alsaaudio: Remove unused error handling of qemu_set_fd_handler
[qemu.git] / target-arm / op_helper.c
blob7583ae71217bc699434de3cb52f051b28d5ada3d
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "cpu.h"
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState *env, uint32_t excp,
28 uint32_t syndrome, uint32_t target_el)
30 CPUState *cs = CPU(arm_env_get_cpu(env));
32 assert(!excp_is_internal(excp));
33 cs->exception_index = excp;
34 env->exception.syndrome = syndrome;
35 env->exception.target_el = target_el;
36 cpu_loop_exit(cs);
39 static int exception_target_el(CPUARMState *env)
41 int target_el = MAX(1, arm_current_el(env));
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
46 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
47 target_el = 3;
50 return target_el;
53 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
54 uint32_t rn, uint32_t maxindex)
56 uint32_t val;
57 uint32_t tmp;
58 int index;
59 int shift;
60 uint64_t *table;
61 table = (uint64_t *)&env->vfp.regs[rn];
62 val = 0;
63 for (shift = 0; shift < 32; shift += 8) {
64 index = (ireg >> shift) & 0xff;
65 if (index < maxindex) {
66 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
67 val |= tmp << shift;
68 } else {
69 val |= def & (0xff << shift);
72 return val;
75 #if !defined(CONFIG_USER_ONLY)
77 /* try to fill the TLB and return an exception if error. If retaddr is
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
81 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
82 uintptr_t retaddr)
84 int ret;
86 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx);
87 if (unlikely(ret)) {
88 ARMCPU *cpu = ARM_CPU(cs);
89 CPUARMState *env = &cpu->env;
90 uint32_t syn, exc;
91 bool same_el = (arm_current_el(env) != 0);
93 if (retaddr) {
94 /* now we have a real cpu fault */
95 cpu_restore_state(cs, retaddr);
98 /* AArch64 syndrome does not have an LPAE bit */
99 syn = ret & ~(1 << 9);
101 /* For insn and data aborts we assume there is no instruction syndrome
102 * information; this is always true for exceptions reported to EL1.
104 if (is_write == 2) {
105 syn = syn_insn_abort(same_el, 0, 0, syn);
106 exc = EXCP_PREFETCH_ABORT;
107 } else {
108 syn = syn_data_abort(same_el, 0, 0, 0, is_write == 1, syn);
109 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
110 ret |= (1 << 11);
112 exc = EXCP_DATA_ABORT;
115 env->exception.vaddress = addr;
116 env->exception.fsr = ret;
117 raise_exception(env, exc, syn, exception_target_el(env));
120 #endif
122 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
124 uint32_t res = a + b;
125 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
126 env->QF = 1;
127 return res;
130 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
132 uint32_t res = a + b;
133 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
134 env->QF = 1;
135 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
137 return res;
140 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
142 uint32_t res = a - b;
143 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
144 env->QF = 1;
145 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
147 return res;
150 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
152 uint32_t res;
153 if (val >= 0x40000000) {
154 res = ~SIGNBIT;
155 env->QF = 1;
156 } else if (val <= (int32_t)0xc0000000) {
157 res = SIGNBIT;
158 env->QF = 1;
159 } else {
160 res = val << 1;
162 return res;
165 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
167 uint32_t res = a + b;
168 if (res < a) {
169 env->QF = 1;
170 res = ~0;
172 return res;
175 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
177 uint32_t res = a - b;
178 if (res > a) {
179 env->QF = 1;
180 res = 0;
182 return res;
185 /* Signed saturation. */
186 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
188 int32_t top;
189 uint32_t mask;
191 top = val >> shift;
192 mask = (1u << shift) - 1;
193 if (top > 0) {
194 env->QF = 1;
195 return mask;
196 } else if (top < -1) {
197 env->QF = 1;
198 return ~mask;
200 return val;
203 /* Unsigned saturation. */
204 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
206 uint32_t max;
208 max = (1u << shift) - 1;
209 if (val < 0) {
210 env->QF = 1;
211 return 0;
212 } else if (val > max) {
213 env->QF = 1;
214 return max;
216 return val;
219 /* Signed saturate. */
220 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
222 return do_ssat(env, x, shift);
225 /* Dual halfword signed saturate. */
226 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
228 uint32_t res;
230 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
231 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
232 return res;
235 /* Unsigned saturate. */
236 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
238 return do_usat(env, x, shift);
241 /* Dual halfword unsigned saturate. */
242 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
244 uint32_t res;
246 res = (uint16_t)do_usat(env, (int16_t)x, shift);
247 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
248 return res;
251 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
252 * The function returns the target EL (1-3) if the instruction is to be trapped;
253 * otherwise it returns 0 indicating it is not trapped.
255 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
257 int cur_el = arm_current_el(env);
258 uint64_t mask;
260 /* If we are currently in EL0 then we need to check if SCTLR is set up for
261 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
263 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
264 int target_el;
266 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
267 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
268 /* Secure EL0 and Secure PL1 is at EL3 */
269 target_el = 3;
270 } else {
271 target_el = 1;
274 if (!(env->cp15.sctlr_el[target_el] & mask)) {
275 return target_el;
279 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
280 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
281 * bits will be zero indicating no trap.
283 if (cur_el < 2 && !arm_is_secure(env)) {
284 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
285 if (env->cp15.hcr_el2 & mask) {
286 return 2;
290 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
291 if (cur_el < 3) {
292 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
293 if (env->cp15.scr_el3 & mask) {
294 return 3;
298 return 0;
301 void HELPER(wfi)(CPUARMState *env)
303 CPUState *cs = CPU(arm_env_get_cpu(env));
304 int target_el = check_wfx_trap(env, false);
306 if (cpu_has_work(cs)) {
307 /* Don't bother to go into our "low power state" if
308 * we would just wake up immediately.
310 return;
313 if (target_el) {
314 env->pc -= 4;
315 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
318 cs->exception_index = EXCP_HLT;
319 cs->halted = 1;
320 cpu_loop_exit(cs);
323 void HELPER(wfe)(CPUARMState *env)
325 CPUState *cs = CPU(arm_env_get_cpu(env));
327 /* Don't actually halt the CPU, just yield back to top
328 * level loop. This is not going into a "low power state"
329 * (ie halting until some event occurs), so we never take
330 * a configurable trap to a different exception level.
332 cs->exception_index = EXCP_YIELD;
333 cpu_loop_exit(cs);
336 /* Raise an internal-to-QEMU exception. This is limited to only
337 * those EXCP values which are special cases for QEMU to interrupt
338 * execution and not to be used for exceptions which are passed to
339 * the guest (those must all have syndrome information and thus should
340 * use exception_with_syndrome).
342 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
344 CPUState *cs = CPU(arm_env_get_cpu(env));
346 assert(excp_is_internal(excp));
347 cs->exception_index = excp;
348 cpu_loop_exit(cs);
351 /* Raise an exception with the specified syndrome register value */
352 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
353 uint32_t syndrome, uint32_t target_el)
355 raise_exception(env, excp, syndrome, target_el);
358 uint32_t HELPER(cpsr_read)(CPUARMState *env)
360 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
363 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
365 cpsr_write(env, val, mask);
368 /* Access to user mode registers from privileged modes. */
369 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
371 uint32_t val;
373 if (regno == 13) {
374 val = env->banked_r13[0];
375 } else if (regno == 14) {
376 val = env->banked_r14[0];
377 } else if (regno >= 8
378 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
379 val = env->usr_regs[regno - 8];
380 } else {
381 val = env->regs[regno];
383 return val;
386 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
388 if (regno == 13) {
389 env->banked_r13[0] = val;
390 } else if (regno == 14) {
391 env->banked_r14[0] = val;
392 } else if (regno >= 8
393 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
394 env->usr_regs[regno - 8] = val;
395 } else {
396 env->regs[regno] = val;
400 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome)
402 const ARMCPRegInfo *ri = rip;
403 int target_el;
405 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
406 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
407 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
410 if (!ri->accessfn) {
411 return;
414 switch (ri->accessfn(env, ri)) {
415 case CP_ACCESS_OK:
416 return;
417 case CP_ACCESS_TRAP:
418 target_el = exception_target_el(env);
419 break;
420 case CP_ACCESS_TRAP_EL2:
421 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
422 * a bug in the access function.
424 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
425 target_el = 2;
426 break;
427 case CP_ACCESS_TRAP_EL3:
428 target_el = 3;
429 break;
430 case CP_ACCESS_TRAP_UNCATEGORIZED:
431 target_el = exception_target_el(env);
432 syndrome = syn_uncategorized();
433 break;
434 default:
435 g_assert_not_reached();
438 raise_exception(env, EXCP_UDEF, syndrome, target_el);
441 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
443 const ARMCPRegInfo *ri = rip;
445 ri->writefn(env, ri, value);
448 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
450 const ARMCPRegInfo *ri = rip;
452 return ri->readfn(env, ri);
455 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
457 const ARMCPRegInfo *ri = rip;
459 ri->writefn(env, ri, value);
462 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
464 const ARMCPRegInfo *ri = rip;
466 return ri->readfn(env, ri);
469 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
471 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
472 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
473 * to catch that case at translate time.
475 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
476 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
477 extract32(op, 3, 3), 4,
478 imm, 0x1f, 0);
479 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
482 switch (op) {
483 case 0x05: /* SPSel */
484 update_spsel(env, imm);
485 break;
486 case 0x1e: /* DAIFSet */
487 env->daif |= (imm << 6) & PSTATE_DAIF;
488 break;
489 case 0x1f: /* DAIFClear */
490 env->daif &= ~((imm << 6) & PSTATE_DAIF);
491 break;
492 default:
493 g_assert_not_reached();
497 void HELPER(clear_pstate_ss)(CPUARMState *env)
499 env->pstate &= ~PSTATE_SS;
502 void HELPER(pre_hvc)(CPUARMState *env)
504 ARMCPU *cpu = arm_env_get_cpu(env);
505 int cur_el = arm_current_el(env);
506 /* FIXME: Use actual secure state. */
507 bool secure = false;
508 bool undef;
510 if (arm_is_psci_call(cpu, EXCP_HVC)) {
511 /* If PSCI is enabled and this looks like a valid PSCI call then
512 * that overrides the architecturally mandated HVC behaviour.
514 return;
517 if (!arm_feature(env, ARM_FEATURE_EL2)) {
518 /* If EL2 doesn't exist, HVC always UNDEFs */
519 undef = true;
520 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
521 /* EL3.HCE has priority over EL2.HCD. */
522 undef = !(env->cp15.scr_el3 & SCR_HCE);
523 } else {
524 undef = env->cp15.hcr_el2 & HCR_HCD;
527 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
528 * For ARMv8/AArch64, HVC is allowed in EL3.
529 * Note that we've already trapped HVC from EL0 at translation
530 * time.
532 if (secure && (!is_a64(env) || cur_el == 1)) {
533 undef = true;
536 if (undef) {
537 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
538 exception_target_el(env));
542 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
544 ARMCPU *cpu = arm_env_get_cpu(env);
545 int cur_el = arm_current_el(env);
546 bool secure = arm_is_secure(env);
547 bool smd = env->cp15.scr_el3 & SCR_SMD;
548 /* On ARMv8 AArch32, SMD only applies to NS state.
549 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
550 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
551 * the EL2 condition here.
553 bool undef = is_a64(env) ? smd : (!secure && smd);
555 if (arm_is_psci_call(cpu, EXCP_SMC)) {
556 /* If PSCI is enabled and this looks like a valid PSCI call then
557 * that overrides the architecturally mandated SMC behaviour.
559 return;
562 if (!arm_feature(env, ARM_FEATURE_EL3)) {
563 /* If we have no EL3 then SMC always UNDEFs */
564 undef = true;
565 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
566 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
567 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
570 if (undef) {
571 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
572 exception_target_el(env));
576 void HELPER(exception_return)(CPUARMState *env)
578 int cur_el = arm_current_el(env);
579 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
580 uint32_t spsr = env->banked_spsr[spsr_idx];
581 int new_el;
583 aarch64_save_sp(env, cur_el);
585 env->exclusive_addr = -1;
587 /* We must squash the PSTATE.SS bit to zero unless both of the
588 * following hold:
589 * 1. debug exceptions are currently disabled
590 * 2. singlestep will be active in the EL we return to
591 * We check 1 here and 2 after we've done the pstate/cpsr write() to
592 * transition to the EL we're going to.
594 if (arm_generate_debug_exceptions(env)) {
595 spsr &= ~PSTATE_SS;
598 if (spsr & PSTATE_nRW) {
599 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
600 env->aarch64 = 0;
601 new_el = 0;
602 env->uncached_cpsr = 0x10;
603 cpsr_write(env, spsr, ~0);
604 if (!arm_singlestep_active(env)) {
605 env->uncached_cpsr &= ~PSTATE_SS;
607 aarch64_sync_64_to_32(env);
609 env->regs[15] = env->elr_el[1] & ~0x1;
610 } else {
611 new_el = extract32(spsr, 2, 2);
612 if (new_el > cur_el
613 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
614 /* Disallow return to an EL which is unimplemented or higher
615 * than the current one.
617 goto illegal_return;
619 if (extract32(spsr, 1, 1)) {
620 /* Return with reserved M[1] bit set */
621 goto illegal_return;
623 if (new_el == 0 && (spsr & PSTATE_SP)) {
624 /* Return to EL0 with M[0] bit set */
625 goto illegal_return;
627 env->aarch64 = 1;
628 pstate_write(env, spsr);
629 if (!arm_singlestep_active(env)) {
630 env->pstate &= ~PSTATE_SS;
632 aarch64_restore_sp(env, new_el);
633 env->pc = env->elr_el[cur_el];
636 return;
638 illegal_return:
639 /* Illegal return events of various kinds have architecturally
640 * mandated behaviour:
641 * restore NZCV and DAIF from SPSR_ELx
642 * set PSTATE.IL
643 * restore PC from ELR_ELx
644 * no change to exception level, execution state or stack pointer
646 env->pstate |= PSTATE_IL;
647 env->pc = env->elr_el[cur_el];
648 spsr &= PSTATE_NZCV | PSTATE_DAIF;
649 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
650 pstate_write(env, spsr);
651 if (!arm_singlestep_active(env)) {
652 env->pstate &= ~PSTATE_SS;
656 /* Return true if the linked breakpoint entry lbn passes its checks */
657 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
659 CPUARMState *env = &cpu->env;
660 uint64_t bcr = env->cp15.dbgbcr[lbn];
661 int brps = extract32(cpu->dbgdidr, 24, 4);
662 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
663 int bt;
664 uint32_t contextidr;
666 /* Links to unimplemented or non-context aware breakpoints are
667 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
668 * as if linked to an UNKNOWN context-aware breakpoint (in which
669 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
670 * We choose the former.
672 if (lbn > brps || lbn < (brps - ctx_cmps)) {
673 return false;
676 bcr = env->cp15.dbgbcr[lbn];
678 if (extract64(bcr, 0, 1) == 0) {
679 /* Linked breakpoint disabled : generate no events */
680 return false;
683 bt = extract64(bcr, 20, 4);
685 /* We match the whole register even if this is AArch32 using the
686 * short descriptor format (in which case it holds both PROCID and ASID),
687 * since we don't implement the optional v7 context ID masking.
689 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
691 switch (bt) {
692 case 3: /* linked context ID match */
693 if (arm_current_el(env) > 1) {
694 /* Context matches never fire in EL2 or (AArch64) EL3 */
695 return false;
697 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
698 case 5: /* linked address mismatch (reserved in AArch64) */
699 case 9: /* linked VMID match (reserved if no EL2) */
700 case 11: /* linked context ID and VMID match (reserved if no EL2) */
701 default:
702 /* Links to Unlinked context breakpoints must generate no
703 * events; we choose to do the same for reserved values too.
705 return false;
708 return false;
711 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
713 CPUARMState *env = &cpu->env;
714 uint64_t cr;
715 int pac, hmc, ssc, wt, lbn;
716 /* Note that for watchpoints the check is against the CPU security
717 * state, not the S/NS attribute on the offending data access.
719 bool is_secure = arm_is_secure(env);
720 int access_el = arm_current_el(env);
722 if (is_wp) {
723 CPUWatchpoint *wp = env->cpu_watchpoint[n];
725 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
726 return false;
728 cr = env->cp15.dbgwcr[n];
729 if (wp->hitattrs.user) {
730 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
731 * match watchpoints as if they were accesses done at EL0, even if
732 * the CPU is at EL1 or higher.
734 access_el = 0;
736 } else {
737 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
739 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
740 return false;
742 cr = env->cp15.dbgbcr[n];
744 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
745 * enabled and that the address and access type match; for breakpoints
746 * we know the address matched; check the remaining fields, including
747 * linked breakpoints. We rely on WCR and BCR having the same layout
748 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
749 * Note that some combinations of {PAC, HMC, SSC} are reserved and
750 * must act either like some valid combination or as if the watchpoint
751 * were disabled. We choose the former, and use this together with
752 * the fact that EL3 must always be Secure and EL2 must always be
753 * Non-Secure to simplify the code slightly compared to the full
754 * table in the ARM ARM.
756 pac = extract64(cr, 1, 2);
757 hmc = extract64(cr, 13, 1);
758 ssc = extract64(cr, 14, 2);
760 switch (ssc) {
761 case 0:
762 break;
763 case 1:
764 case 3:
765 if (is_secure) {
766 return false;
768 break;
769 case 2:
770 if (!is_secure) {
771 return false;
773 break;
776 switch (access_el) {
777 case 3:
778 case 2:
779 if (!hmc) {
780 return false;
782 break;
783 case 1:
784 if (extract32(pac, 0, 1) == 0) {
785 return false;
787 break;
788 case 0:
789 if (extract32(pac, 1, 1) == 0) {
790 return false;
792 break;
793 default:
794 g_assert_not_reached();
797 wt = extract64(cr, 20, 1);
798 lbn = extract64(cr, 16, 4);
800 if (wt && !linked_bp_matches(cpu, lbn)) {
801 return false;
804 return true;
807 static bool check_watchpoints(ARMCPU *cpu)
809 CPUARMState *env = &cpu->env;
810 int n;
812 /* If watchpoints are disabled globally or we can't take debug
813 * exceptions here then watchpoint firings are ignored.
815 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
816 || !arm_generate_debug_exceptions(env)) {
817 return false;
820 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
821 if (bp_wp_matches(cpu, n, true)) {
822 return true;
825 return false;
828 static bool check_breakpoints(ARMCPU *cpu)
830 CPUARMState *env = &cpu->env;
831 int n;
833 /* If breakpoints are disabled globally or we can't take debug
834 * exceptions here then breakpoint firings are ignored.
836 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
837 || !arm_generate_debug_exceptions(env)) {
838 return false;
841 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
842 if (bp_wp_matches(cpu, n, false)) {
843 return true;
846 return false;
849 void arm_debug_excp_handler(CPUState *cs)
851 /* Called by core code when a watchpoint or breakpoint fires;
852 * need to check which one and raise the appropriate exception.
854 ARMCPU *cpu = ARM_CPU(cs);
855 CPUARMState *env = &cpu->env;
856 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
858 if (wp_hit) {
859 if (wp_hit->flags & BP_CPU) {
860 cs->watchpoint_hit = NULL;
861 if (check_watchpoints(cpu)) {
862 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
863 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
865 if (extended_addresses_enabled(env)) {
866 env->exception.fsr = (1 << 9) | 0x22;
867 } else {
868 env->exception.fsr = 0x2;
870 env->exception.vaddress = wp_hit->hitaddr;
871 raise_exception(env, EXCP_DATA_ABORT,
872 syn_watchpoint(same_el, 0, wnr),
873 arm_debug_target_el(env));
874 } else {
875 cpu_resume_from_signal(cs, NULL);
878 } else {
879 if (check_breakpoints(cpu)) {
880 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
881 if (extended_addresses_enabled(env)) {
882 env->exception.fsr = (1 << 9) | 0x22;
883 } else {
884 env->exception.fsr = 0x2;
886 /* FAR is UNKNOWN, so doesn't need setting */
887 raise_exception(env, EXCP_PREFETCH_ABORT,
888 syn_breakpoint(same_el),
889 arm_debug_target_el(env));
894 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
895 The only way to do that in TCG is a conditional branch, which clobbers
896 all our temporaries. For now implement these as helper functions. */
898 /* Similarly for variable shift instructions. */
900 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
902 int shift = i & 0xff;
903 if (shift >= 32) {
904 if (shift == 32)
905 env->CF = x & 1;
906 else
907 env->CF = 0;
908 return 0;
909 } else if (shift != 0) {
910 env->CF = (x >> (32 - shift)) & 1;
911 return x << shift;
913 return x;
916 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
918 int shift = i & 0xff;
919 if (shift >= 32) {
920 if (shift == 32)
921 env->CF = (x >> 31) & 1;
922 else
923 env->CF = 0;
924 return 0;
925 } else if (shift != 0) {
926 env->CF = (x >> (shift - 1)) & 1;
927 return x >> shift;
929 return x;
932 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
934 int shift = i & 0xff;
935 if (shift >= 32) {
936 env->CF = (x >> 31) & 1;
937 return (int32_t)x >> 31;
938 } else if (shift != 0) {
939 env->CF = (x >> (shift - 1)) & 1;
940 return (int32_t)x >> shift;
942 return x;
945 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
947 int shift1, shift;
948 shift1 = i & 0xff;
949 shift = shift1 & 0x1f;
950 if (shift == 0) {
951 if (shift1 != 0)
952 env->CF = (x >> 31) & 1;
953 return x;
954 } else {
955 env->CF = (x >> (shift - 1)) & 1;
956 return ((uint32_t)x >> shift) | (x << (32 - shift));