target/arm: make psci-conduit settable after realize
[qemu.git] / hw / vfio / common.c
blob080046e3f511dda693025797df5391f925db476d
1 /*
2 * generic functions used by VFIO devices
4 * Copyright Red Hat, Inc. 2012
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 #ifdef CONFIG_KVM
24 #include <linux/kvm.h>
25 #endif
26 #include <linux/vfio.h>
28 #include "hw/vfio/vfio-common.h"
29 #include "hw/vfio/vfio.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "exec/ram_addr.h"
33 #include "hw/hw.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/range.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "trace.h"
41 #include "qapi/error.h"
42 #include "migration/migration.h"
44 VFIOGroupList vfio_group_list =
45 QLIST_HEAD_INITIALIZER(vfio_group_list);
46 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
47 QLIST_HEAD_INITIALIZER(vfio_address_spaces);
49 #ifdef CONFIG_KVM
51 * We have a single VFIO pseudo device per KVM VM. Once created it lives
52 * for the life of the VM. Closing the file descriptor only drops our
53 * reference to it and the device's reference to kvm. Therefore once
54 * initialized, this file descriptor is only released on QEMU exit and
55 * we'll re-use it should another vfio device be attached before then.
57 static int vfio_kvm_device_fd = -1;
58 #endif
61 * Common VFIO interrupt disable
63 void vfio_disable_irqindex(VFIODevice *vbasedev, int index)
65 struct vfio_irq_set irq_set = {
66 .argsz = sizeof(irq_set),
67 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
68 .index = index,
69 .start = 0,
70 .count = 0,
73 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
76 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index)
78 struct vfio_irq_set irq_set = {
79 .argsz = sizeof(irq_set),
80 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
81 .index = index,
82 .start = 0,
83 .count = 1,
86 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
89 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index)
91 struct vfio_irq_set irq_set = {
92 .argsz = sizeof(irq_set),
93 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
94 .index = index,
95 .start = 0,
96 .count = 1,
99 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
102 static inline const char *action_to_str(int action)
104 switch (action) {
105 case VFIO_IRQ_SET_ACTION_MASK:
106 return "MASK";
107 case VFIO_IRQ_SET_ACTION_UNMASK:
108 return "UNMASK";
109 case VFIO_IRQ_SET_ACTION_TRIGGER:
110 return "TRIGGER";
111 default:
112 return "UNKNOWN ACTION";
116 static const char *index_to_str(VFIODevice *vbasedev, int index)
118 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
119 return NULL;
122 switch (index) {
123 case VFIO_PCI_INTX_IRQ_INDEX:
124 return "INTX";
125 case VFIO_PCI_MSI_IRQ_INDEX:
126 return "MSI";
127 case VFIO_PCI_MSIX_IRQ_INDEX:
128 return "MSIX";
129 case VFIO_PCI_ERR_IRQ_INDEX:
130 return "ERR";
131 case VFIO_PCI_REQ_IRQ_INDEX:
132 return "REQ";
133 default:
134 return NULL;
138 static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state)
140 switch (container->iommu_type) {
141 case VFIO_TYPE1v2_IOMMU:
142 case VFIO_TYPE1_IOMMU:
144 * We support coordinated discarding of RAM via the RamDiscardManager.
146 return ram_block_uncoordinated_discard_disable(state);
147 default:
149 * VFIO_SPAPR_TCE_IOMMU most probably works just fine with
150 * RamDiscardManager, however, it is completely untested.
152 * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does
153 * completely the opposite of managing mapping/pinning dynamically as
154 * required by RamDiscardManager. We would have to special-case sections
155 * with a RamDiscardManager.
157 return ram_block_discard_disable(state);
161 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
162 int action, int fd, Error **errp)
164 struct vfio_irq_set *irq_set;
165 int argsz, ret = 0;
166 const char *name;
167 int32_t *pfd;
169 argsz = sizeof(*irq_set) + sizeof(*pfd);
171 irq_set = g_malloc0(argsz);
172 irq_set->argsz = argsz;
173 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action;
174 irq_set->index = index;
175 irq_set->start = subindex;
176 irq_set->count = 1;
177 pfd = (int32_t *)&irq_set->data;
178 *pfd = fd;
180 if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
181 ret = -errno;
183 g_free(irq_set);
185 if (!ret) {
186 return 0;
189 error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure");
191 name = index_to_str(vbasedev, index);
192 if (name) {
193 error_prepend(errp, "%s-%d: ", name, subindex);
194 } else {
195 error_prepend(errp, "index %d-%d: ", index, subindex);
197 error_prepend(errp,
198 "Failed to %s %s eventfd signaling for interrupt ",
199 fd < 0 ? "tear down" : "set up", action_to_str(action));
200 return ret;
204 * IO Port/MMIO - Beware of the endians, VFIO is always little endian
206 void vfio_region_write(void *opaque, hwaddr addr,
207 uint64_t data, unsigned size)
209 VFIORegion *region = opaque;
210 VFIODevice *vbasedev = region->vbasedev;
211 union {
212 uint8_t byte;
213 uint16_t word;
214 uint32_t dword;
215 uint64_t qword;
216 } buf;
218 switch (size) {
219 case 1:
220 buf.byte = data;
221 break;
222 case 2:
223 buf.word = cpu_to_le16(data);
224 break;
225 case 4:
226 buf.dword = cpu_to_le32(data);
227 break;
228 case 8:
229 buf.qword = cpu_to_le64(data);
230 break;
231 default:
232 hw_error("vfio: unsupported write size, %u bytes", size);
233 break;
236 if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
237 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64
238 ",%d) failed: %m",
239 __func__, vbasedev->name, region->nr,
240 addr, data, size);
243 trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size);
246 * A read or write to a BAR always signals an INTx EOI. This will
247 * do nothing if not pending (including not in INTx mode). We assume
248 * that a BAR access is in response to an interrupt and that BAR
249 * accesses will service the interrupt. Unfortunately, we don't know
250 * which access will service the interrupt, so we're potentially
251 * getting quite a few host interrupts per guest interrupt.
253 vbasedev->ops->vfio_eoi(vbasedev);
256 uint64_t vfio_region_read(void *opaque,
257 hwaddr addr, unsigned size)
259 VFIORegion *region = opaque;
260 VFIODevice *vbasedev = region->vbasedev;
261 union {
262 uint8_t byte;
263 uint16_t word;
264 uint32_t dword;
265 uint64_t qword;
266 } buf;
267 uint64_t data = 0;
269 if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
270 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m",
271 __func__, vbasedev->name, region->nr,
272 addr, size);
273 return (uint64_t)-1;
275 switch (size) {
276 case 1:
277 data = buf.byte;
278 break;
279 case 2:
280 data = le16_to_cpu(buf.word);
281 break;
282 case 4:
283 data = le32_to_cpu(buf.dword);
284 break;
285 case 8:
286 data = le64_to_cpu(buf.qword);
287 break;
288 default:
289 hw_error("vfio: unsupported read size, %u bytes", size);
290 break;
293 trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data);
295 /* Same as write above */
296 vbasedev->ops->vfio_eoi(vbasedev);
298 return data;
301 const MemoryRegionOps vfio_region_ops = {
302 .read = vfio_region_read,
303 .write = vfio_region_write,
304 .endianness = DEVICE_LITTLE_ENDIAN,
305 .valid = {
306 .min_access_size = 1,
307 .max_access_size = 8,
309 .impl = {
310 .min_access_size = 1,
311 .max_access_size = 8,
316 * Device state interfaces
319 bool vfio_mig_active(void)
321 VFIOGroup *group;
322 VFIODevice *vbasedev;
324 if (QLIST_EMPTY(&vfio_group_list)) {
325 return false;
328 QLIST_FOREACH(group, &vfio_group_list, next) {
329 QLIST_FOREACH(vbasedev, &group->device_list, next) {
330 if (vbasedev->migration_blocker) {
331 return false;
335 return true;
338 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container)
340 VFIOGroup *group;
341 VFIODevice *vbasedev;
342 MigrationState *ms = migrate_get_current();
344 if (!migration_is_setup_or_active(ms->state)) {
345 return false;
348 QLIST_FOREACH(group, &container->group_list, container_next) {
349 QLIST_FOREACH(vbasedev, &group->device_list, next) {
350 VFIOMigration *migration = vbasedev->migration;
352 if (!migration) {
353 return false;
356 if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF)
357 && (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) {
358 return false;
362 return true;
365 static bool vfio_devices_all_running_and_saving(VFIOContainer *container)
367 VFIOGroup *group;
368 VFIODevice *vbasedev;
369 MigrationState *ms = migrate_get_current();
371 if (!migration_is_setup_or_active(ms->state)) {
372 return false;
375 QLIST_FOREACH(group, &container->group_list, container_next) {
376 QLIST_FOREACH(vbasedev, &group->device_list, next) {
377 VFIOMigration *migration = vbasedev->migration;
379 if (!migration) {
380 return false;
383 if ((migration->device_state & VFIO_DEVICE_STATE_SAVING) &&
384 (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) {
385 continue;
386 } else {
387 return false;
391 return true;
394 static int vfio_dma_unmap_bitmap(VFIOContainer *container,
395 hwaddr iova, ram_addr_t size,
396 IOMMUTLBEntry *iotlb)
398 struct vfio_iommu_type1_dma_unmap *unmap;
399 struct vfio_bitmap *bitmap;
400 uint64_t pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size;
401 int ret;
403 unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap));
405 unmap->argsz = sizeof(*unmap) + sizeof(*bitmap);
406 unmap->iova = iova;
407 unmap->size = size;
408 unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP;
409 bitmap = (struct vfio_bitmap *)&unmap->data;
412 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
413 * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize
414 * to qemu_real_host_page_size.
417 bitmap->pgsize = qemu_real_host_page_size;
418 bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
419 BITS_PER_BYTE;
421 if (bitmap->size > container->max_dirty_bitmap_size) {
422 error_report("UNMAP: Size of bitmap too big 0x%"PRIx64,
423 (uint64_t)bitmap->size);
424 ret = -E2BIG;
425 goto unmap_exit;
428 bitmap->data = g_try_malloc0(bitmap->size);
429 if (!bitmap->data) {
430 ret = -ENOMEM;
431 goto unmap_exit;
434 ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap);
435 if (!ret) {
436 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data,
437 iotlb->translated_addr, pages);
438 } else {
439 error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m");
442 g_free(bitmap->data);
443 unmap_exit:
444 g_free(unmap);
445 return ret;
449 * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86
451 static int vfio_dma_unmap(VFIOContainer *container,
452 hwaddr iova, ram_addr_t size,
453 IOMMUTLBEntry *iotlb)
455 struct vfio_iommu_type1_dma_unmap unmap = {
456 .argsz = sizeof(unmap),
457 .flags = 0,
458 .iova = iova,
459 .size = size,
462 if (iotlb && container->dirty_pages_supported &&
463 vfio_devices_all_running_and_saving(container)) {
464 return vfio_dma_unmap_bitmap(container, iova, size, iotlb);
467 while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) {
469 * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c
470 * v4.15) where an overflow in its wrap-around check prevents us from
471 * unmapping the last page of the address space. Test for the error
472 * condition and re-try the unmap excluding the last page. The
473 * expectation is that we've never mapped the last page anyway and this
474 * unmap request comes via vIOMMU support which also makes it unlikely
475 * that this page is used. This bug was introduced well after type1 v2
476 * support was introduced, so we shouldn't need to test for v1. A fix
477 * is queued for kernel v5.0 so this workaround can be removed once
478 * affected kernels are sufficiently deprecated.
480 if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) &&
481 container->iommu_type == VFIO_TYPE1v2_IOMMU) {
482 trace_vfio_dma_unmap_overflow_workaround();
483 unmap.size -= 1ULL << ctz64(container->pgsizes);
484 continue;
486 error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno));
487 return -errno;
490 return 0;
493 static int vfio_dma_map(VFIOContainer *container, hwaddr iova,
494 ram_addr_t size, void *vaddr, bool readonly)
496 struct vfio_iommu_type1_dma_map map = {
497 .argsz = sizeof(map),
498 .flags = VFIO_DMA_MAP_FLAG_READ,
499 .vaddr = (__u64)(uintptr_t)vaddr,
500 .iova = iova,
501 .size = size,
504 if (!readonly) {
505 map.flags |= VFIO_DMA_MAP_FLAG_WRITE;
509 * Try the mapping, if it fails with EBUSY, unmap the region and try
510 * again. This shouldn't be necessary, but we sometimes see it in
511 * the VGA ROM space.
513 if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 ||
514 (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 &&
515 ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) {
516 return 0;
519 error_report("VFIO_MAP_DMA failed: %s", strerror(errno));
520 return -errno;
523 static void vfio_host_win_add(VFIOContainer *container,
524 hwaddr min_iova, hwaddr max_iova,
525 uint64_t iova_pgsizes)
527 VFIOHostDMAWindow *hostwin;
529 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
530 if (ranges_overlap(hostwin->min_iova,
531 hostwin->max_iova - hostwin->min_iova + 1,
532 min_iova,
533 max_iova - min_iova + 1)) {
534 hw_error("%s: Overlapped IOMMU are not enabled", __func__);
538 hostwin = g_malloc0(sizeof(*hostwin));
540 hostwin->min_iova = min_iova;
541 hostwin->max_iova = max_iova;
542 hostwin->iova_pgsizes = iova_pgsizes;
543 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next);
546 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova,
547 hwaddr max_iova)
549 VFIOHostDMAWindow *hostwin;
551 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
552 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) {
553 QLIST_REMOVE(hostwin, hostwin_next);
554 g_free(hostwin);
555 return 0;
559 return -1;
562 static bool vfio_listener_skipped_section(MemoryRegionSection *section)
564 return (!memory_region_is_ram(section->mr) &&
565 !memory_region_is_iommu(section->mr)) ||
566 memory_region_is_protected(section->mr) ||
568 * Sizing an enabled 64-bit BAR can cause spurious mappings to
569 * addresses in the upper part of the 64-bit address space. These
570 * are never accessed by the CPU and beyond the address width of
571 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width.
573 section->offset_within_address_space & (1ULL << 63);
576 /* Called with rcu_read_lock held. */
577 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
578 ram_addr_t *ram_addr, bool *read_only)
580 MemoryRegion *mr;
581 hwaddr xlat;
582 hwaddr len = iotlb->addr_mask + 1;
583 bool writable = iotlb->perm & IOMMU_WO;
586 * The IOMMU TLB entry we have just covers translation through
587 * this IOMMU to its immediate target. We need to translate
588 * it the rest of the way through to memory.
590 mr = address_space_translate(&address_space_memory,
591 iotlb->translated_addr,
592 &xlat, &len, writable,
593 MEMTXATTRS_UNSPECIFIED);
594 if (!memory_region_is_ram(mr)) {
595 error_report("iommu map to non memory area %"HWADDR_PRIx"",
596 xlat);
597 return false;
598 } else if (memory_region_has_ram_discard_manager(mr)) {
599 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
600 MemoryRegionSection tmp = {
601 .mr = mr,
602 .offset_within_region = xlat,
603 .size = int128_make64(len),
607 * Malicious VMs can map memory into the IOMMU, which is expected
608 * to remain discarded. vfio will pin all pages, populating memory.
609 * Disallow that. vmstate priorities make sure any RamDiscardManager
610 * were already restored before IOMMUs are restored.
612 if (!ram_discard_manager_is_populated(rdm, &tmp)) {
613 error_report("iommu map to discarded memory (e.g., unplugged via"
614 " virtio-mem): %"HWADDR_PRIx"",
615 iotlb->translated_addr);
616 return false;
620 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The
621 * pages will remain pinned inside vfio until unmapped, resulting in a
622 * higher memory consumption than expected. If memory would get
623 * populated again later, there would be an inconsistency between pages
624 * pinned by vfio and pages seen by QEMU. This is the case until
625 * unmapped from the IOMMU (e.g., during device reset).
627 * With malicious guests, we really only care about pinning more memory
628 * than expected. RLIMIT_MEMLOCK set for the user/process can never be
629 * exceeded and can be used to mitigate this problem.
631 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of"
632 " RAM (e.g., virtio-mem) works, however, malicious"
633 " guests can trigger pinning of more memory than"
634 " intended via an IOMMU. It's possible to mitigate "
635 " by setting/adjusting RLIMIT_MEMLOCK.");
639 * Translation truncates length to the IOMMU page size,
640 * check that it did not truncate too much.
642 if (len & iotlb->addr_mask) {
643 error_report("iommu has granularity incompatible with target AS");
644 return false;
647 if (vaddr) {
648 *vaddr = memory_region_get_ram_ptr(mr) + xlat;
651 if (ram_addr) {
652 *ram_addr = memory_region_get_ram_addr(mr) + xlat;
655 if (read_only) {
656 *read_only = !writable || mr->readonly;
659 return true;
662 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
664 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
665 VFIOContainer *container = giommu->container;
666 hwaddr iova = iotlb->iova + giommu->iommu_offset;
667 void *vaddr;
668 int ret;
670 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
671 iova, iova + iotlb->addr_mask);
673 if (iotlb->target_as != &address_space_memory) {
674 error_report("Wrong target AS \"%s\", only system memory is allowed",
675 iotlb->target_as->name ? iotlb->target_as->name : "none");
676 return;
679 rcu_read_lock();
681 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
682 bool read_only;
684 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) {
685 goto out;
688 * vaddr is only valid until rcu_read_unlock(). But after
689 * vfio_dma_map has set up the mapping the pages will be
690 * pinned by the kernel. This makes sure that the RAM backend
691 * of vaddr will always be there, even if the memory object is
692 * destroyed and its backing memory munmap-ed.
694 ret = vfio_dma_map(container, iova,
695 iotlb->addr_mask + 1, vaddr,
696 read_only);
697 if (ret) {
698 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
699 "0x%"HWADDR_PRIx", %p) = %d (%m)",
700 container, iova,
701 iotlb->addr_mask + 1, vaddr, ret);
703 } else {
704 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb);
705 if (ret) {
706 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
707 "0x%"HWADDR_PRIx") = %d (%m)",
708 container, iova,
709 iotlb->addr_mask + 1, ret);
712 out:
713 rcu_read_unlock();
716 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl,
717 MemoryRegionSection *section)
719 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
720 listener);
721 const hwaddr size = int128_get64(section->size);
722 const hwaddr iova = section->offset_within_address_space;
723 int ret;
725 /* Unmap with a single call. */
726 ret = vfio_dma_unmap(vrdl->container, iova, size , NULL);
727 if (ret) {
728 error_report("%s: vfio_dma_unmap() failed: %s", __func__,
729 strerror(-ret));
733 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl,
734 MemoryRegionSection *section)
736 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
737 listener);
738 const hwaddr end = section->offset_within_region +
739 int128_get64(section->size);
740 hwaddr start, next, iova;
741 void *vaddr;
742 int ret;
745 * Map in (aligned within memory region) minimum granularity, so we can
746 * unmap in minimum granularity later.
748 for (start = section->offset_within_region; start < end; start = next) {
749 next = ROUND_UP(start + 1, vrdl->granularity);
750 next = MIN(next, end);
752 iova = start - section->offset_within_region +
753 section->offset_within_address_space;
754 vaddr = memory_region_get_ram_ptr(section->mr) + start;
756 ret = vfio_dma_map(vrdl->container, iova, next - start,
757 vaddr, section->readonly);
758 if (ret) {
759 /* Rollback */
760 vfio_ram_discard_notify_discard(rdl, section);
761 return ret;
764 return 0;
767 static void vfio_register_ram_discard_listener(VFIOContainer *container,
768 MemoryRegionSection *section)
770 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
771 VFIORamDiscardListener *vrdl;
773 /* Ignore some corner cases not relevant in practice. */
774 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE));
775 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space,
776 TARGET_PAGE_SIZE));
777 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE));
779 vrdl = g_new0(VFIORamDiscardListener, 1);
780 vrdl->container = container;
781 vrdl->mr = section->mr;
782 vrdl->offset_within_address_space = section->offset_within_address_space;
783 vrdl->size = int128_get64(section->size);
784 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm,
785 section->mr);
787 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity));
788 g_assert(container->pgsizes &&
789 vrdl->granularity >= 1ULL << ctz64(container->pgsizes));
791 ram_discard_listener_init(&vrdl->listener,
792 vfio_ram_discard_notify_populate,
793 vfio_ram_discard_notify_discard, true);
794 ram_discard_manager_register_listener(rdm, &vrdl->listener, section);
795 QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next);
798 * Sanity-check if we have a theoretically problematic setup where we could
799 * exceed the maximum number of possible DMA mappings over time. We assume
800 * that each mapped section in the same address space as a RamDiscardManager
801 * section consumes exactly one DMA mapping, with the exception of
802 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections
803 * in the same address space as RamDiscardManager sections.
805 * We assume that each section in the address space consumes one memslot.
806 * We take the number of KVM memory slots as a best guess for the maximum
807 * number of sections in the address space we could have over time,
808 * also consuming DMA mappings.
810 if (container->dma_max_mappings) {
811 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512;
813 #ifdef CONFIG_KVM
814 if (kvm_enabled()) {
815 max_memslots = kvm_get_max_memslots();
817 #endif
819 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
820 hwaddr start, end;
822 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space,
823 vrdl->granularity);
824 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size,
825 vrdl->granularity);
826 vrdl_mappings += (end - start) / vrdl->granularity;
827 vrdl_count++;
830 if (vrdl_mappings + max_memslots - vrdl_count >
831 container->dma_max_mappings) {
832 warn_report("%s: possibly running out of DMA mappings. E.g., try"
833 " increasing the 'block-size' of virtio-mem devies."
834 " Maximum possible DMA mappings: %d, Maximum possible"
835 " memslots: %d", __func__, container->dma_max_mappings,
836 max_memslots);
841 static void vfio_unregister_ram_discard_listener(VFIOContainer *container,
842 MemoryRegionSection *section)
844 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
845 VFIORamDiscardListener *vrdl = NULL;
847 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
848 if (vrdl->mr == section->mr &&
849 vrdl->offset_within_address_space ==
850 section->offset_within_address_space) {
851 break;
855 if (!vrdl) {
856 hw_error("vfio: Trying to unregister missing RAM discard listener");
859 ram_discard_manager_unregister_listener(rdm, &vrdl->listener);
860 QLIST_REMOVE(vrdl, next);
861 g_free(vrdl);
864 static void vfio_listener_region_add(MemoryListener *listener,
865 MemoryRegionSection *section)
867 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
868 hwaddr iova, end;
869 Int128 llend, llsize;
870 void *vaddr;
871 int ret;
872 VFIOHostDMAWindow *hostwin;
873 bool hostwin_found;
874 Error *err = NULL;
876 if (vfio_listener_skipped_section(section)) {
877 trace_vfio_listener_region_add_skip(
878 section->offset_within_address_space,
879 section->offset_within_address_space +
880 int128_get64(int128_sub(section->size, int128_one())));
881 return;
884 if (unlikely((section->offset_within_address_space &
885 ~qemu_real_host_page_mask) !=
886 (section->offset_within_region & ~qemu_real_host_page_mask))) {
887 error_report("%s received unaligned region", __func__);
888 return;
891 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
892 llend = int128_make64(section->offset_within_address_space);
893 llend = int128_add(llend, section->size);
894 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask));
896 if (int128_ge(int128_make64(iova), llend)) {
897 if (memory_region_is_ram_device(section->mr)) {
898 trace_vfio_listener_region_add_no_dma_map(
899 memory_region_name(section->mr),
900 section->offset_within_address_space,
901 int128_getlo(section->size),
902 qemu_real_host_page_size);
904 return;
906 end = int128_get64(int128_sub(llend, int128_one()));
908 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
909 hwaddr pgsize = 0;
911 /* For now intersections are not allowed, we may relax this later */
912 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
913 if (ranges_overlap(hostwin->min_iova,
914 hostwin->max_iova - hostwin->min_iova + 1,
915 section->offset_within_address_space,
916 int128_get64(section->size))) {
917 error_setg(&err,
918 "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing"
919 "host DMA window [0x%"PRIx64",0x%"PRIx64"]",
920 section->offset_within_address_space,
921 section->offset_within_address_space +
922 int128_get64(section->size) - 1,
923 hostwin->min_iova, hostwin->max_iova);
924 goto fail;
928 ret = vfio_spapr_create_window(container, section, &pgsize);
929 if (ret) {
930 error_setg_errno(&err, -ret, "Failed to create SPAPR window");
931 goto fail;
934 vfio_host_win_add(container, section->offset_within_address_space,
935 section->offset_within_address_space +
936 int128_get64(section->size) - 1, pgsize);
937 #ifdef CONFIG_KVM
938 if (kvm_enabled()) {
939 VFIOGroup *group;
940 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
941 struct kvm_vfio_spapr_tce param;
942 struct kvm_device_attr attr = {
943 .group = KVM_DEV_VFIO_GROUP,
944 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE,
945 .addr = (uint64_t)(unsigned long)&param,
948 if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD,
949 &param.tablefd)) {
950 QLIST_FOREACH(group, &container->group_list, container_next) {
951 param.groupfd = group->fd;
952 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
953 error_report("vfio: failed to setup fd %d "
954 "for a group with fd %d: %s",
955 param.tablefd, param.groupfd,
956 strerror(errno));
957 return;
959 trace_vfio_spapr_group_attach(param.groupfd, param.tablefd);
963 #endif
966 hostwin_found = false;
967 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
968 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
969 hostwin_found = true;
970 break;
974 if (!hostwin_found) {
975 error_setg(&err, "Container %p can't map guest IOVA region"
976 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end);
977 goto fail;
980 memory_region_ref(section->mr);
982 if (memory_region_is_iommu(section->mr)) {
983 VFIOGuestIOMMU *giommu;
984 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
985 int iommu_idx;
987 trace_vfio_listener_region_add_iommu(iova, end);
989 * FIXME: For VFIO iommu types which have KVM acceleration to
990 * avoid bouncing all map/unmaps through qemu this way, this
991 * would be the right place to wire that up (tell the KVM
992 * device emulation the VFIO iommu handles to use).
994 giommu = g_malloc0(sizeof(*giommu));
995 giommu->iommu = iommu_mr;
996 giommu->iommu_offset = section->offset_within_address_space -
997 section->offset_within_region;
998 giommu->container = container;
999 llend = int128_add(int128_make64(section->offset_within_region),
1000 section->size);
1001 llend = int128_sub(llend, int128_one());
1002 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
1003 MEMTXATTRS_UNSPECIFIED);
1004 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
1005 IOMMU_NOTIFIER_IOTLB_EVENTS,
1006 section->offset_within_region,
1007 int128_get64(llend),
1008 iommu_idx);
1010 ret = memory_region_iommu_set_page_size_mask(giommu->iommu,
1011 container->pgsizes,
1012 &err);
1013 if (ret) {
1014 g_free(giommu);
1015 goto fail;
1018 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
1019 &err);
1020 if (ret) {
1021 g_free(giommu);
1022 goto fail;
1024 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next);
1025 memory_region_iommu_replay(giommu->iommu, &giommu->n);
1027 return;
1030 /* Here we assume that memory_region_is_ram(section->mr)==true */
1033 * For RAM memory regions with a RamDiscardManager, we only want to map the
1034 * actually populated parts - and update the mapping whenever we're notified
1035 * about changes.
1037 if (memory_region_has_ram_discard_manager(section->mr)) {
1038 vfio_register_ram_discard_listener(container, section);
1039 return;
1042 vaddr = memory_region_get_ram_ptr(section->mr) +
1043 section->offset_within_region +
1044 (iova - section->offset_within_address_space);
1046 trace_vfio_listener_region_add_ram(iova, end, vaddr);
1048 llsize = int128_sub(llend, int128_make64(iova));
1050 if (memory_region_is_ram_device(section->mr)) {
1051 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1053 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
1054 trace_vfio_listener_region_add_no_dma_map(
1055 memory_region_name(section->mr),
1056 section->offset_within_address_space,
1057 int128_getlo(section->size),
1058 pgmask + 1);
1059 return;
1063 ret = vfio_dma_map(container, iova, int128_get64(llsize),
1064 vaddr, section->readonly);
1065 if (ret) {
1066 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
1067 "0x%"HWADDR_PRIx", %p) = %d (%m)",
1068 container, iova, int128_get64(llsize), vaddr, ret);
1069 if (memory_region_is_ram_device(section->mr)) {
1070 /* Allow unexpected mappings not to be fatal for RAM devices */
1071 error_report_err(err);
1072 return;
1074 goto fail;
1077 return;
1079 fail:
1080 if (memory_region_is_ram_device(section->mr)) {
1081 error_report("failed to vfio_dma_map. pci p2p may not work");
1082 return;
1085 * On the initfn path, store the first error in the container so we
1086 * can gracefully fail. Runtime, there's not much we can do other
1087 * than throw a hardware error.
1089 if (!container->initialized) {
1090 if (!container->error) {
1091 error_propagate_prepend(&container->error, err,
1092 "Region %s: ",
1093 memory_region_name(section->mr));
1094 } else {
1095 error_free(err);
1097 } else {
1098 error_report_err(err);
1099 hw_error("vfio: DMA mapping failed, unable to continue");
1103 static void vfio_listener_region_del(MemoryListener *listener,
1104 MemoryRegionSection *section)
1106 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1107 hwaddr iova, end;
1108 Int128 llend, llsize;
1109 int ret;
1110 bool try_unmap = true;
1112 if (vfio_listener_skipped_section(section)) {
1113 trace_vfio_listener_region_del_skip(
1114 section->offset_within_address_space,
1115 section->offset_within_address_space +
1116 int128_get64(int128_sub(section->size, int128_one())));
1117 return;
1120 if (unlikely((section->offset_within_address_space &
1121 ~qemu_real_host_page_mask) !=
1122 (section->offset_within_region & ~qemu_real_host_page_mask))) {
1123 error_report("%s received unaligned region", __func__);
1124 return;
1127 if (memory_region_is_iommu(section->mr)) {
1128 VFIOGuestIOMMU *giommu;
1130 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1131 if (MEMORY_REGION(giommu->iommu) == section->mr &&
1132 giommu->n.start == section->offset_within_region) {
1133 memory_region_unregister_iommu_notifier(section->mr,
1134 &giommu->n);
1135 QLIST_REMOVE(giommu, giommu_next);
1136 g_free(giommu);
1137 break;
1142 * FIXME: We assume the one big unmap below is adequate to
1143 * remove any individual page mappings in the IOMMU which
1144 * might have been copied into VFIO. This works for a page table
1145 * based IOMMU where a big unmap flattens a large range of IO-PTEs.
1146 * That may not be true for all IOMMU types.
1150 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
1151 llend = int128_make64(section->offset_within_address_space);
1152 llend = int128_add(llend, section->size);
1153 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask));
1155 if (int128_ge(int128_make64(iova), llend)) {
1156 return;
1158 end = int128_get64(int128_sub(llend, int128_one()));
1160 llsize = int128_sub(llend, int128_make64(iova));
1162 trace_vfio_listener_region_del(iova, end);
1164 if (memory_region_is_ram_device(section->mr)) {
1165 hwaddr pgmask;
1166 VFIOHostDMAWindow *hostwin;
1167 bool hostwin_found = false;
1169 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
1170 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
1171 hostwin_found = true;
1172 break;
1175 assert(hostwin_found); /* or region_add() would have failed */
1177 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1178 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
1179 } else if (memory_region_has_ram_discard_manager(section->mr)) {
1180 vfio_unregister_ram_discard_listener(container, section);
1181 /* Unregistering will trigger an unmap. */
1182 try_unmap = false;
1185 if (try_unmap) {
1186 if (int128_eq(llsize, int128_2_64())) {
1187 /* The unmap ioctl doesn't accept a full 64-bit span. */
1188 llsize = int128_rshift(llsize, 1);
1189 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1190 if (ret) {
1191 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1192 "0x%"HWADDR_PRIx") = %d (%m)",
1193 container, iova, int128_get64(llsize), ret);
1195 iova += int128_get64(llsize);
1197 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1198 if (ret) {
1199 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1200 "0x%"HWADDR_PRIx") = %d (%m)",
1201 container, iova, int128_get64(llsize), ret);
1205 memory_region_unref(section->mr);
1207 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1208 vfio_spapr_remove_window(container,
1209 section->offset_within_address_space);
1210 if (vfio_host_win_del(container,
1211 section->offset_within_address_space,
1212 section->offset_within_address_space +
1213 int128_get64(section->size) - 1) < 0) {
1214 hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx,
1215 __func__, section->offset_within_address_space);
1220 static void vfio_set_dirty_page_tracking(VFIOContainer *container, bool start)
1222 int ret;
1223 struct vfio_iommu_type1_dirty_bitmap dirty = {
1224 .argsz = sizeof(dirty),
1227 if (start) {
1228 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START;
1229 } else {
1230 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP;
1233 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty);
1234 if (ret) {
1235 error_report("Failed to set dirty tracking flag 0x%x errno: %d",
1236 dirty.flags, errno);
1240 static void vfio_listener_log_global_start(MemoryListener *listener)
1242 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1244 vfio_set_dirty_page_tracking(container, true);
1247 static void vfio_listener_log_global_stop(MemoryListener *listener)
1249 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1251 vfio_set_dirty_page_tracking(container, false);
1254 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova,
1255 uint64_t size, ram_addr_t ram_addr)
1257 struct vfio_iommu_type1_dirty_bitmap *dbitmap;
1258 struct vfio_iommu_type1_dirty_bitmap_get *range;
1259 uint64_t pages;
1260 int ret;
1262 dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range));
1264 dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range);
1265 dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
1266 range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data;
1267 range->iova = iova;
1268 range->size = size;
1271 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
1272 * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize
1273 * to qemu_real_host_page_size.
1275 range->bitmap.pgsize = qemu_real_host_page_size;
1277 pages = REAL_HOST_PAGE_ALIGN(range->size) / qemu_real_host_page_size;
1278 range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
1279 BITS_PER_BYTE;
1280 range->bitmap.data = g_try_malloc0(range->bitmap.size);
1281 if (!range->bitmap.data) {
1282 ret = -ENOMEM;
1283 goto err_out;
1286 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap);
1287 if (ret) {
1288 error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64
1289 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova,
1290 (uint64_t)range->size, errno);
1291 goto err_out;
1294 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data,
1295 ram_addr, pages);
1297 trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size,
1298 range->bitmap.size, ram_addr);
1299 err_out:
1300 g_free(range->bitmap.data);
1301 g_free(dbitmap);
1303 return ret;
1306 typedef struct {
1307 IOMMUNotifier n;
1308 VFIOGuestIOMMU *giommu;
1309 } vfio_giommu_dirty_notifier;
1311 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
1313 vfio_giommu_dirty_notifier *gdn = container_of(n,
1314 vfio_giommu_dirty_notifier, n);
1315 VFIOGuestIOMMU *giommu = gdn->giommu;
1316 VFIOContainer *container = giommu->container;
1317 hwaddr iova = iotlb->iova + giommu->iommu_offset;
1318 ram_addr_t translated_addr;
1320 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
1322 if (iotlb->target_as != &address_space_memory) {
1323 error_report("Wrong target AS \"%s\", only system memory is allowed",
1324 iotlb->target_as->name ? iotlb->target_as->name : "none");
1325 return;
1328 rcu_read_lock();
1329 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) {
1330 int ret;
1332 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1,
1333 translated_addr);
1334 if (ret) {
1335 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
1336 "0x%"HWADDR_PRIx") = %d (%m)",
1337 container, iova,
1338 iotlb->addr_mask + 1, ret);
1341 rcu_read_unlock();
1344 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section,
1345 void *opaque)
1347 const hwaddr size = int128_get64(section->size);
1348 const hwaddr iova = section->offset_within_address_space;
1349 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) +
1350 section->offset_within_region;
1351 VFIORamDiscardListener *vrdl = opaque;
1354 * Sync the whole mapped region (spanning multiple individual mappings)
1355 * in one go.
1357 return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr);
1360 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container,
1361 MemoryRegionSection *section)
1363 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
1364 VFIORamDiscardListener *vrdl = NULL;
1366 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
1367 if (vrdl->mr == section->mr &&
1368 vrdl->offset_within_address_space ==
1369 section->offset_within_address_space) {
1370 break;
1374 if (!vrdl) {
1375 hw_error("vfio: Trying to sync missing RAM discard listener");
1379 * We only want/can synchronize the bitmap for actually mapped parts -
1380 * which correspond to populated parts. Replay all populated parts.
1382 return ram_discard_manager_replay_populated(rdm, section,
1383 vfio_ram_discard_get_dirty_bitmap,
1384 &vrdl);
1387 static int vfio_sync_dirty_bitmap(VFIOContainer *container,
1388 MemoryRegionSection *section)
1390 ram_addr_t ram_addr;
1392 if (memory_region_is_iommu(section->mr)) {
1393 VFIOGuestIOMMU *giommu;
1395 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1396 if (MEMORY_REGION(giommu->iommu) == section->mr &&
1397 giommu->n.start == section->offset_within_region) {
1398 Int128 llend;
1399 vfio_giommu_dirty_notifier gdn = { .giommu = giommu };
1400 int idx = memory_region_iommu_attrs_to_index(giommu->iommu,
1401 MEMTXATTRS_UNSPECIFIED);
1403 llend = int128_add(int128_make64(section->offset_within_region),
1404 section->size);
1405 llend = int128_sub(llend, int128_one());
1407 iommu_notifier_init(&gdn.n,
1408 vfio_iommu_map_dirty_notify,
1409 IOMMU_NOTIFIER_MAP,
1410 section->offset_within_region,
1411 int128_get64(llend),
1412 idx);
1413 memory_region_iommu_replay(giommu->iommu, &gdn.n);
1414 break;
1417 return 0;
1418 } else if (memory_region_has_ram_discard_manager(section->mr)) {
1419 return vfio_sync_ram_discard_listener_dirty_bitmap(container, section);
1422 ram_addr = memory_region_get_ram_addr(section->mr) +
1423 section->offset_within_region;
1425 return vfio_get_dirty_bitmap(container,
1426 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space),
1427 int128_get64(section->size), ram_addr);
1430 static void vfio_listener_log_sync(MemoryListener *listener,
1431 MemoryRegionSection *section)
1433 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1435 if (vfio_listener_skipped_section(section) ||
1436 !container->dirty_pages_supported) {
1437 return;
1440 if (vfio_devices_all_dirty_tracking(container)) {
1441 vfio_sync_dirty_bitmap(container, section);
1445 static const MemoryListener vfio_memory_listener = {
1446 .name = "vfio",
1447 .region_add = vfio_listener_region_add,
1448 .region_del = vfio_listener_region_del,
1449 .log_global_start = vfio_listener_log_global_start,
1450 .log_global_stop = vfio_listener_log_global_stop,
1451 .log_sync = vfio_listener_log_sync,
1454 static void vfio_listener_release(VFIOContainer *container)
1456 memory_listener_unregister(&container->listener);
1457 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1458 memory_listener_unregister(&container->prereg_listener);
1462 static struct vfio_info_cap_header *
1463 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id)
1465 struct vfio_info_cap_header *hdr;
1467 for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1468 if (hdr->id == id) {
1469 return hdr;
1473 return NULL;
1476 struct vfio_info_cap_header *
1477 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id)
1479 if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) {
1480 return NULL;
1483 return vfio_get_cap((void *)info, info->cap_offset, id);
1486 static struct vfio_info_cap_header *
1487 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1489 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1490 return NULL;
1493 return vfio_get_cap((void *)info, info->cap_offset, id);
1496 struct vfio_info_cap_header *
1497 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id)
1499 if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) {
1500 return NULL;
1503 return vfio_get_cap((void *)info, info->cap_offset, id);
1506 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info,
1507 unsigned int *avail)
1509 struct vfio_info_cap_header *hdr;
1510 struct vfio_iommu_type1_info_dma_avail *cap;
1512 /* If the capability cannot be found, assume no DMA limiting */
1513 hdr = vfio_get_iommu_type1_info_cap(info,
1514 VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL);
1515 if (hdr == NULL) {
1516 return false;
1519 if (avail != NULL) {
1520 cap = (void *) hdr;
1521 *avail = cap->avail;
1524 return true;
1527 static int vfio_setup_region_sparse_mmaps(VFIORegion *region,
1528 struct vfio_region_info *info)
1530 struct vfio_info_cap_header *hdr;
1531 struct vfio_region_info_cap_sparse_mmap *sparse;
1532 int i, j;
1534 hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP);
1535 if (!hdr) {
1536 return -ENODEV;
1539 sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header);
1541 trace_vfio_region_sparse_mmap_header(region->vbasedev->name,
1542 region->nr, sparse->nr_areas);
1544 region->mmaps = g_new0(VFIOMmap, sparse->nr_areas);
1546 for (i = 0, j = 0; i < sparse->nr_areas; i++) {
1547 trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset,
1548 sparse->areas[i].offset +
1549 sparse->areas[i].size);
1551 if (sparse->areas[i].size) {
1552 region->mmaps[j].offset = sparse->areas[i].offset;
1553 region->mmaps[j].size = sparse->areas[i].size;
1554 j++;
1558 region->nr_mmaps = j;
1559 region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap));
1561 return 0;
1564 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region,
1565 int index, const char *name)
1567 struct vfio_region_info *info;
1568 int ret;
1570 ret = vfio_get_region_info(vbasedev, index, &info);
1571 if (ret) {
1572 return ret;
1575 region->vbasedev = vbasedev;
1576 region->flags = info->flags;
1577 region->size = info->size;
1578 region->fd_offset = info->offset;
1579 region->nr = index;
1581 if (region->size) {
1582 region->mem = g_new0(MemoryRegion, 1);
1583 memory_region_init_io(region->mem, obj, &vfio_region_ops,
1584 region, name, region->size);
1586 if (!vbasedev->no_mmap &&
1587 region->flags & VFIO_REGION_INFO_FLAG_MMAP) {
1589 ret = vfio_setup_region_sparse_mmaps(region, info);
1591 if (ret) {
1592 region->nr_mmaps = 1;
1593 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps);
1594 region->mmaps[0].offset = 0;
1595 region->mmaps[0].size = region->size;
1600 g_free(info);
1602 trace_vfio_region_setup(vbasedev->name, index, name,
1603 region->flags, region->fd_offset, region->size);
1604 return 0;
1607 static void vfio_subregion_unmap(VFIORegion *region, int index)
1609 trace_vfio_region_unmap(memory_region_name(&region->mmaps[index].mem),
1610 region->mmaps[index].offset,
1611 region->mmaps[index].offset +
1612 region->mmaps[index].size - 1);
1613 memory_region_del_subregion(region->mem, &region->mmaps[index].mem);
1614 munmap(region->mmaps[index].mmap, region->mmaps[index].size);
1615 object_unparent(OBJECT(&region->mmaps[index].mem));
1616 region->mmaps[index].mmap = NULL;
1619 int vfio_region_mmap(VFIORegion *region)
1621 int i, prot = 0;
1622 char *name;
1624 if (!region->mem) {
1625 return 0;
1628 prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0;
1629 prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0;
1631 for (i = 0; i < region->nr_mmaps; i++) {
1632 region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot,
1633 MAP_SHARED, region->vbasedev->fd,
1634 region->fd_offset +
1635 region->mmaps[i].offset);
1636 if (region->mmaps[i].mmap == MAP_FAILED) {
1637 int ret = -errno;
1639 trace_vfio_region_mmap_fault(memory_region_name(region->mem), i,
1640 region->fd_offset +
1641 region->mmaps[i].offset,
1642 region->fd_offset +
1643 region->mmaps[i].offset +
1644 region->mmaps[i].size - 1, ret);
1646 region->mmaps[i].mmap = NULL;
1648 for (i--; i >= 0; i--) {
1649 vfio_subregion_unmap(region, i);
1652 return ret;
1655 name = g_strdup_printf("%s mmaps[%d]",
1656 memory_region_name(region->mem), i);
1657 memory_region_init_ram_device_ptr(&region->mmaps[i].mem,
1658 memory_region_owner(region->mem),
1659 name, region->mmaps[i].size,
1660 region->mmaps[i].mmap);
1661 g_free(name);
1662 memory_region_add_subregion(region->mem, region->mmaps[i].offset,
1663 &region->mmaps[i].mem);
1665 trace_vfio_region_mmap(memory_region_name(&region->mmaps[i].mem),
1666 region->mmaps[i].offset,
1667 region->mmaps[i].offset +
1668 region->mmaps[i].size - 1);
1671 return 0;
1674 void vfio_region_unmap(VFIORegion *region)
1676 int i;
1678 if (!region->mem) {
1679 return;
1682 for (i = 0; i < region->nr_mmaps; i++) {
1683 if (region->mmaps[i].mmap) {
1684 vfio_subregion_unmap(region, i);
1689 void vfio_region_exit(VFIORegion *region)
1691 int i;
1693 if (!region->mem) {
1694 return;
1697 for (i = 0; i < region->nr_mmaps; i++) {
1698 if (region->mmaps[i].mmap) {
1699 memory_region_del_subregion(region->mem, &region->mmaps[i].mem);
1703 trace_vfio_region_exit(region->vbasedev->name, region->nr);
1706 void vfio_region_finalize(VFIORegion *region)
1708 int i;
1710 if (!region->mem) {
1711 return;
1714 for (i = 0; i < region->nr_mmaps; i++) {
1715 if (region->mmaps[i].mmap) {
1716 munmap(region->mmaps[i].mmap, region->mmaps[i].size);
1717 object_unparent(OBJECT(&region->mmaps[i].mem));
1721 object_unparent(OBJECT(region->mem));
1723 g_free(region->mem);
1724 g_free(region->mmaps);
1726 trace_vfio_region_finalize(region->vbasedev->name, region->nr);
1728 region->mem = NULL;
1729 region->mmaps = NULL;
1730 region->nr_mmaps = 0;
1731 region->size = 0;
1732 region->flags = 0;
1733 region->nr = 0;
1736 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled)
1738 int i;
1740 if (!region->mem) {
1741 return;
1744 for (i = 0; i < region->nr_mmaps; i++) {
1745 if (region->mmaps[i].mmap) {
1746 memory_region_set_enabled(&region->mmaps[i].mem, enabled);
1750 trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem),
1751 enabled);
1754 void vfio_reset_handler(void *opaque)
1756 VFIOGroup *group;
1757 VFIODevice *vbasedev;
1759 QLIST_FOREACH(group, &vfio_group_list, next) {
1760 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1761 if (vbasedev->dev->realized) {
1762 vbasedev->ops->vfio_compute_needs_reset(vbasedev);
1767 QLIST_FOREACH(group, &vfio_group_list, next) {
1768 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1769 if (vbasedev->dev->realized && vbasedev->needs_reset) {
1770 vbasedev->ops->vfio_hot_reset_multi(vbasedev);
1776 static void vfio_kvm_device_add_group(VFIOGroup *group)
1778 #ifdef CONFIG_KVM
1779 struct kvm_device_attr attr = {
1780 .group = KVM_DEV_VFIO_GROUP,
1781 .attr = KVM_DEV_VFIO_GROUP_ADD,
1782 .addr = (uint64_t)(unsigned long)&group->fd,
1785 if (!kvm_enabled()) {
1786 return;
1789 if (vfio_kvm_device_fd < 0) {
1790 struct kvm_create_device cd = {
1791 .type = KVM_DEV_TYPE_VFIO,
1794 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
1795 error_report("Failed to create KVM VFIO device: %m");
1796 return;
1799 vfio_kvm_device_fd = cd.fd;
1802 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1803 error_report("Failed to add group %d to KVM VFIO device: %m",
1804 group->groupid);
1806 #endif
1809 static void vfio_kvm_device_del_group(VFIOGroup *group)
1811 #ifdef CONFIG_KVM
1812 struct kvm_device_attr attr = {
1813 .group = KVM_DEV_VFIO_GROUP,
1814 .attr = KVM_DEV_VFIO_GROUP_DEL,
1815 .addr = (uint64_t)(unsigned long)&group->fd,
1818 if (vfio_kvm_device_fd < 0) {
1819 return;
1822 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1823 error_report("Failed to remove group %d from KVM VFIO device: %m",
1824 group->groupid);
1826 #endif
1829 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
1831 VFIOAddressSpace *space;
1833 QLIST_FOREACH(space, &vfio_address_spaces, list) {
1834 if (space->as == as) {
1835 return space;
1839 /* No suitable VFIOAddressSpace, create a new one */
1840 space = g_malloc0(sizeof(*space));
1841 space->as = as;
1842 QLIST_INIT(&space->containers);
1844 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
1846 return space;
1849 static void vfio_put_address_space(VFIOAddressSpace *space)
1851 if (QLIST_EMPTY(&space->containers)) {
1852 QLIST_REMOVE(space, list);
1853 g_free(space);
1858 * vfio_get_iommu_type - selects the richest iommu_type (v2 first)
1860 static int vfio_get_iommu_type(VFIOContainer *container,
1861 Error **errp)
1863 int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU,
1864 VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU };
1865 int i;
1867 for (i = 0; i < ARRAY_SIZE(iommu_types); i++) {
1868 if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) {
1869 return iommu_types[i];
1872 error_setg(errp, "No available IOMMU models");
1873 return -EINVAL;
1876 static int vfio_init_container(VFIOContainer *container, int group_fd,
1877 Error **errp)
1879 int iommu_type, ret;
1881 iommu_type = vfio_get_iommu_type(container, errp);
1882 if (iommu_type < 0) {
1883 return iommu_type;
1886 ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd);
1887 if (ret) {
1888 error_setg_errno(errp, errno, "Failed to set group container");
1889 return -errno;
1892 while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) {
1893 if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1895 * On sPAPR, despite the IOMMU subdriver always advertises v1 and
1896 * v2, the running platform may not support v2 and there is no
1897 * way to guess it until an IOMMU group gets added to the container.
1898 * So in case it fails with v2, try v1 as a fallback.
1900 iommu_type = VFIO_SPAPR_TCE_IOMMU;
1901 continue;
1903 error_setg_errno(errp, errno, "Failed to set iommu for container");
1904 return -errno;
1907 container->iommu_type = iommu_type;
1908 return 0;
1911 static int vfio_get_iommu_info(VFIOContainer *container,
1912 struct vfio_iommu_type1_info **info)
1915 size_t argsz = sizeof(struct vfio_iommu_type1_info);
1917 *info = g_new0(struct vfio_iommu_type1_info, 1);
1918 again:
1919 (*info)->argsz = argsz;
1921 if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) {
1922 g_free(*info);
1923 *info = NULL;
1924 return -errno;
1927 if (((*info)->argsz > argsz)) {
1928 argsz = (*info)->argsz;
1929 *info = g_realloc(*info, argsz);
1930 goto again;
1933 return 0;
1936 static struct vfio_info_cap_header *
1937 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1939 struct vfio_info_cap_header *hdr;
1940 void *ptr = info;
1942 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1943 return NULL;
1946 for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1947 if (hdr->id == id) {
1948 return hdr;
1952 return NULL;
1955 static void vfio_get_iommu_info_migration(VFIOContainer *container,
1956 struct vfio_iommu_type1_info *info)
1958 struct vfio_info_cap_header *hdr;
1959 struct vfio_iommu_type1_info_cap_migration *cap_mig;
1961 hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION);
1962 if (!hdr) {
1963 return;
1966 cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration,
1967 header);
1970 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
1971 * qemu_real_host_page_size to mark those dirty.
1973 if (cap_mig->pgsize_bitmap & qemu_real_host_page_size) {
1974 container->dirty_pages_supported = true;
1975 container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size;
1976 container->dirty_pgsizes = cap_mig->pgsize_bitmap;
1980 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
1981 Error **errp)
1983 VFIOContainer *container;
1984 int ret, fd;
1985 VFIOAddressSpace *space;
1987 space = vfio_get_address_space(as);
1990 * VFIO is currently incompatible with discarding of RAM insofar as the
1991 * madvise to purge (zap) the page from QEMU's address space does not
1992 * interact with the memory API and therefore leaves stale virtual to
1993 * physical mappings in the IOMMU if the page was previously pinned. We
1994 * therefore set discarding broken for each group added to a container,
1995 * whether the container is used individually or shared. This provides
1996 * us with options to allow devices within a group to opt-in and allow
1997 * discarding, so long as it is done consistently for a group (for instance
1998 * if the device is an mdev device where it is known that the host vendor
1999 * driver will never pin pages outside of the working set of the guest
2000 * driver, which would thus not be discarding candidates).
2002 * The first opportunity to induce pinning occurs here where we attempt to
2003 * attach the group to existing containers within the AddressSpace. If any
2004 * pages are already zapped from the virtual address space, such as from
2005 * previous discards, new pinning will cause valid mappings to be
2006 * re-established. Likewise, when the overall MemoryListener for a new
2007 * container is registered, a replay of mappings within the AddressSpace
2008 * will occur, re-establishing any previously zapped pages as well.
2010 * Especially virtio-balloon is currently only prevented from discarding
2011 * new memory, it will not yet set ram_block_discard_set_required() and
2012 * therefore, neither stops us here or deals with the sudden memory
2013 * consumption of inflated memory.
2015 * We do support discarding of memory coordinated via the RamDiscardManager
2016 * with some IOMMU types. vfio_ram_block_discard_disable() handles the
2017 * details once we know which type of IOMMU we are using.
2020 QLIST_FOREACH(container, &space->containers, next) {
2021 if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
2022 ret = vfio_ram_block_discard_disable(container, true);
2023 if (ret) {
2024 error_setg_errno(errp, -ret,
2025 "Cannot set discarding of RAM broken");
2026 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER,
2027 &container->fd)) {
2028 error_report("vfio: error disconnecting group %d from"
2029 " container", group->groupid);
2031 return ret;
2033 group->container = container;
2034 QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2035 vfio_kvm_device_add_group(group);
2036 return 0;
2040 fd = qemu_open_old("/dev/vfio/vfio", O_RDWR);
2041 if (fd < 0) {
2042 error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio");
2043 ret = -errno;
2044 goto put_space_exit;
2047 ret = ioctl(fd, VFIO_GET_API_VERSION);
2048 if (ret != VFIO_API_VERSION) {
2049 error_setg(errp, "supported vfio version: %d, "
2050 "reported version: %d", VFIO_API_VERSION, ret);
2051 ret = -EINVAL;
2052 goto close_fd_exit;
2055 container = g_malloc0(sizeof(*container));
2056 container->space = space;
2057 container->fd = fd;
2058 container->error = NULL;
2059 container->dirty_pages_supported = false;
2060 container->dma_max_mappings = 0;
2061 QLIST_INIT(&container->giommu_list);
2062 QLIST_INIT(&container->hostwin_list);
2063 QLIST_INIT(&container->vrdl_list);
2065 ret = vfio_init_container(container, group->fd, errp);
2066 if (ret) {
2067 goto free_container_exit;
2070 ret = vfio_ram_block_discard_disable(container, true);
2071 if (ret) {
2072 error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
2073 goto free_container_exit;
2076 switch (container->iommu_type) {
2077 case VFIO_TYPE1v2_IOMMU:
2078 case VFIO_TYPE1_IOMMU:
2080 struct vfio_iommu_type1_info *info;
2083 * FIXME: This assumes that a Type1 IOMMU can map any 64-bit
2084 * IOVA whatsoever. That's not actually true, but the current
2085 * kernel interface doesn't tell us what it can map, and the
2086 * existing Type1 IOMMUs generally support any IOVA we're
2087 * going to actually try in practice.
2089 ret = vfio_get_iommu_info(container, &info);
2091 if (ret || !(info->flags & VFIO_IOMMU_INFO_PGSIZES)) {
2092 /* Assume 4k IOVA page size */
2093 info->iova_pgsizes = 4096;
2095 vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes);
2096 container->pgsizes = info->iova_pgsizes;
2098 /* The default in the kernel ("dma_entry_limit") is 65535. */
2099 container->dma_max_mappings = 65535;
2100 if (!ret) {
2101 vfio_get_info_dma_avail(info, &container->dma_max_mappings);
2102 vfio_get_iommu_info_migration(container, info);
2104 g_free(info);
2105 break;
2107 case VFIO_SPAPR_TCE_v2_IOMMU:
2108 case VFIO_SPAPR_TCE_IOMMU:
2110 struct vfio_iommu_spapr_tce_info info;
2111 bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU;
2114 * The host kernel code implementing VFIO_IOMMU_DISABLE is called
2115 * when container fd is closed so we do not call it explicitly
2116 * in this file.
2118 if (!v2) {
2119 ret = ioctl(fd, VFIO_IOMMU_ENABLE);
2120 if (ret) {
2121 error_setg_errno(errp, errno, "failed to enable container");
2122 ret = -errno;
2123 goto enable_discards_exit;
2125 } else {
2126 container->prereg_listener = vfio_prereg_listener;
2128 memory_listener_register(&container->prereg_listener,
2129 &address_space_memory);
2130 if (container->error) {
2131 memory_listener_unregister(&container->prereg_listener);
2132 ret = -1;
2133 error_propagate_prepend(errp, container->error,
2134 "RAM memory listener initialization failed: ");
2135 goto enable_discards_exit;
2139 info.argsz = sizeof(info);
2140 ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
2141 if (ret) {
2142 error_setg_errno(errp, errno,
2143 "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed");
2144 ret = -errno;
2145 if (v2) {
2146 memory_listener_unregister(&container->prereg_listener);
2148 goto enable_discards_exit;
2151 if (v2) {
2152 container->pgsizes = info.ddw.pgsizes;
2154 * There is a default window in just created container.
2155 * To make region_add/del simpler, we better remove this
2156 * window now and let those iommu_listener callbacks
2157 * create/remove them when needed.
2159 ret = vfio_spapr_remove_window(container, info.dma32_window_start);
2160 if (ret) {
2161 error_setg_errno(errp, -ret,
2162 "failed to remove existing window");
2163 goto enable_discards_exit;
2165 } else {
2166 /* The default table uses 4K pages */
2167 container->pgsizes = 0x1000;
2168 vfio_host_win_add(container, info.dma32_window_start,
2169 info.dma32_window_start +
2170 info.dma32_window_size - 1,
2171 0x1000);
2176 vfio_kvm_device_add_group(group);
2178 QLIST_INIT(&container->group_list);
2179 QLIST_INSERT_HEAD(&space->containers, container, next);
2181 group->container = container;
2182 QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2184 container->listener = vfio_memory_listener;
2186 memory_listener_register(&container->listener, container->space->as);
2188 if (container->error) {
2189 ret = -1;
2190 error_propagate_prepend(errp, container->error,
2191 "memory listener initialization failed: ");
2192 goto listener_release_exit;
2195 container->initialized = true;
2197 return 0;
2198 listener_release_exit:
2199 QLIST_REMOVE(group, container_next);
2200 QLIST_REMOVE(container, next);
2201 vfio_kvm_device_del_group(group);
2202 vfio_listener_release(container);
2204 enable_discards_exit:
2205 vfio_ram_block_discard_disable(container, false);
2207 free_container_exit:
2208 g_free(container);
2210 close_fd_exit:
2211 close(fd);
2213 put_space_exit:
2214 vfio_put_address_space(space);
2216 return ret;
2219 static void vfio_disconnect_container(VFIOGroup *group)
2221 VFIOContainer *container = group->container;
2223 QLIST_REMOVE(group, container_next);
2224 group->container = NULL;
2227 * Explicitly release the listener first before unset container,
2228 * since unset may destroy the backend container if it's the last
2229 * group.
2231 if (QLIST_EMPTY(&container->group_list)) {
2232 vfio_listener_release(container);
2235 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) {
2236 error_report("vfio: error disconnecting group %d from container",
2237 group->groupid);
2240 if (QLIST_EMPTY(&container->group_list)) {
2241 VFIOAddressSpace *space = container->space;
2242 VFIOGuestIOMMU *giommu, *tmp;
2243 VFIOHostDMAWindow *hostwin, *next;
2245 QLIST_REMOVE(container, next);
2247 QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) {
2248 memory_region_unregister_iommu_notifier(
2249 MEMORY_REGION(giommu->iommu), &giommu->n);
2250 QLIST_REMOVE(giommu, giommu_next);
2251 g_free(giommu);
2254 QLIST_FOREACH_SAFE(hostwin, &container->hostwin_list, hostwin_next,
2255 next) {
2256 QLIST_REMOVE(hostwin, hostwin_next);
2257 g_free(hostwin);
2260 trace_vfio_disconnect_container(container->fd);
2261 close(container->fd);
2262 g_free(container);
2264 vfio_put_address_space(space);
2268 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp)
2270 VFIOGroup *group;
2271 char path[32];
2272 struct vfio_group_status status = { .argsz = sizeof(status) };
2274 QLIST_FOREACH(group, &vfio_group_list, next) {
2275 if (group->groupid == groupid) {
2276 /* Found it. Now is it already in the right context? */
2277 if (group->container->space->as == as) {
2278 return group;
2279 } else {
2280 error_setg(errp, "group %d used in multiple address spaces",
2281 group->groupid);
2282 return NULL;
2287 group = g_malloc0(sizeof(*group));
2289 snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
2290 group->fd = qemu_open_old(path, O_RDWR);
2291 if (group->fd < 0) {
2292 error_setg_errno(errp, errno, "failed to open %s", path);
2293 goto free_group_exit;
2296 if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) {
2297 error_setg_errno(errp, errno, "failed to get group %d status", groupid);
2298 goto close_fd_exit;
2301 if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
2302 error_setg(errp, "group %d is not viable", groupid);
2303 error_append_hint(errp,
2304 "Please ensure all devices within the iommu_group "
2305 "are bound to their vfio bus driver.\n");
2306 goto close_fd_exit;
2309 group->groupid = groupid;
2310 QLIST_INIT(&group->device_list);
2312 if (vfio_connect_container(group, as, errp)) {
2313 error_prepend(errp, "failed to setup container for group %d: ",
2314 groupid);
2315 goto close_fd_exit;
2318 if (QLIST_EMPTY(&vfio_group_list)) {
2319 qemu_register_reset(vfio_reset_handler, NULL);
2322 QLIST_INSERT_HEAD(&vfio_group_list, group, next);
2324 return group;
2326 close_fd_exit:
2327 close(group->fd);
2329 free_group_exit:
2330 g_free(group);
2332 return NULL;
2335 void vfio_put_group(VFIOGroup *group)
2337 if (!group || !QLIST_EMPTY(&group->device_list)) {
2338 return;
2341 if (!group->ram_block_discard_allowed) {
2342 vfio_ram_block_discard_disable(group->container, false);
2344 vfio_kvm_device_del_group(group);
2345 vfio_disconnect_container(group);
2346 QLIST_REMOVE(group, next);
2347 trace_vfio_put_group(group->fd);
2348 close(group->fd);
2349 g_free(group);
2351 if (QLIST_EMPTY(&vfio_group_list)) {
2352 qemu_unregister_reset(vfio_reset_handler, NULL);
2356 int vfio_get_device(VFIOGroup *group, const char *name,
2357 VFIODevice *vbasedev, Error **errp)
2359 struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) };
2360 int ret, fd;
2362 fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name);
2363 if (fd < 0) {
2364 error_setg_errno(errp, errno, "error getting device from group %d",
2365 group->groupid);
2366 error_append_hint(errp,
2367 "Verify all devices in group %d are bound to vfio-<bus> "
2368 "or pci-stub and not already in use\n", group->groupid);
2369 return fd;
2372 ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info);
2373 if (ret) {
2374 error_setg_errno(errp, errno, "error getting device info");
2375 close(fd);
2376 return ret;
2380 * Set discarding of RAM as not broken for this group if the driver knows
2381 * the device operates compatibly with discarding. Setting must be
2382 * consistent per group, but since compatibility is really only possible
2383 * with mdev currently, we expect singleton groups.
2385 if (vbasedev->ram_block_discard_allowed !=
2386 group->ram_block_discard_allowed) {
2387 if (!QLIST_EMPTY(&group->device_list)) {
2388 error_setg(errp, "Inconsistent setting of support for discarding "
2389 "RAM (e.g., balloon) within group");
2390 close(fd);
2391 return -1;
2394 if (!group->ram_block_discard_allowed) {
2395 group->ram_block_discard_allowed = true;
2396 vfio_ram_block_discard_disable(group->container, false);
2400 vbasedev->fd = fd;
2401 vbasedev->group = group;
2402 QLIST_INSERT_HEAD(&group->device_list, vbasedev, next);
2404 vbasedev->num_irqs = dev_info.num_irqs;
2405 vbasedev->num_regions = dev_info.num_regions;
2406 vbasedev->flags = dev_info.flags;
2408 trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions,
2409 dev_info.num_irqs);
2411 vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET);
2412 return 0;
2415 void vfio_put_base_device(VFIODevice *vbasedev)
2417 if (!vbasedev->group) {
2418 return;
2420 QLIST_REMOVE(vbasedev, next);
2421 vbasedev->group = NULL;
2422 trace_vfio_put_base_device(vbasedev->fd);
2423 close(vbasedev->fd);
2426 int vfio_get_region_info(VFIODevice *vbasedev, int index,
2427 struct vfio_region_info **info)
2429 size_t argsz = sizeof(struct vfio_region_info);
2431 *info = g_malloc0(argsz);
2433 (*info)->index = index;
2434 retry:
2435 (*info)->argsz = argsz;
2437 if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) {
2438 g_free(*info);
2439 *info = NULL;
2440 return -errno;
2443 if ((*info)->argsz > argsz) {
2444 argsz = (*info)->argsz;
2445 *info = g_realloc(*info, argsz);
2447 goto retry;
2450 return 0;
2453 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type,
2454 uint32_t subtype, struct vfio_region_info **info)
2456 int i;
2458 for (i = 0; i < vbasedev->num_regions; i++) {
2459 struct vfio_info_cap_header *hdr;
2460 struct vfio_region_info_cap_type *cap_type;
2462 if (vfio_get_region_info(vbasedev, i, info)) {
2463 continue;
2466 hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE);
2467 if (!hdr) {
2468 g_free(*info);
2469 continue;
2472 cap_type = container_of(hdr, struct vfio_region_info_cap_type, header);
2474 trace_vfio_get_dev_region(vbasedev->name, i,
2475 cap_type->type, cap_type->subtype);
2477 if (cap_type->type == type && cap_type->subtype == subtype) {
2478 return 0;
2481 g_free(*info);
2484 *info = NULL;
2485 return -ENODEV;
2488 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type)
2490 struct vfio_region_info *info = NULL;
2491 bool ret = false;
2493 if (!vfio_get_region_info(vbasedev, region, &info)) {
2494 if (vfio_get_region_info_cap(info, cap_type)) {
2495 ret = true;
2497 g_free(info);
2500 return ret;
2504 * Interfaces for IBM EEH (Enhanced Error Handling)
2506 static bool vfio_eeh_container_ok(VFIOContainer *container)
2509 * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO
2510 * implementation is broken if there are multiple groups in a
2511 * container. The hardware works in units of Partitionable
2512 * Endpoints (== IOMMU groups) and the EEH operations naively
2513 * iterate across all groups in the container, without any logic
2514 * to make sure the groups have their state synchronized. For
2515 * certain operations (ENABLE) that might be ok, until an error
2516 * occurs, but for others (GET_STATE) it's clearly broken.
2520 * XXX Once fixed kernels exist, test for them here
2523 if (QLIST_EMPTY(&container->group_list)) {
2524 return false;
2527 if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) {
2528 return false;
2531 return true;
2534 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op)
2536 struct vfio_eeh_pe_op pe_op = {
2537 .argsz = sizeof(pe_op),
2538 .op = op,
2540 int ret;
2542 if (!vfio_eeh_container_ok(container)) {
2543 error_report("vfio/eeh: EEH_PE_OP 0x%x: "
2544 "kernel requires a container with exactly one group", op);
2545 return -EPERM;
2548 ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op);
2549 if (ret < 0) {
2550 error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op);
2551 return -errno;
2554 return ret;
2557 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as)
2559 VFIOAddressSpace *space = vfio_get_address_space(as);
2560 VFIOContainer *container = NULL;
2562 if (QLIST_EMPTY(&space->containers)) {
2563 /* No containers to act on */
2564 goto out;
2567 container = QLIST_FIRST(&space->containers);
2569 if (QLIST_NEXT(container, next)) {
2570 /* We don't yet have logic to synchronize EEH state across
2571 * multiple containers */
2572 container = NULL;
2573 goto out;
2576 out:
2577 vfio_put_address_space(space);
2578 return container;
2581 bool vfio_eeh_as_ok(AddressSpace *as)
2583 VFIOContainer *container = vfio_eeh_as_container(as);
2585 return (container != NULL) && vfio_eeh_container_ok(container);
2588 int vfio_eeh_as_op(AddressSpace *as, uint32_t op)
2590 VFIOContainer *container = vfio_eeh_as_container(as);
2592 if (!container) {
2593 return -ENODEV;
2595 return vfio_eeh_container_op(container, op);