intel_iommu: remove X86_IOMMU_PCI_DEVFN_MAX
[qemu.git] / migration / ram.c
blob021d583b9bdf89882eea9341c54a6fef6668ec3b
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include <zlib.h>
31 #include "qapi-event.h"
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "migration/page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/qmp/qerror.h"
46 #include "trace.h"
47 #include "exec/ram_addr.h"
48 #include "exec/target_page.h"
49 #include "qemu/rcu_queue.h"
50 #include "migration/colo.h"
51 #include "migration/block.h"
53 /***********************************************************/
54 /* ram save/restore */
56 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
57 * worked for pages that where filled with the same char. We switched
58 * it to only search for the zero value. And to avoid confusion with
59 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
63 #define RAM_SAVE_FLAG_ZERO 0x02
64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
65 #define RAM_SAVE_FLAG_PAGE 0x08
66 #define RAM_SAVE_FLAG_EOS 0x10
67 #define RAM_SAVE_FLAG_CONTINUE 0x20
68 #define RAM_SAVE_FLAG_XBZRLE 0x40
69 /* 0x80 is reserved in migration.h start with 0x100 next */
70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
72 static inline bool is_zero_range(uint8_t *p, uint64_t size)
74 return buffer_is_zero(p, size);
77 XBZRLECacheStats xbzrle_counters;
79 /* struct contains XBZRLE cache and a static page
80 used by the compression */
81 static struct {
82 /* buffer used for XBZRLE encoding */
83 uint8_t *encoded_buf;
84 /* buffer for storing page content */
85 uint8_t *current_buf;
86 /* Cache for XBZRLE, Protected by lock. */
87 PageCache *cache;
88 QemuMutex lock;
89 /* it will store a page full of zeros */
90 uint8_t *zero_target_page;
91 /* buffer used for XBZRLE decoding */
92 uint8_t *decoded_buf;
93 } XBZRLE;
95 static void XBZRLE_cache_lock(void)
97 if (migrate_use_xbzrle())
98 qemu_mutex_lock(&XBZRLE.lock);
101 static void XBZRLE_cache_unlock(void)
103 if (migrate_use_xbzrle())
104 qemu_mutex_unlock(&XBZRLE.lock);
108 * xbzrle_cache_resize: resize the xbzrle cache
110 * This function is called from qmp_migrate_set_cache_size in main
111 * thread, possibly while a migration is in progress. A running
112 * migration may be using the cache and might finish during this call,
113 * hence changes to the cache are protected by XBZRLE.lock().
115 * Returns 0 for success or -1 for error
117 * @new_size: new cache size
118 * @errp: set *errp if the check failed, with reason
120 int xbzrle_cache_resize(int64_t new_size, Error **errp)
122 PageCache *new_cache;
123 int64_t ret = 0;
125 /* Check for truncation */
126 if (new_size != (size_t)new_size) {
127 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
128 "exceeding address space");
129 return -1;
132 if (new_size == migrate_xbzrle_cache_size()) {
133 /* nothing to do */
134 return 0;
137 XBZRLE_cache_lock();
139 if (XBZRLE.cache != NULL) {
140 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
141 if (!new_cache) {
142 ret = -1;
143 goto out;
146 cache_fini(XBZRLE.cache);
147 XBZRLE.cache = new_cache;
149 out:
150 XBZRLE_cache_unlock();
151 return ret;
154 static void ramblock_recv_map_init(void)
156 RAMBlock *rb;
158 RAMBLOCK_FOREACH(rb) {
159 assert(!rb->receivedmap);
160 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
164 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
166 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
167 rb->receivedmap);
170 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
172 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
175 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
176 size_t nr)
178 bitmap_set_atomic(rb->receivedmap,
179 ramblock_recv_bitmap_offset(host_addr, rb),
180 nr);
184 * An outstanding page request, on the source, having been received
185 * and queued
187 struct RAMSrcPageRequest {
188 RAMBlock *rb;
189 hwaddr offset;
190 hwaddr len;
192 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
195 /* State of RAM for migration */
196 struct RAMState {
197 /* QEMUFile used for this migration */
198 QEMUFile *f;
199 /* Last block that we have visited searching for dirty pages */
200 RAMBlock *last_seen_block;
201 /* Last block from where we have sent data */
202 RAMBlock *last_sent_block;
203 /* Last dirty target page we have sent */
204 ram_addr_t last_page;
205 /* last ram version we have seen */
206 uint32_t last_version;
207 /* We are in the first round */
208 bool ram_bulk_stage;
209 /* How many times we have dirty too many pages */
210 int dirty_rate_high_cnt;
211 /* these variables are used for bitmap sync */
212 /* last time we did a full bitmap_sync */
213 int64_t time_last_bitmap_sync;
214 /* bytes transferred at start_time */
215 uint64_t bytes_xfer_prev;
216 /* number of dirty pages since start_time */
217 uint64_t num_dirty_pages_period;
218 /* xbzrle misses since the beginning of the period */
219 uint64_t xbzrle_cache_miss_prev;
220 /* number of iterations at the beginning of period */
221 uint64_t iterations_prev;
222 /* Iterations since start */
223 uint64_t iterations;
224 /* number of dirty bits in the bitmap */
225 uint64_t migration_dirty_pages;
226 /* protects modification of the bitmap */
227 QemuMutex bitmap_mutex;
228 /* The RAMBlock used in the last src_page_requests */
229 RAMBlock *last_req_rb;
230 /* Queue of outstanding page requests from the destination */
231 QemuMutex src_page_req_mutex;
232 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
234 typedef struct RAMState RAMState;
236 static RAMState *ram_state;
238 uint64_t ram_bytes_remaining(void)
240 return ram_state->migration_dirty_pages * TARGET_PAGE_SIZE;
243 MigrationStats ram_counters;
245 /* used by the search for pages to send */
246 struct PageSearchStatus {
247 /* Current block being searched */
248 RAMBlock *block;
249 /* Current page to search from */
250 unsigned long page;
251 /* Set once we wrap around */
252 bool complete_round;
254 typedef struct PageSearchStatus PageSearchStatus;
256 struct CompressParam {
257 bool done;
258 bool quit;
259 QEMUFile *file;
260 QemuMutex mutex;
261 QemuCond cond;
262 RAMBlock *block;
263 ram_addr_t offset;
265 typedef struct CompressParam CompressParam;
267 struct DecompressParam {
268 bool done;
269 bool quit;
270 QemuMutex mutex;
271 QemuCond cond;
272 void *des;
273 uint8_t *compbuf;
274 int len;
276 typedef struct DecompressParam DecompressParam;
278 static CompressParam *comp_param;
279 static QemuThread *compress_threads;
280 /* comp_done_cond is used to wake up the migration thread when
281 * one of the compression threads has finished the compression.
282 * comp_done_lock is used to co-work with comp_done_cond.
284 static QemuMutex comp_done_lock;
285 static QemuCond comp_done_cond;
286 /* The empty QEMUFileOps will be used by file in CompressParam */
287 static const QEMUFileOps empty_ops = { };
289 static DecompressParam *decomp_param;
290 static QemuThread *decompress_threads;
291 static QemuMutex decomp_done_lock;
292 static QemuCond decomp_done_cond;
294 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
295 ram_addr_t offset);
297 static void *do_data_compress(void *opaque)
299 CompressParam *param = opaque;
300 RAMBlock *block;
301 ram_addr_t offset;
303 qemu_mutex_lock(&param->mutex);
304 while (!param->quit) {
305 if (param->block) {
306 block = param->block;
307 offset = param->offset;
308 param->block = NULL;
309 qemu_mutex_unlock(&param->mutex);
311 do_compress_ram_page(param->file, block, offset);
313 qemu_mutex_lock(&comp_done_lock);
314 param->done = true;
315 qemu_cond_signal(&comp_done_cond);
316 qemu_mutex_unlock(&comp_done_lock);
318 qemu_mutex_lock(&param->mutex);
319 } else {
320 qemu_cond_wait(&param->cond, &param->mutex);
323 qemu_mutex_unlock(&param->mutex);
325 return NULL;
328 static inline void terminate_compression_threads(void)
330 int idx, thread_count;
332 thread_count = migrate_compress_threads();
334 for (idx = 0; idx < thread_count; idx++) {
335 qemu_mutex_lock(&comp_param[idx].mutex);
336 comp_param[idx].quit = true;
337 qemu_cond_signal(&comp_param[idx].cond);
338 qemu_mutex_unlock(&comp_param[idx].mutex);
342 static void compress_threads_save_cleanup(void)
344 int i, thread_count;
346 if (!migrate_use_compression()) {
347 return;
349 terminate_compression_threads();
350 thread_count = migrate_compress_threads();
351 for (i = 0; i < thread_count; i++) {
352 qemu_thread_join(compress_threads + i);
353 qemu_fclose(comp_param[i].file);
354 qemu_mutex_destroy(&comp_param[i].mutex);
355 qemu_cond_destroy(&comp_param[i].cond);
357 qemu_mutex_destroy(&comp_done_lock);
358 qemu_cond_destroy(&comp_done_cond);
359 g_free(compress_threads);
360 g_free(comp_param);
361 compress_threads = NULL;
362 comp_param = NULL;
365 static void compress_threads_save_setup(void)
367 int i, thread_count;
369 if (!migrate_use_compression()) {
370 return;
372 thread_count = migrate_compress_threads();
373 compress_threads = g_new0(QemuThread, thread_count);
374 comp_param = g_new0(CompressParam, thread_count);
375 qemu_cond_init(&comp_done_cond);
376 qemu_mutex_init(&comp_done_lock);
377 for (i = 0; i < thread_count; i++) {
378 /* comp_param[i].file is just used as a dummy buffer to save data,
379 * set its ops to empty.
381 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
382 comp_param[i].done = true;
383 comp_param[i].quit = false;
384 qemu_mutex_init(&comp_param[i].mutex);
385 qemu_cond_init(&comp_param[i].cond);
386 qemu_thread_create(compress_threads + i, "compress",
387 do_data_compress, comp_param + i,
388 QEMU_THREAD_JOINABLE);
392 /* Multiple fd's */
394 struct MultiFDSendParams {
395 uint8_t id;
396 char *name;
397 QemuThread thread;
398 QemuSemaphore sem;
399 QemuMutex mutex;
400 bool quit;
402 typedef struct MultiFDSendParams MultiFDSendParams;
404 struct {
405 MultiFDSendParams *params;
406 /* number of created threads */
407 int count;
408 } *multifd_send_state;
410 static void terminate_multifd_send_threads(Error *errp)
412 int i;
414 for (i = 0; i < multifd_send_state->count; i++) {
415 MultiFDSendParams *p = &multifd_send_state->params[i];
417 qemu_mutex_lock(&p->mutex);
418 p->quit = true;
419 qemu_sem_post(&p->sem);
420 qemu_mutex_unlock(&p->mutex);
424 int multifd_save_cleanup(Error **errp)
426 int i;
427 int ret = 0;
429 if (!migrate_use_multifd()) {
430 return 0;
432 terminate_multifd_send_threads(NULL);
433 for (i = 0; i < multifd_send_state->count; i++) {
434 MultiFDSendParams *p = &multifd_send_state->params[i];
436 qemu_thread_join(&p->thread);
437 qemu_mutex_destroy(&p->mutex);
438 qemu_sem_destroy(&p->sem);
439 g_free(p->name);
440 p->name = NULL;
442 g_free(multifd_send_state->params);
443 multifd_send_state->params = NULL;
444 g_free(multifd_send_state);
445 multifd_send_state = NULL;
446 return ret;
449 static void *multifd_send_thread(void *opaque)
451 MultiFDSendParams *p = opaque;
453 while (true) {
454 qemu_mutex_lock(&p->mutex);
455 if (p->quit) {
456 qemu_mutex_unlock(&p->mutex);
457 break;
459 qemu_mutex_unlock(&p->mutex);
460 qemu_sem_wait(&p->sem);
463 return NULL;
466 int multifd_save_setup(void)
468 int thread_count;
469 uint8_t i;
471 if (!migrate_use_multifd()) {
472 return 0;
474 thread_count = migrate_multifd_channels();
475 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
476 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
477 multifd_send_state->count = 0;
478 for (i = 0; i < thread_count; i++) {
479 MultiFDSendParams *p = &multifd_send_state->params[i];
481 qemu_mutex_init(&p->mutex);
482 qemu_sem_init(&p->sem, 0);
483 p->quit = false;
484 p->id = i;
485 p->name = g_strdup_printf("multifdsend_%d", i);
486 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
487 QEMU_THREAD_JOINABLE);
489 multifd_send_state->count++;
491 return 0;
494 struct MultiFDRecvParams {
495 uint8_t id;
496 char *name;
497 QemuThread thread;
498 QemuSemaphore sem;
499 QemuMutex mutex;
500 bool quit;
502 typedef struct MultiFDRecvParams MultiFDRecvParams;
504 struct {
505 MultiFDRecvParams *params;
506 /* number of created threads */
507 int count;
508 } *multifd_recv_state;
510 static void terminate_multifd_recv_threads(Error *errp)
512 int i;
514 for (i = 0; i < multifd_recv_state->count; i++) {
515 MultiFDRecvParams *p = &multifd_recv_state->params[i];
517 qemu_mutex_lock(&p->mutex);
518 p->quit = true;
519 qemu_sem_post(&p->sem);
520 qemu_mutex_unlock(&p->mutex);
524 int multifd_load_cleanup(Error **errp)
526 int i;
527 int ret = 0;
529 if (!migrate_use_multifd()) {
530 return 0;
532 terminate_multifd_recv_threads(NULL);
533 for (i = 0; i < multifd_recv_state->count; i++) {
534 MultiFDRecvParams *p = &multifd_recv_state->params[i];
536 qemu_thread_join(&p->thread);
537 qemu_mutex_destroy(&p->mutex);
538 qemu_sem_destroy(&p->sem);
539 g_free(p->name);
540 p->name = NULL;
542 g_free(multifd_recv_state->params);
543 multifd_recv_state->params = NULL;
544 g_free(multifd_recv_state);
545 multifd_recv_state = NULL;
547 return ret;
550 static void *multifd_recv_thread(void *opaque)
552 MultiFDRecvParams *p = opaque;
554 while (true) {
555 qemu_mutex_lock(&p->mutex);
556 if (p->quit) {
557 qemu_mutex_unlock(&p->mutex);
558 break;
560 qemu_mutex_unlock(&p->mutex);
561 qemu_sem_wait(&p->sem);
564 return NULL;
567 int multifd_load_setup(void)
569 int thread_count;
570 uint8_t i;
572 if (!migrate_use_multifd()) {
573 return 0;
575 thread_count = migrate_multifd_channels();
576 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
577 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
578 multifd_recv_state->count = 0;
579 for (i = 0; i < thread_count; i++) {
580 MultiFDRecvParams *p = &multifd_recv_state->params[i];
582 qemu_mutex_init(&p->mutex);
583 qemu_sem_init(&p->sem, 0);
584 p->quit = false;
585 p->id = i;
586 p->name = g_strdup_printf("multifdrecv_%d", i);
587 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
588 QEMU_THREAD_JOINABLE);
589 multifd_recv_state->count++;
591 return 0;
595 * save_page_header: write page header to wire
597 * If this is the 1st block, it also writes the block identification
599 * Returns the number of bytes written
601 * @f: QEMUFile where to send the data
602 * @block: block that contains the page we want to send
603 * @offset: offset inside the block for the page
604 * in the lower bits, it contains flags
606 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
607 ram_addr_t offset)
609 size_t size, len;
611 if (block == rs->last_sent_block) {
612 offset |= RAM_SAVE_FLAG_CONTINUE;
614 qemu_put_be64(f, offset);
615 size = 8;
617 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
618 len = strlen(block->idstr);
619 qemu_put_byte(f, len);
620 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
621 size += 1 + len;
622 rs->last_sent_block = block;
624 return size;
628 * mig_throttle_guest_down: throotle down the guest
630 * Reduce amount of guest cpu execution to hopefully slow down memory
631 * writes. If guest dirty memory rate is reduced below the rate at
632 * which we can transfer pages to the destination then we should be
633 * able to complete migration. Some workloads dirty memory way too
634 * fast and will not effectively converge, even with auto-converge.
636 static void mig_throttle_guest_down(void)
638 MigrationState *s = migrate_get_current();
639 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
640 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
642 /* We have not started throttling yet. Let's start it. */
643 if (!cpu_throttle_active()) {
644 cpu_throttle_set(pct_initial);
645 } else {
646 /* Throttling already on, just increase the rate */
647 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
652 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
654 * @rs: current RAM state
655 * @current_addr: address for the zero page
657 * Update the xbzrle cache to reflect a page that's been sent as all 0.
658 * The important thing is that a stale (not-yet-0'd) page be replaced
659 * by the new data.
660 * As a bonus, if the page wasn't in the cache it gets added so that
661 * when a small write is made into the 0'd page it gets XBZRLE sent.
663 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
665 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
666 return;
669 /* We don't care if this fails to allocate a new cache page
670 * as long as it updated an old one */
671 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
672 ram_counters.dirty_sync_count);
675 #define ENCODING_FLAG_XBZRLE 0x1
678 * save_xbzrle_page: compress and send current page
680 * Returns: 1 means that we wrote the page
681 * 0 means that page is identical to the one already sent
682 * -1 means that xbzrle would be longer than normal
684 * @rs: current RAM state
685 * @current_data: pointer to the address of the page contents
686 * @current_addr: addr of the page
687 * @block: block that contains the page we want to send
688 * @offset: offset inside the block for the page
689 * @last_stage: if we are at the completion stage
691 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
692 ram_addr_t current_addr, RAMBlock *block,
693 ram_addr_t offset, bool last_stage)
695 int encoded_len = 0, bytes_xbzrle;
696 uint8_t *prev_cached_page;
698 if (!cache_is_cached(XBZRLE.cache, current_addr,
699 ram_counters.dirty_sync_count)) {
700 xbzrle_counters.cache_miss++;
701 if (!last_stage) {
702 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
703 ram_counters.dirty_sync_count) == -1) {
704 return -1;
705 } else {
706 /* update *current_data when the page has been
707 inserted into cache */
708 *current_data = get_cached_data(XBZRLE.cache, current_addr);
711 return -1;
714 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
716 /* save current buffer into memory */
717 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
719 /* XBZRLE encoding (if there is no overflow) */
720 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
721 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
722 TARGET_PAGE_SIZE);
723 if (encoded_len == 0) {
724 trace_save_xbzrle_page_skipping();
725 return 0;
726 } else if (encoded_len == -1) {
727 trace_save_xbzrle_page_overflow();
728 xbzrle_counters.overflow++;
729 /* update data in the cache */
730 if (!last_stage) {
731 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
732 *current_data = prev_cached_page;
734 return -1;
737 /* we need to update the data in the cache, in order to get the same data */
738 if (!last_stage) {
739 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
742 /* Send XBZRLE based compressed page */
743 bytes_xbzrle = save_page_header(rs, rs->f, block,
744 offset | RAM_SAVE_FLAG_XBZRLE);
745 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
746 qemu_put_be16(rs->f, encoded_len);
747 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
748 bytes_xbzrle += encoded_len + 1 + 2;
749 xbzrle_counters.pages++;
750 xbzrle_counters.bytes += bytes_xbzrle;
751 ram_counters.transferred += bytes_xbzrle;
753 return 1;
757 * migration_bitmap_find_dirty: find the next dirty page from start
759 * Called with rcu_read_lock() to protect migration_bitmap
761 * Returns the byte offset within memory region of the start of a dirty page
763 * @rs: current RAM state
764 * @rb: RAMBlock where to search for dirty pages
765 * @start: page where we start the search
767 static inline
768 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
769 unsigned long start)
771 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
772 unsigned long *bitmap = rb->bmap;
773 unsigned long next;
775 if (rs->ram_bulk_stage && start > 0) {
776 next = start + 1;
777 } else {
778 next = find_next_bit(bitmap, size, start);
781 return next;
784 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
785 RAMBlock *rb,
786 unsigned long page)
788 bool ret;
790 ret = test_and_clear_bit(page, rb->bmap);
792 if (ret) {
793 rs->migration_dirty_pages--;
795 return ret;
798 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
799 ram_addr_t start, ram_addr_t length)
801 rs->migration_dirty_pages +=
802 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
803 &rs->num_dirty_pages_period);
807 * ram_pagesize_summary: calculate all the pagesizes of a VM
809 * Returns a summary bitmap of the page sizes of all RAMBlocks
811 * For VMs with just normal pages this is equivalent to the host page
812 * size. If it's got some huge pages then it's the OR of all the
813 * different page sizes.
815 uint64_t ram_pagesize_summary(void)
817 RAMBlock *block;
818 uint64_t summary = 0;
820 RAMBLOCK_FOREACH(block) {
821 summary |= block->page_size;
824 return summary;
827 static void migration_bitmap_sync(RAMState *rs)
829 RAMBlock *block;
830 int64_t end_time;
831 uint64_t bytes_xfer_now;
833 ram_counters.dirty_sync_count++;
835 if (!rs->time_last_bitmap_sync) {
836 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
839 trace_migration_bitmap_sync_start();
840 memory_global_dirty_log_sync();
842 qemu_mutex_lock(&rs->bitmap_mutex);
843 rcu_read_lock();
844 RAMBLOCK_FOREACH(block) {
845 migration_bitmap_sync_range(rs, block, 0, block->used_length);
847 rcu_read_unlock();
848 qemu_mutex_unlock(&rs->bitmap_mutex);
850 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
852 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
854 /* more than 1 second = 1000 millisecons */
855 if (end_time > rs->time_last_bitmap_sync + 1000) {
856 /* calculate period counters */
857 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
858 / (end_time - rs->time_last_bitmap_sync);
859 bytes_xfer_now = ram_counters.transferred;
861 /* During block migration the auto-converge logic incorrectly detects
862 * that ram migration makes no progress. Avoid this by disabling the
863 * throttling logic during the bulk phase of block migration. */
864 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
865 /* The following detection logic can be refined later. For now:
866 Check to see if the dirtied bytes is 50% more than the approx.
867 amount of bytes that just got transferred since the last time we
868 were in this routine. If that happens twice, start or increase
869 throttling */
871 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
872 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
873 (++rs->dirty_rate_high_cnt >= 2)) {
874 trace_migration_throttle();
875 rs->dirty_rate_high_cnt = 0;
876 mig_throttle_guest_down();
880 if (migrate_use_xbzrle()) {
881 if (rs->iterations_prev != rs->iterations) {
882 xbzrle_counters.cache_miss_rate =
883 (double)(xbzrle_counters.cache_miss -
884 rs->xbzrle_cache_miss_prev) /
885 (rs->iterations - rs->iterations_prev);
887 rs->iterations_prev = rs->iterations;
888 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
891 /* reset period counters */
892 rs->time_last_bitmap_sync = end_time;
893 rs->num_dirty_pages_period = 0;
894 rs->bytes_xfer_prev = bytes_xfer_now;
896 if (migrate_use_events()) {
897 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
902 * save_zero_page: send the zero page to the stream
904 * Returns the number of pages written.
906 * @rs: current RAM state
907 * @block: block that contains the page we want to send
908 * @offset: offset inside the block for the page
909 * @p: pointer to the page
911 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
912 uint8_t *p)
914 int pages = -1;
916 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
917 ram_counters.duplicate++;
918 ram_counters.transferred +=
919 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
920 qemu_put_byte(rs->f, 0);
921 ram_counters.transferred += 1;
922 pages = 1;
925 return pages;
928 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
930 if (!migrate_release_ram() || !migration_in_postcopy()) {
931 return;
934 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
938 * ram_save_page: send the given page to the stream
940 * Returns the number of pages written.
941 * < 0 - error
942 * >=0 - Number of pages written - this might legally be 0
943 * if xbzrle noticed the page was the same.
945 * @rs: current RAM state
946 * @block: block that contains the page we want to send
947 * @offset: offset inside the block for the page
948 * @last_stage: if we are at the completion stage
950 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
952 int pages = -1;
953 uint64_t bytes_xmit;
954 ram_addr_t current_addr;
955 uint8_t *p;
956 int ret;
957 bool send_async = true;
958 RAMBlock *block = pss->block;
959 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
961 p = block->host + offset;
962 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
964 /* In doubt sent page as normal */
965 bytes_xmit = 0;
966 ret = ram_control_save_page(rs->f, block->offset,
967 offset, TARGET_PAGE_SIZE, &bytes_xmit);
968 if (bytes_xmit) {
969 ram_counters.transferred += bytes_xmit;
970 pages = 1;
973 XBZRLE_cache_lock();
975 current_addr = block->offset + offset;
977 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
978 if (ret != RAM_SAVE_CONTROL_DELAYED) {
979 if (bytes_xmit > 0) {
980 ram_counters.normal++;
981 } else if (bytes_xmit == 0) {
982 ram_counters.duplicate++;
985 } else {
986 pages = save_zero_page(rs, block, offset, p);
987 if (pages > 0) {
988 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
989 * page would be stale
991 xbzrle_cache_zero_page(rs, current_addr);
992 ram_release_pages(block->idstr, offset, pages);
993 } else if (!rs->ram_bulk_stage &&
994 !migration_in_postcopy() && migrate_use_xbzrle()) {
995 pages = save_xbzrle_page(rs, &p, current_addr, block,
996 offset, last_stage);
997 if (!last_stage) {
998 /* Can't send this cached data async, since the cache page
999 * might get updated before it gets to the wire
1001 send_async = false;
1006 /* XBZRLE overflow or normal page */
1007 if (pages == -1) {
1008 ram_counters.transferred +=
1009 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE);
1010 if (send_async) {
1011 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE,
1012 migrate_release_ram() &
1013 migration_in_postcopy());
1014 } else {
1015 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE);
1017 ram_counters.transferred += TARGET_PAGE_SIZE;
1018 pages = 1;
1019 ram_counters.normal++;
1022 XBZRLE_cache_unlock();
1024 return pages;
1027 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
1028 ram_addr_t offset)
1030 RAMState *rs = ram_state;
1031 int bytes_sent, blen;
1032 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1034 bytes_sent = save_page_header(rs, f, block, offset |
1035 RAM_SAVE_FLAG_COMPRESS_PAGE);
1036 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
1037 migrate_compress_level());
1038 if (blen < 0) {
1039 bytes_sent = 0;
1040 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1041 error_report("compressed data failed!");
1042 } else {
1043 bytes_sent += blen;
1044 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1047 return bytes_sent;
1050 static void flush_compressed_data(RAMState *rs)
1052 int idx, len, thread_count;
1054 if (!migrate_use_compression()) {
1055 return;
1057 thread_count = migrate_compress_threads();
1059 qemu_mutex_lock(&comp_done_lock);
1060 for (idx = 0; idx < thread_count; idx++) {
1061 while (!comp_param[idx].done) {
1062 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1065 qemu_mutex_unlock(&comp_done_lock);
1067 for (idx = 0; idx < thread_count; idx++) {
1068 qemu_mutex_lock(&comp_param[idx].mutex);
1069 if (!comp_param[idx].quit) {
1070 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1071 ram_counters.transferred += len;
1073 qemu_mutex_unlock(&comp_param[idx].mutex);
1077 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1078 ram_addr_t offset)
1080 param->block = block;
1081 param->offset = offset;
1084 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1085 ram_addr_t offset)
1087 int idx, thread_count, bytes_xmit = -1, pages = -1;
1089 thread_count = migrate_compress_threads();
1090 qemu_mutex_lock(&comp_done_lock);
1091 while (true) {
1092 for (idx = 0; idx < thread_count; idx++) {
1093 if (comp_param[idx].done) {
1094 comp_param[idx].done = false;
1095 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1096 qemu_mutex_lock(&comp_param[idx].mutex);
1097 set_compress_params(&comp_param[idx], block, offset);
1098 qemu_cond_signal(&comp_param[idx].cond);
1099 qemu_mutex_unlock(&comp_param[idx].mutex);
1100 pages = 1;
1101 ram_counters.normal++;
1102 ram_counters.transferred += bytes_xmit;
1103 break;
1106 if (pages > 0) {
1107 break;
1108 } else {
1109 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1112 qemu_mutex_unlock(&comp_done_lock);
1114 return pages;
1118 * ram_save_compressed_page: compress the given page and send it to the stream
1120 * Returns the number of pages written.
1122 * @rs: current RAM state
1123 * @block: block that contains the page we want to send
1124 * @offset: offset inside the block for the page
1125 * @last_stage: if we are at the completion stage
1127 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss,
1128 bool last_stage)
1130 int pages = -1;
1131 uint64_t bytes_xmit = 0;
1132 uint8_t *p;
1133 int ret, blen;
1134 RAMBlock *block = pss->block;
1135 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1137 p = block->host + offset;
1139 ret = ram_control_save_page(rs->f, block->offset,
1140 offset, TARGET_PAGE_SIZE, &bytes_xmit);
1141 if (bytes_xmit) {
1142 ram_counters.transferred += bytes_xmit;
1143 pages = 1;
1145 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
1146 if (ret != RAM_SAVE_CONTROL_DELAYED) {
1147 if (bytes_xmit > 0) {
1148 ram_counters.normal++;
1149 } else if (bytes_xmit == 0) {
1150 ram_counters.duplicate++;
1153 } else {
1154 /* When starting the process of a new block, the first page of
1155 * the block should be sent out before other pages in the same
1156 * block, and all the pages in last block should have been sent
1157 * out, keeping this order is important, because the 'cont' flag
1158 * is used to avoid resending the block name.
1160 if (block != rs->last_sent_block) {
1161 flush_compressed_data(rs);
1162 pages = save_zero_page(rs, block, offset, p);
1163 if (pages == -1) {
1164 /* Make sure the first page is sent out before other pages */
1165 bytes_xmit = save_page_header(rs, rs->f, block, offset |
1166 RAM_SAVE_FLAG_COMPRESS_PAGE);
1167 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE,
1168 migrate_compress_level());
1169 if (blen > 0) {
1170 ram_counters.transferred += bytes_xmit + blen;
1171 ram_counters.normal++;
1172 pages = 1;
1173 } else {
1174 qemu_file_set_error(rs->f, blen);
1175 error_report("compressed data failed!");
1178 if (pages > 0) {
1179 ram_release_pages(block->idstr, offset, pages);
1181 } else {
1182 pages = save_zero_page(rs, block, offset, p);
1183 if (pages == -1) {
1184 pages = compress_page_with_multi_thread(rs, block, offset);
1185 } else {
1186 ram_release_pages(block->idstr, offset, pages);
1191 return pages;
1195 * find_dirty_block: find the next dirty page and update any state
1196 * associated with the search process.
1198 * Returns if a page is found
1200 * @rs: current RAM state
1201 * @pss: data about the state of the current dirty page scan
1202 * @again: set to false if the search has scanned the whole of RAM
1204 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1206 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1207 if (pss->complete_round && pss->block == rs->last_seen_block &&
1208 pss->page >= rs->last_page) {
1210 * We've been once around the RAM and haven't found anything.
1211 * Give up.
1213 *again = false;
1214 return false;
1216 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1217 /* Didn't find anything in this RAM Block */
1218 pss->page = 0;
1219 pss->block = QLIST_NEXT_RCU(pss->block, next);
1220 if (!pss->block) {
1221 /* Hit the end of the list */
1222 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1223 /* Flag that we've looped */
1224 pss->complete_round = true;
1225 rs->ram_bulk_stage = false;
1226 if (migrate_use_xbzrle()) {
1227 /* If xbzrle is on, stop using the data compression at this
1228 * point. In theory, xbzrle can do better than compression.
1230 flush_compressed_data(rs);
1233 /* Didn't find anything this time, but try again on the new block */
1234 *again = true;
1235 return false;
1236 } else {
1237 /* Can go around again, but... */
1238 *again = true;
1239 /* We've found something so probably don't need to */
1240 return true;
1245 * unqueue_page: gets a page of the queue
1247 * Helper for 'get_queued_page' - gets a page off the queue
1249 * Returns the block of the page (or NULL if none available)
1251 * @rs: current RAM state
1252 * @offset: used to return the offset within the RAMBlock
1254 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1256 RAMBlock *block = NULL;
1258 qemu_mutex_lock(&rs->src_page_req_mutex);
1259 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1260 struct RAMSrcPageRequest *entry =
1261 QSIMPLEQ_FIRST(&rs->src_page_requests);
1262 block = entry->rb;
1263 *offset = entry->offset;
1265 if (entry->len > TARGET_PAGE_SIZE) {
1266 entry->len -= TARGET_PAGE_SIZE;
1267 entry->offset += TARGET_PAGE_SIZE;
1268 } else {
1269 memory_region_unref(block->mr);
1270 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1271 g_free(entry);
1274 qemu_mutex_unlock(&rs->src_page_req_mutex);
1276 return block;
1280 * get_queued_page: unqueue a page from the postocpy requests
1282 * Skips pages that are already sent (!dirty)
1284 * Returns if a queued page is found
1286 * @rs: current RAM state
1287 * @pss: data about the state of the current dirty page scan
1289 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1291 RAMBlock *block;
1292 ram_addr_t offset;
1293 bool dirty;
1295 do {
1296 block = unqueue_page(rs, &offset);
1298 * We're sending this page, and since it's postcopy nothing else
1299 * will dirty it, and we must make sure it doesn't get sent again
1300 * even if this queue request was received after the background
1301 * search already sent it.
1303 if (block) {
1304 unsigned long page;
1306 page = offset >> TARGET_PAGE_BITS;
1307 dirty = test_bit(page, block->bmap);
1308 if (!dirty) {
1309 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1310 page, test_bit(page, block->unsentmap));
1311 } else {
1312 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1316 } while (block && !dirty);
1318 if (block) {
1320 * As soon as we start servicing pages out of order, then we have
1321 * to kill the bulk stage, since the bulk stage assumes
1322 * in (migration_bitmap_find_and_reset_dirty) that every page is
1323 * dirty, that's no longer true.
1325 rs->ram_bulk_stage = false;
1328 * We want the background search to continue from the queued page
1329 * since the guest is likely to want other pages near to the page
1330 * it just requested.
1332 pss->block = block;
1333 pss->page = offset >> TARGET_PAGE_BITS;
1336 return !!block;
1340 * migration_page_queue_free: drop any remaining pages in the ram
1341 * request queue
1343 * It should be empty at the end anyway, but in error cases there may
1344 * be some left. in case that there is any page left, we drop it.
1347 static void migration_page_queue_free(RAMState *rs)
1349 struct RAMSrcPageRequest *mspr, *next_mspr;
1350 /* This queue generally should be empty - but in the case of a failed
1351 * migration might have some droppings in.
1353 rcu_read_lock();
1354 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1355 memory_region_unref(mspr->rb->mr);
1356 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1357 g_free(mspr);
1359 rcu_read_unlock();
1363 * ram_save_queue_pages: queue the page for transmission
1365 * A request from postcopy destination for example.
1367 * Returns zero on success or negative on error
1369 * @rbname: Name of the RAMBLock of the request. NULL means the
1370 * same that last one.
1371 * @start: starting address from the start of the RAMBlock
1372 * @len: length (in bytes) to send
1374 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1376 RAMBlock *ramblock;
1377 RAMState *rs = ram_state;
1379 ram_counters.postcopy_requests++;
1380 rcu_read_lock();
1381 if (!rbname) {
1382 /* Reuse last RAMBlock */
1383 ramblock = rs->last_req_rb;
1385 if (!ramblock) {
1387 * Shouldn't happen, we can't reuse the last RAMBlock if
1388 * it's the 1st request.
1390 error_report("ram_save_queue_pages no previous block");
1391 goto err;
1393 } else {
1394 ramblock = qemu_ram_block_by_name(rbname);
1396 if (!ramblock) {
1397 /* We shouldn't be asked for a non-existent RAMBlock */
1398 error_report("ram_save_queue_pages no block '%s'", rbname);
1399 goto err;
1401 rs->last_req_rb = ramblock;
1403 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1404 if (start+len > ramblock->used_length) {
1405 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1406 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1407 __func__, start, len, ramblock->used_length);
1408 goto err;
1411 struct RAMSrcPageRequest *new_entry =
1412 g_malloc0(sizeof(struct RAMSrcPageRequest));
1413 new_entry->rb = ramblock;
1414 new_entry->offset = start;
1415 new_entry->len = len;
1417 memory_region_ref(ramblock->mr);
1418 qemu_mutex_lock(&rs->src_page_req_mutex);
1419 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1420 qemu_mutex_unlock(&rs->src_page_req_mutex);
1421 rcu_read_unlock();
1423 return 0;
1425 err:
1426 rcu_read_unlock();
1427 return -1;
1431 * ram_save_target_page: save one target page
1433 * Returns the number of pages written
1435 * @rs: current RAM state
1436 * @ms: current migration state
1437 * @pss: data about the page we want to send
1438 * @last_stage: if we are at the completion stage
1440 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
1441 bool last_stage)
1443 int res = 0;
1445 /* Check the pages is dirty and if it is send it */
1446 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
1448 * If xbzrle is on, stop using the data compression after first
1449 * round of migration even if compression is enabled. In theory,
1450 * xbzrle can do better than compression.
1452 if (migrate_use_compression() &&
1453 (rs->ram_bulk_stage || !migrate_use_xbzrle())) {
1454 res = ram_save_compressed_page(rs, pss, last_stage);
1455 } else {
1456 res = ram_save_page(rs, pss, last_stage);
1459 if (res < 0) {
1460 return res;
1462 if (pss->block->unsentmap) {
1463 clear_bit(pss->page, pss->block->unsentmap);
1467 return res;
1471 * ram_save_host_page: save a whole host page
1473 * Starting at *offset send pages up to the end of the current host
1474 * page. It's valid for the initial offset to point into the middle of
1475 * a host page in which case the remainder of the hostpage is sent.
1476 * Only dirty target pages are sent. Note that the host page size may
1477 * be a huge page for this block.
1478 * The saving stops at the boundary of the used_length of the block
1479 * if the RAMBlock isn't a multiple of the host page size.
1481 * Returns the number of pages written or negative on error
1483 * @rs: current RAM state
1484 * @ms: current migration state
1485 * @pss: data about the page we want to send
1486 * @last_stage: if we are at the completion stage
1488 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
1489 bool last_stage)
1491 int tmppages, pages = 0;
1492 size_t pagesize_bits =
1493 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
1495 do {
1496 tmppages = ram_save_target_page(rs, pss, last_stage);
1497 if (tmppages < 0) {
1498 return tmppages;
1501 pages += tmppages;
1502 pss->page++;
1503 } while ((pss->page & (pagesize_bits - 1)) &&
1504 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
1506 /* The offset we leave with is the last one we looked at */
1507 pss->page--;
1508 return pages;
1512 * ram_find_and_save_block: finds a dirty page and sends it to f
1514 * Called within an RCU critical section.
1516 * Returns the number of pages written where zero means no dirty pages
1518 * @rs: current RAM state
1519 * @last_stage: if we are at the completion stage
1521 * On systems where host-page-size > target-page-size it will send all the
1522 * pages in a host page that are dirty.
1525 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
1527 PageSearchStatus pss;
1528 int pages = 0;
1529 bool again, found;
1531 /* No dirty page as there is zero RAM */
1532 if (!ram_bytes_total()) {
1533 return pages;
1536 pss.block = rs->last_seen_block;
1537 pss.page = rs->last_page;
1538 pss.complete_round = false;
1540 if (!pss.block) {
1541 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1544 do {
1545 again = true;
1546 found = get_queued_page(rs, &pss);
1548 if (!found) {
1549 /* priority queue empty, so just search for something dirty */
1550 found = find_dirty_block(rs, &pss, &again);
1553 if (found) {
1554 pages = ram_save_host_page(rs, &pss, last_stage);
1556 } while (!pages && again);
1558 rs->last_seen_block = pss.block;
1559 rs->last_page = pss.page;
1561 return pages;
1564 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1566 uint64_t pages = size / TARGET_PAGE_SIZE;
1568 if (zero) {
1569 ram_counters.duplicate += pages;
1570 } else {
1571 ram_counters.normal += pages;
1572 ram_counters.transferred += size;
1573 qemu_update_position(f, size);
1577 uint64_t ram_bytes_total(void)
1579 RAMBlock *block;
1580 uint64_t total = 0;
1582 rcu_read_lock();
1583 RAMBLOCK_FOREACH(block) {
1584 total += block->used_length;
1586 rcu_read_unlock();
1587 return total;
1590 static void xbzrle_load_setup(void)
1592 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1595 static void xbzrle_load_cleanup(void)
1597 g_free(XBZRLE.decoded_buf);
1598 XBZRLE.decoded_buf = NULL;
1601 static void ram_state_cleanup(RAMState **rsp)
1603 migration_page_queue_free(*rsp);
1604 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
1605 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
1606 g_free(*rsp);
1607 *rsp = NULL;
1610 static void xbzrle_cleanup(void)
1612 XBZRLE_cache_lock();
1613 if (XBZRLE.cache) {
1614 cache_fini(XBZRLE.cache);
1615 g_free(XBZRLE.encoded_buf);
1616 g_free(XBZRLE.current_buf);
1617 g_free(XBZRLE.zero_target_page);
1618 XBZRLE.cache = NULL;
1619 XBZRLE.encoded_buf = NULL;
1620 XBZRLE.current_buf = NULL;
1621 XBZRLE.zero_target_page = NULL;
1623 XBZRLE_cache_unlock();
1626 static void ram_save_cleanup(void *opaque)
1628 RAMState **rsp = opaque;
1629 RAMBlock *block;
1631 /* caller have hold iothread lock or is in a bh, so there is
1632 * no writing race against this migration_bitmap
1634 memory_global_dirty_log_stop();
1636 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1637 g_free(block->bmap);
1638 block->bmap = NULL;
1639 g_free(block->unsentmap);
1640 block->unsentmap = NULL;
1643 xbzrle_cleanup();
1644 compress_threads_save_cleanup();
1645 ram_state_cleanup(rsp);
1648 static void ram_state_reset(RAMState *rs)
1650 rs->last_seen_block = NULL;
1651 rs->last_sent_block = NULL;
1652 rs->last_page = 0;
1653 rs->last_version = ram_list.version;
1654 rs->ram_bulk_stage = true;
1657 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1660 * 'expected' is the value you expect the bitmap mostly to be full
1661 * of; it won't bother printing lines that are all this value.
1662 * If 'todump' is null the migration bitmap is dumped.
1664 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1665 unsigned long pages)
1667 int64_t cur;
1668 int64_t linelen = 128;
1669 char linebuf[129];
1671 for (cur = 0; cur < pages; cur += linelen) {
1672 int64_t curb;
1673 bool found = false;
1675 * Last line; catch the case where the line length
1676 * is longer than remaining ram
1678 if (cur + linelen > pages) {
1679 linelen = pages - cur;
1681 for (curb = 0; curb < linelen; curb++) {
1682 bool thisbit = test_bit(cur + curb, todump);
1683 linebuf[curb] = thisbit ? '1' : '.';
1684 found = found || (thisbit != expected);
1686 if (found) {
1687 linebuf[curb] = '\0';
1688 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1693 /* **** functions for postcopy ***** */
1695 void ram_postcopy_migrated_memory_release(MigrationState *ms)
1697 struct RAMBlock *block;
1699 RAMBLOCK_FOREACH(block) {
1700 unsigned long *bitmap = block->bmap;
1701 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
1702 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
1704 while (run_start < range) {
1705 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1706 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
1707 (run_end - run_start) << TARGET_PAGE_BITS);
1708 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1714 * postcopy_send_discard_bm_ram: discard a RAMBlock
1716 * Returns zero on success
1718 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1719 * Note: At this point the 'unsentmap' is the processed bitmap combined
1720 * with the dirtymap; so a '1' means it's either dirty or unsent.
1722 * @ms: current migration state
1723 * @pds: state for postcopy
1724 * @start: RAMBlock starting page
1725 * @length: RAMBlock size
1727 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1728 PostcopyDiscardState *pds,
1729 RAMBlock *block)
1731 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
1732 unsigned long current;
1733 unsigned long *unsentmap = block->unsentmap;
1735 for (current = 0; current < end; ) {
1736 unsigned long one = find_next_bit(unsentmap, end, current);
1738 if (one <= end) {
1739 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1740 unsigned long discard_length;
1742 if (zero >= end) {
1743 discard_length = end - one;
1744 } else {
1745 discard_length = zero - one;
1747 if (discard_length) {
1748 postcopy_discard_send_range(ms, pds, one, discard_length);
1750 current = one + discard_length;
1751 } else {
1752 current = one;
1756 return 0;
1760 * postcopy_each_ram_send_discard: discard all RAMBlocks
1762 * Returns 0 for success or negative for error
1764 * Utility for the outgoing postcopy code.
1765 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1766 * passing it bitmap indexes and name.
1767 * (qemu_ram_foreach_block ends up passing unscaled lengths
1768 * which would mean postcopy code would have to deal with target page)
1770 * @ms: current migration state
1772 static int postcopy_each_ram_send_discard(MigrationState *ms)
1774 struct RAMBlock *block;
1775 int ret;
1777 RAMBLOCK_FOREACH(block) {
1778 PostcopyDiscardState *pds =
1779 postcopy_discard_send_init(ms, block->idstr);
1782 * Postcopy sends chunks of bitmap over the wire, but it
1783 * just needs indexes at this point, avoids it having
1784 * target page specific code.
1786 ret = postcopy_send_discard_bm_ram(ms, pds, block);
1787 postcopy_discard_send_finish(ms, pds);
1788 if (ret) {
1789 return ret;
1793 return 0;
1797 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
1799 * Helper for postcopy_chunk_hostpages; it's called twice to
1800 * canonicalize the two bitmaps, that are similar, but one is
1801 * inverted.
1803 * Postcopy requires that all target pages in a hostpage are dirty or
1804 * clean, not a mix. This function canonicalizes the bitmaps.
1806 * @ms: current migration state
1807 * @unsent_pass: if true we need to canonicalize partially unsent host pages
1808 * otherwise we need to canonicalize partially dirty host pages
1809 * @block: block that contains the page we want to canonicalize
1810 * @pds: state for postcopy
1812 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1813 RAMBlock *block,
1814 PostcopyDiscardState *pds)
1816 RAMState *rs = ram_state;
1817 unsigned long *bitmap = block->bmap;
1818 unsigned long *unsentmap = block->unsentmap;
1819 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
1820 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1821 unsigned long run_start;
1823 if (block->page_size == TARGET_PAGE_SIZE) {
1824 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1825 return;
1828 if (unsent_pass) {
1829 /* Find a sent page */
1830 run_start = find_next_zero_bit(unsentmap, pages, 0);
1831 } else {
1832 /* Find a dirty page */
1833 run_start = find_next_bit(bitmap, pages, 0);
1836 while (run_start < pages) {
1837 bool do_fixup = false;
1838 unsigned long fixup_start_addr;
1839 unsigned long host_offset;
1842 * If the start of this run of pages is in the middle of a host
1843 * page, then we need to fixup this host page.
1845 host_offset = run_start % host_ratio;
1846 if (host_offset) {
1847 do_fixup = true;
1848 run_start -= host_offset;
1849 fixup_start_addr = run_start;
1850 /* For the next pass */
1851 run_start = run_start + host_ratio;
1852 } else {
1853 /* Find the end of this run */
1854 unsigned long run_end;
1855 if (unsent_pass) {
1856 run_end = find_next_bit(unsentmap, pages, run_start + 1);
1857 } else {
1858 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
1861 * If the end isn't at the start of a host page, then the
1862 * run doesn't finish at the end of a host page
1863 * and we need to discard.
1865 host_offset = run_end % host_ratio;
1866 if (host_offset) {
1867 do_fixup = true;
1868 fixup_start_addr = run_end - host_offset;
1870 * This host page has gone, the next loop iteration starts
1871 * from after the fixup
1873 run_start = fixup_start_addr + host_ratio;
1874 } else {
1876 * No discards on this iteration, next loop starts from
1877 * next sent/dirty page
1879 run_start = run_end + 1;
1883 if (do_fixup) {
1884 unsigned long page;
1886 /* Tell the destination to discard this page */
1887 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1888 /* For the unsent_pass we:
1889 * discard partially sent pages
1890 * For the !unsent_pass (dirty) we:
1891 * discard partially dirty pages that were sent
1892 * (any partially sent pages were already discarded
1893 * by the previous unsent_pass)
1895 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1896 host_ratio);
1899 /* Clean up the bitmap */
1900 for (page = fixup_start_addr;
1901 page < fixup_start_addr + host_ratio; page++) {
1902 /* All pages in this host page are now not sent */
1903 set_bit(page, unsentmap);
1906 * Remark them as dirty, updating the count for any pages
1907 * that weren't previously dirty.
1909 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
1913 if (unsent_pass) {
1914 /* Find the next sent page for the next iteration */
1915 run_start = find_next_zero_bit(unsentmap, pages, run_start);
1916 } else {
1917 /* Find the next dirty page for the next iteration */
1918 run_start = find_next_bit(bitmap, pages, run_start);
1924 * postcopy_chuck_hostpages: discrad any partially sent host page
1926 * Utility for the outgoing postcopy code.
1928 * Discard any partially sent host-page size chunks, mark any partially
1929 * dirty host-page size chunks as all dirty. In this case the host-page
1930 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
1932 * Returns zero on success
1934 * @ms: current migration state
1935 * @block: block we want to work with
1937 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
1939 PostcopyDiscardState *pds =
1940 postcopy_discard_send_init(ms, block->idstr);
1942 /* First pass: Discard all partially sent host pages */
1943 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1945 * Second pass: Ensure that all partially dirty host pages are made
1946 * fully dirty.
1948 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1950 postcopy_discard_send_finish(ms, pds);
1951 return 0;
1955 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
1957 * Returns zero on success
1959 * Transmit the set of pages to be discarded after precopy to the target
1960 * these are pages that:
1961 * a) Have been previously transmitted but are now dirty again
1962 * b) Pages that have never been transmitted, this ensures that
1963 * any pages on the destination that have been mapped by background
1964 * tasks get discarded (transparent huge pages is the specific concern)
1965 * Hopefully this is pretty sparse
1967 * @ms: current migration state
1969 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1971 RAMState *rs = ram_state;
1972 RAMBlock *block;
1973 int ret;
1975 rcu_read_lock();
1977 /* This should be our last sync, the src is now paused */
1978 migration_bitmap_sync(rs);
1980 /* Easiest way to make sure we don't resume in the middle of a host-page */
1981 rs->last_seen_block = NULL;
1982 rs->last_sent_block = NULL;
1983 rs->last_page = 0;
1985 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1986 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1987 unsigned long *bitmap = block->bmap;
1988 unsigned long *unsentmap = block->unsentmap;
1990 if (!unsentmap) {
1991 /* We don't have a safe way to resize the sentmap, so
1992 * if the bitmap was resized it will be NULL at this
1993 * point.
1995 error_report("migration ram resized during precopy phase");
1996 rcu_read_unlock();
1997 return -EINVAL;
1999 /* Deal with TPS != HPS and huge pages */
2000 ret = postcopy_chunk_hostpages(ms, block);
2001 if (ret) {
2002 rcu_read_unlock();
2003 return ret;
2007 * Update the unsentmap to be unsentmap = unsentmap | dirty
2009 bitmap_or(unsentmap, unsentmap, bitmap, pages);
2010 #ifdef DEBUG_POSTCOPY
2011 ram_debug_dump_bitmap(unsentmap, true, pages);
2012 #endif
2014 trace_ram_postcopy_send_discard_bitmap();
2016 ret = postcopy_each_ram_send_discard(ms);
2017 rcu_read_unlock();
2019 return ret;
2023 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2025 * Returns zero on success
2027 * @rbname: name of the RAMBlock of the request. NULL means the
2028 * same that last one.
2029 * @start: RAMBlock starting page
2030 * @length: RAMBlock size
2032 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2034 int ret = -1;
2036 trace_ram_discard_range(rbname, start, length);
2038 rcu_read_lock();
2039 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2041 if (!rb) {
2042 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2043 goto err;
2046 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2047 length >> qemu_target_page_bits());
2048 ret = ram_block_discard_range(rb, start, length);
2050 err:
2051 rcu_read_unlock();
2053 return ret;
2057 * For every allocation, we will try not to crash the VM if the
2058 * allocation failed.
2060 static int xbzrle_init(void)
2062 Error *local_err = NULL;
2064 if (!migrate_use_xbzrle()) {
2065 return 0;
2068 XBZRLE_cache_lock();
2070 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2071 if (!XBZRLE.zero_target_page) {
2072 error_report("%s: Error allocating zero page", __func__);
2073 goto err_out;
2076 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2077 TARGET_PAGE_SIZE, &local_err);
2078 if (!XBZRLE.cache) {
2079 error_report_err(local_err);
2080 goto free_zero_page;
2083 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2084 if (!XBZRLE.encoded_buf) {
2085 error_report("%s: Error allocating encoded_buf", __func__);
2086 goto free_cache;
2089 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2090 if (!XBZRLE.current_buf) {
2091 error_report("%s: Error allocating current_buf", __func__);
2092 goto free_encoded_buf;
2095 /* We are all good */
2096 XBZRLE_cache_unlock();
2097 return 0;
2099 free_encoded_buf:
2100 g_free(XBZRLE.encoded_buf);
2101 XBZRLE.encoded_buf = NULL;
2102 free_cache:
2103 cache_fini(XBZRLE.cache);
2104 XBZRLE.cache = NULL;
2105 free_zero_page:
2106 g_free(XBZRLE.zero_target_page);
2107 XBZRLE.zero_target_page = NULL;
2108 err_out:
2109 XBZRLE_cache_unlock();
2110 return -ENOMEM;
2113 static int ram_state_init(RAMState **rsp)
2115 *rsp = g_try_new0(RAMState, 1);
2117 if (!*rsp) {
2118 error_report("%s: Init ramstate fail", __func__);
2119 return -1;
2122 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2123 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2124 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2127 * Count the total number of pages used by ram blocks not including any
2128 * gaps due to alignment or unplugs.
2130 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2132 ram_state_reset(*rsp);
2134 return 0;
2137 static void ram_list_init_bitmaps(void)
2139 RAMBlock *block;
2140 unsigned long pages;
2142 /* Skip setting bitmap if there is no RAM */
2143 if (ram_bytes_total()) {
2144 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2145 pages = block->max_length >> TARGET_PAGE_BITS;
2146 block->bmap = bitmap_new(pages);
2147 bitmap_set(block->bmap, 0, pages);
2148 if (migrate_postcopy_ram()) {
2149 block->unsentmap = bitmap_new(pages);
2150 bitmap_set(block->unsentmap, 0, pages);
2156 static void ram_init_bitmaps(RAMState *rs)
2158 /* For memory_global_dirty_log_start below. */
2159 qemu_mutex_lock_iothread();
2160 qemu_mutex_lock_ramlist();
2161 rcu_read_lock();
2163 ram_list_init_bitmaps();
2164 memory_global_dirty_log_start();
2165 migration_bitmap_sync(rs);
2167 rcu_read_unlock();
2168 qemu_mutex_unlock_ramlist();
2169 qemu_mutex_unlock_iothread();
2172 static int ram_init_all(RAMState **rsp)
2174 if (ram_state_init(rsp)) {
2175 return -1;
2178 if (xbzrle_init()) {
2179 ram_state_cleanup(rsp);
2180 return -1;
2183 ram_init_bitmaps(*rsp);
2185 return 0;
2189 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2190 * long-running RCU critical section. When rcu-reclaims in the code
2191 * start to become numerous it will be necessary to reduce the
2192 * granularity of these critical sections.
2196 * ram_save_setup: Setup RAM for migration
2198 * Returns zero to indicate success and negative for error
2200 * @f: QEMUFile where to send the data
2201 * @opaque: RAMState pointer
2203 static int ram_save_setup(QEMUFile *f, void *opaque)
2205 RAMState **rsp = opaque;
2206 RAMBlock *block;
2208 /* migration has already setup the bitmap, reuse it. */
2209 if (!migration_in_colo_state()) {
2210 if (ram_init_all(rsp) != 0) {
2211 return -1;
2214 (*rsp)->f = f;
2216 rcu_read_lock();
2218 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2220 RAMBLOCK_FOREACH(block) {
2221 qemu_put_byte(f, strlen(block->idstr));
2222 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2223 qemu_put_be64(f, block->used_length);
2224 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
2225 qemu_put_be64(f, block->page_size);
2229 rcu_read_unlock();
2230 compress_threads_save_setup();
2232 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2233 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2235 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2237 return 0;
2241 * ram_save_iterate: iterative stage for migration
2243 * Returns zero to indicate success and negative for error
2245 * @f: QEMUFile where to send the data
2246 * @opaque: RAMState pointer
2248 static int ram_save_iterate(QEMUFile *f, void *opaque)
2250 RAMState **temp = opaque;
2251 RAMState *rs = *temp;
2252 int ret;
2253 int i;
2254 int64_t t0;
2255 int done = 0;
2257 rcu_read_lock();
2258 if (ram_list.version != rs->last_version) {
2259 ram_state_reset(rs);
2262 /* Read version before ram_list.blocks */
2263 smp_rmb();
2265 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2267 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2268 i = 0;
2269 while ((ret = qemu_file_rate_limit(f)) == 0) {
2270 int pages;
2272 pages = ram_find_and_save_block(rs, false);
2273 /* no more pages to sent */
2274 if (pages == 0) {
2275 done = 1;
2276 break;
2278 rs->iterations++;
2280 /* we want to check in the 1st loop, just in case it was the 1st time
2281 and we had to sync the dirty bitmap.
2282 qemu_get_clock_ns() is a bit expensive, so we only check each some
2283 iterations
2285 if ((i & 63) == 0) {
2286 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2287 if (t1 > MAX_WAIT) {
2288 trace_ram_save_iterate_big_wait(t1, i);
2289 break;
2292 i++;
2294 flush_compressed_data(rs);
2295 rcu_read_unlock();
2298 * Must occur before EOS (or any QEMUFile operation)
2299 * because of RDMA protocol.
2301 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2303 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2304 ram_counters.transferred += 8;
2306 ret = qemu_file_get_error(f);
2307 if (ret < 0) {
2308 return ret;
2311 return done;
2315 * ram_save_complete: function called to send the remaining amount of ram
2317 * Returns zero to indicate success
2319 * Called with iothread lock
2321 * @f: QEMUFile where to send the data
2322 * @opaque: RAMState pointer
2324 static int ram_save_complete(QEMUFile *f, void *opaque)
2326 RAMState **temp = opaque;
2327 RAMState *rs = *temp;
2329 rcu_read_lock();
2331 if (!migration_in_postcopy()) {
2332 migration_bitmap_sync(rs);
2335 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2337 /* try transferring iterative blocks of memory */
2339 /* flush all remaining blocks regardless of rate limiting */
2340 while (true) {
2341 int pages;
2343 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
2344 /* no more blocks to sent */
2345 if (pages == 0) {
2346 break;
2350 flush_compressed_data(rs);
2351 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2353 rcu_read_unlock();
2355 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2357 return 0;
2360 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2361 uint64_t *non_postcopiable_pending,
2362 uint64_t *postcopiable_pending)
2364 RAMState **temp = opaque;
2365 RAMState *rs = *temp;
2366 uint64_t remaining_size;
2368 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2370 if (!migration_in_postcopy() &&
2371 remaining_size < max_size) {
2372 qemu_mutex_lock_iothread();
2373 rcu_read_lock();
2374 migration_bitmap_sync(rs);
2375 rcu_read_unlock();
2376 qemu_mutex_unlock_iothread();
2377 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2380 if (migrate_postcopy_ram()) {
2381 /* We can do postcopy, and all the data is postcopiable */
2382 *postcopiable_pending += remaining_size;
2383 } else {
2384 *non_postcopiable_pending += remaining_size;
2388 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2390 unsigned int xh_len;
2391 int xh_flags;
2392 uint8_t *loaded_data;
2394 /* extract RLE header */
2395 xh_flags = qemu_get_byte(f);
2396 xh_len = qemu_get_be16(f);
2398 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2399 error_report("Failed to load XBZRLE page - wrong compression!");
2400 return -1;
2403 if (xh_len > TARGET_PAGE_SIZE) {
2404 error_report("Failed to load XBZRLE page - len overflow!");
2405 return -1;
2407 loaded_data = XBZRLE.decoded_buf;
2408 /* load data and decode */
2409 /* it can change loaded_data to point to an internal buffer */
2410 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2412 /* decode RLE */
2413 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2414 TARGET_PAGE_SIZE) == -1) {
2415 error_report("Failed to load XBZRLE page - decode error!");
2416 return -1;
2419 return 0;
2423 * ram_block_from_stream: read a RAMBlock id from the migration stream
2425 * Must be called from within a rcu critical section.
2427 * Returns a pointer from within the RCU-protected ram_list.
2429 * @f: QEMUFile where to read the data from
2430 * @flags: Page flags (mostly to see if it's a continuation of previous block)
2432 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
2434 static RAMBlock *block = NULL;
2435 char id[256];
2436 uint8_t len;
2438 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2439 if (!block) {
2440 error_report("Ack, bad migration stream!");
2441 return NULL;
2443 return block;
2446 len = qemu_get_byte(f);
2447 qemu_get_buffer(f, (uint8_t *)id, len);
2448 id[len] = 0;
2450 block = qemu_ram_block_by_name(id);
2451 if (!block) {
2452 error_report("Can't find block %s", id);
2453 return NULL;
2456 return block;
2459 static inline void *host_from_ram_block_offset(RAMBlock *block,
2460 ram_addr_t offset)
2462 if (!offset_in_ramblock(block, offset)) {
2463 return NULL;
2466 return block->host + offset;
2470 * ram_handle_compressed: handle the zero page case
2472 * If a page (or a whole RDMA chunk) has been
2473 * determined to be zero, then zap it.
2475 * @host: host address for the zero page
2476 * @ch: what the page is filled from. We only support zero
2477 * @size: size of the zero page
2479 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2481 if (ch != 0 || !is_zero_range(host, size)) {
2482 memset(host, ch, size);
2486 static void *do_data_decompress(void *opaque)
2488 DecompressParam *param = opaque;
2489 unsigned long pagesize;
2490 uint8_t *des;
2491 int len;
2493 qemu_mutex_lock(&param->mutex);
2494 while (!param->quit) {
2495 if (param->des) {
2496 des = param->des;
2497 len = param->len;
2498 param->des = 0;
2499 qemu_mutex_unlock(&param->mutex);
2501 pagesize = TARGET_PAGE_SIZE;
2502 /* uncompress() will return failed in some case, especially
2503 * when the page is dirted when doing the compression, it's
2504 * not a problem because the dirty page will be retransferred
2505 * and uncompress() won't break the data in other pages.
2507 uncompress((Bytef *)des, &pagesize,
2508 (const Bytef *)param->compbuf, len);
2510 qemu_mutex_lock(&decomp_done_lock);
2511 param->done = true;
2512 qemu_cond_signal(&decomp_done_cond);
2513 qemu_mutex_unlock(&decomp_done_lock);
2515 qemu_mutex_lock(&param->mutex);
2516 } else {
2517 qemu_cond_wait(&param->cond, &param->mutex);
2520 qemu_mutex_unlock(&param->mutex);
2522 return NULL;
2525 static void wait_for_decompress_done(void)
2527 int idx, thread_count;
2529 if (!migrate_use_compression()) {
2530 return;
2533 thread_count = migrate_decompress_threads();
2534 qemu_mutex_lock(&decomp_done_lock);
2535 for (idx = 0; idx < thread_count; idx++) {
2536 while (!decomp_param[idx].done) {
2537 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2540 qemu_mutex_unlock(&decomp_done_lock);
2543 static void compress_threads_load_setup(void)
2545 int i, thread_count;
2547 if (!migrate_use_compression()) {
2548 return;
2550 thread_count = migrate_decompress_threads();
2551 decompress_threads = g_new0(QemuThread, thread_count);
2552 decomp_param = g_new0(DecompressParam, thread_count);
2553 qemu_mutex_init(&decomp_done_lock);
2554 qemu_cond_init(&decomp_done_cond);
2555 for (i = 0; i < thread_count; i++) {
2556 qemu_mutex_init(&decomp_param[i].mutex);
2557 qemu_cond_init(&decomp_param[i].cond);
2558 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2559 decomp_param[i].done = true;
2560 decomp_param[i].quit = false;
2561 qemu_thread_create(decompress_threads + i, "decompress",
2562 do_data_decompress, decomp_param + i,
2563 QEMU_THREAD_JOINABLE);
2567 static void compress_threads_load_cleanup(void)
2569 int i, thread_count;
2571 if (!migrate_use_compression()) {
2572 return;
2574 thread_count = migrate_decompress_threads();
2575 for (i = 0; i < thread_count; i++) {
2576 qemu_mutex_lock(&decomp_param[i].mutex);
2577 decomp_param[i].quit = true;
2578 qemu_cond_signal(&decomp_param[i].cond);
2579 qemu_mutex_unlock(&decomp_param[i].mutex);
2581 for (i = 0; i < thread_count; i++) {
2582 qemu_thread_join(decompress_threads + i);
2583 qemu_mutex_destroy(&decomp_param[i].mutex);
2584 qemu_cond_destroy(&decomp_param[i].cond);
2585 g_free(decomp_param[i].compbuf);
2587 g_free(decompress_threads);
2588 g_free(decomp_param);
2589 decompress_threads = NULL;
2590 decomp_param = NULL;
2593 static void decompress_data_with_multi_threads(QEMUFile *f,
2594 void *host, int len)
2596 int idx, thread_count;
2598 thread_count = migrate_decompress_threads();
2599 qemu_mutex_lock(&decomp_done_lock);
2600 while (true) {
2601 for (idx = 0; idx < thread_count; idx++) {
2602 if (decomp_param[idx].done) {
2603 decomp_param[idx].done = false;
2604 qemu_mutex_lock(&decomp_param[idx].mutex);
2605 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2606 decomp_param[idx].des = host;
2607 decomp_param[idx].len = len;
2608 qemu_cond_signal(&decomp_param[idx].cond);
2609 qemu_mutex_unlock(&decomp_param[idx].mutex);
2610 break;
2613 if (idx < thread_count) {
2614 break;
2615 } else {
2616 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2619 qemu_mutex_unlock(&decomp_done_lock);
2623 * ram_load_setup: Setup RAM for migration incoming side
2625 * Returns zero to indicate success and negative for error
2627 * @f: QEMUFile where to receive the data
2628 * @opaque: RAMState pointer
2630 static int ram_load_setup(QEMUFile *f, void *opaque)
2632 xbzrle_load_setup();
2633 compress_threads_load_setup();
2634 ramblock_recv_map_init();
2635 return 0;
2638 static int ram_load_cleanup(void *opaque)
2640 RAMBlock *rb;
2641 xbzrle_load_cleanup();
2642 compress_threads_load_cleanup();
2644 RAMBLOCK_FOREACH(rb) {
2645 g_free(rb->receivedmap);
2646 rb->receivedmap = NULL;
2648 return 0;
2652 * ram_postcopy_incoming_init: allocate postcopy data structures
2654 * Returns 0 for success and negative if there was one error
2656 * @mis: current migration incoming state
2658 * Allocate data structures etc needed by incoming migration with
2659 * postcopy-ram. postcopy-ram's similarly names
2660 * postcopy_ram_incoming_init does the work.
2662 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2664 unsigned long ram_pages = last_ram_page();
2666 return postcopy_ram_incoming_init(mis, ram_pages);
2670 * ram_load_postcopy: load a page in postcopy case
2672 * Returns 0 for success or -errno in case of error
2674 * Called in postcopy mode by ram_load().
2675 * rcu_read_lock is taken prior to this being called.
2677 * @f: QEMUFile where to send the data
2679 static int ram_load_postcopy(QEMUFile *f)
2681 int flags = 0, ret = 0;
2682 bool place_needed = false;
2683 bool matching_page_sizes = false;
2684 MigrationIncomingState *mis = migration_incoming_get_current();
2685 /* Temporary page that is later 'placed' */
2686 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2687 void *last_host = NULL;
2688 bool all_zero = false;
2690 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2691 ram_addr_t addr;
2692 void *host = NULL;
2693 void *page_buffer = NULL;
2694 void *place_source = NULL;
2695 RAMBlock *block = NULL;
2696 uint8_t ch;
2698 addr = qemu_get_be64(f);
2699 flags = addr & ~TARGET_PAGE_MASK;
2700 addr &= TARGET_PAGE_MASK;
2702 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2703 place_needed = false;
2704 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
2705 block = ram_block_from_stream(f, flags);
2707 host = host_from_ram_block_offset(block, addr);
2708 if (!host) {
2709 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2710 ret = -EINVAL;
2711 break;
2713 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
2715 * Postcopy requires that we place whole host pages atomically;
2716 * these may be huge pages for RAMBlocks that are backed by
2717 * hugetlbfs.
2718 * To make it atomic, the data is read into a temporary page
2719 * that's moved into place later.
2720 * The migration protocol uses, possibly smaller, target-pages
2721 * however the source ensures it always sends all the components
2722 * of a host page in order.
2724 page_buffer = postcopy_host_page +
2725 ((uintptr_t)host & (block->page_size - 1));
2726 /* If all TP are zero then we can optimise the place */
2727 if (!((uintptr_t)host & (block->page_size - 1))) {
2728 all_zero = true;
2729 } else {
2730 /* not the 1st TP within the HP */
2731 if (host != (last_host + TARGET_PAGE_SIZE)) {
2732 error_report("Non-sequential target page %p/%p",
2733 host, last_host);
2734 ret = -EINVAL;
2735 break;
2741 * If it's the last part of a host page then we place the host
2742 * page
2744 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2745 (block->page_size - 1)) == 0;
2746 place_source = postcopy_host_page;
2748 last_host = host;
2750 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2751 case RAM_SAVE_FLAG_ZERO:
2752 ch = qemu_get_byte(f);
2753 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2754 if (ch) {
2755 all_zero = false;
2757 break;
2759 case RAM_SAVE_FLAG_PAGE:
2760 all_zero = false;
2761 if (!place_needed || !matching_page_sizes) {
2762 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2763 } else {
2764 /* Avoids the qemu_file copy during postcopy, which is
2765 * going to do a copy later; can only do it when we
2766 * do this read in one go (matching page sizes)
2768 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2769 TARGET_PAGE_SIZE);
2771 break;
2772 case RAM_SAVE_FLAG_EOS:
2773 /* normal exit */
2774 break;
2775 default:
2776 error_report("Unknown combination of migration flags: %#x"
2777 " (postcopy mode)", flags);
2778 ret = -EINVAL;
2781 if (place_needed) {
2782 /* This gets called at the last target page in the host page */
2783 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2785 if (all_zero) {
2786 ret = postcopy_place_page_zero(mis, place_dest,
2787 block);
2788 } else {
2789 ret = postcopy_place_page(mis, place_dest,
2790 place_source, block);
2793 if (!ret) {
2794 ret = qemu_file_get_error(f);
2798 return ret;
2801 static bool postcopy_is_advised(void)
2803 PostcopyState ps = postcopy_state_get();
2804 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
2807 static bool postcopy_is_running(void)
2809 PostcopyState ps = postcopy_state_get();
2810 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
2813 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2815 int flags = 0, ret = 0, invalid_flags = 0;
2816 static uint64_t seq_iter;
2817 int len = 0;
2819 * If system is running in postcopy mode, page inserts to host memory must
2820 * be atomic
2822 bool postcopy_running = postcopy_is_running();
2823 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2824 bool postcopy_advised = postcopy_is_advised();
2826 seq_iter++;
2828 if (version_id != 4) {
2829 ret = -EINVAL;
2832 if (!migrate_use_compression()) {
2833 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
2835 /* This RCU critical section can be very long running.
2836 * When RCU reclaims in the code start to become numerous,
2837 * it will be necessary to reduce the granularity of this
2838 * critical section.
2840 rcu_read_lock();
2842 if (postcopy_running) {
2843 ret = ram_load_postcopy(f);
2846 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2847 ram_addr_t addr, total_ram_bytes;
2848 void *host = NULL;
2849 uint8_t ch;
2851 addr = qemu_get_be64(f);
2852 flags = addr & ~TARGET_PAGE_MASK;
2853 addr &= TARGET_PAGE_MASK;
2855 if (flags & invalid_flags) {
2856 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
2857 error_report("Received an unexpected compressed page");
2860 ret = -EINVAL;
2861 break;
2864 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
2865 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2866 RAMBlock *block = ram_block_from_stream(f, flags);
2868 host = host_from_ram_block_offset(block, addr);
2869 if (!host) {
2870 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2871 ret = -EINVAL;
2872 break;
2874 ramblock_recv_bitmap_set(block, host);
2875 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
2878 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2879 case RAM_SAVE_FLAG_MEM_SIZE:
2880 /* Synchronize RAM block list */
2881 total_ram_bytes = addr;
2882 while (!ret && total_ram_bytes) {
2883 RAMBlock *block;
2884 char id[256];
2885 ram_addr_t length;
2887 len = qemu_get_byte(f);
2888 qemu_get_buffer(f, (uint8_t *)id, len);
2889 id[len] = 0;
2890 length = qemu_get_be64(f);
2892 block = qemu_ram_block_by_name(id);
2893 if (block) {
2894 if (length != block->used_length) {
2895 Error *local_err = NULL;
2897 ret = qemu_ram_resize(block, length,
2898 &local_err);
2899 if (local_err) {
2900 error_report_err(local_err);
2903 /* For postcopy we need to check hugepage sizes match */
2904 if (postcopy_advised &&
2905 block->page_size != qemu_host_page_size) {
2906 uint64_t remote_page_size = qemu_get_be64(f);
2907 if (remote_page_size != block->page_size) {
2908 error_report("Mismatched RAM page size %s "
2909 "(local) %zd != %" PRId64,
2910 id, block->page_size,
2911 remote_page_size);
2912 ret = -EINVAL;
2915 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2916 block->idstr);
2917 } else {
2918 error_report("Unknown ramblock \"%s\", cannot "
2919 "accept migration", id);
2920 ret = -EINVAL;
2923 total_ram_bytes -= length;
2925 break;
2927 case RAM_SAVE_FLAG_ZERO:
2928 ch = qemu_get_byte(f);
2929 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2930 break;
2932 case RAM_SAVE_FLAG_PAGE:
2933 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2934 break;
2936 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2937 len = qemu_get_be32(f);
2938 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2939 error_report("Invalid compressed data length: %d", len);
2940 ret = -EINVAL;
2941 break;
2943 decompress_data_with_multi_threads(f, host, len);
2944 break;
2946 case RAM_SAVE_FLAG_XBZRLE:
2947 if (load_xbzrle(f, addr, host) < 0) {
2948 error_report("Failed to decompress XBZRLE page at "
2949 RAM_ADDR_FMT, addr);
2950 ret = -EINVAL;
2951 break;
2953 break;
2954 case RAM_SAVE_FLAG_EOS:
2955 /* normal exit */
2956 break;
2957 default:
2958 if (flags & RAM_SAVE_FLAG_HOOK) {
2959 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2960 } else {
2961 error_report("Unknown combination of migration flags: %#x",
2962 flags);
2963 ret = -EINVAL;
2966 if (!ret) {
2967 ret = qemu_file_get_error(f);
2971 wait_for_decompress_done();
2972 rcu_read_unlock();
2973 trace_ram_load_complete(ret, seq_iter);
2974 return ret;
2977 static bool ram_has_postcopy(void *opaque)
2979 return migrate_postcopy_ram();
2982 static SaveVMHandlers savevm_ram_handlers = {
2983 .save_setup = ram_save_setup,
2984 .save_live_iterate = ram_save_iterate,
2985 .save_live_complete_postcopy = ram_save_complete,
2986 .save_live_complete_precopy = ram_save_complete,
2987 .has_postcopy = ram_has_postcopy,
2988 .save_live_pending = ram_save_pending,
2989 .load_state = ram_load,
2990 .save_cleanup = ram_save_cleanup,
2991 .load_setup = ram_load_setup,
2992 .load_cleanup = ram_load_cleanup,
2995 void ram_mig_init(void)
2997 qemu_mutex_init(&XBZRLE.lock);
2998 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);