4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
28 uint32_t syndrome
, uint32_t target_el
)
30 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
32 assert(!excp_is_internal(excp
));
33 cs
->exception_index
= excp
;
34 env
->exception
.syndrome
= syndrome
;
35 env
->exception
.target_el
= target_el
;
39 static int exception_target_el(CPUARMState
*env
)
41 int target_el
= MAX(1, arm_current_el(env
));
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
46 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
53 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
54 uint32_t rn
, uint32_t maxindex
)
61 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
63 for (shift
= 0; shift
< 32; shift
+= 8) {
64 index
= (ireg
>> shift
) & 0xff;
65 if (index
< maxindex
) {
66 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
69 val
|= def
& (0xff << shift
);
75 #if !defined(CONFIG_USER_ONLY)
77 /* try to fill the TLB and return an exception if error. If retaddr is
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
81 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
86 ret
= arm_tlb_fill(cs
, addr
, is_write
, mmu_idx
);
88 ARMCPU
*cpu
= ARM_CPU(cs
);
89 CPUARMState
*env
= &cpu
->env
;
91 bool same_el
= (arm_current_el(env
) != 0);
94 /* now we have a real cpu fault */
95 cpu_restore_state(cs
, retaddr
);
98 /* AArch64 syndrome does not have an LPAE bit */
99 syn
= ret
& ~(1 << 9);
101 /* For insn and data aborts we assume there is no instruction syndrome
102 * information; this is always true for exceptions reported to EL1.
105 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
106 exc
= EXCP_PREFETCH_ABORT
;
108 syn
= syn_data_abort(same_el
, 0, 0, 0, is_write
== 1, syn
);
109 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
112 exc
= EXCP_DATA_ABORT
;
115 env
->exception
.vaddress
= addr
;
116 env
->exception
.fsr
= ret
;
117 raise_exception(env
, exc
, syn
, exception_target_el(env
));
122 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
124 uint32_t res
= a
+ b
;
125 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
130 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
132 uint32_t res
= a
+ b
;
133 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
135 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
140 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
142 uint32_t res
= a
- b
;
143 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
145 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
150 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
153 if (val
>= 0x40000000) {
156 } else if (val
<= (int32_t)0xc0000000) {
165 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
167 uint32_t res
= a
+ b
;
175 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
177 uint32_t res
= a
- b
;
185 /* Signed saturation. */
186 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
192 mask
= (1u << shift
) - 1;
196 } else if (top
< -1) {
203 /* Unsigned saturation. */
204 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
208 max
= (1u << shift
) - 1;
212 } else if (val
> max
) {
219 /* Signed saturate. */
220 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
222 return do_ssat(env
, x
, shift
);
225 /* Dual halfword signed saturate. */
226 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
230 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
231 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
235 /* Unsigned saturate. */
236 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
238 return do_usat(env
, x
, shift
);
241 /* Dual halfword unsigned saturate. */
242 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
246 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
247 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
251 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
252 * The function returns the target EL (1-3) if the instruction is to be trapped;
253 * otherwise it returns 0 indicating it is not trapped.
255 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
257 int cur_el
= arm_current_el(env
);
260 /* If we are currently in EL0 then we need to check if SCTLR is set up for
261 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
263 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
266 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
267 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
268 /* Secure EL0 and Secure PL1 is at EL3 */
274 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
279 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
280 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
281 * bits will be zero indicating no trap.
283 if (cur_el
< 2 && !arm_is_secure(env
)) {
284 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
285 if (env
->cp15
.hcr_el2
& mask
) {
290 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
292 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
293 if (env
->cp15
.scr_el3
& mask
) {
301 void HELPER(wfi
)(CPUARMState
*env
)
303 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
304 int target_el
= check_wfx_trap(env
, false);
306 if (cpu_has_work(cs
)) {
307 /* Don't bother to go into our "low power state" if
308 * we would just wake up immediately.
315 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
318 cs
->exception_index
= EXCP_HLT
;
323 void HELPER(wfe
)(CPUARMState
*env
)
325 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
327 /* Don't actually halt the CPU, just yield back to top
328 * level loop. This is not going into a "low power state"
329 * (ie halting until some event occurs), so we never take
330 * a configurable trap to a different exception level.
332 cs
->exception_index
= EXCP_YIELD
;
336 /* Raise an internal-to-QEMU exception. This is limited to only
337 * those EXCP values which are special cases for QEMU to interrupt
338 * execution and not to be used for exceptions which are passed to
339 * the guest (those must all have syndrome information and thus should
340 * use exception_with_syndrome).
342 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
344 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
346 assert(excp_is_internal(excp
));
347 cs
->exception_index
= excp
;
351 /* Raise an exception with the specified syndrome register value */
352 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
353 uint32_t syndrome
, uint32_t target_el
)
355 raise_exception(env
, excp
, syndrome
, target_el
);
358 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
360 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
363 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
365 cpsr_write(env
, val
, mask
);
368 /* Access to user mode registers from privileged modes. */
369 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
374 val
= env
->banked_r13
[0];
375 } else if (regno
== 14) {
376 val
= env
->banked_r14
[0];
377 } else if (regno
>= 8
378 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
379 val
= env
->usr_regs
[regno
- 8];
381 val
= env
->regs
[regno
];
386 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
389 env
->banked_r13
[0] = val
;
390 } else if (regno
== 14) {
391 env
->banked_r14
[0] = val
;
392 } else if (regno
>= 8
393 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
394 env
->usr_regs
[regno
- 8] = val
;
396 env
->regs
[regno
] = val
;
400 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
)
402 const ARMCPRegInfo
*ri
= rip
;
405 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
406 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
407 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
414 switch (ri
->accessfn(env
, ri
)) {
418 target_el
= exception_target_el(env
);
420 case CP_ACCESS_TRAP_EL2
:
421 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
422 * a bug in the access function.
424 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
427 case CP_ACCESS_TRAP_EL3
:
430 case CP_ACCESS_TRAP_UNCATEGORIZED
:
431 target_el
= exception_target_el(env
);
432 syndrome
= syn_uncategorized();
435 g_assert_not_reached();
438 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
441 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
443 const ARMCPRegInfo
*ri
= rip
;
445 ri
->writefn(env
, ri
, value
);
448 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
450 const ARMCPRegInfo
*ri
= rip
;
452 return ri
->readfn(env
, ri
);
455 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
457 const ARMCPRegInfo
*ri
= rip
;
459 ri
->writefn(env
, ri
, value
);
462 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
464 const ARMCPRegInfo
*ri
= rip
;
466 return ri
->readfn(env
, ri
);
469 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
471 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
472 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
473 * to catch that case at translate time.
475 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
476 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
477 extract32(op
, 3, 3), 4,
479 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
483 case 0x05: /* SPSel */
484 update_spsel(env
, imm
);
486 case 0x1e: /* DAIFSet */
487 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
489 case 0x1f: /* DAIFClear */
490 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
493 g_assert_not_reached();
497 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
499 env
->pstate
&= ~PSTATE_SS
;
502 void HELPER(pre_hvc
)(CPUARMState
*env
)
504 ARMCPU
*cpu
= arm_env_get_cpu(env
);
505 int cur_el
= arm_current_el(env
);
506 /* FIXME: Use actual secure state. */
510 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
511 /* If PSCI is enabled and this looks like a valid PSCI call then
512 * that overrides the architecturally mandated HVC behaviour.
517 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
518 /* If EL2 doesn't exist, HVC always UNDEFs */
520 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
521 /* EL3.HCE has priority over EL2.HCD. */
522 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
524 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
527 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
528 * For ARMv8/AArch64, HVC is allowed in EL3.
529 * Note that we've already trapped HVC from EL0 at translation
532 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
537 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
538 exception_target_el(env
));
542 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
544 ARMCPU
*cpu
= arm_env_get_cpu(env
);
545 int cur_el
= arm_current_el(env
);
546 bool secure
= arm_is_secure(env
);
547 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
548 /* On ARMv8 AArch32, SMD only applies to NS state.
549 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
550 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
551 * the EL2 condition here.
553 bool undef
= is_a64(env
) ? smd
: (!secure
&& smd
);
555 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
556 /* If PSCI is enabled and this looks like a valid PSCI call then
557 * that overrides the architecturally mandated SMC behaviour.
562 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
563 /* If we have no EL3 then SMC always UNDEFs */
565 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
566 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
567 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
571 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
572 exception_target_el(env
));
576 void HELPER(exception_return
)(CPUARMState
*env
)
578 int cur_el
= arm_current_el(env
);
579 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
580 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
583 aarch64_save_sp(env
, cur_el
);
585 env
->exclusive_addr
= -1;
587 /* We must squash the PSTATE.SS bit to zero unless both of the
589 * 1. debug exceptions are currently disabled
590 * 2. singlestep will be active in the EL we return to
591 * We check 1 here and 2 after we've done the pstate/cpsr write() to
592 * transition to the EL we're going to.
594 if (arm_generate_debug_exceptions(env
)) {
598 if (spsr
& PSTATE_nRW
) {
599 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
602 env
->uncached_cpsr
= 0x10;
603 cpsr_write(env
, spsr
, ~0);
604 if (!arm_singlestep_active(env
)) {
605 env
->uncached_cpsr
&= ~PSTATE_SS
;
607 aarch64_sync_64_to_32(env
);
609 env
->regs
[15] = env
->elr_el
[1] & ~0x1;
611 new_el
= extract32(spsr
, 2, 2);
613 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
614 /* Disallow return to an EL which is unimplemented or higher
615 * than the current one.
619 if (extract32(spsr
, 1, 1)) {
620 /* Return with reserved M[1] bit set */
623 if (new_el
== 0 && (spsr
& PSTATE_SP
)) {
624 /* Return to EL0 with M[0] bit set */
628 pstate_write(env
, spsr
);
629 if (!arm_singlestep_active(env
)) {
630 env
->pstate
&= ~PSTATE_SS
;
632 aarch64_restore_sp(env
, new_el
);
633 env
->pc
= env
->elr_el
[cur_el
];
639 /* Illegal return events of various kinds have architecturally
640 * mandated behaviour:
641 * restore NZCV and DAIF from SPSR_ELx
643 * restore PC from ELR_ELx
644 * no change to exception level, execution state or stack pointer
646 env
->pstate
|= PSTATE_IL
;
647 env
->pc
= env
->elr_el
[cur_el
];
648 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
649 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
650 pstate_write(env
, spsr
);
651 if (!arm_singlestep_active(env
)) {
652 env
->pstate
&= ~PSTATE_SS
;
656 /* Return true if the linked breakpoint entry lbn passes its checks */
657 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
659 CPUARMState
*env
= &cpu
->env
;
660 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
661 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
662 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
666 /* Links to unimplemented or non-context aware breakpoints are
667 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
668 * as if linked to an UNKNOWN context-aware breakpoint (in which
669 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
670 * We choose the former.
672 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
676 bcr
= env
->cp15
.dbgbcr
[lbn
];
678 if (extract64(bcr
, 0, 1) == 0) {
679 /* Linked breakpoint disabled : generate no events */
683 bt
= extract64(bcr
, 20, 4);
685 /* We match the whole register even if this is AArch32 using the
686 * short descriptor format (in which case it holds both PROCID and ASID),
687 * since we don't implement the optional v7 context ID masking.
689 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
692 case 3: /* linked context ID match */
693 if (arm_current_el(env
) > 1) {
694 /* Context matches never fire in EL2 or (AArch64) EL3 */
697 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
698 case 5: /* linked address mismatch (reserved in AArch64) */
699 case 9: /* linked VMID match (reserved if no EL2) */
700 case 11: /* linked context ID and VMID match (reserved if no EL2) */
702 /* Links to Unlinked context breakpoints must generate no
703 * events; we choose to do the same for reserved values too.
711 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
713 CPUARMState
*env
= &cpu
->env
;
715 int pac
, hmc
, ssc
, wt
, lbn
;
716 /* Note that for watchpoints the check is against the CPU security
717 * state, not the S/NS attribute on the offending data access.
719 bool is_secure
= arm_is_secure(env
);
720 int access_el
= arm_current_el(env
);
723 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
725 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
728 cr
= env
->cp15
.dbgwcr
[n
];
729 if (wp
->hitattrs
.user
) {
730 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
731 * match watchpoints as if they were accesses done at EL0, even if
732 * the CPU is at EL1 or higher.
737 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
739 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
742 cr
= env
->cp15
.dbgbcr
[n
];
744 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
745 * enabled and that the address and access type match; for breakpoints
746 * we know the address matched; check the remaining fields, including
747 * linked breakpoints. We rely on WCR and BCR having the same layout
748 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
749 * Note that some combinations of {PAC, HMC, SSC} are reserved and
750 * must act either like some valid combination or as if the watchpoint
751 * were disabled. We choose the former, and use this together with
752 * the fact that EL3 must always be Secure and EL2 must always be
753 * Non-Secure to simplify the code slightly compared to the full
754 * table in the ARM ARM.
756 pac
= extract64(cr
, 1, 2);
757 hmc
= extract64(cr
, 13, 1);
758 ssc
= extract64(cr
, 14, 2);
784 if (extract32(pac
, 0, 1) == 0) {
789 if (extract32(pac
, 1, 1) == 0) {
794 g_assert_not_reached();
797 wt
= extract64(cr
, 20, 1);
798 lbn
= extract64(cr
, 16, 4);
800 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
807 static bool check_watchpoints(ARMCPU
*cpu
)
809 CPUARMState
*env
= &cpu
->env
;
812 /* If watchpoints are disabled globally or we can't take debug
813 * exceptions here then watchpoint firings are ignored.
815 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
816 || !arm_generate_debug_exceptions(env
)) {
820 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
821 if (bp_wp_matches(cpu
, n
, true)) {
828 static bool check_breakpoints(ARMCPU
*cpu
)
830 CPUARMState
*env
= &cpu
->env
;
833 /* If breakpoints are disabled globally or we can't take debug
834 * exceptions here then breakpoint firings are ignored.
836 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
837 || !arm_generate_debug_exceptions(env
)) {
841 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
842 if (bp_wp_matches(cpu
, n
, false)) {
849 void arm_debug_excp_handler(CPUState
*cs
)
851 /* Called by core code when a watchpoint or breakpoint fires;
852 * need to check which one and raise the appropriate exception.
854 ARMCPU
*cpu
= ARM_CPU(cs
);
855 CPUARMState
*env
= &cpu
->env
;
856 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
859 if (wp_hit
->flags
& BP_CPU
) {
860 cs
->watchpoint_hit
= NULL
;
861 if (check_watchpoints(cpu
)) {
862 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
863 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
865 if (extended_addresses_enabled(env
)) {
866 env
->exception
.fsr
= (1 << 9) | 0x22;
868 env
->exception
.fsr
= 0x2;
870 env
->exception
.vaddress
= wp_hit
->hitaddr
;
871 raise_exception(env
, EXCP_DATA_ABORT
,
872 syn_watchpoint(same_el
, 0, wnr
),
873 arm_debug_target_el(env
));
875 cpu_resume_from_signal(cs
, NULL
);
879 if (check_breakpoints(cpu
)) {
880 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
881 if (extended_addresses_enabled(env
)) {
882 env
->exception
.fsr
= (1 << 9) | 0x22;
884 env
->exception
.fsr
= 0x2;
886 /* FAR is UNKNOWN, so doesn't need setting */
887 raise_exception(env
, EXCP_PREFETCH_ABORT
,
888 syn_breakpoint(same_el
),
889 arm_debug_target_el(env
));
894 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
895 The only way to do that in TCG is a conditional branch, which clobbers
896 all our temporaries. For now implement these as helper functions. */
898 /* Similarly for variable shift instructions. */
900 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
902 int shift
= i
& 0xff;
909 } else if (shift
!= 0) {
910 env
->CF
= (x
>> (32 - shift
)) & 1;
916 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
918 int shift
= i
& 0xff;
921 env
->CF
= (x
>> 31) & 1;
925 } else if (shift
!= 0) {
926 env
->CF
= (x
>> (shift
- 1)) & 1;
932 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
934 int shift
= i
& 0xff;
936 env
->CF
= (x
>> 31) & 1;
937 return (int32_t)x
>> 31;
938 } else if (shift
!= 0) {
939 env
->CF
= (x
>> (shift
- 1)) & 1;
940 return (int32_t)x
>> shift
;
945 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
949 shift
= shift1
& 0x1f;
952 env
->CF
= (x
>> 31) & 1;
955 env
->CF
= (x
>> (shift
- 1)) & 1;
956 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));