target-mips: define constants for magic numbers
[qemu.git] / hw / mcf_fec.c
blob4e7fbed16043ef509ed0ee5633f221bc6e2ea19b
1 /*
2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licenced under the GPL
7 */
8 #include "hw.h"
9 #include "net.h"
10 #include "mcf.h"
11 /* For crc32 */
12 #include <zlib.h>
14 //#define DEBUG_FEC 1
16 #ifdef DEBUG_FEC
17 #define DPRINTF(fmt, ...) \
18 do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
19 #else
20 #define DPRINTF(fmt, ...) do {} while(0)
21 #endif
23 #define FEC_MAX_FRAME_SIZE 2032
25 typedef struct {
26 qemu_irq *irq;
27 int mmio_index;
28 NICState *nic;
29 NICConf conf;
30 uint32_t irq_state;
31 uint32_t eir;
32 uint32_t eimr;
33 int rx_enabled;
34 uint32_t rx_descriptor;
35 uint32_t tx_descriptor;
36 uint32_t ecr;
37 uint32_t mmfr;
38 uint32_t mscr;
39 uint32_t rcr;
40 uint32_t tcr;
41 uint32_t tfwr;
42 uint32_t rfsr;
43 uint32_t erdsr;
44 uint32_t etdsr;
45 uint32_t emrbr;
46 } mcf_fec_state;
48 #define FEC_INT_HB 0x80000000
49 #define FEC_INT_BABR 0x40000000
50 #define FEC_INT_BABT 0x20000000
51 #define FEC_INT_GRA 0x10000000
52 #define FEC_INT_TXF 0x08000000
53 #define FEC_INT_TXB 0x04000000
54 #define FEC_INT_RXF 0x02000000
55 #define FEC_INT_RXB 0x01000000
56 #define FEC_INT_MII 0x00800000
57 #define FEC_INT_EB 0x00400000
58 #define FEC_INT_LC 0x00200000
59 #define FEC_INT_RL 0x00100000
60 #define FEC_INT_UN 0x00080000
62 #define FEC_EN 2
63 #define FEC_RESET 1
65 /* Map interrupt flags onto IRQ lines. */
66 #define FEC_NUM_IRQ 13
67 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
68 FEC_INT_TXF,
69 FEC_INT_TXB,
70 FEC_INT_UN,
71 FEC_INT_RL,
72 FEC_INT_RXF,
73 FEC_INT_RXB,
74 FEC_INT_MII,
75 FEC_INT_LC,
76 FEC_INT_HB,
77 FEC_INT_GRA,
78 FEC_INT_EB,
79 FEC_INT_BABT,
80 FEC_INT_BABR
83 /* Buffer Descriptor. */
84 typedef struct {
85 uint16_t flags;
86 uint16_t length;
87 uint32_t data;
88 } mcf_fec_bd;
90 #define FEC_BD_R 0x8000
91 #define FEC_BD_E 0x8000
92 #define FEC_BD_O1 0x4000
93 #define FEC_BD_W 0x2000
94 #define FEC_BD_O2 0x1000
95 #define FEC_BD_L 0x0800
96 #define FEC_BD_TC 0x0400
97 #define FEC_BD_ABC 0x0200
98 #define FEC_BD_M 0x0100
99 #define FEC_BD_BC 0x0080
100 #define FEC_BD_MC 0x0040
101 #define FEC_BD_LG 0x0020
102 #define FEC_BD_NO 0x0010
103 #define FEC_BD_CR 0x0004
104 #define FEC_BD_OV 0x0002
105 #define FEC_BD_TR 0x0001
107 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
109 cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
110 be16_to_cpus(&bd->flags);
111 be16_to_cpus(&bd->length);
112 be32_to_cpus(&bd->data);
115 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
117 mcf_fec_bd tmp;
118 tmp.flags = cpu_to_be16(bd->flags);
119 tmp.length = cpu_to_be16(bd->length);
120 tmp.data = cpu_to_be32(bd->data);
121 cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
124 static void mcf_fec_update(mcf_fec_state *s)
126 uint32_t active;
127 uint32_t changed;
128 uint32_t mask;
129 int i;
131 active = s->eir & s->eimr;
132 changed = active ^s->irq_state;
133 for (i = 0; i < FEC_NUM_IRQ; i++) {
134 mask = mcf_fec_irq_map[i];
135 if (changed & mask) {
136 DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
137 qemu_set_irq(s->irq[i], (active & mask) != 0);
140 s->irq_state = active;
143 static void mcf_fec_do_tx(mcf_fec_state *s)
145 uint32_t addr;
146 mcf_fec_bd bd;
147 int frame_size;
148 int len;
149 uint8_t frame[FEC_MAX_FRAME_SIZE];
150 uint8_t *ptr;
152 DPRINTF("do_tx\n");
153 ptr = frame;
154 frame_size = 0;
155 addr = s->tx_descriptor;
156 while (1) {
157 mcf_fec_read_bd(&bd, addr);
158 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
159 addr, bd.flags, bd.length, bd.data);
160 if ((bd.flags & FEC_BD_R) == 0) {
161 /* Run out of descriptors to transmit. */
162 break;
164 len = bd.length;
165 if (frame_size + len > FEC_MAX_FRAME_SIZE) {
166 len = FEC_MAX_FRAME_SIZE - frame_size;
167 s->eir |= FEC_INT_BABT;
169 cpu_physical_memory_read(bd.data, ptr, len);
170 ptr += len;
171 frame_size += len;
172 if (bd.flags & FEC_BD_L) {
173 /* Last buffer in frame. */
174 DPRINTF("Sending packet\n");
175 qemu_send_packet(&s->nic->nc, frame, len);
176 ptr = frame;
177 frame_size = 0;
178 s->eir |= FEC_INT_TXF;
180 s->eir |= FEC_INT_TXB;
181 bd.flags &= ~FEC_BD_R;
182 /* Write back the modified descriptor. */
183 mcf_fec_write_bd(&bd, addr);
184 /* Advance to the next descriptor. */
185 if ((bd.flags & FEC_BD_W) != 0) {
186 addr = s->etdsr;
187 } else {
188 addr += 8;
191 s->tx_descriptor = addr;
194 static void mcf_fec_enable_rx(mcf_fec_state *s)
196 mcf_fec_bd bd;
198 mcf_fec_read_bd(&bd, s->rx_descriptor);
199 s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
200 if (!s->rx_enabled)
201 DPRINTF("RX buffer full\n");
204 static void mcf_fec_reset(mcf_fec_state *s)
206 s->eir = 0;
207 s->eimr = 0;
208 s->rx_enabled = 0;
209 s->ecr = 0;
210 s->mscr = 0;
211 s->rcr = 0x05ee0001;
212 s->tcr = 0;
213 s->tfwr = 0;
214 s->rfsr = 0x500;
217 static uint32_t mcf_fec_read(void *opaque, target_phys_addr_t addr)
219 mcf_fec_state *s = (mcf_fec_state *)opaque;
220 switch (addr & 0x3ff) {
221 case 0x004: return s->eir;
222 case 0x008: return s->eimr;
223 case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
224 case 0x014: return 0; /* TDAR */
225 case 0x024: return s->ecr;
226 case 0x040: return s->mmfr;
227 case 0x044: return s->mscr;
228 case 0x064: return 0; /* MIBC */
229 case 0x084: return s->rcr;
230 case 0x0c4: return s->tcr;
231 case 0x0e4: /* PALR */
232 return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
233 | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
234 break;
235 case 0x0e8: /* PAUR */
236 return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
237 case 0x0ec: return 0x10000; /* OPD */
238 case 0x118: return 0;
239 case 0x11c: return 0;
240 case 0x120: return 0;
241 case 0x124: return 0;
242 case 0x144: return s->tfwr;
243 case 0x14c: return 0x600;
244 case 0x150: return s->rfsr;
245 case 0x180: return s->erdsr;
246 case 0x184: return s->etdsr;
247 case 0x188: return s->emrbr;
248 default:
249 hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
250 return 0;
254 static void mcf_fec_write(void *opaque, target_phys_addr_t addr, uint32_t value)
256 mcf_fec_state *s = (mcf_fec_state *)opaque;
257 switch (addr & 0x3ff) {
258 case 0x004:
259 s->eir &= ~value;
260 break;
261 case 0x008:
262 s->eimr = value;
263 break;
264 case 0x010: /* RDAR */
265 if ((s->ecr & FEC_EN) && !s->rx_enabled) {
266 DPRINTF("RX enable\n");
267 mcf_fec_enable_rx(s);
269 break;
270 case 0x014: /* TDAR */
271 if (s->ecr & FEC_EN) {
272 mcf_fec_do_tx(s);
274 break;
275 case 0x024:
276 s->ecr = value;
277 if (value & FEC_RESET) {
278 DPRINTF("Reset\n");
279 mcf_fec_reset(s);
281 if ((s->ecr & FEC_EN) == 0) {
282 s->rx_enabled = 0;
284 break;
285 case 0x040:
286 /* TODO: Implement MII. */
287 s->mmfr = value;
288 break;
289 case 0x044:
290 s->mscr = value & 0xfe;
291 break;
292 case 0x064:
293 /* TODO: Implement MIB. */
294 break;
295 case 0x084:
296 s->rcr = value & 0x07ff003f;
297 /* TODO: Implement LOOP mode. */
298 break;
299 case 0x0c4: /* TCR */
300 /* We transmit immediately, so raise GRA immediately. */
301 s->tcr = value;
302 if (value & 1)
303 s->eir |= FEC_INT_GRA;
304 break;
305 case 0x0e4: /* PALR */
306 s->conf.macaddr.a[0] = value >> 24;
307 s->conf.macaddr.a[1] = value >> 16;
308 s->conf.macaddr.a[2] = value >> 8;
309 s->conf.macaddr.a[3] = value;
310 break;
311 case 0x0e8: /* PAUR */
312 s->conf.macaddr.a[4] = value >> 24;
313 s->conf.macaddr.a[5] = value >> 16;
314 break;
315 case 0x0ec:
316 /* OPD */
317 break;
318 case 0x118:
319 case 0x11c:
320 case 0x120:
321 case 0x124:
322 /* TODO: implement MAC hash filtering. */
323 break;
324 case 0x144:
325 s->tfwr = value & 3;
326 break;
327 case 0x14c:
328 /* FRBR writes ignored. */
329 break;
330 case 0x150:
331 s->rfsr = (value & 0x3fc) | 0x400;
332 break;
333 case 0x180:
334 s->erdsr = value & ~3;
335 s->rx_descriptor = s->erdsr;
336 break;
337 case 0x184:
338 s->etdsr = value & ~3;
339 s->tx_descriptor = s->etdsr;
340 break;
341 case 0x188:
342 s->emrbr = value & 0x7f0;
343 break;
344 default:
345 hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
347 mcf_fec_update(s);
350 static int mcf_fec_can_receive(VLANClientState *nc)
352 mcf_fec_state *s = DO_UPCAST(NICState, nc, nc)->opaque;
353 return s->rx_enabled;
356 static ssize_t mcf_fec_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
358 mcf_fec_state *s = DO_UPCAST(NICState, nc, nc)->opaque;
359 mcf_fec_bd bd;
360 uint32_t flags = 0;
361 uint32_t addr;
362 uint32_t crc;
363 uint32_t buf_addr;
364 uint8_t *crc_ptr;
365 unsigned int buf_len;
367 DPRINTF("do_rx len %d\n", size);
368 if (!s->rx_enabled) {
369 fprintf(stderr, "mcf_fec_receive: Unexpected packet\n");
371 /* 4 bytes for the CRC. */
372 size += 4;
373 crc = cpu_to_be32(crc32(~0, buf, size));
374 crc_ptr = (uint8_t *)&crc;
375 /* Huge frames are truncted. */
376 if (size > FEC_MAX_FRAME_SIZE) {
377 size = FEC_MAX_FRAME_SIZE;
378 flags |= FEC_BD_TR | FEC_BD_LG;
380 /* Frames larger than the user limit just set error flags. */
381 if (size > (s->rcr >> 16)) {
382 flags |= FEC_BD_LG;
384 addr = s->rx_descriptor;
385 while (size > 0) {
386 mcf_fec_read_bd(&bd, addr);
387 if ((bd.flags & FEC_BD_E) == 0) {
388 /* No descriptors available. Bail out. */
389 /* FIXME: This is wrong. We should probably either save the
390 remainder for when more RX buffers are available, or
391 flag an error. */
392 fprintf(stderr, "mcf_fec: Lost end of frame\n");
393 break;
395 buf_len = (size <= s->emrbr) ? size: s->emrbr;
396 bd.length = buf_len;
397 size -= buf_len;
398 DPRINTF("rx_bd %x length %d\n", addr, bd.length);
399 /* The last 4 bytes are the CRC. */
400 if (size < 4)
401 buf_len += size - 4;
402 buf_addr = bd.data;
403 cpu_physical_memory_write(buf_addr, buf, buf_len);
404 buf += buf_len;
405 if (size < 4) {
406 cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
407 crc_ptr += 4 - size;
409 bd.flags &= ~FEC_BD_E;
410 if (size == 0) {
411 /* Last buffer in frame. */
412 bd.flags |= flags | FEC_BD_L;
413 DPRINTF("rx frame flags %04x\n", bd.flags);
414 s->eir |= FEC_INT_RXF;
415 } else {
416 s->eir |= FEC_INT_RXB;
418 mcf_fec_write_bd(&bd, addr);
419 /* Advance to the next descriptor. */
420 if ((bd.flags & FEC_BD_W) != 0) {
421 addr = s->erdsr;
422 } else {
423 addr += 8;
426 s->rx_descriptor = addr;
427 mcf_fec_enable_rx(s);
428 mcf_fec_update(s);
429 return size;
432 static CPUReadMemoryFunc * const mcf_fec_readfn[] = {
433 mcf_fec_read,
434 mcf_fec_read,
435 mcf_fec_read
438 static CPUWriteMemoryFunc * const mcf_fec_writefn[] = {
439 mcf_fec_write,
440 mcf_fec_write,
441 mcf_fec_write
444 static void mcf_fec_cleanup(VLANClientState *nc)
446 mcf_fec_state *s = DO_UPCAST(NICState, nc, nc)->opaque;
448 cpu_unregister_io_memory(s->mmio_index);
450 qemu_free(s);
453 static NetClientInfo net_mcf_fec_info = {
454 .type = NET_CLIENT_TYPE_NIC,
455 .size = sizeof(NICState),
456 .can_receive = mcf_fec_can_receive,
457 .receive = mcf_fec_receive,
458 .cleanup = mcf_fec_cleanup,
461 void mcf_fec_init(NICInfo *nd, target_phys_addr_t base, qemu_irq *irq)
463 mcf_fec_state *s;
465 qemu_check_nic_model(nd, "mcf_fec");
467 s = (mcf_fec_state *)qemu_mallocz(sizeof(mcf_fec_state));
468 s->irq = irq;
469 s->mmio_index = cpu_register_io_memory(mcf_fec_readfn,
470 mcf_fec_writefn, s);
471 cpu_register_physical_memory(base, 0x400, s->mmio_index);
473 memcpy(s->conf.macaddr.a, nd->macaddr, sizeof(nd->macaddr));
474 s->conf.vlan = nd->vlan;
475 s->conf.peer = nd->netdev;
477 s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, nd->model, nd->name, s);
479 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);