARM_CP_ALIAS,
3564 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3565 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3566 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3567 .access = PL2_RW, .type = ARM_CP_ALIAS,
3568 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3569 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3570 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3571 .type = ARM_CP_NO_RAW,
3572 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3573 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3575 .type = ARM_CP_ALIAS,
3576 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3577 .access = PL2_RW, .accessfn = fpexc32_access },
3578 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3579 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3580 .access = PL2_RW, .resetvalue = 0,
3581 .writefn = dacr_write, .raw_writefn = raw_write,
3582 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3583 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3584 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3585 .access = PL2_RW, .resetvalue = 0,
3586 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3587 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3588 .type = ARM_CP_ALIAS,
3589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3590 .access = PL2_RW,
3591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3592 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3593 .type = ARM_CP_ALIAS,
3594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3595 .access = PL2_RW,
3596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3597 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3598 .type = ARM_CP_ALIAS,
3599 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3600 .access = PL2_RW,
3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3602 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3603 .type = ARM_CP_ALIAS,
3604 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3605 .access = PL2_RW,
3606 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3607 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3608 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3609 .resetvalue = 0,
3610 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3611 { .name = "SDCR", .type = ARM_CP_ALIAS,
3612 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3613 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3614 .writefn = sdcr_write,
3615 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3616 REGINFO_SENTINEL
3619 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3620 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3621 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3622 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3623 .access = PL2_RW,
3624 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3625 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3626 .type = ARM_CP_NO_RAW,
3627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3628 .access = PL2_RW,
3629 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3630 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3631 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3632 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3633 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3634 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3635 .access = PL2_RW, .type = ARM_CP_CONST,
3636 .resetvalue = 0 },
3637 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3638 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3639 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3640 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3641 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3642 .access = PL2_RW, .type = ARM_CP_CONST,
3643 .resetvalue = 0 },
3644 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3645 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3646 .access = PL2_RW, .type = ARM_CP_CONST,
3647 .resetvalue = 0 },
3648 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3649 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3650 .access = PL2_RW, .type = ARM_CP_CONST,
3651 .resetvalue = 0 },
3652 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3653 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3654 .access = PL2_RW, .type = ARM_CP_CONST,
3655 .resetvalue = 0 },
3656 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3657 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3658 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3659 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3660 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3661 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3662 .type = ARM_CP_CONST, .resetvalue = 0 },
3663 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3664 .cp = 15, .opc1 = 6, .crm = 2,
3665 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3666 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3667 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3668 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3669 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3670 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3671 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3672 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3673 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3674 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3675 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3676 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3677 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3678 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3679 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3680 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3681 .resetvalue = 0 },
3682 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3683 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3684 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3685 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3686 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3688 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3689 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3690 .resetvalue = 0 },
3691 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3692 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3693 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3694 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3695 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3696 .resetvalue = 0 },
3697 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3698 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3699 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3700 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3701 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3702 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3703 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3704 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3705 .access = PL2_RW, .accessfn = access_tda,
3706 .type = ARM_CP_CONST, .resetvalue = 0 },
3707 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3708 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3709 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3710 .type = ARM_CP_CONST, .resetvalue = 0 },
3711 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3712 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3713 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3714 REGINFO_SENTINEL
3717 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3719 ARMCPU *cpu = arm_env_get_cpu(env);
3720 uint64_t valid_mask = HCR_MASK;
3722 if (arm_feature(env, ARM_FEATURE_EL3)) {
3723 valid_mask &= ~HCR_HCD;
3724 } else {
3725 valid_mask &= ~HCR_TSC;
3728 /* Clear RES0 bits. */
3729 value &= valid_mask;
3731 /* These bits change the MMU setup:
3732 * HCR_VM enables stage 2 translation
3733 * HCR_PTW forbids certain page-table setups
3734 * HCR_DC Disables stage1 and enables stage2 translation
3736 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3737 tlb_flush(CPU(cpu));
3739 raw_write(env, ri, value);
3742 static const ARMCPRegInfo el2_cp_reginfo[] = {
3743 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3744 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3745 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3746 .writefn = hcr_write },
3747 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3748 .type = ARM_CP_ALIAS,
3749 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3750 .access = PL2_RW,
3751 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3752 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3753 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3754 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3755 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3756 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3757 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3758 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3759 .type = ARM_CP_ALIAS,
3760 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3761 .access = PL2_RW,
3762 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3763 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3764 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3765 .access = PL2_RW, .writefn = vbar_write,
3766 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3767 .resetvalue = 0 },
3768 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3769 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3770 .access = PL3_RW, .type = ARM_CP_ALIAS,
3771 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3772 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3773 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3774 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3775 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3776 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3777 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3778 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3779 .resetvalue = 0 },
3780 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3781 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3782 .access = PL2_RW, .type = ARM_CP_ALIAS,
3783 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3784 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3785 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3786 .access = PL2_RW, .type = ARM_CP_CONST,
3787 .resetvalue = 0 },
3788 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3789 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3790 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3791 .access = PL2_RW, .type = ARM_CP_CONST,
3792 .resetvalue = 0 },
3793 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3794 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3795 .access = PL2_RW, .type = ARM_CP_CONST,
3796 .resetvalue = 0 },
3797 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3798 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3799 .access = PL2_RW, .type = ARM_CP_CONST,
3800 .resetvalue = 0 },
3801 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3802 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3803 .access = PL2_RW,
3804 /* no .writefn needed as this can't cause an ASID change;
3805 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3807 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3808 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3809 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3810 .type = ARM_CP_ALIAS,
3811 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3812 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3813 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3814 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3815 .access = PL2_RW,
3816 /* no .writefn needed as this can't cause an ASID change;
3817 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3819 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3820 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3821 .cp = 15, .opc1 = 6, .crm = 2,
3822 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3823 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3824 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3825 .writefn = vttbr_write },
3826 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3827 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3828 .access = PL2_RW, .writefn = vttbr_write,
3829 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3830 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3831 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3832 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3833 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3834 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3835 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3836 .access = PL2_RW, .resetvalue = 0,
3837 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3838 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3839 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3840 .access = PL2_RW, .resetvalue = 0,
3841 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3842 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3843 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3844 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3845 { .name = "TLBIALLNSNH",
3846 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3847 .type = ARM_CP_NO_RAW, .access = PL2_W,
3848 .writefn = tlbiall_nsnh_write },
3849 { .name = "TLBIALLNSNHIS",
3850 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3851 .type = ARM_CP_NO_RAW, .access = PL2_W,
3852 .writefn = tlbiall_nsnh_is_write },
3853 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3854 .type = ARM_CP_NO_RAW, .access = PL2_W,
3855 .writefn = tlbiall_hyp_write },
3856 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3857 .type = ARM_CP_NO_RAW, .access = PL2_W,
3858 .writefn = tlbiall_hyp_is_write },
3859 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3860 .type = ARM_CP_NO_RAW, .access = PL2_W,
3861 .writefn = tlbimva_hyp_write },
3862 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3863 .type = ARM_CP_NO_RAW, .access = PL2_W,
3864 .writefn = tlbimva_hyp_is_write },
3865 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3866 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3867 .type = ARM_CP_NO_RAW, .access = PL2_W,
3868 .writefn = tlbi_aa64_alle2_write },
3869 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3871 .type = ARM_CP_NO_RAW, .access = PL2_W,
3872 .writefn = tlbi_aa64_vae2_write },
3873 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3874 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3875 .access = PL2_W, .type = ARM_CP_NO_RAW,
3876 .writefn = tlbi_aa64_vae2_write },
3877 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3878 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3879 .access = PL2_W, .type = ARM_CP_NO_RAW,
3880 .writefn = tlbi_aa64_alle2is_write },
3881 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3882 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3883 .type = ARM_CP_NO_RAW, .access = PL2_W,
3884 .writefn = tlbi_aa64_vae2is_write },
3885 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3887 .access = PL2_W, .type = ARM_CP_NO_RAW,
3888 .writefn = tlbi_aa64_vae2is_write },
3889 #ifndef CONFIG_USER_ONLY
3890 /* Unlike the other EL2-related AT operations, these must
3891 * UNDEF from EL3 if EL2 is not implemented, which is why we
3892 * define them here rather than with the rest of the AT ops.
3894 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3895 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3896 .access = PL2_W, .accessfn = at_s1e2_access,
3897 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3898 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3899 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3900 .access = PL2_W, .accessfn = at_s1e2_access,
3901 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3902 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3903 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3904 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3905 * to behave as if SCR.NS was 1.
3907 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3908 .access = PL2_W,
3909 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3910 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3911 .access = PL2_W,
3912 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3913 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3914 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3915 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3916 * reset values as IMPDEF. We choose to reset to 3 to comply with
3917 * both ARMv7 and ARMv8.
3919 .access = PL2_RW, .resetvalue = 3,
3920 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3921 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3922 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3923 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3924 .writefn = gt_cntvoff_write,
3925 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3926 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3927 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3928 .writefn = gt_cntvoff_write,
3929 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3930 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3931 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3932 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3933 .type = ARM_CP_IO, .access = PL2_RW,
3934 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3935 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3936 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3937 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3938 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3939 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3940 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3941 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3942 .resetfn = gt_hyp_timer_reset,
3943 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3944 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3945 .type = ARM_CP_IO,
3946 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3947 .access = PL2_RW,
3948 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3949 .resetvalue = 0,
3950 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3951 #endif
3952 /* The only field of MDCR_EL2 that has a defined architectural reset value
3953 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3954 * don't impelment any PMU event counters, so using zero as a reset
3955 * value for MDCR_EL2 is okay
3957 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3958 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3959 .access = PL2_RW, .resetvalue = 0,
3960 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3961 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3962 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3963 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3964 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3965 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3966 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3967 .access = PL2_RW,
3968 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3969 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3970 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3971 .access = PL2_RW,
3972 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3973 REGINFO_SENTINEL
3976 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3977 bool isread)
3979 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3980 * At Secure EL1 it traps to EL3.
3982 if (arm_current_el(env) == 3) {
3983 return CP_ACCESS_OK;
3985 if (arm_is_secure_below_el3(env)) {
3986 return CP_ACCESS_TRAP_EL3;
3988 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3989 if (isread) {
3990 return CP_ACCESS_OK;
3992 return CP_ACCESS_TRAP_UNCATEGORIZED;
3995 static const ARMCPRegInfo el3_cp_reginfo[] = {
3996 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3997 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3998 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3999 .resetvalue = 0, .writefn = scr_write },
4000 { .name = "SCR", .type = ARM_CP_ALIAS,
4001 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4002 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4003 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4004 .writefn = scr_write },
4005 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4006 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4007 .access = PL3_RW, .resetvalue = 0,
4008 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4009 { .name = "SDER",
4010 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4011 .access = PL3_RW, .resetvalue = 0,
4012 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4013 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4014 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4015 .writefn = vbar_write, .resetvalue = 0,
4016 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4017 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4018 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4019 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4020 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4021 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4022 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4023 .access = PL3_RW,
4024 /* no .writefn needed as this can't cause an ASID change;
4025 * we must provide a .raw_writefn and .resetfn because we handle
4026 * reset and migration for the AArch32 TTBCR(S), which might be
4027 * using mask and base_mask.
4029 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4030 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4031 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4032 .type = ARM_CP_ALIAS,
4033 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4034 .access = PL3_RW,
4035 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4036 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4037 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4038 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4039 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4040 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4041 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4042 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4043 .type = ARM_CP_ALIAS,
4044 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4045 .access = PL3_RW,
4046 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4047 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4048 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4049 .access = PL3_RW, .writefn = vbar_write,
4050 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4051 .resetvalue = 0 },
4052 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4053 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4054 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4055 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4056 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4057 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4058 .access = PL3_RW, .resetvalue = 0,
4059 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4060 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4061 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4062 .access = PL3_RW, .type = ARM_CP_CONST,
4063 .resetvalue = 0 },
4064 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4065 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4066 .access = PL3_RW, .type = ARM_CP_CONST,
4067 .resetvalue = 0 },
4068 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4069 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4070 .access = PL3_RW, .type = ARM_CP_CONST,
4071 .resetvalue = 0 },
4072 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4074 .access = PL3_W, .type = ARM_CP_NO_RAW,
4075 .writefn = tlbi_aa64_alle3is_write },
4076 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4077 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4078 .access = PL3_W, .type = ARM_CP_NO_RAW,
4079 .writefn = tlbi_aa64_vae3is_write },
4080 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4081 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4082 .access = PL3_W, .type = ARM_CP_NO_RAW,
4083 .writefn = tlbi_aa64_vae3is_write },
4084 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4085 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4086 .access = PL3_W, .type = ARM_CP_NO_RAW,
4087 .writefn = tlbi_aa64_alle3_write },
4088 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4089 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4090 .access = PL3_W, .type = ARM_CP_NO_RAW,
4091 .writefn = tlbi_aa64_vae3_write },
4092 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4093 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4094 .access = PL3_W, .type = ARM_CP_NO_RAW,
4095 .writefn = tlbi_aa64_vae3_write },
4096 REGINFO_SENTINEL
4099 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4100 bool isread)
4102 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4103 * but the AArch32 CTR has its own reginfo struct)
4105 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4106 return CP_ACCESS_TRAP;
4108 return CP_ACCESS_OK;
4111 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4112 uint64_t value)
4114 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4115 * read via a bit in OSLSR_EL1.
4117 int oslock;
4119 if (ri->state == ARM_CP_STATE_AA32) {
4120 oslock = (value == 0xC5ACCE55);
4121 } else {
4122 oslock = value & 1;
4125 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4128 static const ARMCPRegInfo debug_cp_reginfo[] = {
4129 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4130 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4131 * unlike DBGDRAR it is never accessible from EL0.
4132 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4133 * accessor.
4135 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4136 .access = PL0_R, .accessfn = access_tdra,
4137 .type = ARM_CP_CONST, .resetvalue = 0 },
4138 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4139 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4140 .access = PL1_R, .accessfn = access_tdra,
4141 .type = ARM_CP_CONST, .resetvalue = 0 },
4142 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4143 .access = PL0_R, .accessfn = access_tdra,
4144 .type = ARM_CP_CONST, .resetvalue = 0 },
4145 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4146 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4147 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4148 .access = PL1_RW, .accessfn = access_tda,
4149 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4150 .resetvalue = 0 },
4151 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4152 * We don't implement the configurable EL0 access.
4154 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4155 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4156 .type = ARM_CP_ALIAS,
4157 .access = PL1_R, .accessfn = access_tda,
4158 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4159 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4160 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4161 .access = PL1_W, .type = ARM_CP_NO_RAW,
4162 .accessfn = access_tdosa,
4163 .writefn = oslar_write },
4164 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4165 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4166 .access = PL1_R, .resetvalue = 10,
4167 .accessfn = access_tdosa,
4168 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4169 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4170 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4171 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4172 .access = PL1_RW, .accessfn = access_tdosa,
4173 .type = ARM_CP_NOP },
4174 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4175 * implement vector catch debug events yet.
4177 { .name = "DBGVCR",
4178 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4179 .access = PL1_RW, .accessfn = access_tda,
4180 .type = ARM_CP_NOP },
4181 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4182 * to save and restore a 32-bit guest's DBGVCR)
4184 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4185 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4186 .access = PL2_RW, .accessfn = access_tda,
4187 .type = ARM_CP_NOP },
4188 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4189 * Channel but Linux may try to access this register. The 32-bit
4190 * alias is DBGDCCINT.
4192 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4193 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4194 .access = PL1_RW, .accessfn = access_tda,
4195 .type = ARM_CP_NOP },
4196 REGINFO_SENTINEL
4199 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4200 /* 64 bit access versions of the (dummy) debug registers */
4201 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4202 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4203 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4204 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4205 REGINFO_SENTINEL
4208 void hw_watchpoint_update(ARMCPU *cpu, int n)
4210 CPUARMState *env = &cpu->env;
4211 vaddr len = 0;
4212 vaddr wvr = env->cp15.dbgwvr[n];
4213 uint64_t wcr = env->cp15.dbgwcr[n];
4214 int mask;
4215 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4217 if (env->cpu_watchpoint[n]) {
4218 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4219 env->cpu_watchpoint[n] = NULL;
4222 if (!extract64(wcr, 0, 1)) {
4223 /* E bit clear : watchpoint disabled */
4224 return;
4227 switch (extract64(wcr, 3, 2)) {
4228 case 0:
4229 /* LSC 00 is reserved and must behave as if the wp is disabled */
4230 return;
4231 case 1:
4232 flags |= BP_MEM_READ;
4233 break;
4234 case 2:
4235 flags |= BP_MEM_WRITE;
4236 break;
4237 case 3:
4238 flags |= BP_MEM_ACCESS;
4239 break;
4242 /* Attempts to use both MASK and BAS fields simultaneously are
4243 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4244 * thus generating a watchpoint for every byte in the masked region.
4246 mask = extract64(wcr, 24, 4);
4247 if (mask == 1 || mask == 2) {
4248 /* Reserved values of MASK; we must act as if the mask value was
4249 * some non-reserved value, or as if the watchpoint were disabled.
4250 * We choose the latter.
4252 return;
4253 } else if (mask) {
4254 /* Watchpoint covers an aligned area up to 2GB in size */
4255 len = 1ULL << mask;
4256 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4257 * whether the watchpoint fires when the unmasked bits match; we opt
4258 * to generate the exceptions.
4260 wvr &= ~(len - 1);
4261 } else {
4262 /* Watchpoint covers bytes defined by the byte address select bits */
4263 int bas = extract64(wcr, 5, 8);
4264 int basstart;
4266 if (bas == 0) {
4267 /* This must act as if the watchpoint is disabled */
4268 return;
4271 if (extract64(wvr, 2, 1)) {
4272 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4273 * ignored, and BAS[3:0] define which bytes to watch.
4275 bas &= 0xf;
4277 /* The BAS bits are supposed to be programmed to indicate a contiguous
4278 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4279 * we fire for each byte in the word/doubleword addressed by the WVR.
4280 * We choose to ignore any non-zero bits after the first range of 1s.
4282 basstart = ctz32(bas);
4283 len = cto32(bas >> basstart);
4284 wvr += basstart;
4287 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4288 &env->cpu_watchpoint[n]);
4291 void hw_watchpoint_update_all(ARMCPU *cpu)
4293 int i;
4294 CPUARMState *env = &cpu->env;
4296 /* Completely clear out existing QEMU watchpoints and our array, to
4297 * avoid possible stale entries following migration load.
4299 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4300 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4302 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4303 hw_watchpoint_update(cpu, i);
4307 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4308 uint64_t value)
4310 ARMCPU *cpu = arm_env_get_cpu(env);
4311 int i = ri->crm;
4313 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4314 * register reads and behaves as if values written are sign extended.
4315 * Bits [1:0] are RES0.
4317 value = sextract64(value, 0, 49) & ~3ULL;
4319 raw_write(env, ri, value);
4320 hw_watchpoint_update(cpu, i);
4323 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4324 uint64_t value)
4326 ARMCPU *cpu = arm_env_get_cpu(env);
4327 int i = ri->crm;
4329 raw_write(env, ri, value);
4330 hw_watchpoint_update(cpu, i);
4333 void hw_breakpoint_update(ARMCPU *cpu, int n)
4335 CPUARMState *env = &cpu->env;
4336 uint64_t bvr = env->cp15.dbgbvr[n];
4337 uint64_t bcr = env->cp15.dbgbcr[n];
4338 vaddr addr;
4339 int bt;
4340 int flags = BP_CPU;
4342 if (env->cpu_breakpoint[n]) {
4343 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4344 env->cpu_breakpoint[n] = NULL;
4347 if (!extract64(bcr, 0, 1)) {
4348 /* E bit clear : watchpoint disabled */
4349 return;
4352 bt = extract64(bcr, 20, 4);
4354 switch (bt) {
4355 case 4: /* unlinked address mismatch (reserved if AArch64) */
4356 case 5: /* linked address mismatch (reserved if AArch64) */
4357 qemu_log_mask(LOG_UNIMP,
4358 "arm: address mismatch breakpoint types not implemented");
4359 return;
4360 case 0: /* unlinked address match */
4361 case 1: /* linked address match */
4363 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4364 * we behave as if the register was sign extended. Bits [1:0] are
4365 * RES0. The BAS field is used to allow setting breakpoints on 16
4366 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4367 * a bp will fire if the addresses covered by the bp and the addresses
4368 * covered by the insn overlap but the insn doesn't start at the
4369 * start of the bp address range. We choose to require the insn and
4370 * the bp to have the same address. The constraints on writing to
4371 * BAS enforced in dbgbcr_write mean we have only four cases:
4372 * 0b0000 => no breakpoint
4373 * 0b0011 => breakpoint on addr
4374 * 0b1100 => breakpoint on addr + 2
4375 * 0b1111 => breakpoint on addr
4376 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4378 int bas = extract64(bcr, 5, 4);
4379 addr = sextract64(bvr, 0, 49) & ~3ULL;
4380 if (bas == 0) {
4381 return;
4383 if (bas == 0xc) {
4384 addr += 2;
4386 break;
4388 case 2: /* unlinked context ID match */
4389 case 8: /* unlinked VMID match (reserved if no EL2) */
4390 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4391 qemu_log_mask(LOG_UNIMP,
4392 "arm: unlinked context breakpoint types not implemented");
4393 return;
4394 case 9: /* linked VMID match (reserved if no EL2) */
4395 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4396 case 3: /* linked context ID match */
4397 default:
4398 /* We must generate no events for Linked context matches (unless
4399 * they are linked to by some other bp/wp, which is handled in
4400 * updates for the linking bp/wp). We choose to also generate no events
4401 * for reserved values.
4403 return;
4406 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4409 void hw_breakpoint_update_all(ARMCPU *cpu)
4411 int i;
4412 CPUARMState *env = &cpu->env;
4414 /* Completely clear out existing QEMU breakpoints and our array, to
4415 * avoid possible stale entries following migration load.
4417 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4418 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4420 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4421 hw_breakpoint_update(cpu, i);
4425 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426 uint64_t value)
4428 ARMCPU *cpu = arm_env_get_cpu(env);
4429 int i = ri->crm;
4431 raw_write(env, ri, value);
4432 hw_breakpoint_update(cpu, i);
4435 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4436 uint64_t value)
4438 ARMCPU *cpu = arm_env_get_cpu(env);
4439 int i = ri->crm;
4441 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4442 * copy of BAS[0].
4444 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4445 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4447 raw_write(env, ri, value);
4448 hw_breakpoint_update(cpu, i);
4451 static void define_debug_regs(ARMCPU *cpu)
4453 /* Define v7 and v8 architectural debug registers.
4454 * These are just dummy implementations for now.
4456 int i;
4457 int wrps, brps, ctx_cmps;
4458 ARMCPRegInfo dbgdidr = {
4459 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4460 .access = PL0_R, .accessfn = access_tda,
4461 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4464 /* Note that all these register fields hold "number of Xs minus 1". */
4465 brps = extract32(cpu->dbgdidr, 24, 4);
4466 wrps = extract32(cpu->dbgdidr, 28, 4);
4467 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4469 assert(ctx_cmps <= brps);
4471 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4472 * of the debug registers such as number of breakpoints;
4473 * check that if they both exist then they agree.
4475 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4476 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4477 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4478 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4481 define_one_arm_cp_reg(cpu, &dbgdidr);
4482 define_arm_cp_regs(cpu, debug_cp_reginfo);
4484 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4485 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4488 for (i = 0; i < brps + 1; i++) {
4489 ARMCPRegInfo dbgregs[] = {
4490 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4491 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4492 .access = PL1_RW, .accessfn = access_tda,
4493 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4494 .writefn = dbgbvr_write, .raw_writefn = raw_write
4496 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4497 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4498 .access = PL1_RW, .accessfn = access_tda,
4499 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4500 .writefn = dbgbcr_write, .raw_writefn = raw_write
4502 REGINFO_SENTINEL
4504 define_arm_cp_regs(cpu, dbgregs);
4507 for (i = 0; i < wrps + 1; i++) {
4508 ARMCPRegInfo dbgregs[] = {
4509 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4510 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4511 .access = PL1_RW, .accessfn = access_tda,
4512 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4513 .writefn = dbgwvr_write, .raw_writefn = raw_write
4515 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4516 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4517 .access = PL1_RW, .accessfn = access_tda,
4518 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4519 .writefn = dbgwcr_write, .raw_writefn = raw_write
4521 REGINFO_SENTINEL
4523 define_arm_cp_regs(cpu, dbgregs);
4527 void register_cp_regs_for_features(ARMCPU *cpu)
4529 /* Register all the coprocessor registers based on feature bits */
4530 CPUARMState *env = &cpu->env;
4531 if (arm_feature(env, ARM_FEATURE_M)) {
4532 /* M profile has no coprocessor registers */
4533 return;
4536 define_arm_cp_regs(cpu, cp_reginfo);
4537 if (!arm_feature(env, ARM_FEATURE_V8)) {
4538 /* Must go early as it is full of wildcards that may be
4539 * overridden by later definitions.
4541 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4544 if (arm_feature(env, ARM_FEATURE_V6)) {
4545 /* The ID registers all have impdef reset values */
4546 ARMCPRegInfo v6_idregs[] = {
4547 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4549 .access = PL1_R, .type = ARM_CP_CONST,
4550 .resetvalue = cpu->id_pfr0 },
4551 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4553 .access = PL1_R, .type = ARM_CP_CONST,
4554 .resetvalue = cpu->id_pfr1 },
4555 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4557 .access = PL1_R, .type = ARM_CP_CONST,
4558 .resetvalue = cpu->id_dfr0 },
4559 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4561 .access = PL1_R, .type = ARM_CP_CONST,
4562 .resetvalue = cpu->id_afr0 },
4563 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4565 .access = PL1_R, .type = ARM_CP_CONST,
4566 .resetvalue = cpu->id_mmfr0 },
4567 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4569 .access = PL1_R, .type = ARM_CP_CONST,
4570 .resetvalue = cpu->id_mmfr1 },
4571 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4573 .access = PL1_R, .type = ARM_CP_CONST,
4574 .resetvalue = cpu->id_mmfr2 },
4575 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4577 .access = PL1_R, .type = ARM_CP_CONST,
4578 .resetvalue = cpu->id_mmfr3 },
4579 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4581 .access = PL1_R, .type = ARM_CP_CONST,
4582 .resetvalue = cpu->id_isar0 },
4583 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4585 .access = PL1_R, .type = ARM_CP_CONST,
4586 .resetvalue = cpu->id_isar1 },
4587 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4589 .access = PL1_R, .type = ARM_CP_CONST,
4590 .resetvalue = cpu->id_isar2 },
4591 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4593 .access = PL1_R, .type = ARM_CP_CONST,
4594 .resetvalue = cpu->id_isar3 },
4595 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4597 .access = PL1_R, .type = ARM_CP_CONST,
4598 .resetvalue = cpu->id_isar4 },
4599 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4601 .access = PL1_R, .type = ARM_CP_CONST,
4602 .resetvalue = cpu->id_isar5 },
4603 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4605 .access = PL1_R, .type = ARM_CP_CONST,
4606 .resetvalue = cpu->id_mmfr4 },
4607 /* 7 is as yet unallocated and must RAZ */
4608 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4610 .access = PL1_R, .type = ARM_CP_CONST,
4611 .resetvalue = 0 },
4612 REGINFO_SENTINEL
4614 define_arm_cp_regs(cpu, v6_idregs);
4615 define_arm_cp_regs(cpu, v6_cp_reginfo);
4616 } else {
4617 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4619 if (arm_feature(env, ARM_FEATURE_V6K)) {
4620 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4622 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4623 !arm_feature(env, ARM_FEATURE_PMSA)) {
4624 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4626 if (arm_feature(env, ARM_FEATURE_V7)) {
4627 /* v7 performance monitor control register: same implementor
4628 * field as main ID register, and we implement only the cycle
4629 * count register.
4631 #ifndef CONFIG_USER_ONLY
4632 ARMCPRegInfo pmcr = {
4633 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4634 .access = PL0_RW,
4635 .type = ARM_CP_IO | ARM_CP_ALIAS,
4636 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4637 .accessfn = pmreg_access, .writefn = pmcr_write,
4638 .raw_writefn = raw_write,
4640 ARMCPRegInfo pmcr64 = {
4641 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4642 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4643 .access = PL0_RW, .accessfn = pmreg_access,
4644 .type = ARM_CP_IO,
4645 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4646 .resetvalue = cpu->midr & 0xff000000,
4647 .writefn = pmcr_write, .raw_writefn = raw_write,
4649 define_one_arm_cp_reg(cpu, &pmcr);
4650 define_one_arm_cp_reg(cpu, &pmcr64);
4651 #endif
4652 ARMCPRegInfo clidr = {
4653 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4654 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4655 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4657 define_one_arm_cp_reg(cpu, &clidr);
4658 define_arm_cp_regs(cpu, v7_cp_reginfo);
4659 define_debug_regs(cpu);
4660 } else {
4661 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4663 if (arm_feature(env, ARM_FEATURE_V8)) {
4664 /* AArch64 ID registers, which all have impdef reset values.
4665 * Note that within the ID register ranges the unused slots
4666 * must all RAZ, not UNDEF; future architecture versions may
4667 * define new registers here.
4669 ARMCPRegInfo v8_idregs[] = {
4670 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4672 .access = PL1_R, .type = ARM_CP_CONST,
4673 .resetvalue = cpu->id_aa64pfr0 },
4674 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4676 .access = PL1_R, .type = ARM_CP_CONST,
4677 .resetvalue = cpu->id_aa64pfr1},
4678 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4680 .access = PL1_R, .type = ARM_CP_CONST,
4681 .resetvalue = 0 },
4682 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4684 .access = PL1_R, .type = ARM_CP_CONST,
4685 .resetvalue = 0 },
4686 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4688 .access = PL1_R, .type = ARM_CP_CONST,
4689 .resetvalue = 0 },
4690 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4692 .access = PL1_R, .type = ARM_CP_CONST,
4693 .resetvalue = 0 },
4694 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4696 .access = PL1_R, .type = ARM_CP_CONST,
4697 .resetvalue = 0 },
4698 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4700 .access = PL1_R, .type = ARM_CP_CONST,
4701 .resetvalue = 0 },
4702 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4704 .access = PL1_R, .type = ARM_CP_CONST,
4705 .resetvalue = cpu->id_aa64dfr0 },
4706 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4708 .access = PL1_R, .type = ARM_CP_CONST,
4709 .resetvalue = cpu->id_aa64dfr1 },
4710 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4712 .access = PL1_R, .type = ARM_CP_CONST,
4713 .resetvalue = 0 },
4714 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4716 .access = PL1_R, .type = ARM_CP_CONST,
4717 .resetvalue = 0 },
4718 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4720 .access = PL1_R, .type = ARM_CP_CONST,
4721 .resetvalue = cpu->id_aa64afr0 },
4722 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4724 .access = PL1_R, .type = ARM_CP_CONST,
4725 .resetvalue = cpu->id_aa64afr1 },
4726 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4728 .access = PL1_R, .type = ARM_CP_CONST,
4729 .resetvalue = 0 },
4730 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4732 .access = PL1_R, .type = ARM_CP_CONST,
4733 .resetvalue = 0 },
4734 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4736 .access = PL1_R, .type = ARM_CP_CONST,
4737 .resetvalue = cpu->id_aa64isar0 },
4738 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4740 .access = PL1_R, .type = ARM_CP_CONST,
4741 .resetvalue = cpu->id_aa64isar1 },
4742 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4744 .access = PL1_R, .type = ARM_CP_CONST,
4745 .resetvalue = 0 },
4746 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4748 .access = PL1_R, .type = ARM_CP_CONST,
4749 .resetvalue = 0 },
4750 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4752 .access = PL1_R, .type = ARM_CP_CONST,
4753 .resetvalue = 0 },
4754 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4756 .access = PL1_R, .type = ARM_CP_CONST,
4757 .resetvalue = 0 },
4758 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4760 .access = PL1_R, .type = ARM_CP_CONST,
4761 .resetvalue = 0 },
4762 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4764 .access = PL1_R, .type = ARM_CP_CONST,
4765 .resetvalue = 0 },
4766 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4768 .access = PL1_R, .type = ARM_CP_CONST,
4769 .resetvalue = cpu->id_aa64mmfr0 },
4770 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4772 .access = PL1_R, .type = ARM_CP_CONST,
4773 .resetvalue = cpu->id_aa64mmfr1 },
4774 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4776 .access = PL1_R, .type = ARM_CP_CONST,
4777 .resetvalue = 0 },
4778 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4780 .access = PL1_R, .type = ARM_CP_CONST,
4781 .resetvalue = 0 },
4782 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4784 .access = PL1_R, .type = ARM_CP_CONST,
4785 .resetvalue = 0 },
4786 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4788 .access = PL1_R, .type = ARM_CP_CONST,
4789 .resetvalue = 0 },
4790 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4792 .access = PL1_R, .type = ARM_CP_CONST,
4793 .resetvalue = 0 },
4794 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4796 .access = PL1_R, .type = ARM_CP_CONST,
4797 .resetvalue = 0 },
4798 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4800 .access = PL1_R, .type = ARM_CP_CONST,
4801 .resetvalue = cpu->mvfr0 },
4802 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4804 .access = PL1_R, .type = ARM_CP_CONST,
4805 .resetvalue = cpu->mvfr1 },
4806 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4808 .access = PL1_R, .type = ARM_CP_CONST,
4809 .resetvalue = cpu->mvfr2 },
4810 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4812 .access = PL1_R, .type = ARM_CP_CONST,
4813 .resetvalue = 0 },
4814 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4816 .access = PL1_R, .type = ARM_CP_CONST,
4817 .resetvalue = 0 },
4818 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4820 .access = PL1_R, .type = ARM_CP_CONST,
4821 .resetvalue = 0 },
4822 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4824 .access = PL1_R, .type = ARM_CP_CONST,
4825 .resetvalue = 0 },
4826 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4828 .access = PL1_R, .type = ARM_CP_CONST,
4829 .resetvalue = 0 },
4830 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4831 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4832 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4833 .resetvalue = cpu->pmceid0 },
4834 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4835 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4836 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4837 .resetvalue = cpu->pmceid0 },
4838 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4839 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4840 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4841 .resetvalue = cpu->pmceid1 },
4842 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4843 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4844 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4845 .resetvalue = cpu->pmceid1 },
4846 REGINFO_SENTINEL
4848 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4849 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4850 !arm_feature(env, ARM_FEATURE_EL2)) {
4851 ARMCPRegInfo rvbar = {
4852 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4853 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4854 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4856 define_one_arm_cp_reg(cpu, &rvbar);
4858 define_arm_cp_regs(cpu, v8_idregs);
4859 define_arm_cp_regs(cpu, v8_cp_reginfo);
4861 if (arm_feature(env, ARM_FEATURE_EL2)) {
4862 uint64_t vmpidr_def = mpidr_read_val(env);
4863 ARMCPRegInfo vpidr_regs[] = {
4864 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4865 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4866 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4867 .resetvalue = cpu->midr,
4868 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4869 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4870 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4871 .access = PL2_RW, .resetvalue = cpu->midr,
4872 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4873 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4874 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4875 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4876 .resetvalue = vmpidr_def,
4877 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4878 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4880 .access = PL2_RW,
4881 .resetvalue = vmpidr_def,
4882 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4883 REGINFO_SENTINEL
4885 define_arm_cp_regs(cpu, vpidr_regs);
4886 define_arm_cp_regs(cpu, el2_cp_reginfo);
4887 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4888 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4889 ARMCPRegInfo rvbar = {
4890 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4892 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4894 define_one_arm_cp_reg(cpu, &rvbar);
4896 } else {
4897 /* If EL2 is missing but higher ELs are enabled, we need to
4898 * register the no_el2 reginfos.
4900 if (arm_feature(env, ARM_FEATURE_EL3)) {
4901 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4902 * of MIDR_EL1 and MPIDR_EL1.
4904 ARMCPRegInfo vpidr_regs[] = {
4905 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4906 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4907 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4908 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4909 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4910 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4911 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4912 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4913 .type = ARM_CP_NO_RAW,
4914 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4915 REGINFO_SENTINEL
4917 define_arm_cp_regs(cpu, vpidr_regs);
4918 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4921 if (arm_feature(env, ARM_FEATURE_EL3)) {
4922 define_arm_cp_regs(cpu, el3_cp_reginfo);
4923 ARMCPRegInfo el3_regs[] = {
4924 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4925 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4926 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4927 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4929 .access = PL3_RW,
4930 .raw_writefn = raw_write, .writefn = sctlr_write,
4931 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4932 .resetvalue = cpu->reset_sctlr },
4933 REGINFO_SENTINEL
4936 define_arm_cp_regs(cpu, el3_regs);
4938 /* The behaviour of NSACR is sufficiently various that we don't
4939 * try to describe it in a single reginfo:
4940 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4941 * reads as constant 0xc00 from NS EL1 and NS EL2
4942 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4943 * if v7 without EL3, register doesn't exist
4944 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4946 if (arm_feature(env, ARM_FEATURE_EL3)) {
4947 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4948 ARMCPRegInfo nsacr = {
4949 .name = "NSACR", .type = ARM_CP_CONST,
4950 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4951 .access = PL1_RW, .accessfn = nsacr_access,
4952 .resetvalue = 0xc00
4954 define_one_arm_cp_reg(cpu, &nsacr);
4955 } else {
4956 ARMCPRegInfo nsacr = {
4957 .name = "NSACR",
4958 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4959 .access = PL3_RW | PL1_R,
4960 .resetvalue = 0,
4961 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4963 define_one_arm_cp_reg(cpu, &nsacr);
4965 } else {
4966 if (arm_feature(env, ARM_FEATURE_V8)) {
4967 ARMCPRegInfo nsacr = {
4968 .name = "NSACR", .type = ARM_CP_CONST,
4969 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4970 .access = PL1_R,
4971 .resetvalue = 0xc00
4973 define_one_arm_cp_reg(cpu, &nsacr);
4977 if (arm_feature(env, ARM_FEATURE_PMSA)) {
4978 if (arm_feature(env, ARM_FEATURE_V6)) {
4979 /* PMSAv6 not implemented */
4980 assert(arm_feature(env, ARM_FEATURE_V7));
4981 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4982 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4983 } else {
4984 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4986 } else {
4987 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4988 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4990 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4991 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4993 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4994 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4996 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4997 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4999 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5000 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5002 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5003 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5005 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5006 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5008 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5009 define_arm_cp_regs(cpu, omap_cp_reginfo);
5011 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5012 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5014 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5015 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5017 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5018 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5020 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5021 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5023 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5024 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5025 * be read-only (ie write causes UNDEF exception).
5028 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5029 /* Pre-v8 MIDR space.
5030 * Note that the MIDR isn't a simple constant register because
5031 * of the TI925 behaviour where writes to another register can
5032 * cause the MIDR value to change.
5034 * Unimplemented registers in the c15 0 0 0 space default to
5035 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5036 * and friends override accordingly.
5038 { .name = "MIDR",
5039 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5040 .access = PL1_R, .resetvalue = cpu->midr,
5041 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5042 .readfn = midr_read,
5043 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5044 .type = ARM_CP_OVERRIDE },
5045 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5046 { .name = "DUMMY",
5047 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5048 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5049 { .name = "DUMMY",
5050 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5051 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5052 { .name = "DUMMY",
5053 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5054 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5055 { .name = "DUMMY",
5056 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5057 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5058 { .name = "DUMMY",
5059 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5060 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5061 REGINFO_SENTINEL
5063 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5064 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5066 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5067 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5068 .readfn = midr_read },
5069 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5070 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5071 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5072 .access = PL1_R, .resetvalue = cpu->midr },
5073 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5074 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5075 .access = PL1_R, .resetvalue = cpu->midr },
5076 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5078 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5079 REGINFO_SENTINEL
5081 ARMCPRegInfo id_cp_reginfo[] = {
5082 /* These are common to v8 and pre-v8 */
5083 { .name = "CTR",
5084 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5085 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5086 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5087 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5088 .access = PL0_R, .accessfn = ctr_el0_access,
5089 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5090 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5091 { .name = "TCMTR",
5092 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5093 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5094 REGINFO_SENTINEL
5096 /* TLBTR is specific to VMSA */
5097 ARMCPRegInfo id_tlbtr_reginfo = {
5098 .name = "TLBTR",
5099 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5100 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5102 /* MPUIR is specific to PMSA V6+ */
5103 ARMCPRegInfo id_mpuir_reginfo = {
5104 .name = "MPUIR",
5105 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5106 .access = PL1_R, .type = ARM_CP_CONST,
5107 .resetvalue = cpu->pmsav7_dregion << 8
5109 ARMCPRegInfo crn0_wi_reginfo = {
5110 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5111 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5112 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5114 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5115 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5116 ARMCPRegInfo *r;
5117 /* Register the blanket "writes ignored" value first to cover the
5118 * whole space. Then update the specific ID registers to allow write
5119 * access, so that they ignore writes rather than causing them to
5120 * UNDEF.
5122 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5123 for (r = id_pre_v8_midr_cp_reginfo;
5124 r->type != ARM_CP_SENTINEL; r++) {
5125 r->access = PL1_RW;
5127 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5128 r->access = PL1_RW;
5130 id_tlbtr_reginfo.access = PL1_RW;
5131 id_tlbtr_reginfo.access = PL1_RW;
5133 if (arm_feature(env, ARM_FEATURE_V8)) {
5134 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5135 } else {
5136 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5138 define_arm_cp_regs(cpu, id_cp_reginfo);
5139 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5140 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5141 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5142 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5146 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5147 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5150 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5151 ARMCPRegInfo auxcr_reginfo[] = {
5152 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5153 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5154 .access = PL1_RW, .type = ARM_CP_CONST,
5155 .resetvalue = cpu->reset_auxcr },
5156 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5157 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5158 .access = PL2_RW, .type = ARM_CP_CONST,
5159 .resetvalue = 0 },
5160 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5161 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5162 .access = PL3_RW, .type = ARM_CP_CONST,
5163 .resetvalue = 0 },
5164 REGINFO_SENTINEL
5166 define_arm_cp_regs(cpu, auxcr_reginfo);
5169 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5170 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5171 /* 32 bit view is [31:18] 0...0 [43:32]. */
5172 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5173 | extract64(cpu->reset_cbar, 32, 12);
5174 ARMCPRegInfo cbar_reginfo[] = {
5175 { .name = "CBAR",
5176 .type = ARM_CP_CONST,
5177 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5178 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5179 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5180 .type = ARM_CP_CONST,
5181 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5182 .access = PL1_R, .resetvalue = cbar32 },
5183 REGINFO_SENTINEL
5185 /* We don't implement a r/w 64 bit CBAR currently */
5186 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5187 define_arm_cp_regs(cpu, cbar_reginfo);
5188 } else {
5189 ARMCPRegInfo cbar = {
5190 .name = "CBAR",
5191 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5192 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5193 .fieldoffset = offsetof(CPUARMState,
5194 cp15.c15_config_base_address)
5196 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5197 cbar.access = PL1_R;
5198 cbar.fieldoffset = 0;
5199 cbar.type = ARM_CP_CONST;
5201 define_one_arm_cp_reg(cpu, &cbar);
5205 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5206 ARMCPRegInfo vbar_cp_reginfo[] = {
5207 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5208 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5209 .access = PL1_RW, .writefn = vbar_write,
5210 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5211 offsetof(CPUARMState, cp15.vbar_ns) },
5212 .resetvalue = 0 },
5213 REGINFO_SENTINEL
5215 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5218 /* Generic registers whose values depend on the implementation */
5220 ARMCPRegInfo sctlr = {
5221 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5222 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5223 .access = PL1_RW,
5224 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5225 offsetof(CPUARMState, cp15.sctlr_ns) },
5226 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5227 .raw_writefn = raw_write,
5229 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5230 /* Normally we would always end the TB on an SCTLR write, but Linux
5231 * arch/arm/mach-pxa/sleep.S expects two instructions following
5232 * an MMU enable to execute from cache. Imitate this behaviour.
5234 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5236 define_one_arm_cp_reg(cpu, &sctlr);
5240 ARMCPU *cpu_arm_init(const char *cpu_model)
5242 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5245 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5247 CPUState *cs = CPU(cpu);
5248 CPUARMState *env = &cpu->env;
5250 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5251 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5252 aarch64_fpu_gdb_set_reg,
5253 34, "aarch64-fpu.xml", 0);
5254 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5255 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5256 51, "arm-neon.xml", 0);
5257 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5258 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5259 35, "arm-vfp3.xml", 0);
5260 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5261 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5262 19, "arm-vfp.xml", 0);
5266 /* Sort alphabetically by type name, except for "any". */
5267 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5269 ObjectClass *class_a = (ObjectClass *)a;
5270 ObjectClass *class_b = (ObjectClass *)b;
5271 const char *name_a, *name_b;
5273 name_a = object_class_get_name(class_a);
5274 name_b = object_class_get_name(class_b);
5275 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5276 return 1;
5277 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5278 return -1;
5279 } else {
5280 return strcmp(name_a, name_b);
5284 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5286 ObjectClass *oc = data;
5287 CPUListState *s = user_data;
5288 const char *typename;
5289 char *name;
5291 typename = object_class_get_name(oc);
5292 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5293 (*s->cpu_fprintf)(s->file, " %s\n",
5294 name);
5295 g_free(name);
5298 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5300 CPUListState s = {
5301 .file = f,
5302 .cpu_fprintf = cpu_fprintf,
5304 GSList *list;
5306 list = object_class_get_list(TYPE_ARM_CPU, false);
5307 list = g_slist_sort(list, arm_cpu_list_compare);
5308 (*cpu_fprintf)(f, "Available CPUs:\n");
5309 g_slist_foreach(list, arm_cpu_list_entry, &s);
5310 g_slist_free(list);
5311 #ifdef CONFIG_KVM
5312 /* The 'host' CPU type is dynamically registered only if KVM is
5313 * enabled, so we have to special-case it here:
5315 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5316 #endif
5319 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5321 ObjectClass *oc = data;
5322 CpuDefinitionInfoList **cpu_list = user_data;
5323 CpuDefinitionInfoList *entry;
5324 CpuDefinitionInfo *info;
5325 const char *typename;
5327 typename = object_class_get_name(oc);
5328 info = g_malloc0(sizeof(*info));
5329 info->name = g_strndup(typename,
5330 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5331 info->q_typename = g_strdup(typename);
5333 entry = g_malloc0(sizeof(*entry));
5334 entry->value = info;
5335 entry->next = *cpu_list;
5336 *cpu_list = entry;
5339 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5341 CpuDefinitionInfoList *cpu_list = NULL;
5342 GSList *list;
5344 list = object_class_get_list(TYPE_ARM_CPU, false);
5345 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5346 g_slist_free(list);
5348 return cpu_list;
5351 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5352 void *opaque, int state, int secstate,
5353 int crm, int opc1, int opc2)
5355 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5356 * add a single reginfo struct to the hash table.
5358 uint32_t *key = g_new(uint32_t, 1);
5359 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5360 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5361 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5363 /* Reset the secure state to the specific incoming state. This is
5364 * necessary as the register may have been defined with both states.
5366 r2->secure = secstate;
5368 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5369 /* Register is banked (using both entries in array).
5370 * Overwriting fieldoffset as the array is only used to define
5371 * banked registers but later only fieldoffset is used.
5373 r2->fieldoffset = r->bank_fieldoffsets[ns];
5376 if (state == ARM_CP_STATE_AA32) {
5377 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5378 /* If the register is banked then we don't need to migrate or
5379 * reset the 32-bit instance in certain cases:
5381 * 1) If the register has both 32-bit and 64-bit instances then we
5382 * can count on the 64-bit instance taking care of the
5383 * non-secure bank.
5384 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5385 * taking care of the secure bank. This requires that separate
5386 * 32 and 64-bit definitions are provided.
5388 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5389 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5390 r2->type |= ARM_CP_ALIAS;
5392 } else if ((secstate != r->secure) && !ns) {
5393 /* The register is not banked so we only want to allow migration of
5394 * the non-secure instance.
5396 r2->type |= ARM_CP_ALIAS;
5399 if (r->state == ARM_CP_STATE_BOTH) {
5400 /* We assume it is a cp15 register if the .cp field is left unset.
5402 if (r2->cp == 0) {
5403 r2->cp = 15;
5406 #ifdef HOST_WORDS_BIGENDIAN
5407 if (r2->fieldoffset) {
5408 r2->fieldoffset += sizeof(uint32_t);
5410 #endif
5413 if (state == ARM_CP_STATE_AA64) {
5414 /* To allow abbreviation of ARMCPRegInfo
5415 * definitions, we treat cp == 0 as equivalent to
5416 * the value for "standard guest-visible sysreg".
5417 * STATE_BOTH definitions are also always "standard
5418 * sysreg" in their AArch64 view (the .cp value may
5419 * be non-zero for the benefit of the AArch32 view).
5421 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5422 r2->cp = CP_REG_ARM64_SYSREG_CP;
5424 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5425 r2->opc0, opc1, opc2);
5426 } else {
5427 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5429 if (opaque) {
5430 r2->opaque = opaque;
5432 /* reginfo passed to helpers is correct for the actual access,
5433 * and is never ARM_CP_STATE_BOTH:
5435 r2->state = state;
5436 /* Make sure reginfo passed to helpers for wildcarded regs
5437 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5439 r2->crm = crm;
5440 r2->opc1 = opc1;
5441 r2->opc2 = opc2;
5442 /* By convention, for wildcarded registers only the first
5443 * entry is used for migration; the others are marked as
5444 * ALIAS so we don't try to transfer the register
5445 * multiple times. Special registers (ie NOP/WFI) are
5446 * never migratable and not even raw-accessible.
5448 if ((r->type & ARM_CP_SPECIAL)) {
5449 r2->type |= ARM_CP_NO_RAW;
5451 if (((r->crm == CP_ANY) && crm != 0) ||
5452 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5453 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5454 r2->type |= ARM_CP_ALIAS;
5457 /* Check that raw accesses are either forbidden or handled. Note that
5458 * we can't assert this earlier because the setup of fieldoffset for
5459 * banked registers has to be done first.
5461 if (!(r2->type & ARM_CP_NO_RAW)) {
5462 assert(!raw_accessors_invalid(r2));
5465 /* Overriding of an existing definition must be explicitly
5466 * requested.
5468 if (!(r->type & ARM_CP_OVERRIDE)) {
5469 ARMCPRegInfo *oldreg;
5470 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5471 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5472 fprintf(stderr, "Register redefined: cp=%d %d bit "
5473 "crn=%d crm=%d opc1=%d opc2=%d, "
5474 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5475 r2->crn, r2->crm, r2->opc1, r2->opc2,
5476 oldreg->name, r2->name);
5477 g_assert_not_reached();
5480 g_hash_table_insert(cpu->cp_regs, key, r2);
5484 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5485 const ARMCPRegInfo *r, void *opaque)
5487 /* Define implementations of coprocessor registers.
5488 * We store these in a hashtable because typically
5489 * there are less than 150 registers in a space which
5490 * is 16*16*16*8*8 = 262144 in size.
5491 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5492 * If a register is defined twice then the second definition is
5493 * used, so this can be used to define some generic registers and
5494 * then override them with implementation specific variations.
5495 * At least one of the original and the second definition should
5496 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5497 * against accidental use.
5499 * The state field defines whether the register is to be
5500 * visible in the AArch32 or AArch64 execution state. If the
5501 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5502 * reginfo structure for the AArch32 view, which sees the lower
5503 * 32 bits of the 64 bit register.
5505 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5506 * be wildcarded. AArch64 registers are always considered to be 64
5507 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5508 * the register, if any.
5510 int crm, opc1, opc2, state;
5511 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5512 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5513 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5514 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5515 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5516 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5517 /* 64 bit registers have only CRm and Opc1 fields */
5518 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5519 /* op0 only exists in the AArch64 encodings */
5520 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5521 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5522 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5523 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5524 * encodes a minimum access level for the register. We roll this
5525 * runtime check into our general permission check code, so check
5526 * here that the reginfo's specified permissions are strict enough
5527 * to encompass the generic architectural permission check.
5529 if (r->state != ARM_CP_STATE_AA32) {
5530 int mask = 0;
5531 switch (r->opc1) {
5532 case 0: case 1: case 2:
5533 /* min_EL EL1 */
5534 mask = PL1_RW;
5535 break;
5536 case 3:
5537 /* min_EL EL0 */
5538 mask = PL0_RW;
5539 break;
5540 case 4:
5541 /* min_EL EL2 */
5542 mask = PL2_RW;
5543 break;
5544 case 5:
5545 /* unallocated encoding, so not possible */
5546 assert(false);
5547 break;
5548 case 6:
5549 /* min_EL EL3 */
5550 mask = PL3_RW;
5551 break;
5552 case 7:
5553 /* min_EL EL1, secure mode only (we don't check the latter) */
5554 mask = PL1_RW;
5555 break;
5556 default:
5557 /* broken reginfo with out-of-range opc1 */
5558 assert(false);
5559 break;
5561 /* assert our permissions are not too lax (stricter is fine) */
5562 assert((r->access & ~mask) == 0);
5565 /* Check that the register definition has enough info to handle
5566 * reads and writes if they are permitted.
5568 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5569 if (r->access & PL3_R) {
5570 assert((r->fieldoffset ||
5571 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5572 r->readfn);
5574 if (r->access & PL3_W) {
5575 assert((r->fieldoffset ||
5576 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5577 r->writefn);
5580 /* Bad type field probably means missing sentinel at end of reg list */
5581 assert(cptype_valid(r->type));
5582 for (crm = crmmin; crm <= crmmax; crm++) {
5583 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5584 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5585 for (state = ARM_CP_STATE_AA32;
5586 state <= ARM_CP_STATE_AA64; state++) {
5587 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5588 continue;
5590 if (state == ARM_CP_STATE_AA32) {
5591 /* Under AArch32 CP registers can be common
5592 * (same for secure and non-secure world) or banked.
5594 switch (r->secure) {
5595 case ARM_CP_SECSTATE_S:
5596 case ARM_CP_SECSTATE_NS:
5597 add_cpreg_to_hashtable(cpu, r, opaque, state,
5598 r->secure, crm, opc1, opc2);
5599 break;
5600 default:
5601 add_cpreg_to_hashtable(cpu, r, opaque, state,
5602 ARM_CP_SECSTATE_S,
5603 crm, opc1, opc2);
5604 add_cpreg_to_hashtable(cpu, r, opaque, state,
5605 ARM_CP_SECSTATE_NS,
5606 crm, opc1, opc2);
5607 break;
5609 } else {
5610 /* AArch64 registers get mapped to non-secure instance
5611 * of AArch32 */
5612 add_cpreg_to_hashtable(cpu, r, opaque, state,
5613 ARM_CP_SECSTATE_NS,
5614 crm, opc1, opc2);
5622 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5623 const ARMCPRegInfo *regs, void *opaque)
5625 /* Define a whole list of registers */
5626 const ARMCPRegInfo *r;
5627 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5628 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5632 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5634 return g_hash_table_lookup(cpregs, &encoded_cp);
5637 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5638 uint64_t value)
5640 /* Helper coprocessor write function for write-ignore registers */
5643 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5645 /* Helper coprocessor write function for read-as-zero registers */
5646 return 0;
5649 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5651 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5654 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5656 /* Return true if it is not valid for us to switch to
5657 * this CPU mode (ie all the UNPREDICTABLE cases in
5658 * the ARM ARM CPSRWriteByInstr pseudocode).
5661 /* Changes to or from Hyp via MSR and CPS are illegal. */
5662 if (write_type == CPSRWriteByInstr &&
5663 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5664 mode == ARM_CPU_MODE_HYP)) {
5665 return 1;
5668 switch (mode) {
5669 case ARM_CPU_MODE_USR:
5670 return 0;
5671 case ARM_CPU_MODE_SYS:
5672 case ARM_CPU_MODE_SVC:
5673 case ARM_CPU_MODE_ABT:
5674 case ARM_CPU_MODE_UND:
5675 case ARM_CPU_MODE_IRQ:
5676 case ARM_CPU_MODE_FIQ:
5677 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5678 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5680 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5681 * and CPS are treated as illegal mode changes.
5683 if (write_type == CPSRWriteByInstr &&
5684 (env->cp15.hcr_el2 & HCR_TGE) &&
5685 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5686 !arm_is_secure_below_el3(env)) {
5687 return 1;
5689 return 0;
5690 case ARM_CPU_MODE_HYP:
5691 return !arm_feature(env, ARM_FEATURE_EL2)
5692 || arm_current_el(env) < 2 || arm_is_secure(env);
5693 case ARM_CPU_MODE_MON:
5694 return arm_current_el(env) < 3;
5695 default:
5696 return 1;
5700 uint32_t cpsr_read(CPUARMState *env)
5702 int ZF;
5703 ZF = (env->ZF == 0);
5704 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5705 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5706 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5707 | ((env->condexec_bits & 0xfc) << 8)
5708 | (env->GE << 16) | (env->daif & CPSR_AIF);
5711 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5712 CPSRWriteType write_type)
5714 uint32_t changed_daif;
5716 if (mask & CPSR_NZCV) {
5717 env->ZF = (~val) & CPSR_Z;
5718 env->NF = val;
5719 env->CF = (val >> 29) & 1;
5720 env->VF = (val << 3) & 0x80000000;
5722 if (mask & CPSR_Q)
5723 env->QF = ((val & CPSR_Q) != 0);
5724 if (mask & CPSR_T)
5725 env->thumb = ((val & CPSR_T) != 0);
5726 if (mask & CPSR_IT_0_1) {
5727 env->condexec_bits &= ~3;
5728 env->condexec_bits |= (val >> 25) & 3;
5730 if (mask & CPSR_IT_2_7) {
5731 env->condexec_bits &= 3;
5732 env->condexec_bits |= (val >> 8) & 0xfc;
5734 if (mask & CPSR_GE) {
5735 env->GE = (val >> 16) & 0xf;
5738 /* In a V7 implementation that includes the security extensions but does
5739 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5740 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5741 * bits respectively.
5743 * In a V8 implementation, it is permitted for privileged software to
5744 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5746 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5747 arm_feature(env, ARM_FEATURE_EL3) &&
5748 !arm_feature(env, ARM_FEATURE_EL2) &&
5749 !arm_is_secure(env)) {
5751 changed_daif = (env->daif ^ val) & mask;
5753 if (changed_daif & CPSR_A) {
5754 /* Check to see if we are allowed to change the masking of async
5755 * abort exceptions from a non-secure state.
5757 if (!(env->cp15.scr_el3 & SCR_AW)) {
5758 qemu_log_mask(LOG_GUEST_ERROR,
5759 "Ignoring attempt to switch CPSR_A flag from "
5760 "non-secure world with SCR.AW bit clear\n");
5761 mask &= ~CPSR_A;
5765 if (changed_daif & CPSR_F) {
5766 /* Check to see if we are allowed to change the masking of FIQ
5767 * exceptions from a non-secure state.
5769 if (!(env->cp15.scr_el3 & SCR_FW)) {
5770 qemu_log_mask(LOG_GUEST_ERROR,
5771 "Ignoring attempt to switch CPSR_F flag from "
5772 "non-secure world with SCR.FW bit clear\n");
5773 mask &= ~CPSR_F;
5776 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5777 * If this bit is set software is not allowed to mask
5778 * FIQs, but is allowed to set CPSR_F to 0.
5780 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5781 (val & CPSR_F)) {
5782 qemu_log_mask(LOG_GUEST_ERROR,
5783 "Ignoring attempt to enable CPSR_F flag "
5784 "(non-maskable FIQ [NMFI] support enabled)\n");
5785 mask &= ~CPSR_F;
5790 env->daif &= ~(CPSR_AIF & mask);
5791 env->daif |= val & CPSR_AIF & mask;
5793 if (write_type != CPSRWriteRaw &&
5794 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5795 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5796 /* Note that we can only get here in USR mode if this is a
5797 * gdb stub write; for this case we follow the architectural
5798 * behaviour for guest writes in USR mode of ignoring an attempt
5799 * to switch mode. (Those are caught by translate.c for writes
5800 * triggered by guest instructions.)
5802 mask &= ~CPSR_M;
5803 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5804 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5805 * v7, and has defined behaviour in v8:
5806 * + leave CPSR.M untouched
5807 * + allow changes to the other CPSR fields
5808 * + set PSTATE.IL
5809 * For user changes via the GDB stub, we don't set PSTATE.IL,
5810 * as this would be unnecessarily harsh for a user error.
5812 mask &= ~CPSR_M;
5813 if (write_type != CPSRWriteByGDBStub &&
5814 arm_feature(env, ARM_FEATURE_V8)) {
5815 mask |= CPSR_IL;
5816 val |= CPSR_IL;
5818 } else {
5819 switch_mode(env, val & CPSR_M);
5822 mask &= ~CACHED_CPSR_BITS;
5823 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5826 /* Sign/zero extend */
5827 uint32_t HELPER(sxtb16)(uint32_t x)
5829 uint32_t res;
5830 res = (uint16_t)(int8_t)x;
5831 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5832 return res;
5835 uint32_t HELPER(uxtb16)(uint32_t x)
5837 uint32_t res;
5838 res = (uint16_t)(uint8_t)x;
5839 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5840 return res;
5843 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5845 if (den == 0)
5846 return 0;
5847 if (num == INT_MIN && den == -1)
5848 return INT_MIN;
5849 return num / den;
5852 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5854 if (den == 0)
5855 return 0;
5856 return num / den;
5859 uint32_t HELPER(rbit)(uint32_t x)
5861 return revbit32(x);
5864 #if defined(CONFIG_USER_ONLY)
5866 /* These should probably raise undefined insn exceptions. */
5867 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5869 ARMCPU *cpu = arm_env_get_cpu(env);
5871 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5874 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5876 ARMCPU *cpu = arm_env_get_cpu(env);
5878 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5879 return 0;
5882 void switch_mode(CPUARMState *env, int mode)
5884 ARMCPU *cpu = arm_env_get_cpu(env);
5886 if (mode != ARM_CPU_MODE_USR) {
5887 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5891 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5892 uint32_t cur_el, bool secure)
5894 return 1;
5897 void aarch64_sync_64_to_32(CPUARMState *env)
5899 g_assert_not_reached();
5902 #else
5904 void switch_mode(CPUARMState *env, int mode)
5906 int old_mode;
5907 int i;
5909 old_mode = env->uncached_cpsr & CPSR_M;
5910 if (mode == old_mode)
5911 return;
5913 if (old_mode == ARM_CPU_MODE_FIQ) {
5914 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5915 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5916 } else if (mode == ARM_CPU_MODE_FIQ) {
5917 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5918 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5921 i = bank_number(old_mode);
5922 env->banked_r13[i] = env->regs[13];
5923 env->banked_r14[i] = env->regs[14];
5924 env->banked_spsr[i] = env->spsr;
5926 i = bank_number(mode);
5927 env->regs[13] = env->banked_r13[i];
5928 env->regs[14] = env->banked_r14[i];
5929 env->spsr = env->banked_spsr[i];
5932 /* Physical Interrupt Target EL Lookup Table
5934 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5936 * The below multi-dimensional table is used for looking up the target
5937 * exception level given numerous condition criteria. Specifically, the
5938 * target EL is based on SCR and HCR routing controls as well as the
5939 * currently executing EL and secure state.
5941 * Dimensions:
5942 * target_el_table[2][2][2][2][2][4]
5943 * | | | | | +--- Current EL
5944 * | | | | +------ Non-secure(0)/Secure(1)
5945 * | | | +--------- HCR mask override
5946 * | | +------------ SCR exec state control
5947 * | +--------------- SCR mask override
5948 * +------------------ 32-bit(0)/64-bit(1) EL3
5950 * The table values are as such:
5951 * 0-3 = EL0-EL3
5952 * -1 = Cannot occur
5954 * The ARM ARM target EL table includes entries indicating that an "exception
5955 * is not taken". The two cases where this is applicable are:
5956 * 1) An exception is taken from EL3 but the SCR does not have the exception
5957 * routed to EL3.
5958 * 2) An exception is taken from EL2 but the HCR does not have the exception
5959 * routed to EL2.
5960 * In these two cases, the below table contain a target of EL1. This value is
5961 * returned as it is expected that the consumer of the table data will check
5962 * for "target EL >= current EL" to ensure the exception is not taken.
5964 * SCR HCR
5965 * 64 EA AMO From
5966 * BIT IRQ IMO Non-secure Secure
5967 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5969 static const int8_t target_el_table[2][2][2][2][2][4] = {
5970 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5971 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5972 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5973 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5974 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5975 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5976 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5977 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5978 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5979 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5980 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5981 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5982 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5983 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5984 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5985 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5989 * Determine the target EL for physical exceptions
5991 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5992 uint32_t cur_el, bool secure)
5994 CPUARMState *env = cs->env_ptr;
5995 int rw;
5996 int scr;
5997 int hcr;
5998 int target_el;
5999 /* Is the highest EL AArch64? */
6000 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6002 if (arm_feature(env, ARM_FEATURE_EL3)) {
6003 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6004 } else {
6005 /* Either EL2 is the highest EL (and so the EL2 register width
6006 * is given by is64); or there is no EL2 or EL3, in which case
6007 * the value of 'rw' does not affect the table lookup anyway.
6009 rw = is64;
6012 switch (excp_idx) {
6013 case EXCP_IRQ:
6014 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6015 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6016 break;
6017 case EXCP_FIQ:
6018 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6019 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6020 break;
6021 default:
6022 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6023 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6024 break;
6027 /* If HCR.TGE is set then HCR is treated as being 1 */
6028 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6030 /* Perform a table-lookup for the target EL given the current state */
6031 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6033 assert(target_el > 0);
6035 return target_el;
6038 static void v7m_push(CPUARMState *env, uint32_t val)
6040 CPUState *cs = CPU(arm_env_get_cpu(env));
6042 env->regs[13] -= 4;
6043 stl_phys(cs->as, env->regs[13], val);
6046 static uint32_t v7m_pop(CPUARMState *env)
6048 CPUState *cs = CPU(arm_env_get_cpu(env));
6049 uint32_t val;
6051 val = ldl_phys(cs->as, env->regs[13]);
6052 env->regs[13] += 4;
6053 return val;
6056 /* Switch to V7M main or process stack pointer. */
6057 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
6059 uint32_t tmp;
6060 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
6062 if (old_spsel != new_spsel) {
6063 tmp = env->v7m.other_sp;
6064 env->v7m.other_sp = env->regs[13];
6065 env->regs[13] = tmp;
6067 env->v7m.control = deposit32(env->v7m.control,
6068 R_V7M_CONTROL_SPSEL_SHIFT,
6069 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6073 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6075 CPUState *cs = CPU(cpu);
6076 CPUARMState *env = &cpu->env;
6077 MemTxResult result;
6078 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6079 uint32_t addr;
6081 addr = address_space_ldl(cs->as, vec,
6082 MEMTXATTRS_UNSPECIFIED, &result);
6083 if (result != MEMTX_OK) {
6084 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6085 * which would then be immediately followed by our failing to load
6086 * the entry vector for that HardFault, which is a Lockup case.
6087 * Since we don't model Lockup, we just report this guest error
6088 * via cpu_abort().
6090 cpu_abort(cs, "Failed to read from exception vector table "
6091 "entry %08x\n", (unsigned)vec);
6093 return addr;
6096 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6098 /* Do the "take the exception" parts of exception entry,
6099 * but not the pushing of state to the stack. This is
6100 * similar to the pseudocode ExceptionTaken() function.
6102 CPUARMState *env = &cpu->env;
6103 uint32_t addr;
6105 armv7m_nvic_acknowledge_irq(env->nvic);
6106 switch_v7m_sp(env, 0);
6107 /* Clear IT bits */
6108 env->condexec_bits = 0;
6109 env->regs[14] = lr;
6110 addr = arm_v7m_load_vector(cpu);
6111 env->regs[15] = addr & 0xfffffffe;
6112 env->thumb = addr & 1;
6115 static void v7m_push_stack(ARMCPU *cpu)
6117 /* Do the "set up stack frame" part of exception entry,
6118 * similar to pseudocode PushStack().
6120 CPUARMState *env = &cpu->env;
6121 uint32_t xpsr = xpsr_read(env);
6123 /* Align stack pointer if the guest wants that */
6124 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6125 env->regs[13] -= 4;
6126 xpsr |= 0x200;
6128 /* Switch to the handler mode. */
6129 v7m_push(env, xpsr);
6130 v7m_push(env, env->regs[15]);
6131 v7m_push(env, env->regs[14]);
6132 v7m_push(env, env->regs[12]);
6133 v7m_push(env, env->regs[3]);
6134 v7m_push(env, env->regs[2]);
6135 v7m_push(env, env->regs[1]);
6136 v7m_push(env, env->regs[0]);
6139 static void do_v7m_exception_exit(ARMCPU *cpu)
6141 CPUARMState *env = &cpu->env;
6142 uint32_t type;
6143 uint32_t xpsr;
6144 bool ufault = false;
6145 bool return_to_sp_process = false;
6146 bool return_to_handler = false;
6147 bool rettobase = false;
6149 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6150 * arm_v7m_do_unassigned_access() enforces the architectural rule
6151 * that jumps to magic addresses don't have magic behaviour unless
6152 * we're in Handler mode (compare pseudocode BXWritePC()).
6154 assert(env->v7m.exception != 0);
6156 /* In the spec pseudocode ExceptionReturn() is called directly
6157 * from BXWritePC() and gets the full target PC value including
6158 * bit zero. In QEMU's implementation we treat it as a normal
6159 * jump-to-register (which is then caught later on), and so split
6160 * the target value up between env->regs[15] and env->thumb in
6161 * gen_bx(). Reconstitute it.
6163 type = env->regs[15];
6164 if (env->thumb) {
6165 type |= 1;
6168 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6169 " previous exception %d\n",
6170 type, env->v7m.exception);
6172 if (extract32(type, 5, 23) != extract32(-1, 5, 23)) {
6173 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6174 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type);
6177 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6178 /* Auto-clear FAULTMASK on return from other than NMI */
6179 env->daif &= ~PSTATE_F;
6182 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
6183 case -1:
6184 /* attempt to exit an exception that isn't active */
6185 ufault = true;
6186 break;
6187 case 0:
6188 /* still an irq active now */
6189 break;
6190 case 1:
6191 /* we returned to base exception level, no nesting.
6192 * (In the pseudocode this is written using "NestedActivation != 1"
6193 * where we have 'rettobase == false'.)
6195 rettobase = true;
6196 break;
6197 default:
6198 g_assert_not_reached();
6201 switch (type & 0xf) {
6202 case 1: /* Return to Handler */
6203 return_to_handler = true;
6204 break;
6205 case 13: /* Return to Thread using Process stack */
6206 return_to_sp_process = true;
6207 /* fall through */
6208 case 9: /* Return to Thread using Main stack */
6209 if (!rettobase &&
6210 !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6211 ufault = true;
6213 break;
6214 default:
6215 ufault = true;
6218 if (ufault) {
6219 /* Bad exception return: instead of popping the exception
6220 * stack, directly take a usage fault on the current stack.
6222 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6223 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6224 v7m_exception_taken(cpu, type | 0xf0000000);
6225 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6226 "stackframe: failed exception return integrity check\n");
6227 return;
6230 /* Switch to the target stack. */
6231 switch_v7m_sp(env, return_to_sp_process);
6232 /* Pop registers. */
6233 env->regs[0] = v7m_pop(env);
6234 env->regs[1] = v7m_pop(env);
6235 env->regs[2] = v7m_pop(env);
6236 env->regs[3] = v7m_pop(env);
6237 env->regs[12] = v7m_pop(env);
6238 env->regs[14] = v7m_pop(env);
6239 env->regs[15] = v7m_pop(env);
6240 if (env->regs[15] & 1) {
6241 qemu_log_mask(LOG_GUEST_ERROR,
6242 "M profile return from interrupt with misaligned "
6243 "PC is UNPREDICTABLE\n");
6244 /* Actual hardware seems to ignore the lsbit, and there are several
6245 * RTOSes out there which incorrectly assume the r15 in the stack
6246 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6248 env->regs[15] &= ~1U;
6250 xpsr = v7m_pop(env);
6251 xpsr_write(env, xpsr, 0xfffffdff);
6252 /* Undo stack alignment. */
6253 if (xpsr & 0x200)
6254 env->regs[13] |= 4;
6256 /* The restored xPSR exception field will be zero if we're
6257 * resuming in Thread mode. If that doesn't match what the
6258 * exception return type specified then this is a UsageFault.
6260 if (return_to_handler == (env->v7m.exception == 0)) {
6261 /* Take an INVPC UsageFault by pushing the stack again. */
6262 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6263 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6264 v7m_push_stack(cpu);
6265 v7m_exception_taken(cpu, type | 0xf0000000);
6266 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6267 "failed exception return integrity check\n");
6268 return;
6271 /* Otherwise, we have a successful exception exit. */
6272 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6275 static void arm_log_exception(int idx)
6277 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6278 const char *exc = NULL;
6279 static const char * const excnames[] = {
6280 [EXCP_UDEF] = "Undefined Instruction",
6281 [EXCP_SWI] = "SVC",
6282 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6283 [EXCP_DATA_ABORT] = "Data Abort",
6284 [EXCP_IRQ] = "IRQ",
6285 [EXCP_FIQ] = "FIQ",
6286 [EXCP_BKPT] = "Breakpoint",
6287 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6288 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6289 [EXCP_HVC] = "Hypervisor Call",
6290 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6291 [EXCP_SMC] = "Secure Monitor Call",
6292 [EXCP_VIRQ] = "Virtual IRQ",
6293 [EXCP_VFIQ] = "Virtual FIQ",
6294 [EXCP_SEMIHOST] = "Semihosting call",
6295 [EXCP_NOCP] = "v7M NOCP UsageFault",
6296 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6299 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6300 exc = excnames[idx];
6302 if (!exc) {
6303 exc = "unknown";
6305 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6309 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6311 ARMCPU *cpu = ARM_CPU(cs);
6312 CPUARMState *env = &cpu->env;
6313 uint32_t lr;
6315 arm_log_exception(cs->exception_index);
6317 lr = 0xfffffff1;
6318 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
6319 lr |= 4;
6321 if (env->v7m.exception == 0)
6322 lr |= 8;
6324 /* For exceptions we just mark as pending on the NVIC, and let that
6325 handle it. */
6326 switch (cs->exception_index) {
6327 case EXCP_UDEF:
6328 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6329 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
6330 break;
6331 case EXCP_NOCP:
6332 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6333 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
6334 break;
6335 case EXCP_INVSTATE:
6336 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6337 env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
6338 break;
6339 case EXCP_SWI:
6340 /* The PC already points to the next instruction. */
6341 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6342 break;
6343 case EXCP_PREFETCH_ABORT:
6344 case EXCP_DATA_ABORT:
6345 /* Note that for M profile we don't have a guest facing FSR, but
6346 * the env->exception.fsr will be populated by the code that
6347 * raises the fault, in the A profile short-descriptor format.
6349 switch (env->exception.fsr & 0xf) {
6350 case 0x8: /* External Abort */
6351 switch (cs->exception_index) {
6352 case EXCP_PREFETCH_ABORT:
6353 env->v7m.cfsr |= R_V7M_CFSR_PRECISERR_MASK;
6354 qemu_log_mask(CPU_LOG_INT, "...with CFSR.PRECISERR\n");
6355 break;
6356 case EXCP_DATA_ABORT:
6357 env->v7m.cfsr |=
6358 (R_V7M_CFSR_IBUSERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6359 env->v7m.bfar = env->exception.vaddress;
6360 qemu_log_mask(CPU_LOG_INT,
6361 "...with CFSR.IBUSERR and BFAR 0x%x\n",
6362 env->v7m.bfar);
6363 break;
6365 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS);
6366 break;
6367 default:
6368 /* All other FSR values are either MPU faults or "can't happen
6369 * for M profile" cases.
6371 switch (cs->exception_index) {
6372 case EXCP_PREFETCH_ABORT:
6373 env->v7m.cfsr |= R_V7M_CFSR_IACCVIOL_MASK;
6374 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6375 break;
6376 case EXCP_DATA_ABORT:
6377 env->v7m.cfsr |=
6378 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6379 env->v7m.mmfar = env->exception.vaddress;
6380 qemu_log_mask(CPU_LOG_INT,
6381 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6382 env->v7m.mmfar);
6383 break;
6385 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6386 break;
6388 break;
6389 case EXCP_BKPT:
6390 if (semihosting_enabled()) {
6391 int nr;
6392 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6393 if (nr == 0xab) {
6394 env->regs[15] += 2;
6395 qemu_log_mask(CPU_LOG_INT,
6396 "...handling as semihosting call 0x%x\n",
6397 env->regs[0]);
6398 env->regs[0] = do_arm_semihosting(env);
6399 return;
6402 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6403 break;
6404 case EXCP_IRQ:
6405 break;
6406 case EXCP_EXCEPTION_EXIT:
6407 do_v7m_exception_exit(cpu);
6408 return;
6409 default:
6410 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6411 return; /* Never happens. Keep compiler happy. */
6414 v7m_push_stack(cpu);
6415 v7m_exception_taken(cpu, lr);
6416 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6419 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6420 * register set. This is necessary when switching between AArch32 and AArch64
6421 * execution state.
6423 void aarch64_sync_32_to_64(CPUARMState *env)
6425 int i;
6426 uint32_t mode = env->uncached_cpsr & CPSR_M;
6428 /* We can blanket copy R[0:7] to X[0:7] */
6429 for (i = 0; i < 8; i++) {
6430 env->xregs[i] = env->regs[i];
6433 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6434 * Otherwise, they come from the banked user regs.
6436 if (mode == ARM_CPU_MODE_FIQ) {
6437 for (i = 8; i < 13; i++) {
6438 env->xregs[i] = env->usr_regs[i - 8];
6440 } else {
6441 for (i = 8; i < 13; i++) {
6442 env->xregs[i] = env->regs[i];
6446 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6447 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6448 * from the mode banked register.
6450 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6451 env->xregs[13] = env->regs[13];
6452 env->xregs[14] = env->regs[14];
6453 } else {
6454 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6455 /* HYP is an exception in that it is copied from r14 */
6456 if (mode == ARM_CPU_MODE_HYP) {
6457 env->xregs[14] = env->regs[14];
6458 } else {
6459 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6463 if (mode == ARM_CPU_MODE_HYP) {
6464 env->xregs[15] = env->regs[13];
6465 } else {
6466 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6469 if (mode == ARM_CPU_MODE_IRQ) {
6470 env->xregs[16] = env->regs[14];
6471 env->xregs[17] = env->regs[13];
6472 } else {
6473 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6474 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6477 if (mode == ARM_CPU_MODE_SVC) {
6478 env->xregs[18] = env->regs[14];
6479 env->xregs[19] = env->regs[13];
6480 } else {
6481 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6482 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6485 if (mode == ARM_CPU_MODE_ABT) {
6486 env->xregs[20] = env->regs[14];
6487 env->xregs[21] = env->regs[13];
6488 } else {
6489 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6490 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6493 if (mode == ARM_CPU_MODE_UND) {
6494 env->xregs[22] = env->regs[14];
6495 env->xregs[23] = env->regs[13];
6496 } else {
6497 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6498 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6501 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6502 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6503 * FIQ bank for r8-r14.
6505 if (mode == ARM_CPU_MODE_FIQ) {
6506 for (i = 24; i < 31; i++) {
6507 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6509 } else {
6510 for (i = 24; i < 29; i++) {
6511 env->xregs[i] = env->fiq_regs[i - 24];
6513 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6514 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6517 env->pc = env->regs[15];
6520 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6521 * register set. This is necessary when switching between AArch32 and AArch64
6522 * execution state.
6524 void aarch64_sync_64_to_32(CPUARMState *env)
6526 int i;
6527 uint32_t mode = env->uncached_cpsr & CPSR_M;
6529 /* We can blanket copy X[0:7] to R[0:7] */
6530 for (i = 0; i < 8; i++) {
6531 env->regs[i] = env->xregs[i];
6534 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6535 * Otherwise, we copy x8-x12 into the banked user regs.
6537 if (mode == ARM_CPU_MODE_FIQ) {
6538 for (i = 8; i < 13; i++) {
6539 env->usr_regs[i - 8] = env->xregs[i];
6541 } else {
6542 for (i = 8; i < 13; i++) {
6543 env->regs[i] = env->xregs[i];
6547 /* Registers r13 & r14 depend on the current mode.
6548 * If we are in a given mode, we copy the corresponding x registers to r13
6549 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6550 * for the mode.
6552 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6553 env->regs[13] = env->xregs[13];
6554 env->regs[14] = env->xregs[14];
6555 } else {
6556 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6558 /* HYP is an exception in that it does not have its own banked r14 but
6559 * shares the USR r14
6561 if (mode == ARM_CPU_MODE_HYP) {
6562 env->regs[14] = env->xregs[14];
6563 } else {
6564 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6568 if (mode == ARM_CPU_MODE_HYP) {
6569 env->regs[13] = env->xregs[15];
6570 } else {
6571 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6574 if (mode == ARM_CPU_MODE_IRQ) {
6575 env->regs[14] = env->xregs[16];
6576 env->regs[13] = env->xregs[17];
6577 } else {
6578 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6579 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6582 if (mode == ARM_CPU_MODE_SVC) {
6583 env->regs[14] = env->xregs[18];
6584 env->regs[13] = env->xregs[19];
6585 } else {
6586 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6587 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6590 if (mode == ARM_CPU_MODE_ABT) {
6591 env->regs[14] = env->xregs[20];
6592 env->regs[13] = env->xregs[21];
6593 } else {
6594 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6595 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6598 if (mode == ARM_CPU_MODE_UND) {
6599 env->regs[14] = env->xregs[22];
6600 env->regs[13] = env->xregs[23];
6601 } else {
6602 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6603 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6606 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6607 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6608 * FIQ bank for r8-r14.
6610 if (mode == ARM_CPU_MODE_FIQ) {
6611 for (i = 24; i < 31; i++) {
6612 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6614 } else {
6615 for (i = 24; i < 29; i++) {
6616 env->fiq_regs[i - 24] = env->xregs[i];
6618 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6619 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6622 env->regs[15] = env->pc;
6625 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6627 ARMCPU *cpu = ARM_CPU(cs);
6628 CPUARMState *env = &cpu->env;
6629 uint32_t addr;
6630 uint32_t mask;
6631 int new_mode;
6632 uint32_t offset;
6633 uint32_t moe;
6635 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6636 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6637 case EC_BREAKPOINT:
6638 case EC_BREAKPOINT_SAME_EL:
6639 moe = 1;
6640 break;
6641 case EC_WATCHPOINT:
6642 case EC_WATCHPOINT_SAME_EL:
6643 moe = 10;
6644 break;
6645 case EC_AA32_BKPT:
6646 moe = 3;
6647 break;
6648 case EC_VECTORCATCH:
6649 moe = 5;
6650 break;
6651 default:
6652 moe = 0;
6653 break;
6656 if (moe) {
6657 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6660 /* TODO: Vectored interrupt controller. */
6661 switch (cs->exception_index) {
6662 case EXCP_UDEF:
6663 new_mode = ARM_CPU_MODE_UND;
6664 addr = 0x04;
6665 mask = CPSR_I;
6666 if (env->thumb)
6667 offset = 2;
6668 else
6669 offset = 4;
6670 break;
6671 case EXCP_SWI:
6672 new_mode = ARM_CPU_MODE_SVC;
6673 addr = 0x08;
6674 mask = CPSR_I;
6675 /* The PC already points to the next instruction. */
6676 offset = 0;
6677 break;
6678 case EXCP_BKPT:
6679 env->exception.fsr = 2;
6680 /* Fall through to prefetch abort. */
6681 case EXCP_PREFETCH_ABORT:
6682 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6683 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6684 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6685 env->exception.fsr, (uint32_t)env->exception.vaddress);
6686 new_mode = ARM_CPU_MODE_ABT;
6687 addr = 0x0c;
6688 mask = CPSR_A | CPSR_I;
6689 offset = 4;
6690 break;
6691 case EXCP_DATA_ABORT:
6692 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6693 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6694 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6695 env->exception.fsr,
6696 (uint32_t)env->exception.vaddress);
6697 new_mode = ARM_CPU_MODE_ABT;
6698 addr = 0x10;
6699 mask = CPSR_A | CPSR_I;
6700 offset = 8;
6701 break;
6702 case EXCP_IRQ:
6703 new_mode = ARM_CPU_MODE_IRQ;
6704 addr = 0x18;
6705 /* Disable IRQ and imprecise data aborts. */
6706 mask = CPSR_A | CPSR_I;
6707 offset = 4;
6708 if (env->cp15.scr_el3 & SCR_IRQ) {
6709 /* IRQ routed to monitor mode */
6710 new_mode = ARM_CPU_MODE_MON;
6711 mask |= CPSR_F;
6713 break;
6714 case EXCP_FIQ:
6715 new_mode = ARM_CPU_MODE_FIQ;
6716 addr = 0x1c;
6717 /* Disable FIQ, IRQ and imprecise data aborts. */
6718 mask = CPSR_A | CPSR_I | CPSR_F;
6719 if (env->cp15.scr_el3 & SCR_FIQ) {
6720 /* FIQ routed to monitor mode */
6721 new_mode = ARM_CPU_MODE_MON;
6723 offset = 4;
6724 break;
6725 case EXCP_VIRQ:
6726 new_mode = ARM_CPU_MODE_IRQ;
6727 addr = 0x18;
6728 /* Disable IRQ and imprecise data aborts. */
6729 mask = CPSR_A | CPSR_I;
6730 offset = 4;
6731 break;
6732 case EXCP_VFIQ:
6733 new_mode = ARM_CPU_MODE_FIQ;
6734 addr = 0x1c;
6735 /* Disable FIQ, IRQ and imprecise data aborts. */
6736 mask = CPSR_A | CPSR_I | CPSR_F;
6737 offset = 4;
6738 break;
6739 case EXCP_SMC:
6740 new_mode = ARM_CPU_MODE_MON;
6741 addr = 0x08;
6742 mask = CPSR_A | CPSR_I | CPSR_F;
6743 offset = 0;
6744 break;
6745 default:
6746 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6747 return; /* Never happens. Keep compiler happy. */
6750 if (new_mode == ARM_CPU_MODE_MON) {
6751 addr += env->cp15.mvbar;
6752 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6753 /* High vectors. When enabled, base address cannot be remapped. */
6754 addr += 0xffff0000;
6755 } else {
6756 /* ARM v7 architectures provide a vector base address register to remap
6757 * the interrupt vector table.
6758 * This register is only followed in non-monitor mode, and is banked.
6759 * Note: only bits 31:5 are valid.
6761 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6764 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6765 env->cp15.scr_el3 &= ~SCR_NS;
6768 switch_mode (env, new_mode);
6769 /* For exceptions taken to AArch32 we must clear the SS bit in both
6770 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6772 env->uncached_cpsr &= ~PSTATE_SS;
6773 env->spsr = cpsr_read(env);
6774 /* Clear IT bits. */
6775 env->condexec_bits = 0;
6776 /* Switch to the new mode, and to the correct instruction set. */
6777 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6778 /* Set new mode endianness */
6779 env->uncached_cpsr &= ~CPSR_E;
6780 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6781 env->uncached_cpsr |= CPSR_E;
6783 env->daif |= mask;
6784 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6785 * and we should just guard the thumb mode on V4 */
6786 if (arm_feature(env, ARM_FEATURE_V4T)) {
6787 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6789 env->regs[14] = env->regs[15] + offset;
6790 env->regs[15] = addr;
6793 /* Handle exception entry to a target EL which is using AArch64 */
6794 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6796 ARMCPU *cpu = ARM_CPU(cs);
6797 CPUARMState *env = &cpu->env;
6798 unsigned int new_el = env->exception.target_el;
6799 target_ulong addr = env->cp15.vbar_el[new_el];
6800 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6802 if (arm_current_el(env) < new_el) {
6803 /* Entry vector offset depends on whether the implemented EL
6804 * immediately lower than the target level is using AArch32 or AArch64
6806 bool is_aa64;
6808 switch (new_el) {
6809 case 3:
6810 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6811 break;
6812 case 2:
6813 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6814 break;
6815 case 1:
6816 is_aa64 = is_a64(env);
6817 break;
6818 default:
6819 g_assert_not_reached();
6822 if (is_aa64) {
6823 addr += 0x400;
6824 } else {
6825 addr += 0x600;
6827 } else if (pstate_read(env) & PSTATE_SP) {
6828 addr += 0x200;
6831 switch (cs->exception_index) {
6832 case EXCP_PREFETCH_ABORT:
6833 case EXCP_DATA_ABORT:
6834 env->cp15.far_el[new_el] = env->exception.vaddress;
6835 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6836 env->cp15.far_el[new_el]);
6837 /* fall through */
6838 case EXCP_BKPT:
6839 case EXCP_UDEF:
6840 case EXCP_SWI:
6841 case EXCP_HVC:
6842 case EXCP_HYP_TRAP:
6843 case EXCP_SMC:
6844 env->cp15.esr_el[new_el] = env->exception.syndrome;
6845 break;
6846 case EXCP_IRQ:
6847 case EXCP_VIRQ:
6848 addr += 0x80;
6849 break;
6850 case EXCP_FIQ:
6851 case EXCP_VFIQ:
6852 addr += 0x100;
6853 break;
6854 case EXCP_SEMIHOST:
6855 qemu_log_mask(CPU_LOG_INT,
6856 "...handling as semihosting call 0x%" PRIx64 "\n",
6857 env->xregs[0]);
6858 env->xregs[0] = do_arm_semihosting(env);
6859 return;
6860 default:
6861 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6864 if (is_a64(env)) {
6865 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6866 aarch64_save_sp(env, arm_current_el(env));
6867 env->elr_el[new_el] = env->pc;
6868 } else {
6869 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6870 env->elr_el[new_el] = env->regs[15];
6872 aarch64_sync_32_to_64(env);
6874 env->condexec_bits = 0;
6876 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6877 env->elr_el[new_el]);
6879 pstate_write(env, PSTATE_DAIF | new_mode);
6880 env->aarch64 = 1;
6881 aarch64_restore_sp(env, new_el);
6883 env->pc = addr;
6885 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6886 new_el, env->pc, pstate_read(env));
6889 static inline bool check_for_semihosting(CPUState *cs)
6891 /* Check whether this exception is a semihosting call; if so
6892 * then handle it and return true; otherwise return false.
6894 ARMCPU *cpu = ARM_CPU(cs);
6895 CPUARMState *env = &cpu->env;
6897 if (is_a64(env)) {
6898 if (cs->exception_index == EXCP_SEMIHOST) {
6899 /* This is always the 64-bit semihosting exception.
6900 * The "is this usermode" and "is semihosting enabled"
6901 * checks have been done at translate time.
6903 qemu_log_mask(CPU_LOG_INT,
6904 "...handling as semihosting call 0x%" PRIx64 "\n",
6905 env->xregs[0]);
6906 env->xregs[0] = do_arm_semihosting(env);
6907 return true;
6909 return false;
6910 } else {
6911 uint32_t imm;
6913 /* Only intercept calls from privileged modes, to provide some
6914 * semblance of security.
6916 if (cs->exception_index != EXCP_SEMIHOST &&
6917 (!semihosting_enabled() ||
6918 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6919 return false;
6922 switch (cs->exception_index) {
6923 case EXCP_SEMIHOST:
6924 /* This is always a semihosting call; the "is this usermode"
6925 * and "is semihosting enabled" checks have been done at
6926 * translate time.
6928 break;
6929 case EXCP_SWI:
6930 /* Check for semihosting interrupt. */
6931 if (env->thumb) {
6932 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6933 & 0xff;
6934 if (imm == 0xab) {
6935 break;
6937 } else {
6938 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6939 & 0xffffff;
6940 if (imm == 0x123456) {
6941 break;
6944 return false;
6945 case EXCP_BKPT:
6946 /* See if this is a semihosting syscall. */
6947 if (env->thumb) {
6948 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6949 & 0xff;
6950 if (imm == 0xab) {
6951 env->regs[15] += 2;
6952 break;
6955 return false;
6956 default:
6957 return false;
6960 qemu_log_mask(CPU_LOG_INT,
6961 "...handling as semihosting call 0x%x\n",
6962 env->regs[0]);
6963 env->regs[0] = do_arm_semihosting(env);
6964 return true;
6968 /* Handle a CPU exception for A and R profile CPUs.
6969 * Do any appropriate logging, handle PSCI calls, and then hand off
6970 * to the AArch64-entry or AArch32-entry function depending on the
6971 * target exception level's register width.
6973 void arm_cpu_do_interrupt(CPUState *cs)
6975 ARMCPU *cpu = ARM_CPU(cs);
6976 CPUARMState *env = &cpu->env;
6977 unsigned int new_el = env->exception.target_el;
6979 assert(!arm_feature(env, ARM_FEATURE_M));
6981 arm_log_exception(cs->exception_index);
6982 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6983 new_el);
6984 if (qemu_loglevel_mask(CPU_LOG_INT)
6985 && !excp_is_internal(cs->exception_index)) {
6986 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
6987 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6988 env->exception.syndrome);
6991 if (arm_is_psci_call(cpu, cs->exception_index)) {
6992 arm_handle_psci_call(cpu);
6993 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6994 return;
6997 /* Semihosting semantics depend on the register width of the
6998 * code that caused the exception, not the target exception level,
6999 * so must be handled here.
7001 if (check_for_semihosting(cs)) {
7002 return;
7005 assert(!excp_is_internal(cs->exception_index));
7006 if (arm_el_is_aa64(env, new_el)) {
7007 arm_cpu_do_interrupt_aarch64(cs);
7008 } else {
7009 arm_cpu_do_interrupt_aarch32(cs);
7012 /* Hooks may change global state so BQL should be held, also the
7013 * BQL needs to be held for any modification of
7014 * cs->interrupt_request.
7016 g_assert(qemu_mutex_iothread_locked());
7018 arm_call_el_change_hook(cpu);
7020 if (!kvm_enabled()) {
7021 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7025 /* Return the exception level which controls this address translation regime */
7026 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7028 switch (mmu_idx) {
7029 case ARMMMUIdx_S2NS:
7030 case ARMMMUIdx_S1E2:
7031 return 2;
7032 case ARMMMUIdx_S1E3:
7033 return 3;
7034 case ARMMMUIdx_S1SE0:
7035 return arm_el_is_aa64(env, 3) ? 1 : 3;
7036 case ARMMMUIdx_S1SE1:
7037 case ARMMMUIdx_S1NSE0:
7038 case ARMMMUIdx_S1NSE1:
7039 case ARMMMUIdx_MPriv:
7040 case ARMMMUIdx_MNegPri:
7041 case ARMMMUIdx_MUser:
7042 return 1;
7043 default:
7044 g_assert_not_reached();
7048 /* Return true if this address translation regime is secure */
7049 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
7051 switch (mmu_idx) {
7052 case ARMMMUIdx_S12NSE0:
7053 case ARMMMUIdx_S12NSE1:
7054 case ARMMMUIdx_S1NSE0:
7055 case ARMMMUIdx_S1NSE1:
7056 case ARMMMUIdx_S1E2:
7057 case ARMMMUIdx_S2NS:
7058 case ARMMMUIdx_MPriv:
7059 case ARMMMUIdx_MNegPri:
7060 case ARMMMUIdx_MUser:
7061 return false;
7062 case ARMMMUIdx_S1E3:
7063 case ARMMMUIdx_S1SE0:
7064 case ARMMMUIdx_S1SE1:
7065 return true;
7066 default:
7067 g_assert_not_reached();
7071 /* Return the SCTLR value which controls this address translation regime */
7072 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7074 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7077 /* Return true if the specified stage of address translation is disabled */
7078 static inline bool regime_translation_disabled(CPUARMState *env,
7079 ARMMMUIdx mmu_idx)
7081 if (arm_feature(env, ARM_FEATURE_M)) {
7082 switch (env->v7m.mpu_ctrl &
7083 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7084 case R_V7M_MPU_CTRL_ENABLE_MASK:
7085 /* Enabled, but not for HardFault and NMI */
7086 return mmu_idx == ARMMMUIdx_MNegPri;
7087 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7088 /* Enabled for all cases */
7089 return false;
7090 case 0:
7091 default:
7092 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7093 * we warned about that in armv7m_nvic.c when the guest set it.
7095 return true;
7099 if (mmu_idx == ARMMMUIdx_S2NS) {
7100 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7102 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7105 static inline bool regime_translation_big_endian(CPUARMState *env,
7106 ARMMMUIdx mmu_idx)
7108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7111 /* Return the TCR controlling this translation regime */
7112 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7114 if (mmu_idx == ARMMMUIdx_S2NS) {
7115 return &env->cp15.vtcr_el2;
7117 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7120 /* Convert a possible stage1+2 MMU index into the appropriate
7121 * stage 1 MMU index
7123 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7125 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7126 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7128 return mmu_idx;
7131 /* Returns TBI0 value for current regime el */
7132 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7134 TCR *tcr;
7135 uint32_t el;
7137 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7138 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7140 mmu_idx = stage_1_mmu_idx(mmu_idx);
7142 tcr = regime_tcr(env, mmu_idx);
7143 el = regime_el(env, mmu_idx);
7145 if (el > 1) {
7146 return extract64(tcr->raw_tcr, 20, 1);
7147 } else {
7148 return extract64(tcr->raw_tcr, 37, 1);
7152 /* Returns TBI1 value for current regime el */
7153 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7155 TCR *tcr;
7156 uint32_t el;
7158 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7159 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7161 mmu_idx = stage_1_mmu_idx(mmu_idx);
7163 tcr = regime_tcr(env, mmu_idx);
7164 el = regime_el(env, mmu_idx);
7166 if (el > 1) {
7167 return 0;
7168 } else {
7169 return extract64(tcr->raw_tcr, 38, 1);
7173 /* Return the TTBR associated with this translation regime */
7174 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7175 int ttbrn)
7177 if (mmu_idx == ARMMMUIdx_S2NS) {
7178 return env->cp15.vttbr_el2;
7180 if (ttbrn == 0) {
7181 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7182 } else {
7183 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7187 /* Return true if the translation regime is using LPAE format page tables */
7188 static inline bool regime_using_lpae_format(CPUARMState *env,
7189 ARMMMUIdx mmu_idx)
7191 int el = regime_el(env, mmu_idx);
7192 if (el == 2 || arm_el_is_aa64(env, el)) {
7193 return true;
7195 if (arm_feature(env, ARM_FEATURE_LPAE)
7196 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7197 return true;
7199 return false;
7202 /* Returns true if the stage 1 translation regime is using LPAE format page
7203 * tables. Used when raising alignment exceptions, whose FSR changes depending
7204 * on whether the long or short descriptor format is in use. */
7205 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7207 mmu_idx = stage_1_mmu_idx(mmu_idx);
7209 return regime_using_lpae_format(env, mmu_idx);
7212 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7214 switch (mmu_idx) {
7215 case ARMMMUIdx_S1SE0:
7216 case ARMMMUIdx_S1NSE0:
7217 case ARMMMUIdx_MUser:
7218 return true;
7219 default:
7220 return false;
7221 case ARMMMUIdx_S12NSE0:
7222 case ARMMMUIdx_S12NSE1:
7223 g_assert_not_reached();
7227 /* Translate section/page access permissions to page
7228 * R/W protection flags
7230 * @env: CPUARMState
7231 * @mmu_idx: MMU index indicating required translation regime
7232 * @ap: The 3-bit access permissions (AP[2:0])
7233 * @domain_prot: The 2-bit domain access permissions
7235 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7236 int ap, int domain_prot)
7238 bool is_user = regime_is_user(env, mmu_idx);
7240 if (domain_prot == 3) {
7241 return PAGE_READ | PAGE_WRITE;
7244 switch (ap) {
7245 case 0:
7246 if (arm_feature(env, ARM_FEATURE_V7)) {
7247 return 0;
7249 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7250 case SCTLR_S:
7251 return is_user ? 0 : PAGE_READ;
7252 case SCTLR_R:
7253 return PAGE_READ;
7254 default:
7255 return 0;
7257 case 1:
7258 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7259 case 2:
7260 if (is_user) {
7261 return PAGE_READ;
7262 } else {
7263 return PAGE_READ | PAGE_WRITE;
7265 case 3:
7266 return PAGE_READ | PAGE_WRITE;
7267 case 4: /* Reserved. */
7268 return 0;
7269 case 5:
7270 return is_user ? 0 : PAGE_READ;
7271 case 6:
7272 return PAGE_READ;
7273 case 7:
7274 if (!arm_feature(env, ARM_FEATURE_V6K)) {
7275 return 0;
7277 return PAGE_READ;
7278 default:
7279 g_assert_not_reached();
7283 /* Translate section/page access permissions to page
7284 * R/W protection flags.
7286 * @ap: The 2-bit simple AP (AP[2:1])
7287 * @is_user: TRUE if accessing from PL0
7289 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7291 switch (ap) {
7292 case 0:
7293 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7294 case 1:
7295 return PAGE_READ | PAGE_WRITE;
7296 case 2:
7297 return is_user ? 0 : PAGE_READ;
7298 case 3:
7299 return PAGE_READ;
7300 default:
7301 g_assert_not_reached();
7305 static inline int
7306 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7308 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7311 /* Translate S2 section/page access permissions to protection flags
7313 * @env: CPUARMState
7314 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7315 * @xn: XN (execute-never) bit
7317 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7319 int prot = 0;
7321 if (s2ap & 1) {
7322 prot |= PAGE_READ;
7324 if (s2ap & 2) {
7325 prot |= PAGE_WRITE;
7327 if (!xn) {
7328 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7329 prot |= PAGE_EXEC;
7332 return prot;
7335 /* Translate section/page access permissions to protection flags
7337 * @env: CPUARMState
7338 * @mmu_idx: MMU index indicating required translation regime
7339 * @is_aa64: TRUE if AArch64
7340 * @ap: The 2-bit simple AP (AP[2:1])
7341 * @ns: NS (non-secure) bit
7342 * @xn: XN (execute-never) bit
7343 * @pxn: PXN (privileged execute-never) bit
7345 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7346 int ap, int ns, int xn, int pxn)
7348 bool is_user = regime_is_user(env, mmu_idx);
7349 int prot_rw, user_rw;
7350 bool have_wxn;
7351 int wxn = 0;
7353 assert(mmu_idx != ARMMMUIdx_S2NS);
7355 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7356 if (is_user) {
7357 prot_rw = user_rw;
7358 } else {
7359 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7362 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7363 return prot_rw;
7366 /* TODO have_wxn should be replaced with
7367 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7368 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7369 * compatible processors have EL2, which is required for [U]WXN.
7371 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7373 if (have_wxn) {
7374 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7377 if (is_aa64) {
7378 switch (regime_el(env, mmu_idx)) {
7379 case 1:
7380 if (!is_user) {
7381 xn = pxn || (user_rw & PAGE_WRITE);
7383 break;
7384 case 2:
7385 case 3:
7386 break;
7388 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7389 switch (regime_el(env, mmu_idx)) {
7390 case 1:
7391 case 3:
7392 if (is_user) {
7393 xn = xn || !(user_rw & PAGE_READ);
7394 } else {
7395 int uwxn = 0;
7396 if (have_wxn) {
7397 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7399 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7400 (uwxn && (user_rw & PAGE_WRITE));
7402 break;
7403 case 2:
7404 break;
7406 } else {
7407 xn = wxn = 0;
7410 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7411 return prot_rw;
7413 return prot_rw | PAGE_EXEC;
7416 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7417 uint32_t *table, uint32_t address)
7419 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7420 TCR *tcr = regime_tcr(env, mmu_idx);
7422 if (address & tcr->mask) {
7423 if (tcr->raw_tcr & TTBCR_PD1) {
7424 /* Translation table walk disabled for TTBR1 */
7425 return false;
7427 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7428 } else {
7429 if (tcr->raw_tcr & TTBCR_PD0) {
7430 /* Translation table walk disabled for TTBR0 */
7431 return false;
7433 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7435 *table |= (address >> 18) & 0x3ffc;
7436 return true;
7439 /* Translate a S1 pagetable walk through S2 if needed. */
7440 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7441 hwaddr addr, MemTxAttrs txattrs,
7442 uint32_t *fsr,
7443 ARMMMUFaultInfo *fi)
7445 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7446 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7447 target_ulong s2size;
7448 hwaddr s2pa;
7449 int s2prot;
7450 int ret;
7452 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7453 &txattrs, &s2prot, &s2size, fsr, fi);
7454 if (ret) {
7455 fi->s2addr = addr;
7456 fi->stage2 = true;
7457 fi->s1ptw = true;
7458 return ~0;
7460 addr = s2pa;
7462 return addr;
7465 /* All loads done in the course of a page table walk go through here.
7466 * TODO: rather than ignoring errors from physical memory reads (which
7467 * are external aborts in ARM terminology) we should propagate this
7468 * error out so that we can turn it into a Data Abort if this walk
7469 * was being done for a CPU load/store or an address translation instruction
7470 * (but not if it was for a debug access).
7472 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7473 ARMMMUIdx mmu_idx, uint32_t *fsr,
7474 ARMMMUFaultInfo *fi)
7476 ARMCPU *cpu = ARM_CPU(cs);
7477 CPUARMState *env = &cpu->env;
7478 MemTxAttrs attrs = {};
7479 AddressSpace *as;
7481 attrs.secure = is_secure;
7482 as = arm_addressspace(cs, attrs);
7483 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7484 if (fi->s1ptw) {
7485 return 0;
7487 if (regime_translation_big_endian(env, mmu_idx)) {
7488 return address_space_ldl_be(as, addr, attrs, NULL);
7489 } else {
7490 return address_space_ldl_le(as, addr, attrs, NULL);
7494 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7495 ARMMMUIdx mmu_idx, uint32_t *fsr,
7496 ARMMMUFaultInfo *fi)
7498 ARMCPU *cpu = ARM_CPU(cs);
7499 CPUARMState *env = &cpu->env;
7500 MemTxAttrs attrs = {};
7501 AddressSpace *as;
7503 attrs.secure = is_secure;
7504 as = arm_addressspace(cs, attrs);
7505 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7506 if (fi->s1ptw) {
7507 return 0;
7509 if (regime_translation_big_endian(env, mmu_idx)) {
7510 return address_space_ldq_be(as, addr, attrs, NULL);
7511 } else {
7512 return address_space_ldq_le(as, addr, attrs, NULL);
7516 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7517 int access_type, ARMMMUIdx mmu_idx,
7518 hwaddr *phys_ptr, int *prot,
7519 target_ulong *page_size, uint32_t *fsr,
7520 ARMMMUFaultInfo *fi)
7522 CPUState *cs = CPU(arm_env_get_cpu(env));
7523 int code;
7524 uint32_t table;
7525 uint32_t desc;
7526 int type;
7527 int ap;
7528 int domain = 0;
7529 int domain_prot;
7530 hwaddr phys_addr;
7531 uint32_t dacr;
7533 /* Pagetable walk. */
7534 /* Lookup l1 descriptor. */
7535 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7536 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7537 code = 5;
7538 goto do_fault;
7540 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7541 mmu_idx, fsr, fi);
7542 type = (desc & 3);
7543 domain = (desc >> 5) & 0x0f;
7544 if (regime_el(env, mmu_idx) == 1) {
7545 dacr = env->cp15.dacr_ns;
7546 } else {
7547 dacr = env->cp15.dacr_s;
7549 domain_prot = (dacr >> (domain * 2)) & 3;
7550 if (type == 0) {
7551 /* Section translation fault. */
7552 code = 5;
7553 goto do_fault;
7555 if (domain_prot == 0 || domain_prot == 2) {
7556 if (type == 2)
7557 code = 9; /* Section domain fault. */
7558 else
7559 code = 11; /* Page domain fault. */
7560 goto do_fault;
7562 if (type == 2) {
7563 /* 1Mb section. */
7564 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7565 ap = (desc >> 10) & 3;
7566 code = 13;
7567 *page_size = 1024 * 1024;
7568 } else {
7569 /* Lookup l2 entry. */
7570 if (type == 1) {
7571 /* Coarse pagetable. */
7572 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7573 } else {
7574 /* Fine pagetable. */
7575 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7577 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7578 mmu_idx, fsr, fi);
7579 switch (desc & 3) {
7580 case 0: /* Page translation fault. */
7581 code = 7;
7582 goto do_fault;
7583 case 1: /* 64k page. */
7584 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7585 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7586 *page_size = 0x10000;
7587 break;
7588 case 2: /* 4k page. */
7589 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7590 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7591 *page_size = 0x1000;
7592 break;
7593 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7594 if (type == 1) {
7595 /* ARMv6/XScale extended small page format */
7596 if (arm_feature(env, ARM_FEATURE_XSCALE)
7597 || arm_feature(env, ARM_FEATURE_V6)) {
7598 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7599 *page_size = 0x1000;
7600 } else {
7601 /* UNPREDICTABLE in ARMv5; we choose to take a
7602 * page translation fault.
7604 code = 7;
7605 goto do_fault;
7607 } else {
7608 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7609 *page_size = 0x400;
7611 ap = (desc >> 4) & 3;
7612 break;
7613 default:
7614 /* Never happens, but compiler isn't smart enough to tell. */
7615 abort();
7617 code = 15;
7619 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7620 *prot |= *prot ? PAGE_EXEC : 0;
7621 if (!(*prot & (1 << access_type))) {
7622 /* Access permission fault. */
7623 goto do_fault;
7625 *phys_ptr = phys_addr;
7626 return false;
7627 do_fault:
7628 *fsr = code | (domain << 4);
7629 return true;
7632 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7633 int access_type, ARMMMUIdx mmu_idx,
7634 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7635 target_ulong *page_size, uint32_t *fsr,
7636 ARMMMUFaultInfo *fi)
7638 CPUState *cs = CPU(arm_env_get_cpu(env));
7639 int code;
7640 uint32_t table;
7641 uint32_t desc;
7642 uint32_t xn;
7643 uint32_t pxn = 0;
7644 int type;
7645 int ap;
7646 int domain = 0;
7647 int domain_prot;
7648 hwaddr phys_addr;
7649 uint32_t dacr;
7650 bool ns;
7652 /* Pagetable walk. */
7653 /* Lookup l1 descriptor. */
7654 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7655 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7656 code = 5;
7657 goto do_fault;
7659 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7660 mmu_idx, fsr, fi);
7661 type = (desc & 3);
7662 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7663 /* Section translation fault, or attempt to use the encoding
7664 * which is Reserved on implementations without PXN.
7666 code = 5;
7667 goto do_fault;
7669 if ((type == 1) || !(desc & (1 << 18))) {
7670 /* Page or Section. */
7671 domain = (desc >> 5) & 0x0f;
7673 if (regime_el(env, mmu_idx) == 1) {
7674 dacr = env->cp15.dacr_ns;
7675 } else {
7676 dacr = env->cp15.dacr_s;
7678 domain_prot = (dacr >> (domain * 2)) & 3;
7679 if (domain_prot == 0 || domain_prot == 2) {
7680 if (type != 1) {
7681 code = 9; /* Section domain fault. */
7682 } else {
7683 code = 11; /* Page domain fault. */
7685 goto do_fault;
7687 if (type != 1) {
7688 if (desc & (1 << 18)) {
7689 /* Supersection. */
7690 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7691 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7692 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7693 *page_size = 0x1000000;
7694 } else {
7695 /* Section. */
7696 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7697 *page_size = 0x100000;
7699 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7700 xn = desc & (1 << 4);
7701 pxn = desc & 1;
7702 code = 13;
7703 ns = extract32(desc, 19, 1);
7704 } else {
7705 if (arm_feature(env, ARM_FEATURE_PXN)) {
7706 pxn = (desc >> 2) & 1;
7708 ns = extract32(desc, 3, 1);
7709 /* Lookup l2 entry. */
7710 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7711 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7712 mmu_idx, fsr, fi);
7713 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7714 switch (desc & 3) {
7715 case 0: /* Page translation fault. */
7716 code = 7;
7717 goto do_fault;
7718 case 1: /* 64k page. */
7719 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7720 xn = desc & (1 << 15);
7721 *page_size = 0x10000;
7722 break;
7723 case 2: case 3: /* 4k page. */
7724 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7725 xn = desc & 1;
7726 *page_size = 0x1000;
7727 break;
7728 default:
7729 /* Never happens, but compiler isn't smart enough to tell. */
7730 abort();
7732 code = 15;
7734 if (domain_prot == 3) {
7735 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7736 } else {
7737 if (pxn && !regime_is_user(env, mmu_idx)) {
7738 xn = 1;
7740 if (xn && access_type == 2)
7741 goto do_fault;
7743 if (arm_feature(env, ARM_FEATURE_V6K) &&
7744 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7745 /* The simplified model uses AP[0] as an access control bit. */
7746 if ((ap & 1) == 0) {
7747 /* Access flag fault. */
7748 code = (code == 15) ? 6 : 3;
7749 goto do_fault;
7751 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7752 } else {
7753 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7755 if (*prot && !xn) {
7756 *prot |= PAGE_EXEC;
7758 if (!(*prot & (1 << access_type))) {
7759 /* Access permission fault. */
7760 goto do_fault;
7763 if (ns) {
7764 /* The NS bit will (as required by the architecture) have no effect if
7765 * the CPU doesn't support TZ or this is a non-secure translation
7766 * regime, because the attribute will already be non-secure.
7768 attrs->secure = false;
7770 *phys_ptr = phys_addr;
7771 return false;
7772 do_fault:
7773 *fsr = code | (domain << 4);
7774 return true;
7777 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7778 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7780 typedef enum {
7781 translation_fault = 1,
7782 access_fault = 2,
7783 permission_fault = 3,
7784 } MMUFaultType;
7787 * check_s2_mmu_setup
7788 * @cpu: ARMCPU
7789 * @is_aa64: True if the translation regime is in AArch64 state
7790 * @startlevel: Suggested starting level
7791 * @inputsize: Bitsize of IPAs
7792 * @stride: Page-table stride (See the ARM ARM)
7794 * Returns true if the suggested S2 translation parameters are OK and
7795 * false otherwise.
7797 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7798 int inputsize, int stride)
7800 const int grainsize = stride + 3;
7801 int startsizecheck;
7803 /* Negative levels are never allowed. */
7804 if (level < 0) {
7805 return false;
7808 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7809 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7810 return false;
7813 if (is_aa64) {
7814 CPUARMState *env = &cpu->env;
7815 unsigned int pamax = arm_pamax(cpu);
7817 switch (stride) {
7818 case 13: /* 64KB Pages. */
7819 if (level == 0 || (level == 1 && pamax <= 42)) {
7820 return false;
7822 break;
7823 case 11: /* 16KB Pages. */
7824 if (level == 0 || (level == 1 && pamax <= 40)) {
7825 return false;
7827 break;
7828 case 9: /* 4KB Pages. */
7829 if (level == 0 && pamax <= 42) {
7830 return false;
7832 break;
7833 default:
7834 g_assert_not_reached();
7837 /* Inputsize checks. */
7838 if (inputsize > pamax &&
7839 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7840 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7841 return false;
7843 } else {
7844 /* AArch32 only supports 4KB pages. Assert on that. */
7845 assert(stride == 9);
7847 if (level == 0) {
7848 return false;
7851 return true;
7854 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7855 int access_type, ARMMMUIdx mmu_idx,
7856 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7857 target_ulong *page_size_ptr, uint32_t *fsr,
7858 ARMMMUFaultInfo *fi)
7860 ARMCPU *cpu = arm_env_get_cpu(env);
7861 CPUState *cs = CPU(cpu);
7862 /* Read an LPAE long-descriptor translation table. */
7863 MMUFaultType fault_type = translation_fault;
7864 uint32_t level;
7865 uint32_t epd = 0;
7866 int32_t t0sz, t1sz;
7867 uint32_t tg;
7868 uint64_t ttbr;
7869 int ttbr_select;
7870 hwaddr descaddr, indexmask, indexmask_grainsize;
7871 uint32_t tableattrs;
7872 target_ulong page_size;
7873 uint32_t attrs;
7874 int32_t stride = 9;
7875 int32_t addrsize;
7876 int inputsize;
7877 int32_t tbi = 0;
7878 TCR *tcr = regime_tcr(env, mmu_idx);
7879 int ap, ns, xn, pxn;
7880 uint32_t el = regime_el(env, mmu_idx);
7881 bool ttbr1_valid = true;
7882 uint64_t descaddrmask;
7883 bool aarch64 = arm_el_is_aa64(env, el);
7885 /* TODO:
7886 * This code does not handle the different format TCR for VTCR_EL2.
7887 * This code also does not support shareability levels.
7888 * Attribute and permission bit handling should also be checked when adding
7889 * support for those page table walks.
7891 if (aarch64) {
7892 level = 0;
7893 addrsize = 64;
7894 if (el > 1) {
7895 if (mmu_idx != ARMMMUIdx_S2NS) {
7896 tbi = extract64(tcr->raw_tcr, 20, 1);
7898 } else {
7899 if (extract64(address, 55, 1)) {
7900 tbi = extract64(tcr->raw_tcr, 38, 1);
7901 } else {
7902 tbi = extract64(tcr->raw_tcr, 37, 1);
7905 tbi *= 8;
7907 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7908 * invalid.
7910 if (el > 1) {
7911 ttbr1_valid = false;
7913 } else {
7914 level = 1;
7915 addrsize = 32;
7916 /* There is no TTBR1 for EL2 */
7917 if (el == 2) {
7918 ttbr1_valid = false;
7922 /* Determine whether this address is in the region controlled by
7923 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7924 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7925 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7927 if (aarch64) {
7928 /* AArch64 translation. */
7929 t0sz = extract32(tcr->raw_tcr, 0, 6);
7930 t0sz = MIN(t0sz, 39);
7931 t0sz = MAX(t0sz, 16);
7932 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7933 /* AArch32 stage 1 translation. */
7934 t0sz = extract32(tcr->raw_tcr, 0, 3);
7935 } else {
7936 /* AArch32 stage 2 translation. */
7937 bool sext = extract32(tcr->raw_tcr, 4, 1);
7938 bool sign = extract32(tcr->raw_tcr, 3, 1);
7939 /* Address size is 40-bit for a stage 2 translation,
7940 * and t0sz can be negative (from -8 to 7),
7941 * so we need to adjust it to use the TTBR selecting logic below.
7943 addrsize = 40;
7944 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7946 /* If the sign-extend bit is not the same as t0sz[3], the result
7947 * is unpredictable. Flag this as a guest error. */
7948 if (sign != sext) {
7949 qemu_log_mask(LOG_GUEST_ERROR,
7950 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7953 t1sz = extract32(tcr->raw_tcr, 16, 6);
7954 if (aarch64) {
7955 t1sz = MIN(t1sz, 39);
7956 t1sz = MAX(t1sz, 16);
7958 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7959 /* there is a ttbr0 region and we are in it (high bits all zero) */
7960 ttbr_select = 0;
7961 } else if (ttbr1_valid && t1sz &&
7962 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7963 /* there is a ttbr1 region and we are in it (high bits all one) */
7964 ttbr_select = 1;
7965 } else if (!t0sz) {
7966 /* ttbr0 region is "everything not in the ttbr1 region" */
7967 ttbr_select = 0;
7968 } else if (!t1sz && ttbr1_valid) {
7969 /* ttbr1 region is "everything not in the ttbr0 region" */
7970 ttbr_select = 1;
7971 } else {
7972 /* in the gap between the two regions, this is a Translation fault */
7973 fault_type = translation_fault;
7974 goto do_fault;
7977 /* Note that QEMU ignores shareability and cacheability attributes,
7978 * so we don't need to do anything with the SH, ORGN, IRGN fields
7979 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7980 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7981 * implement any ASID-like capability so we can ignore it (instead
7982 * we will always flush the TLB any time the ASID is changed).
7984 if (ttbr_select == 0) {
7985 ttbr = regime_ttbr(env, mmu_idx, 0);
7986 if (el < 2) {
7987 epd = extract32(tcr->raw_tcr, 7, 1);
7989 inputsize = addrsize - t0sz;
7991 tg = extract32(tcr->raw_tcr, 14, 2);
7992 if (tg == 1) { /* 64KB pages */
7993 stride = 13;
7995 if (tg == 2) { /* 16KB pages */
7996 stride = 11;
7998 } else {
7999 /* We should only be here if TTBR1 is valid */
8000 assert(ttbr1_valid);
8002 ttbr = regime_ttbr(env, mmu_idx, 1);
8003 epd = extract32(tcr->raw_tcr, 23, 1);
8004 inputsize = addrsize - t1sz;
8006 tg = extract32(tcr->raw_tcr, 30, 2);
8007 if (tg == 3) { /* 64KB pages */
8008 stride = 13;
8010 if (tg == 1) { /* 16KB pages */
8011 stride = 11;
8015 /* Here we should have set up all the parameters for the translation:
8016 * inputsize, ttbr, epd, stride, tbi
8019 if (epd) {
8020 /* Translation table walk disabled => Translation fault on TLB miss
8021 * Note: This is always 0 on 64-bit EL2 and EL3.
8023 goto do_fault;
8026 if (mmu_idx != ARMMMUIdx_S2NS) {
8027 /* The starting level depends on the virtual address size (which can
8028 * be up to 48 bits) and the translation granule size. It indicates
8029 * the number of strides (stride bits at a time) needed to
8030 * consume the bits of the input address. In the pseudocode this is:
8031 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8032 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8033 * our 'stride + 3' and 'stride' is our 'stride'.
8034 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8035 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8036 * = 4 - (inputsize - 4) / stride;
8038 level = 4 - (inputsize - 4) / stride;
8039 } else {
8040 /* For stage 2 translations the starting level is specified by the
8041 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8043 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8044 uint32_t startlevel;
8045 bool ok;
8047 if (!aarch64 || stride == 9) {
8048 /* AArch32 or 4KB pages */
8049 startlevel = 2 - sl0;
8050 } else {
8051 /* 16KB or 64KB pages */
8052 startlevel = 3 - sl0;
8055 /* Check that the starting level is valid. */
8056 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8057 inputsize, stride);
8058 if (!ok) {
8059 fault_type = translation_fault;
8060 goto do_fault;
8062 level = startlevel;
8065 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8066 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8068 /* Now we can extract the actual base address from the TTBR */
8069 descaddr = extract64(ttbr, 0, 48);
8070 descaddr &= ~indexmask;
8072 /* The address field in the descriptor goes up to bit 39 for ARMv7
8073 * but up to bit 47 for ARMv8, but we use the descaddrmask
8074 * up to bit 39 for AArch32, because we don't need other bits in that case
8075 * to construct next descriptor address (anyway they should be all zeroes).
8077 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8078 ~indexmask_grainsize;
8080 /* Secure accesses start with the page table in secure memory and
8081 * can be downgraded to non-secure at any step. Non-secure accesses
8082 * remain non-secure. We implement this by just ORing in the NSTable/NS
8083 * bits at each step.
8085 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8086 for (;;) {
8087 uint64_t descriptor;
8088 bool nstable;
8090 descaddr |= (address >> (stride * (4 - level))) & indexmask;
8091 descaddr &= ~7ULL;
8092 nstable = extract32(tableattrs, 4, 1);
8093 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8094 if (fi->s1ptw) {
8095 goto do_fault;
8098 if (!(descriptor & 1) ||
8099 (!(descriptor & 2) && (level == 3))) {
8100 /* Invalid, or the Reserved level 3 encoding */
8101 goto do_fault;
8103 descaddr = descriptor & descaddrmask;
8105 if ((descriptor & 2) && (level < 3)) {
8106 /* Table entry. The top five bits are attributes which may
8107 * propagate down through lower levels of the table (and
8108 * which are all arranged so that 0 means "no effect", so
8109 * we can gather them up by ORing in the bits at each level).
8111 tableattrs |= extract64(descriptor, 59, 5);
8112 level++;
8113 indexmask = indexmask_grainsize;
8114 continue;
8116 /* Block entry at level 1 or 2, or page entry at level 3.
8117 * These are basically the same thing, although the number
8118 * of bits we pull in from the vaddr varies.
8120 page_size = (1ULL << ((stride * (4 - level)) + 3));
8121 descaddr |= (address & (page_size - 1));
8122 /* Extract attributes from the descriptor */
8123 attrs = extract64(descriptor, 2, 10)
8124 | (extract64(descriptor, 52, 12) << 10);
8126 if (mmu_idx == ARMMMUIdx_S2NS) {
8127 /* Stage 2 table descriptors do not include any attribute fields */
8128 break;
8130 /* Merge in attributes from table descriptors */
8131 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8132 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8133 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8134 * means "force PL1 access only", which means forcing AP[1] to 0.
8136 if (extract32(tableattrs, 2, 1)) {
8137 attrs &= ~(1 << 4);
8139 attrs |= nstable << 3; /* NS */
8140 break;
8142 /* Here descaddr is the final physical address, and attributes
8143 * are all in attrs.
8145 fault_type = access_fault;
8146 if ((attrs & (1 << 8)) == 0) {
8147 /* Access flag */
8148 goto do_fault;
8151 ap = extract32(attrs, 4, 2);
8152 xn = extract32(attrs, 12, 1);
8154 if (mmu_idx == ARMMMUIdx_S2NS) {
8155 ns = true;
8156 *prot = get_S2prot(env, ap, xn);
8157 } else {
8158 ns = extract32(attrs, 3, 1);
8159 pxn = extract32(attrs, 11, 1);
8160 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8163 fault_type = permission_fault;
8164 if (!(*prot & (1 << access_type))) {
8165 goto do_fault;
8168 if (ns) {
8169 /* The NS bit will (as required by the architecture) have no effect if
8170 * the CPU doesn't support TZ or this is a non-secure translation
8171 * regime, because the attribute will already be non-secure.
8173 txattrs->secure = false;
8175 *phys_ptr = descaddr;
8176 *page_size_ptr = page_size;
8177 return false;
8179 do_fault:
8180 /* Long-descriptor format IFSR/DFSR value */
8181 *fsr = (1 << 9) | (fault_type << 2) | level;
8182 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8183 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8184 return true;
8187 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8188 ARMMMUIdx mmu_idx,
8189 int32_t address, int *prot)
8191 if (!arm_feature(env, ARM_FEATURE_M)) {
8192 *prot = PAGE_READ | PAGE_WRITE;
8193 switch (address) {
8194 case 0xF0000000 ... 0xFFFFFFFF:
8195 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8196 /* hivecs execing is ok */
8197 *prot |= PAGE_EXEC;
8199 break;
8200 case 0x00000000 ... 0x7FFFFFFF:
8201 *prot |= PAGE_EXEC;
8202 break;
8204 } else {
8205 /* Default system address map for M profile cores.
8206 * The architecture specifies which regions are execute-never;
8207 * at the MPU level no other checks are defined.
8209 switch (address) {
8210 case 0x00000000 ... 0x1fffffff: /* ROM */
8211 case 0x20000000 ... 0x3fffffff: /* SRAM */
8212 case 0x60000000 ... 0x7fffffff: /* RAM */
8213 case 0x80000000 ... 0x9fffffff: /* RAM */
8214 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8215 break;
8216 case 0x40000000 ... 0x5fffffff: /* Peripheral */
8217 case 0xa0000000 ... 0xbfffffff: /* Device */
8218 case 0xc0000000 ... 0xdfffffff: /* Device */
8219 case 0xe0000000 ... 0xffffffff: /* System */
8220 *prot = PAGE_READ | PAGE_WRITE;
8221 break;
8222 default:
8223 g_assert_not_reached();
8228 static bool pmsav7_use_background_region(ARMCPU *cpu,
8229 ARMMMUIdx mmu_idx, bool is_user)
8231 /* Return true if we should use the default memory map as a
8232 * "background" region if there are no hits against any MPU regions.
8234 CPUARMState *env = &cpu->env;
8236 if (is_user) {
8237 return false;
8240 if (arm_feature(env, ARM_FEATURE_M)) {
8241 return env->v7m.mpu_ctrl & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8242 } else {
8243 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8247 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8249 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8250 return arm_feature(env, ARM_FEATURE_M) &&
8251 extract32(address, 20, 12) == 0xe00;
8254 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8256 /* True if address is in the M profile system region
8257 * 0xe0000000 - 0xffffffff
8259 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8262 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8263 int access_type, ARMMMUIdx mmu_idx,
8264 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8266 ARMCPU *cpu = arm_env_get_cpu(env);
8267 int n;
8268 bool is_user = regime_is_user(env, mmu_idx);
8270 *phys_ptr = address;
8271 *prot = 0;
8273 if (regime_translation_disabled(env, mmu_idx) ||
8274 m_is_ppb_region(env, address)) {
8275 /* MPU disabled or M profile PPB access: use default memory map.
8276 * The other case which uses the default memory map in the
8277 * v7M ARM ARM pseudocode is exception vector reads from the vector
8278 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8279 * which always does a direct read using address_space_ldl(), rather
8280 * than going via this function, so we don't need to check that here.
8282 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8283 } else { /* MPU enabled */
8284 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8285 /* region search */
8286 uint32_t base = env->pmsav7.drbar[n];
8287 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8288 uint32_t rmask;
8289 bool srdis = false;
8291 if (!(env->pmsav7.drsr[n] & 0x1)) {
8292 continue;
8295 if (!rsize) {
8296 qemu_log_mask(LOG_GUEST_ERROR,
8297 "DRSR[%d]: Rsize field cannot be 0\n", n);
8298 continue;
8300 rsize++;
8301 rmask = (1ull << rsize) - 1;
8303 if (base & rmask) {
8304 qemu_log_mask(LOG_GUEST_ERROR,
8305 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8306 "to DRSR region size, mask = 0x%" PRIx32 "\n",
8307 n, base, rmask);
8308 continue;
8311 if (address < base || address > base + rmask) {
8312 continue;
8315 /* Region matched */
8317 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8318 int i, snd;
8319 uint32_t srdis_mask;
8321 rsize -= 3; /* sub region size (power of 2) */
8322 snd = ((address - base) >> rsize) & 0x7;
8323 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8325 srdis_mask = srdis ? 0x3 : 0x0;
8326 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8327 /* This will check in groups of 2, 4 and then 8, whether
8328 * the subregion bits are consistent. rsize is incremented
8329 * back up to give the region size, considering consistent
8330 * adjacent subregions as one region. Stop testing if rsize
8331 * is already big enough for an entire QEMU page.
8333 int snd_rounded = snd & ~(i - 1);
8334 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8335 snd_rounded + 8, i);
8336 if (srdis_mask ^ srdis_multi) {
8337 break;
8339 srdis_mask = (srdis_mask << i) | srdis_mask;
8340 rsize++;
8343 if (rsize < TARGET_PAGE_BITS) {
8344 qemu_log_mask(LOG_UNIMP,
8345 "DRSR[%d]: No support for MPU (sub)region "
8346 "alignment of %" PRIu32 " bits. Minimum is %d\n",
8347 n, rsize, TARGET_PAGE_BITS);
8348 continue;
8350 if (srdis) {
8351 continue;
8353 break;
8356 if (n == -1) { /* no hits */
8357 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8358 /* background fault */
8359 *fsr = 0;
8360 return true;
8362 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8363 } else { /* a MPU hit! */
8364 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8365 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8367 if (m_is_system_region(env, address)) {
8368 /* System space is always execute never */
8369 xn = 1;
8372 if (is_user) { /* User mode AP bit decoding */
8373 switch (ap) {
8374 case 0:
8375 case 1:
8376 case 5:
8377 break; /* no access */
8378 case 3:
8379 *prot |= PAGE_WRITE;
8380 /* fall through */
8381 case 2:
8382 case 6:
8383 *prot |= PAGE_READ | PAGE_EXEC;
8384 break;
8385 default:
8386 qemu_log_mask(LOG_GUEST_ERROR,
8387 "DRACR[%d]: Bad value for AP bits: 0x%"
8388 PRIx32 "\n", n, ap);
8390 } else { /* Priv. mode AP bits decoding */
8391 switch (ap) {
8392 case 0:
8393 break; /* no access */
8394 case 1:
8395 case 2:
8396 case 3:
8397 *prot |= PAGE_WRITE;
8398 /* fall through */
8399 case 5:
8400 case 6:
8401 *prot |= PAGE_READ | PAGE_EXEC;
8402 break;
8403 default:
8404 qemu_log_mask(LOG_GUEST_ERROR,
8405 "DRACR[%d]: Bad value for AP bits: 0x%"
8406 PRIx32 "\n", n, ap);
8410 /* execute never */
8411 if (xn) {
8412 *prot &= ~PAGE_EXEC;
8417 *fsr = 0x00d; /* Permission fault */
8418 return !(*prot & (1 << access_type));
8421 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8422 int access_type, ARMMMUIdx mmu_idx,
8423 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8425 int n;
8426 uint32_t mask;
8427 uint32_t base;
8428 bool is_user = regime_is_user(env, mmu_idx);
8430 *phys_ptr = address;
8431 for (n = 7; n >= 0; n--) {
8432 base = env->cp15.c6_region[n];
8433 if ((base & 1) == 0) {
8434 continue;
8436 mask = 1 << ((base >> 1) & 0x1f);
8437 /* Keep this shift separate from the above to avoid an
8438 (undefined) << 32. */
8439 mask = (mask << 1) - 1;
8440 if (((base ^ address) & ~mask) == 0) {
8441 break;
8444 if (n < 0) {
8445 *fsr = 2;
8446 return true;
8449 if (access_type == 2) {
8450 mask = env->cp15.pmsav5_insn_ap;
8451 } else {
8452 mask = env->cp15.pmsav5_data_ap;
8454 mask = (mask >> (n * 4)) & 0xf;
8455 switch (mask) {
8456 case 0:
8457 *fsr = 1;
8458 return true;
8459 case 1:
8460 if (is_user) {
8461 *fsr = 1;
8462 return true;
8464 *prot = PAGE_READ | PAGE_WRITE;
8465 break;
8466 case 2:
8467 *prot = PAGE_READ;
8468 if (!is_user) {
8469 *prot |= PAGE_WRITE;
8471 break;
8472 case 3:
8473 *prot = PAGE_READ | PAGE_WRITE;
8474 break;
8475 case 5:
8476 if (is_user) {
8477 *fsr = 1;
8478 return true;
8480 *prot = PAGE_READ;
8481 break;
8482 case 6:
8483 *prot = PAGE_READ;
8484 break;
8485 default:
8486 /* Bad permission. */
8487 *fsr = 1;
8488 return true;
8490 *prot |= PAGE_EXEC;
8491 return false;
8494 /* get_phys_addr - get the physical address for this virtual address
8496 * Find the physical address corresponding to the given virtual address,
8497 * by doing a translation table walk on MMU based systems or using the
8498 * MPU state on MPU based systems.
8500 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8501 * prot and page_size may not be filled in, and the populated fsr value provides
8502 * information on why the translation aborted, in the format of a
8503 * DFSR/IFSR fault register, with the following caveats:
8504 * * we honour the short vs long DFSR format differences.
8505 * * the WnR bit is never set (the caller must do this).
8506 * * for PSMAv5 based systems we don't bother to return a full FSR format
8507 * value.
8509 * @env: CPUARMState
8510 * @address: virtual address to get physical address for
8511 * @access_type: 0 for read, 1 for write, 2 for execute
8512 * @mmu_idx: MMU index indicating required translation regime
8513 * @phys_ptr: set to the physical address corresponding to the virtual address
8514 * @attrs: set to the memory transaction attributes to use
8515 * @prot: set to the permissions for the page containing phys_ptr
8516 * @page_size: set to the size of the page containing phys_ptr
8517 * @fsr: set to the DFSR/IFSR value on failure
8519 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8520 int access_type, ARMMMUIdx mmu_idx,
8521 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8522 target_ulong *page_size, uint32_t *fsr,
8523 ARMMMUFaultInfo *fi)
8525 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8526 /* Call ourselves recursively to do the stage 1 and then stage 2
8527 * translations.
8529 if (arm_feature(env, ARM_FEATURE_EL2)) {
8530 hwaddr ipa;
8531 int s2_prot;
8532 int ret;
8534 ret = get_phys_addr(env, address, access_type,
8535 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
8536 prot, page_size, fsr, fi);
8538 /* If S1 fails or S2 is disabled, return early. */
8539 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8540 *phys_ptr = ipa;
8541 return ret;
8544 /* S1 is done. Now do S2 translation. */
8545 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8546 phys_ptr, attrs, &s2_prot,
8547 page_size, fsr, fi);
8548 fi->s2addr = ipa;
8549 /* Combine the S1 and S2 perms. */
8550 *prot &= s2_prot;
8551 return ret;
8552 } else {
8554 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8556 mmu_idx = stage_1_mmu_idx(mmu_idx);
8560 /* The page table entries may downgrade secure to non-secure, but
8561 * cannot upgrade an non-secure translation regime's attributes
8562 * to secure.
8564 attrs->secure = regime_is_secure(env, mmu_idx);
8565 attrs->user = regime_is_user(env, mmu_idx);
8567 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8568 * In v7 and earlier it affects all stage 1 translations.
8570 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8571 && !arm_feature(env, ARM_FEATURE_V8)) {
8572 if (regime_el(env, mmu_idx) == 3) {
8573 address += env->cp15.fcseidr_s;
8574 } else {
8575 address += env->cp15.fcseidr_ns;
8579 /* pmsav7 has special handling for when MPU is disabled so call it before
8580 * the common MMU/MPU disabled check below.
8582 if (arm_feature(env, ARM_FEATURE_PMSA) &&
8583 arm_feature(env, ARM_FEATURE_V7)) {
8584 bool ret;
8585 *page_size = TARGET_PAGE_SIZE;
8586 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8587 phys_ptr, prot, fsr);
8588 qemu_log_mask(CPU_LOG_MMU, "PMSAv7 MPU lookup for %s at 0x%08" PRIx32
8589 " mmu_idx %u -> %s (prot %c%c%c)\n",
8590 access_type == MMU_DATA_LOAD ? "reading" :
8591 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
8592 (uint32_t)address, mmu_idx,
8593 ret ? "Miss" : "Hit",
8594 *prot & PAGE_READ ? 'r' : '-',
8595 *prot & PAGE_WRITE ? 'w' : '-',
8596 *prot & PAGE_EXEC ? 'x' : '-');
8598 return ret;
8601 if (regime_translation_disabled(env, mmu_idx)) {
8602 /* MMU/MPU disabled. */
8603 *phys_ptr = address;
8604 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8605 *page_size = TARGET_PAGE_SIZE;
8606 return 0;
8609 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8610 /* Pre-v7 MPU */
8611 *page_size = TARGET_PAGE_SIZE;
8612 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8613 phys_ptr, prot, fsr);
8616 if (regime_using_lpae_format(env, mmu_idx)) {
8617 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8618 attrs, prot, page_size, fsr, fi);
8619 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8620 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8621 attrs, prot, page_size, fsr, fi);
8622 } else {
8623 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8624 prot, page_size, fsr, fi);
8628 /* Walk the page table and (if the mapping exists) add the page
8629 * to the TLB. Return false on success, or true on failure. Populate
8630 * fsr with ARM DFSR/IFSR fault register format value on failure.
8632 bool arm_tlb_fill(CPUState *cs, vaddr address,
8633 int access_type, int mmu_idx, uint32_t *fsr,
8634 ARMMMUFaultInfo *fi)
8636 ARMCPU *cpu = ARM_CPU(cs);
8637 CPUARMState *env = &cpu->env;
8638 hwaddr phys_addr;
8639 target_ulong page_size;
8640 int prot;
8641 int ret;
8642 MemTxAttrs attrs = {};
8644 ret = get_phys_addr(env, address, access_type,
8645 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
8646 &attrs, &prot, &page_size, fsr, fi);
8647 if (!ret) {
8648 /* Map a single [sub]page. */
8649 phys_addr &= TARGET_PAGE_MASK;
8650 address &= TARGET_PAGE_MASK;
8651 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8652 prot, mmu_idx, page_size);
8653 return 0;
8656 return ret;
8659 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8660 MemTxAttrs *attrs)
8662 ARMCPU *cpu = ARM_CPU(cs);
8663 CPUARMState *env = &cpu->env;
8664 hwaddr phys_addr;
8665 target_ulong page_size;
8666 int prot;
8667 bool ret;
8668 uint32_t fsr;
8669 ARMMMUFaultInfo fi = {};
8670 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
8672 *attrs = (MemTxAttrs) {};
8674 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
8675 attrs, &prot, &page_size, &fsr, &fi);
8677 if (ret) {
8678 return -1;
8680 return phys_addr;
8683 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8685 uint32_t mask;
8686 unsigned el = arm_current_el(env);
8688 /* First handle registers which unprivileged can read */
8690 switch (reg) {
8691 case 0 ... 7: /* xPSR sub-fields */
8692 mask = 0;
8693 if ((reg & 1) && el) {
8694 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8696 if (!(reg & 4)) {
8697 mask |= 0xf8000000; /* APSR */
8699 /* EPSR reads as zero */
8700 return xpsr_read(env) & mask;
8701 break;
8702 case 20: /* CONTROL */
8703 return env->v7m.control;
8706 if (el == 0) {
8707 return 0; /* unprivileged reads others as zero */
8710 switch (reg) {
8711 case 8: /* MSP */
8712 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8713 env->v7m.other_sp : env->regs[13];
8714 case 9: /* PSP */
8715 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8716 env->regs[13] : env->v7m.other_sp;
8717 case 16: /* PRIMASK */
8718 return (env->daif & PSTATE_I) != 0;
8719 case 17: /* BASEPRI */
8720 case 18: /* BASEPRI_MAX */
8721 return env->v7m.basepri;
8722 case 19: /* FAULTMASK */
8723 return (env->daif & PSTATE_F) != 0;
8724 default:
8725 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8726 " register %d\n", reg);
8727 return 0;
8731 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8733 /* We're passed bits [11..0] of the instruction; extract
8734 * SYSm and the mask bits.
8735 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8736 * we choose to treat them as if the mask bits were valid.
8737 * NB that the pseudocode 'mask' variable is bits [11..10],
8738 * whereas ours is [11..8].
8740 uint32_t mask = extract32(maskreg, 8, 4);
8741 uint32_t reg = extract32(maskreg, 0, 8);
8743 if (arm_current_el(env) == 0 && reg > 7) {
8744 /* only xPSR sub-fields may be written by unprivileged */
8745 return;
8748 switch (reg) {
8749 case 0 ... 7: /* xPSR sub-fields */
8750 /* only APSR is actually writable */
8751 if (!(reg & 4)) {
8752 uint32_t apsrmask = 0;
8754 if (mask & 8) {
8755 apsrmask |= 0xf8000000; /* APSR NZCVQ */
8757 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
8758 apsrmask |= 0x000f0000; /* APSR GE[3:0] */
8760 xpsr_write(env, val, apsrmask);
8762 break;
8763 case 8: /* MSP */
8764 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8765 env->v7m.other_sp = val;
8766 } else {
8767 env->regs[13] = val;
8769 break;
8770 case 9: /* PSP */
8771 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8772 env->regs[13] = val;
8773 } else {
8774 env->v7m.other_sp = val;
8776 break;
8777 case 16: /* PRIMASK */
8778 if (val & 1) {
8779 env->daif |= PSTATE_I;
8780 } else {
8781 env->daif &= ~PSTATE_I;
8783 break;
8784 case 17: /* BASEPRI */
8785 env->v7m.basepri = val & 0xff;
8786 break;
8787 case 18: /* BASEPRI_MAX */
8788 val &= 0xff;
8789 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8790 env->v7m.basepri = val;
8791 break;
8792 case 19: /* FAULTMASK */
8793 if (val & 1) {
8794 env->daif |= PSTATE_F;
8795 } else {
8796 env->daif &= ~PSTATE_F;
8798 break;
8799 case 20: /* CONTROL */
8800 /* Writing to the SPSEL bit only has an effect if we are in
8801 * thread mode; other bits can be updated by any privileged code.
8802 * switch_v7m_sp() deals with updating the SPSEL bit in
8803 * env->v7m.control, so we only need update the others.
8805 if (env->v7m.exception == 0) {
8806 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8808 env->v7m.control &= ~R_V7M_CONTROL_NPRIV_MASK;
8809 env->v7m.control |= val & R_V7M_CONTROL_NPRIV_MASK;
8810 break;
8811 default:
8812 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8813 " register %d\n", reg);
8814 return;
8818 #endif
8820 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8822 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8823 * Note that we do not implement the (architecturally mandated)
8824 * alignment fault for attempts to use this on Device memory
8825 * (which matches the usual QEMU behaviour of not implementing either
8826 * alignment faults or any memory attribute handling).
8829 ARMCPU *cpu = arm_env_get_cpu(env);
8830 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8831 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8833 #ifndef CONFIG_USER_ONLY
8835 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8836 * the block size so we might have to do more than one TLB lookup.
8837 * We know that in fact for any v8 CPU the page size is at least 4K
8838 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8839 * 1K as an artefact of legacy v5 subpage support being present in the
8840 * same QEMU executable.
8842 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8843 void *hostaddr[maxidx];
8844 int try, i;
8845 unsigned mmu_idx = cpu_mmu_index(env, false);
8846 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8848 for (try = 0; try < 2; try++) {
8850 for (i = 0; i < maxidx; i++) {
8851 hostaddr[i] = tlb_vaddr_to_host(env,
8852 vaddr + TARGET_PAGE_SIZE * i,
8853 1, mmu_idx);
8854 if (!hostaddr[i]) {
8855 break;
8858 if (i == maxidx) {
8859 /* If it's all in the TLB it's fair game for just writing to;
8860 * we know we don't need to update dirty status, etc.
8862 for (i = 0; i < maxidx - 1; i++) {
8863 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8865 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8866 return;
8868 /* OK, try a store and see if we can populate the tlb. This
8869 * might cause an exception if the memory isn't writable,
8870 * in which case we will longjmp out of here. We must for
8871 * this purpose use the actual register value passed to us
8872 * so that we get the fault address right.
8874 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8875 /* Now we can populate the other TLB entries, if any */
8876 for (i = 0; i < maxidx; i++) {
8877 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8878 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8879 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8884 /* Slow path (probably attempt to do this to an I/O device or
8885 * similar, or clearing of a block of code we have translations
8886 * cached for). Just do a series of byte writes as the architecture
8887 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8888 * memset(), unmap() sequence here because:
8889 * + we'd need to account for the blocksize being larger than a page
8890 * + the direct-RAM access case is almost always going to be dealt
8891 * with in the fastpath code above, so there's no speed benefit
8892 * + we would have to deal with the map returning NULL because the
8893 * bounce buffer was in use
8895 for (i = 0; i < blocklen; i++) {
8896 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8899 #else
8900 memset(g2h(vaddr), 0, blocklen);
8901 #endif
8904 /* Note that signed overflow is undefined in C. The following routines are
8905 careful to use unsigned types where modulo arithmetic is required.
8906 Failure to do so _will_ break on newer gcc. */
8908 /* Signed saturating arithmetic. */
8910 /* Perform 16-bit signed saturating addition. */
8911 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8913 uint16_t res;
8915 res = a + b;
8916 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8917 if (a & 0x8000)
8918 res = 0x8000;
8919 else
8920 res = 0x7fff;
8922 return res;
8925 /* Perform 8-bit signed saturating addition. */
8926 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8928 uint8_t res;
8930 res = a + b;
8931 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8932 if (a & 0x80)
8933 res = 0x80;
8934 else
8935 res = 0x7f;
8937 return res;
8940 /* Perform 16-bit signed saturating subtraction. */
8941 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8943 uint16_t res;
8945 res = a - b;
8946 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8947 if (a & 0x8000)
8948 res = 0x8000;
8949 else
8950 res = 0x7fff;
8952 return res;
8955 /* Perform 8-bit signed saturating subtraction. */
8956 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8958 uint8_t res;
8960 res = a - b;
8961 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8962 if (a & 0x80)
8963 res = 0x80;
8964 else
8965 res = 0x7f;
8967 return res;
8970 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8971 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8972 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8973 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8974 #define PFX q
8976 #include "op_addsub.h"
8978 /* Unsigned saturating arithmetic. */
8979 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8981 uint16_t res;
8982 res = a + b;
8983 if (res < a)
8984 res = 0xffff;
8985 return res;
8988 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8990 if (a > b)
8991 return a - b;
8992 else
8993 return 0;
8996 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8998 uint8_t res;
8999 res = a + b;
9000 if (res < a)
9001 res = 0xff;
9002 return res;
9005 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9007 if (a > b)
9008 return a - b;
9009 else
9010 return 0;
9013 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9014 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9015 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
9016 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
9017 #define PFX uq
9019 #include "op_addsub.h"
9021 /* Signed modulo arithmetic. */
9022 #define SARITH16(a, b, n, op) do { \
9023 int32_t sum; \
9024 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
9025 RESULT(sum, n, 16); \
9026 if (sum >= 0) \
9027 ge |= 3 << (n * 2); \
9028 } while(0)
9030 #define SARITH8(a, b, n, op) do { \
9031 int32_t sum; \
9032 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
9033 RESULT(sum, n, 8); \
9034 if (sum >= 0) \
9035 ge |= 1 << n; \
9036 } while(0)
9039 #define ADD16(a, b, n) SARITH16(a, b, n, +)
9040 #define SUB16(a, b, n) SARITH16(a, b, n, -)
9041 #define ADD8(a, b, n) SARITH8(a, b, n, +)
9042 #define SUB8(a, b, n) SARITH8(a, b, n, -)
9043 #define PFX s
9044 #define ARITH_GE
9046 #include "op_addsub.h"
9048 /* Unsigned modulo arithmetic. */
9049 #define ADD16(a, b, n) do { \
9050 uint32_t sum; \
9051 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9052 RESULT(sum, n, 16); \
9053 if ((sum >> 16) == 1) \
9054 ge |= 3 << (n * 2); \
9055 } while(0)
9057 #define ADD8(a, b, n) do { \
9058 uint32_t sum; \
9059 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9060 RESULT(sum, n, 8); \
9061 if ((sum >> 8) == 1) \
9062 ge |= 1 << n; \
9063 } while(0)
9065 #define SUB16(a, b, n) do { \
9066 uint32_t sum; \
9067 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9068 RESULT(sum, n, 16); \
9069 if ((sum >> 16) == 0) \
9070 ge |= 3 << (n * 2); \
9071 } while(0)
9073 #define SUB8(a, b, n) do { \
9074 uint32_t sum; \
9075 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9076 RESULT(sum, n, 8); \
9077 if ((sum >> 8) == 0) \
9078 ge |= 1 << n; \
9079 } while(0)
9081 #define PFX u
9082 #define ARITH_GE
9084 #include "op_addsub.h"
9086 /* Halved signed arithmetic. */
9087 #define ADD16(a, b, n) \
9088 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9089 #define SUB16(a, b, n) \
9090 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9091 #define ADD8(a, b, n) \
9092 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9093 #define SUB8(a, b, n) \
9094 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9095 #define PFX sh
9097 #include "op_addsub.h"
9099 /* Halved unsigned arithmetic. */
9100 #define ADD16(a, b, n) \
9101 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9102 #define SUB16(a, b, n) \
9103 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9104 #define ADD8(a, b, n) \
9105 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9106 #define SUB8(a, b, n) \
9107 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9108 #define PFX uh
9110 #include "op_addsub.h"
9112 static inline uint8_t do_usad(uint8_t a, uint8_t b)
9114 if (a > b)
9115 return a - b;
9116 else
9117 return b - a;
9120 /* Unsigned sum of absolute byte differences. */
9121 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9123 uint32_t sum;
9124 sum = do_usad(a, b);
9125 sum += do_usad(a >> 8, b >> 8);
9126 sum += do_usad(a >> 16, b >>16);
9127 sum += do_usad(a >> 24, b >> 24);
9128 return sum;
9131 /* For ARMv6 SEL instruction. */
9132 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9134 uint32_t mask;
9136 mask = 0;
9137 if (flags & 1)
9138 mask |= 0xff;
9139 if (flags & 2)
9140 mask |= 0xff00;
9141 if (flags & 4)
9142 mask |= 0xff0000;
9143 if (flags & 8)
9144 mask |= 0xff000000;
9145 return (a & mask) | (b & ~mask);
9148 /* VFP support. We follow the convention used for VFP instructions:
9149 Single precision routines have a "s" suffix, double precision a
9150 "d" suffix. */
9152 /* Convert host exception flags to vfp form. */
9153 static inline int vfp_exceptbits_from_host(int host_bits)
9155 int target_bits = 0;
9157 if (host_bits & float_flag_invalid)
9158 target_bits |= 1;
9159 if (host_bits & float_flag_divbyzero)
9160 target_bits |= 2;
9161 if (host_bits & float_flag_overflow)
9162 target_bits |= 4;
9163 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
9164 target_bits |= 8;
9165 if (host_bits & float_flag_inexact)
9166 target_bits |= 0x10;
9167 if (host_bits & float_flag_input_denormal)
9168 target_bits |= 0x80;
9169 return target_bits;
9172 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
9174 int i;
9175 uint32_t fpscr;
9177 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9178 | (env->vfp.vec_len << 16)
9179 | (env->vfp.vec_stride << 20);
9180 i = get_float_exception_flags(&env->vfp.fp_status);
9181 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
9182 fpscr |= vfp_exceptbits_from_host(i);
9183 return fpscr;
9186 uint32_t vfp_get_fpscr(CPUARMState *env)
9188 return HELPER(vfp_get_fpscr)(env);
9191 /* Convert vfp exception flags to target form. */
9192 static inline int vfp_exceptbits_to_host(int target_bits)
9194 int host_bits = 0;
9196 if (target_bits & 1)
9197 host_bits |= float_flag_invalid;
9198 if (target_bits & 2)
9199 host_bits |= float_flag_divbyzero;
9200 if (target_bits & 4)
9201 host_bits |= float_flag_overflow;
9202 if (target_bits & 8)
9203 host_bits |= float_flag_underflow;
9204 if (target_bits & 0x10)
9205 host_bits |= float_flag_inexact;
9206 if (target_bits & 0x80)
9207 host_bits |= float_flag_input_denormal;
9208 return host_bits;
9211 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
9213 int i;
9214 uint32_t changed;
9216 changed = env->vfp.xregs[ARM_VFP_FPSCR];
9217 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9218 env->vfp.vec_len = (val >> 16) & 7;
9219 env->vfp.vec_stride = (val >> 20) & 3;
9221 changed ^= val;
9222 if (changed & (3 << 22)) {
9223 i = (val >> 22) & 3;
9224 switch (i) {
9225 case FPROUNDING_TIEEVEN:
9226 i = float_round_nearest_even;
9227 break;
9228 case FPROUNDING_POSINF:
9229 i = float_round_up;
9230 break;
9231 case FPROUNDING_NEGINF:
9232 i = float_round_down;
9233 break;
9234 case FPROUNDING_ZERO:
9235 i = float_round_to_zero;
9236 break;
9238 set_float_rounding_mode(i, &env->vfp.fp_status);
9240 if (changed & (1 << 24)) {
9241 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9242 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9244 if (changed & (1 << 25))
9245 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
9247 i = vfp_exceptbits_to_host(val);
9248 set_float_exception_flags(i, &env->vfp.fp_status);
9249 set_float_exception_flags(0, &env->vfp.standard_fp_status);
9252 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9254 HELPER(vfp_set_fpscr)(env, val);
9257 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9259 #define VFP_BINOP(name) \
9260 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
9262 float_status *fpst = fpstp; \
9263 return float32_ ## name(a, b, fpst); \
9265 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
9267 float_status *fpst = fpstp; \
9268 return float64_ ## name(a, b, fpst); \
9270 VFP_BINOP(add)
9271 VFP_BINOP(sub)
9272 VFP_BINOP(mul)
9273 VFP_BINOP(div)
9274 VFP_BINOP(min)
9275 VFP_BINOP(max)
9276 VFP_BINOP(minnum)
9277 VFP_BINOP(maxnum)
9278 #undef VFP_BINOP
9280 float32 VFP_HELPER(neg, s)(float32 a)
9282 return float32_chs(a);
9285 float64 VFP_HELPER(neg, d)(float64 a)
9287 return float64_chs(a);
9290 float32 VFP_HELPER(abs, s)(float32 a)
9292 return float32_abs(a);
9295 float64 VFP_HELPER(abs, d)(float64 a)
9297 return float64_abs(a);
9300 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9302 return float32_sqrt(a, &env->vfp.fp_status);
9305 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9307 return float64_sqrt(a, &env->vfp.fp_status);
9310 /* XXX: check quiet/signaling case */
9311 #define DO_VFP_cmp(p, type) \
9312 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
9314 uint32_t flags; \
9315 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9316 case 0: flags = 0x6; break; \
9317 case -1: flags = 0x8; break; \
9318 case 1: flags = 0x2; break; \
9319 default: case 2: flags = 0x3; break; \
9321 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9322 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9324 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9326 uint32_t flags; \
9327 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9328 case 0: flags = 0x6; break; \
9329 case -1: flags = 0x8; break; \
9330 case 1: flags = 0x2; break; \
9331 default: case 2: flags = 0x3; break; \
9333 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9334 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9336 DO_VFP_cmp(s, float32)
9337 DO_VFP_cmp(d, float64)
9338 #undef DO_VFP_cmp
9340 /* Integer to float and float to integer conversions */
9342 #define CONV_ITOF(name, fsz, sign) \
9343 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9345 float_status *fpst = fpstp; \
9346 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9349 #define CONV_FTOI(name, fsz, sign, round) \
9350 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9352 float_status *fpst = fpstp; \
9353 if (float##fsz##_is_any_nan(x)) { \
9354 float_raise(float_flag_invalid, fpst); \
9355 return 0; \
9357 return float##fsz##_to_##sign##int32##round(x, fpst); \
9360 #define FLOAT_CONVS(name, p, fsz, sign) \
9361 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9362 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9363 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9365 FLOAT_CONVS(si, s, 32, )
9366 FLOAT_CONVS(si, d, 64, )
9367 FLOAT_CONVS(ui, s, 32, u)
9368 FLOAT_CONVS(ui, d, 64, u)
9370 #undef CONV_ITOF
9371 #undef CONV_FTOI
9372 #undef FLOAT_CONVS
9374 /* floating point conversion */
9375 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
9377 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9378 /* ARM requires that S<->D conversion of any kind of NaN generates
9379 * a quiet NaN by forcing the most significant frac bit to 1.
9381 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9384 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9386 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9387 /* ARM requires that S<->D conversion of any kind of NaN generates
9388 * a quiet NaN by forcing the most significant frac bit to 1.
9390 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9393 /* VFP3 fixed point conversion. */
9394 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9395 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9396 void *fpstp) \
9398 float_status *fpst = fpstp; \
9399 float##fsz tmp; \
9400 tmp = itype##_to_##float##fsz(x, fpst); \
9401 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9404 /* Notice that we want only input-denormal exception flags from the
9405 * scalbn operation: the other possible flags (overflow+inexact if
9406 * we overflow to infinity, output-denormal) aren't correct for the
9407 * complete scale-and-convert operation.
9409 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9410 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9411 uint32_t shift, \
9412 void *fpstp) \
9414 float_status *fpst = fpstp; \
9415 int old_exc_flags = get_float_exception_flags(fpst); \
9416 float##fsz tmp; \
9417 if (float##fsz##_is_any_nan(x)) { \
9418 float_raise(float_flag_invalid, fpst); \
9419 return 0; \
9421 tmp = float##fsz##_scalbn(x, shift, fpst); \
9422 old_exc_flags |= get_float_exception_flags(fpst) \
9423 & float_flag_input_denormal; \
9424 set_float_exception_flags(old_exc_flags, fpst); \
9425 return float##fsz##_to_##itype##round(tmp, fpst); \
9428 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9429 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9430 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9431 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9433 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9434 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9435 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9437 VFP_CONV_FIX(sh, d, 64, 64, int16)
9438 VFP_CONV_FIX(sl, d, 64, 64, int32)
9439 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9440 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9441 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9442 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9443 VFP_CONV_FIX(sh, s, 32, 32, int16)
9444 VFP_CONV_FIX(sl, s, 32, 32, int32)
9445 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9446 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9447 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9448 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9449 #undef VFP_CONV_FIX
9450 #undef VFP_CONV_FIX_FLOAT
9451 #undef VFP_CONV_FLOAT_FIX_ROUND
9453 /* Set the current fp rounding mode and return the old one.
9454 * The argument is a softfloat float_round_ value.
9456 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9458 float_status *fp_status = &env->vfp.fp_status;
9460 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9461 set_float_rounding_mode(rmode, fp_status);
9463 return prev_rmode;
9466 /* Set the current fp rounding mode in the standard fp status and return
9467 * the old one. This is for NEON instructions that need to change the
9468 * rounding mode but wish to use the standard FPSCR values for everything
9469 * else. Always set the rounding mode back to the correct value after
9470 * modifying it.
9471 * The argument is a softfloat float_round_ value.
9473 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9475 float_status *fp_status = &env->vfp.standard_fp_status;
9477 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9478 set_float_rounding_mode(rmode, fp_status);
9480 return prev_rmode;
9483 /* Half precision conversions. */
9484 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9486 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9487 float32 r = float16_to_float32(make_float16(a), ieee, s);
9488 if (ieee) {
9489 return float32_maybe_silence_nan(r, s);
9491 return r;
9494 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9496 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9497 float16 r = float32_to_float16(a, ieee, s);
9498 if (ieee) {
9499 r = float16_maybe_silence_nan(r, s);
9501 return float16_val(r);
9504 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9506 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9509 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9511 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9514 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9516 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9519 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9521 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9524 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9526 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9527 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9528 if (ieee) {
9529 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9531 return r;
9534 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9536 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9537 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9538 if (ieee) {
9539 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9541 return float16_val(r);
9544 #define float32_two make_float32(0x40000000)
9545 #define float32_three make_float32(0x40400000)
9546 #define float32_one_point_five make_float32(0x3fc00000)
9548 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9550 float_status *s = &env->vfp.standard_fp_status;
9551 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9552 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9553 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9554 float_raise(float_flag_input_denormal, s);
9556 return float32_two;
9558 return float32_sub(float32_two, float32_mul(a, b, s), s);
9561 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9563 float_status *s = &env->vfp.standard_fp_status;
9564 float32 product;
9565 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9566 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9567 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9568 float_raise(float_flag_input_denormal, s);
9570 return float32_one_point_five;
9572 product = float32_mul(a, b, s);
9573 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9576 /* NEON helpers. */
9578 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9579 * int->float conversions at run-time. */
9580 #define float64_256 make_float64(0x4070000000000000LL)
9581 #define float64_512 make_float64(0x4080000000000000LL)
9582 #define float32_maxnorm make_float32(0x7f7fffff)
9583 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9585 /* Reciprocal functions
9587 * The algorithm that must be used to calculate the estimate
9588 * is specified by the ARM ARM, see FPRecipEstimate()
9591 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9593 /* These calculations mustn't set any fp exception flags,
9594 * so we use a local copy of the fp_status.
9596 float_status dummy_status = *real_fp_status;
9597 float_status *s = &dummy_status;
9598 /* q = (int)(a * 512.0) */
9599 float64 q = float64_mul(float64_512, a, s);
9600 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9602 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9603 q = int64_to_float64(q_int, s);
9604 q = float64_add(q, float64_half, s);
9605 q = float64_div(q, float64_512, s);
9606 q = float64_div(float64_one, q, s);
9608 /* s = (int)(256.0 * r + 0.5) */
9609 q = float64_mul(q, float64_256, s);
9610 q = float64_add(q, float64_half, s);
9611 q_int = float64_to_int64_round_to_zero(q, s);
9613 /* return (double)s / 256.0 */
9614 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9617 /* Common wrapper to call recip_estimate */
9618 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9620 uint64_t val64 = float64_val(num);
9621 uint64_t frac = extract64(val64, 0, 52);
9622 int64_t exp = extract64(val64, 52, 11);
9623 uint64_t sbit;
9624 float64 scaled, estimate;
9626 /* Generate the scaled number for the estimate function */
9627 if (exp == 0) {
9628 if (extract64(frac, 51, 1) == 0) {
9629 exp = -1;
9630 frac = extract64(frac, 0, 50) << 2;
9631 } else {
9632 frac = extract64(frac, 0, 51) << 1;
9636 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9637 scaled = make_float64((0x3feULL << 52)
9638 | extract64(frac, 44, 8) << 44);
9640 estimate = recip_estimate(scaled, fpst);
9642 /* Build new result */
9643 val64 = float64_val(estimate);
9644 sbit = 0x8000000000000000ULL & val64;
9645 exp = off - exp;
9646 frac = extract64(val64, 0, 52);
9648 if (exp == 0) {
9649 frac = 1ULL << 51 | extract64(frac, 1, 51);
9650 } else if (exp == -1) {
9651 frac = 1ULL << 50 | extract64(frac, 2, 50);
9652 exp = 0;
9655 return make_float64(sbit | (exp << 52) | frac);
9658 static bool round_to_inf(float_status *fpst, bool sign_bit)
9660 switch (fpst->float_rounding_mode) {
9661 case float_round_nearest_even: /* Round to Nearest */
9662 return true;
9663 case float_round_up: /* Round to +Inf */
9664 return !sign_bit;
9665 case float_round_down: /* Round to -Inf */
9666 return sign_bit;
9667 case float_round_to_zero: /* Round to Zero */
9668 return false;
9671 g_assert_not_reached();
9674 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9676 float_status *fpst = fpstp;
9677 float32 f32 = float32_squash_input_denormal(input, fpst);
9678 uint32_t f32_val = float32_val(f32);
9679 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9680 int32_t f32_exp = extract32(f32_val, 23, 8);
9681 uint32_t f32_frac = extract32(f32_val, 0, 23);
9682 float64 f64, r64;
9683 uint64_t r64_val;
9684 int64_t r64_exp;
9685 uint64_t r64_frac;
9687 if (float32_is_any_nan(f32)) {
9688 float32 nan = f32;
9689 if (float32_is_signaling_nan(f32, fpst)) {
9690 float_raise(float_flag_invalid, fpst);
9691 nan = float32_maybe_silence_nan(f32, fpst);
9693 if (fpst->default_nan_mode) {
9694 nan = float32_default_nan(fpst);
9696 return nan;
9697 } else if (float32_is_infinity(f32)) {
9698 return float32_set_sign(float32_zero, float32_is_neg(f32));
9699 } else if (float32_is_zero(f32)) {
9700 float_raise(float_flag_divbyzero, fpst);
9701 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9702 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9703 /* Abs(value) < 2.0^-128 */
9704 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9705 if (round_to_inf(fpst, f32_sbit)) {
9706 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9707 } else {
9708 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9710 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9711 float_raise(float_flag_underflow, fpst);
9712 return float32_set_sign(float32_zero, float32_is_neg(f32));
9716 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9717 r64 = call_recip_estimate(f64, 253, fpst);
9718 r64_val = float64_val(r64);
9719 r64_exp = extract64(r64_val, 52, 11);
9720 r64_frac = extract64(r64_val, 0, 52);
9722 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9723 return make_float32(f32_sbit |
9724 (r64_exp & 0xff) << 23 |
9725 extract64(r64_frac, 29, 24));
9728 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9730 float_status *fpst = fpstp;
9731 float64 f64 = float64_squash_input_denormal(input, fpst);
9732 uint64_t f64_val = float64_val(f64);
9733 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9734 int64_t f64_exp = extract64(f64_val, 52, 11);
9735 float64 r64;
9736 uint64_t r64_val;
9737 int64_t r64_exp;
9738 uint64_t r64_frac;
9740 /* Deal with any special cases */
9741 if (float64_is_any_nan(f64)) {
9742 float64 nan = f64;
9743 if (float64_is_signaling_nan(f64, fpst)) {
9744 float_raise(float_flag_invalid, fpst);
9745 nan = float64_maybe_silence_nan(f64, fpst);
9747 if (fpst->default_nan_mode) {
9748 nan = float64_default_nan(fpst);
9750 return nan;
9751 } else if (float64_is_infinity(f64)) {
9752 return float64_set_sign(float64_zero, float64_is_neg(f64));
9753 } else if (float64_is_zero(f64)) {
9754 float_raise(float_flag_divbyzero, fpst);
9755 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9756 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9757 /* Abs(value) < 2.0^-1024 */
9758 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9759 if (round_to_inf(fpst, f64_sbit)) {
9760 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9761 } else {
9762 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9764 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9765 float_raise(float_flag_underflow, fpst);
9766 return float64_set_sign(float64_zero, float64_is_neg(f64));
9769 r64 = call_recip_estimate(f64, 2045, fpst);
9770 r64_val = float64_val(r64);
9771 r64_exp = extract64(r64_val, 52, 11);
9772 r64_frac = extract64(r64_val, 0, 52);
9774 /* result = sign : result_exp<10:0> : fraction<51:0> */
9775 return make_float64(f64_sbit |
9776 ((r64_exp & 0x7ff) << 52) |
9777 r64_frac);
9780 /* The algorithm that must be used to calculate the estimate
9781 * is specified by the ARM ARM.
9783 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9785 /* These calculations mustn't set any fp exception flags,
9786 * so we use a local copy of the fp_status.
9788 float_status dummy_status = *real_fp_status;
9789 float_status *s = &dummy_status;
9790 float64 q;
9791 int64_t q_int;
9793 if (float64_lt(a, float64_half, s)) {
9794 /* range 0.25 <= a < 0.5 */
9796 /* a in units of 1/512 rounded down */
9797 /* q0 = (int)(a * 512.0); */
9798 q = float64_mul(float64_512, a, s);
9799 q_int = float64_to_int64_round_to_zero(q, s);
9801 /* reciprocal root r */
9802 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9803 q = int64_to_float64(q_int, s);
9804 q = float64_add(q, float64_half, s);
9805 q = float64_div(q, float64_512, s);
9806 q = float64_sqrt(q, s);
9807 q = float64_div(float64_one, q, s);
9808 } else {
9809 /* range 0.5 <= a < 1.0 */
9811 /* a in units of 1/256 rounded down */
9812 /* q1 = (int)(a * 256.0); */
9813 q = float64_mul(float64_256, a, s);
9814 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9816 /* reciprocal root r */
9817 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9818 q = int64_to_float64(q_int, s);
9819 q = float64_add(q, float64_half, s);
9820 q = float64_div(q, float64_256, s);
9821 q = float64_sqrt(q, s);
9822 q = float64_div(float64_one, q, s);
9824 /* r in units of 1/256 rounded to nearest */
9825 /* s = (int)(256.0 * r + 0.5); */
9827 q = float64_mul(q, float64_256,s );
9828 q = float64_add(q, float64_half, s);
9829 q_int = float64_to_int64_round_to_zero(q, s);
9831 /* return (double)s / 256.0;*/
9832 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9835 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9837 float_status *s = fpstp;
9838 float32 f32 = float32_squash_input_denormal(input, s);
9839 uint32_t val = float32_val(f32);
9840 uint32_t f32_sbit = 0x80000000 & val;
9841 int32_t f32_exp = extract32(val, 23, 8);
9842 uint32_t f32_frac = extract32(val, 0, 23);
9843 uint64_t f64_frac;
9844 uint64_t val64;
9845 int result_exp;
9846 float64 f64;
9848 if (float32_is_any_nan(f32)) {
9849 float32 nan = f32;
9850 if (float32_is_signaling_nan(f32, s)) {
9851 float_raise(float_flag_invalid, s);
9852 nan = float32_maybe_silence_nan(f32, s);
9854 if (s->default_nan_mode) {
9855 nan = float32_default_nan(s);
9857 return nan;
9858 } else if (float32_is_zero(f32)) {
9859 float_raise(float_flag_divbyzero, s);
9860 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9861 } else if (float32_is_neg(f32)) {
9862 float_raise(float_flag_invalid, s);
9863 return float32_default_nan(s);
9864 } else if (float32_is_infinity(f32)) {
9865 return float32_zero;
9868 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9869 * preserving the parity of the exponent. */
9871 f64_frac = ((uint64_t) f32_frac) << 29;
9872 if (f32_exp == 0) {
9873 while (extract64(f64_frac, 51, 1) == 0) {
9874 f64_frac = f64_frac << 1;
9875 f32_exp = f32_exp-1;
9877 f64_frac = extract64(f64_frac, 0, 51) << 1;
9880 if (extract64(f32_exp, 0, 1) == 0) {
9881 f64 = make_float64(((uint64_t) f32_sbit) << 32
9882 | (0x3feULL << 52)
9883 | f64_frac);
9884 } else {
9885 f64 = make_float64(((uint64_t) f32_sbit) << 32
9886 | (0x3fdULL << 52)
9887 | f64_frac);
9890 result_exp = (380 - f32_exp) / 2;
9892 f64 = recip_sqrt_estimate(f64, s);
9894 val64 = float64_val(f64);
9896 val = ((result_exp & 0xff) << 23)
9897 | ((val64 >> 29) & 0x7fffff);
9898 return make_float32(val);
9901 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9903 float_status *s = fpstp;
9904 float64 f64 = float64_squash_input_denormal(input, s);
9905 uint64_t val = float64_val(f64);
9906 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9907 int64_t f64_exp = extract64(val, 52, 11);
9908 uint64_t f64_frac = extract64(val, 0, 52);
9909 int64_t result_exp;
9910 uint64_t result_frac;
9912 if (float64_is_any_nan(f64)) {
9913 float64 nan = f64;
9914 if (float64_is_signaling_nan(f64, s)) {
9915 float_raise(float_flag_invalid, s);
9916 nan = float64_maybe_silence_nan(f64, s);
9918 if (s->default_nan_mode) {
9919 nan = float64_default_nan(s);
9921 return nan;
9922 } else if (float64_is_zero(f64)) {
9923 float_raise(float_flag_divbyzero, s);
9924 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9925 } else if (float64_is_neg(f64)) {
9926 float_raise(float_flag_invalid, s);
9927 return float64_default_nan(s);
9928 } else if (float64_is_infinity(f64)) {
9929 return float64_zero;
9932 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9933 * preserving the parity of the exponent. */
9935 if (f64_exp == 0) {
9936 while (extract64(f64_frac, 51, 1) == 0) {
9937 f64_frac = f64_frac << 1;
9938 f64_exp = f64_exp - 1;
9940 f64_frac = extract64(f64_frac, 0, 51) << 1;
9943 if (extract64(f64_exp, 0, 1) == 0) {
9944 f64 = make_float64(f64_sbit
9945 | (0x3feULL << 52)
9946 | f64_frac);
9947 } else {
9948 f64 = make_float64(f64_sbit
9949 | (0x3fdULL << 52)
9950 | f64_frac);
9953 result_exp = (3068 - f64_exp) / 2;
9955 f64 = recip_sqrt_estimate(f64, s);
9957 result_frac = extract64(float64_val(f64), 0, 52);
9959 return make_float64(f64_sbit |
9960 ((result_exp & 0x7ff) << 52) |
9961 result_frac);
9964 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9966 float_status *s = fpstp;
9967 float64 f64;
9969 if ((a & 0x80000000) == 0) {
9970 return 0xffffffff;
9973 f64 = make_float64((0x3feULL << 52)
9974 | ((int64_t)(a & 0x7fffffff) << 21));
9976 f64 = recip_estimate(f64, s);
9978 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9981 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9983 float_status *fpst = fpstp;
9984 float64 f64;
9986 if ((a & 0xc0000000) == 0) {
9987 return 0xffffffff;
9990 if (a & 0x80000000) {
9991 f64 = make_float64((0x3feULL << 52)
9992 | ((uint64_t)(a & 0x7fffffff) << 21));
9993 } else { /* bits 31-30 == '01' */
9994 f64 = make_float64((0x3fdULL << 52)
9995 | ((uint64_t)(a & 0x3fffffff) << 22));
9998 f64 = recip_sqrt_estimate(f64, fpst);
10000 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10003 /* VFPv4 fused multiply-accumulate */
10004 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10006 float_status *fpst = fpstp;
10007 return float32_muladd(a, b, c, 0, fpst);
10010 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10012 float_status *fpst = fpstp;
10013 return float64_muladd(a, b, c, 0, fpst);
10016 /* ARMv8 round to integral */
10017 float32 HELPER(rints_exact)(float32 x, void *fp_status)
10019 return float32_round_to_int(x, fp_status);
10022 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10024 return float64_round_to_int(x, fp_status);
10027 float32 HELPER(rints)(float32 x, void *fp_status)
10029 int old_flags = get_float_exception_flags(fp_status), new_flags;
10030 float32 ret;
10032 ret = float32_round_to_int(x, fp_status);
10034 /* Suppress any inexact exceptions the conversion produced */
10035 if (!(old_flags & float_flag_inexact)) {
10036 new_flags = get_float_exception_flags(fp_status);
10037 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10040 return ret;
10043 float64 HELPER(rintd)(float64 x, void *fp_status)
10045 int old_flags = get_float_exception_flags(fp_status), new_flags;
10046 float64 ret;
10048 ret = float64_round_to_int(x, fp_status);
10050 new_flags = get_float_exception_flags(fp_status);
10052 /* Suppress any inexact exceptions the conversion produced */
10053 if (!(old_flags & float_flag_inexact)) {
10054 new_flags = get_float_exception_flags(fp_status);
10055 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10058 return ret;
10061 /* Convert ARM rounding mode to softfloat */
10062 int arm_rmode_to_sf(int rmode)
10064 switch (rmode) {
10065 case FPROUNDING_TIEAWAY:
10066 rmode = float_round_ties_away;
10067 break;
10068 case FPROUNDING_ODD:
10069 /* FIXME: add support for TIEAWAY and ODD */
10070 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10071 rmode);
10072 case FPROUNDING_TIEEVEN:
10073 default:
10074 rmode = float_round_nearest_even;
10075 break;
10076 case FPROUNDING_POSINF:
10077 rmode = float_round_up;
10078 break;
10079 case FPROUNDING_NEGINF:
10080 rmode = float_round_down;
10081 break;
10082 case FPROUNDING_ZERO:
10083 rmode = float_round_to_zero;
10084 break;
10086 return rmode;
10089 /* CRC helpers.
10090 * The upper bytes of val (above the number specified by 'bytes') must have
10091 * been zeroed out by the caller.
10093 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10095 uint8_t buf[4];
10097 stl_le_p(buf, val);
10099 /* zlib crc32 converts the accumulator and output to one's complement. */
10100 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10103 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10105 uint8_t buf[4];
10107 stl_le_p(buf, val);
10109 /* Linux crc32c converts the output to one's complement. */
10110 return crc32c(acc, buf, bytes) ^ 0xffffffff;