rdma: introduce qemu_file_mode_is_not_valid()
[qemu.git] / savevm.c
blob67ddf06af0c485ec9bc553ef17e5c8d2d5a72120
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "config-host.h"
26 #include "qemu-common.h"
27 #include "hw/hw.h"
28 #include "hw/qdev.h"
29 #include "net/net.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
40 #include "trace.h"
41 #include "qemu/bitops.h"
42 #include "qemu/iov.h"
43 #include "block/snapshot.h"
44 #include "block/qapi.h"
46 #define SELF_ANNOUNCE_ROUNDS 5
48 #ifndef ETH_P_RARP
49 #define ETH_P_RARP 0x8035
50 #endif
51 #define ARP_HTYPE_ETH 0x0001
52 #define ARP_PTYPE_IP 0x0800
53 #define ARP_OP_REQUEST_REV 0x3
55 static int announce_self_create(uint8_t *buf,
56 uint8_t *mac_addr)
58 /* Ethernet header. */
59 memset(buf, 0xff, 6); /* destination MAC addr */
60 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
61 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
63 /* RARP header. */
64 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
65 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
66 *(buf + 18) = 6; /* hardware addr length (ethernet) */
67 *(buf + 19) = 4; /* protocol addr length (IPv4) */
68 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
69 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
70 memset(buf + 28, 0x00, 4); /* source protocol addr */
71 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
72 memset(buf + 38, 0x00, 4); /* target protocol addr */
74 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
75 memset(buf + 42, 0x00, 18);
77 return 60; /* len (FCS will be added by hardware) */
80 static void qemu_announce_self_iter(NICState *nic, void *opaque)
82 uint8_t buf[60];
83 int len;
85 len = announce_self_create(buf, nic->conf->macaddr.a);
87 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
91 static void qemu_announce_self_once(void *opaque)
93 static int count = SELF_ANNOUNCE_ROUNDS;
94 QEMUTimer *timer = *(QEMUTimer **)opaque;
96 qemu_foreach_nic(qemu_announce_self_iter, NULL);
98 if (--count) {
99 /* delay 50ms, 150ms, 250ms, ... */
100 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
101 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
102 } else {
103 qemu_del_timer(timer);
104 qemu_free_timer(timer);
108 void qemu_announce_self(void)
110 static QEMUTimer *timer;
111 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
112 qemu_announce_self_once(&timer);
115 /***********************************************************/
116 /* savevm/loadvm support */
118 #define IO_BUF_SIZE 32768
119 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
121 struct QEMUFile {
122 const QEMUFileOps *ops;
123 void *opaque;
125 int64_t bytes_xfer;
126 int64_t xfer_limit;
128 int64_t pos; /* start of buffer when writing, end of buffer
129 when reading */
130 int buf_index;
131 int buf_size; /* 0 when writing */
132 uint8_t buf[IO_BUF_SIZE];
134 struct iovec iov[MAX_IOV_SIZE];
135 unsigned int iovcnt;
137 int last_error;
140 typedef struct QEMUFileStdio
142 FILE *stdio_file;
143 QEMUFile *file;
144 } QEMUFileStdio;
146 typedef struct QEMUFileSocket
148 int fd;
149 QEMUFile *file;
150 } QEMUFileSocket;
152 static ssize_t socket_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
153 int64_t pos)
155 QEMUFileSocket *s = opaque;
156 ssize_t len;
157 ssize_t size = iov_size(iov, iovcnt);
159 len = iov_send(s->fd, iov, iovcnt, 0, size);
160 if (len < size) {
161 len = -socket_error();
163 return len;
166 static int socket_get_fd(void *opaque)
168 QEMUFileSocket *s = opaque;
170 return s->fd;
173 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
175 QEMUFileSocket *s = opaque;
176 ssize_t len;
178 for (;;) {
179 len = qemu_recv(s->fd, buf, size, 0);
180 if (len != -1) {
181 break;
183 if (socket_error() == EAGAIN) {
184 yield_until_fd_readable(s->fd);
185 } else if (socket_error() != EINTR) {
186 break;
190 if (len == -1) {
191 len = -socket_error();
193 return len;
196 static int socket_close(void *opaque)
198 QEMUFileSocket *s = opaque;
199 closesocket(s->fd);
200 g_free(s);
201 return 0;
204 static int stdio_get_fd(void *opaque)
206 QEMUFileStdio *s = opaque;
208 return fileno(s->stdio_file);
211 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
213 QEMUFileStdio *s = opaque;
214 return fwrite(buf, 1, size, s->stdio_file);
217 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
219 QEMUFileStdio *s = opaque;
220 FILE *fp = s->stdio_file;
221 int bytes;
223 for (;;) {
224 clearerr(fp);
225 bytes = fread(buf, 1, size, fp);
226 if (bytes != 0 || !ferror(fp)) {
227 break;
229 if (errno == EAGAIN) {
230 yield_until_fd_readable(fileno(fp));
231 } else if (errno != EINTR) {
232 break;
235 return bytes;
238 static int stdio_pclose(void *opaque)
240 QEMUFileStdio *s = opaque;
241 int ret;
242 ret = pclose(s->stdio_file);
243 if (ret == -1) {
244 ret = -errno;
245 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
246 /* close succeeded, but non-zero exit code: */
247 ret = -EIO; /* fake errno value */
249 g_free(s);
250 return ret;
253 static int stdio_fclose(void *opaque)
255 QEMUFileStdio *s = opaque;
256 int ret = 0;
258 if (s->file->ops->put_buffer || s->file->ops->writev_buffer) {
259 int fd = fileno(s->stdio_file);
260 struct stat st;
262 ret = fstat(fd, &st);
263 if (ret == 0 && S_ISREG(st.st_mode)) {
265 * If the file handle is a regular file make sure the
266 * data is flushed to disk before signaling success.
268 ret = fsync(fd);
269 if (ret != 0) {
270 ret = -errno;
271 return ret;
275 if (fclose(s->stdio_file) == EOF) {
276 ret = -errno;
278 g_free(s);
279 return ret;
282 static const QEMUFileOps stdio_pipe_read_ops = {
283 .get_fd = stdio_get_fd,
284 .get_buffer = stdio_get_buffer,
285 .close = stdio_pclose
288 static const QEMUFileOps stdio_pipe_write_ops = {
289 .get_fd = stdio_get_fd,
290 .put_buffer = stdio_put_buffer,
291 .close = stdio_pclose
294 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
296 FILE *stdio_file;
297 QEMUFileStdio *s;
299 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
300 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
301 return NULL;
304 stdio_file = popen(command, mode);
305 if (stdio_file == NULL) {
306 return NULL;
309 s = g_malloc0(sizeof(QEMUFileStdio));
311 s->stdio_file = stdio_file;
313 if(mode[0] == 'r') {
314 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
315 } else {
316 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
318 return s->file;
321 static const QEMUFileOps stdio_file_read_ops = {
322 .get_fd = stdio_get_fd,
323 .get_buffer = stdio_get_buffer,
324 .close = stdio_fclose
327 static const QEMUFileOps stdio_file_write_ops = {
328 .get_fd = stdio_get_fd,
329 .put_buffer = stdio_put_buffer,
330 .close = stdio_fclose
333 static ssize_t unix_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
334 int64_t pos)
336 QEMUFileSocket *s = opaque;
337 ssize_t len, offset;
338 ssize_t size = iov_size(iov, iovcnt);
339 ssize_t total = 0;
341 assert(iovcnt > 0);
342 offset = 0;
343 while (size > 0) {
344 /* Find the next start position; skip all full-sized vector elements */
345 while (offset >= iov[0].iov_len) {
346 offset -= iov[0].iov_len;
347 iov++, iovcnt--;
350 /* skip `offset' bytes from the (now) first element, undo it on exit */
351 assert(iovcnt > 0);
352 iov[0].iov_base += offset;
353 iov[0].iov_len -= offset;
355 do {
356 len = writev(s->fd, iov, iovcnt);
357 } while (len == -1 && errno == EINTR);
358 if (len == -1) {
359 return -errno;
362 /* Undo the changes above */
363 iov[0].iov_base -= offset;
364 iov[0].iov_len += offset;
366 /* Prepare for the next iteration */
367 offset += len;
368 total += len;
369 size -= len;
372 return total;
375 static int unix_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
377 QEMUFileSocket *s = opaque;
378 ssize_t len;
380 for (;;) {
381 len = read(s->fd, buf, size);
382 if (len != -1) {
383 break;
385 if (errno == EAGAIN) {
386 yield_until_fd_readable(s->fd);
387 } else if (errno != EINTR) {
388 break;
392 if (len == -1) {
393 len = -errno;
395 return len;
398 static int unix_close(void *opaque)
400 QEMUFileSocket *s = opaque;
401 close(s->fd);
402 g_free(s);
403 return 0;
406 static const QEMUFileOps unix_read_ops = {
407 .get_fd = socket_get_fd,
408 .get_buffer = unix_get_buffer,
409 .close = unix_close
412 static const QEMUFileOps unix_write_ops = {
413 .get_fd = socket_get_fd,
414 .writev_buffer = unix_writev_buffer,
415 .close = unix_close
418 QEMUFile *qemu_fdopen(int fd, const char *mode)
420 QEMUFileSocket *s;
422 if (mode == NULL ||
423 (mode[0] != 'r' && mode[0] != 'w') ||
424 mode[1] != 'b' || mode[2] != 0) {
425 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
426 return NULL;
429 s = g_malloc0(sizeof(QEMUFileSocket));
430 s->fd = fd;
432 if(mode[0] == 'r') {
433 s->file = qemu_fopen_ops(s, &unix_read_ops);
434 } else {
435 s->file = qemu_fopen_ops(s, &unix_write_ops);
437 return s->file;
440 static const QEMUFileOps socket_read_ops = {
441 .get_fd = socket_get_fd,
442 .get_buffer = socket_get_buffer,
443 .close = socket_close
446 static const QEMUFileOps socket_write_ops = {
447 .get_fd = socket_get_fd,
448 .writev_buffer = socket_writev_buffer,
449 .close = socket_close
452 bool qemu_file_mode_is_not_valid(const char *mode)
454 if (mode == NULL ||
455 (mode[0] != 'r' && mode[0] != 'w') ||
456 mode[1] != 'b' || mode[2] != 0) {
457 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
458 return true;
461 return false;
464 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
466 QEMUFileSocket *s;
468 if (qemu_file_mode_is_not_valid(mode)) {
469 return NULL;
472 s = g_malloc0(sizeof(QEMUFileSocket));
473 s->fd = fd;
474 if (mode[0] == 'w') {
475 qemu_set_block(s->fd);
476 s->file = qemu_fopen_ops(s, &socket_write_ops);
477 } else {
478 s->file = qemu_fopen_ops(s, &socket_read_ops);
480 return s->file;
483 QEMUFile *qemu_fopen(const char *filename, const char *mode)
485 QEMUFileStdio *s;
487 if (qemu_file_mode_is_not_valid(mode)) {
488 return NULL;
491 s = g_malloc0(sizeof(QEMUFileStdio));
493 s->stdio_file = fopen(filename, mode);
494 if (!s->stdio_file)
495 goto fail;
497 if(mode[0] == 'w') {
498 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
499 } else {
500 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
502 return s->file;
503 fail:
504 g_free(s);
505 return NULL;
508 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
509 int64_t pos)
511 int ret;
512 QEMUIOVector qiov;
514 qemu_iovec_init_external(&qiov, iov, iovcnt);
515 ret = bdrv_writev_vmstate(opaque, &qiov, pos);
516 if (ret < 0) {
517 return ret;
520 return qiov.size;
523 static int block_put_buffer(void *opaque, const uint8_t *buf,
524 int64_t pos, int size)
526 bdrv_save_vmstate(opaque, buf, pos, size);
527 return size;
530 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
532 return bdrv_load_vmstate(opaque, buf, pos, size);
535 static int bdrv_fclose(void *opaque)
537 return bdrv_flush(opaque);
540 static const QEMUFileOps bdrv_read_ops = {
541 .get_buffer = block_get_buffer,
542 .close = bdrv_fclose
545 static const QEMUFileOps bdrv_write_ops = {
546 .put_buffer = block_put_buffer,
547 .writev_buffer = block_writev_buffer,
548 .close = bdrv_fclose
551 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
553 if (is_writable)
554 return qemu_fopen_ops(bs, &bdrv_write_ops);
555 return qemu_fopen_ops(bs, &bdrv_read_ops);
558 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
560 QEMUFile *f;
562 f = g_malloc0(sizeof(QEMUFile));
564 f->opaque = opaque;
565 f->ops = ops;
566 return f;
569 int qemu_file_get_error(QEMUFile *f)
571 return f->last_error;
574 static void qemu_file_set_error(QEMUFile *f, int ret)
576 if (f->last_error == 0) {
577 f->last_error = ret;
581 static inline bool qemu_file_is_writable(QEMUFile *f)
583 return f->ops->writev_buffer || f->ops->put_buffer;
587 * Flushes QEMUFile buffer
589 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
590 * put_buffer ops.
592 static void qemu_fflush(QEMUFile *f)
594 ssize_t ret = 0;
596 if (!qemu_file_is_writable(f)) {
597 return;
600 if (f->ops->writev_buffer) {
601 if (f->iovcnt > 0) {
602 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos);
604 } else {
605 if (f->buf_index > 0) {
606 ret = f->ops->put_buffer(f->opaque, f->buf, f->pos, f->buf_index);
609 if (ret >= 0) {
610 f->pos += ret;
612 f->buf_index = 0;
613 f->iovcnt = 0;
614 if (ret < 0) {
615 qemu_file_set_error(f, ret);
619 static void qemu_fill_buffer(QEMUFile *f)
621 int len;
622 int pending;
624 assert(!qemu_file_is_writable(f));
626 pending = f->buf_size - f->buf_index;
627 if (pending > 0) {
628 memmove(f->buf, f->buf + f->buf_index, pending);
630 f->buf_index = 0;
631 f->buf_size = pending;
633 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
634 IO_BUF_SIZE - pending);
635 if (len > 0) {
636 f->buf_size += len;
637 f->pos += len;
638 } else if (len == 0) {
639 qemu_file_set_error(f, -EIO);
640 } else if (len != -EAGAIN)
641 qemu_file_set_error(f, len);
644 int qemu_get_fd(QEMUFile *f)
646 if (f->ops->get_fd) {
647 return f->ops->get_fd(f->opaque);
649 return -1;
652 void qemu_update_position(QEMUFile *f, size_t size)
654 f->pos += size;
657 /** Closes the file
659 * Returns negative error value if any error happened on previous operations or
660 * while closing the file. Returns 0 or positive number on success.
662 * The meaning of return value on success depends on the specific backend
663 * being used.
665 int qemu_fclose(QEMUFile *f)
667 int ret;
668 qemu_fflush(f);
669 ret = qemu_file_get_error(f);
671 if (f->ops->close) {
672 int ret2 = f->ops->close(f->opaque);
673 if (ret >= 0) {
674 ret = ret2;
677 /* If any error was spotted before closing, we should report it
678 * instead of the close() return value.
680 if (f->last_error) {
681 ret = f->last_error;
683 g_free(f);
684 return ret;
687 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size)
689 /* check for adjacent buffer and coalesce them */
690 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
691 f->iov[f->iovcnt - 1].iov_len) {
692 f->iov[f->iovcnt - 1].iov_len += size;
693 } else {
694 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
695 f->iov[f->iovcnt++].iov_len = size;
698 if (f->iovcnt >= MAX_IOV_SIZE) {
699 qemu_fflush(f);
703 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, int size)
705 if (!f->ops->writev_buffer) {
706 qemu_put_buffer(f, buf, size);
707 return;
710 if (f->last_error) {
711 return;
714 f->bytes_xfer += size;
715 add_to_iovec(f, buf, size);
718 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
720 int l;
722 if (f->last_error) {
723 return;
726 while (size > 0) {
727 l = IO_BUF_SIZE - f->buf_index;
728 if (l > size)
729 l = size;
730 memcpy(f->buf + f->buf_index, buf, l);
731 f->bytes_xfer += size;
732 if (f->ops->writev_buffer) {
733 add_to_iovec(f, f->buf + f->buf_index, l);
735 f->buf_index += l;
736 if (f->buf_index == IO_BUF_SIZE) {
737 qemu_fflush(f);
739 if (qemu_file_get_error(f)) {
740 break;
742 buf += l;
743 size -= l;
747 void qemu_put_byte(QEMUFile *f, int v)
749 if (f->last_error) {
750 return;
753 f->buf[f->buf_index] = v;
754 f->bytes_xfer++;
755 if (f->ops->writev_buffer) {
756 add_to_iovec(f, f->buf + f->buf_index, 1);
758 f->buf_index++;
759 if (f->buf_index == IO_BUF_SIZE) {
760 qemu_fflush(f);
764 static void qemu_file_skip(QEMUFile *f, int size)
766 if (f->buf_index + size <= f->buf_size) {
767 f->buf_index += size;
771 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
773 int pending;
774 int index;
776 assert(!qemu_file_is_writable(f));
778 index = f->buf_index + offset;
779 pending = f->buf_size - index;
780 if (pending < size) {
781 qemu_fill_buffer(f);
782 index = f->buf_index + offset;
783 pending = f->buf_size - index;
786 if (pending <= 0) {
787 return 0;
789 if (size > pending) {
790 size = pending;
793 memcpy(buf, f->buf + index, size);
794 return size;
797 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
799 int pending = size;
800 int done = 0;
802 while (pending > 0) {
803 int res;
805 res = qemu_peek_buffer(f, buf, pending, 0);
806 if (res == 0) {
807 return done;
809 qemu_file_skip(f, res);
810 buf += res;
811 pending -= res;
812 done += res;
814 return done;
817 static int qemu_peek_byte(QEMUFile *f, int offset)
819 int index = f->buf_index + offset;
821 assert(!qemu_file_is_writable(f));
823 if (index >= f->buf_size) {
824 qemu_fill_buffer(f);
825 index = f->buf_index + offset;
826 if (index >= f->buf_size) {
827 return 0;
830 return f->buf[index];
833 int qemu_get_byte(QEMUFile *f)
835 int result;
837 result = qemu_peek_byte(f, 0);
838 qemu_file_skip(f, 1);
839 return result;
842 int64_t qemu_ftell(QEMUFile *f)
844 qemu_fflush(f);
845 return f->pos;
848 int qemu_file_rate_limit(QEMUFile *f)
850 if (qemu_file_get_error(f)) {
851 return 1;
853 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
854 return 1;
856 return 0;
859 int64_t qemu_file_get_rate_limit(QEMUFile *f)
861 return f->xfer_limit;
864 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
866 f->xfer_limit = limit;
869 void qemu_file_reset_rate_limit(QEMUFile *f)
871 f->bytes_xfer = 0;
874 void qemu_put_be16(QEMUFile *f, unsigned int v)
876 qemu_put_byte(f, v >> 8);
877 qemu_put_byte(f, v);
880 void qemu_put_be32(QEMUFile *f, unsigned int v)
882 qemu_put_byte(f, v >> 24);
883 qemu_put_byte(f, v >> 16);
884 qemu_put_byte(f, v >> 8);
885 qemu_put_byte(f, v);
888 void qemu_put_be64(QEMUFile *f, uint64_t v)
890 qemu_put_be32(f, v >> 32);
891 qemu_put_be32(f, v);
894 unsigned int qemu_get_be16(QEMUFile *f)
896 unsigned int v;
897 v = qemu_get_byte(f) << 8;
898 v |= qemu_get_byte(f);
899 return v;
902 unsigned int qemu_get_be32(QEMUFile *f)
904 unsigned int v;
905 v = qemu_get_byte(f) << 24;
906 v |= qemu_get_byte(f) << 16;
907 v |= qemu_get_byte(f) << 8;
908 v |= qemu_get_byte(f);
909 return v;
912 uint64_t qemu_get_be64(QEMUFile *f)
914 uint64_t v;
915 v = (uint64_t)qemu_get_be32(f) << 32;
916 v |= qemu_get_be32(f);
917 return v;
921 /* timer */
923 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
925 uint64_t expire_time;
927 expire_time = qemu_timer_expire_time_ns(ts);
928 qemu_put_be64(f, expire_time);
931 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
933 uint64_t expire_time;
935 expire_time = qemu_get_be64(f);
936 if (expire_time != -1) {
937 qemu_mod_timer_ns(ts, expire_time);
938 } else {
939 qemu_del_timer(ts);
944 /* bool */
946 static int get_bool(QEMUFile *f, void *pv, size_t size)
948 bool *v = pv;
949 *v = qemu_get_byte(f);
950 return 0;
953 static void put_bool(QEMUFile *f, void *pv, size_t size)
955 bool *v = pv;
956 qemu_put_byte(f, *v);
959 const VMStateInfo vmstate_info_bool = {
960 .name = "bool",
961 .get = get_bool,
962 .put = put_bool,
965 /* 8 bit int */
967 static int get_int8(QEMUFile *f, void *pv, size_t size)
969 int8_t *v = pv;
970 qemu_get_s8s(f, v);
971 return 0;
974 static void put_int8(QEMUFile *f, void *pv, size_t size)
976 int8_t *v = pv;
977 qemu_put_s8s(f, v);
980 const VMStateInfo vmstate_info_int8 = {
981 .name = "int8",
982 .get = get_int8,
983 .put = put_int8,
986 /* 16 bit int */
988 static int get_int16(QEMUFile *f, void *pv, size_t size)
990 int16_t *v = pv;
991 qemu_get_sbe16s(f, v);
992 return 0;
995 static void put_int16(QEMUFile *f, void *pv, size_t size)
997 int16_t *v = pv;
998 qemu_put_sbe16s(f, v);
1001 const VMStateInfo vmstate_info_int16 = {
1002 .name = "int16",
1003 .get = get_int16,
1004 .put = put_int16,
1007 /* 32 bit int */
1009 static int get_int32(QEMUFile *f, void *pv, size_t size)
1011 int32_t *v = pv;
1012 qemu_get_sbe32s(f, v);
1013 return 0;
1016 static void put_int32(QEMUFile *f, void *pv, size_t size)
1018 int32_t *v = pv;
1019 qemu_put_sbe32s(f, v);
1022 const VMStateInfo vmstate_info_int32 = {
1023 .name = "int32",
1024 .get = get_int32,
1025 .put = put_int32,
1028 /* 32 bit int. See that the received value is the same than the one
1029 in the field */
1031 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
1033 int32_t *v = pv;
1034 int32_t v2;
1035 qemu_get_sbe32s(f, &v2);
1037 if (*v == v2)
1038 return 0;
1039 return -EINVAL;
1042 const VMStateInfo vmstate_info_int32_equal = {
1043 .name = "int32 equal",
1044 .get = get_int32_equal,
1045 .put = put_int32,
1048 /* 32 bit int. See that the received value is the less or the same
1049 than the one in the field */
1051 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
1053 int32_t *old = pv;
1054 int32_t new;
1055 qemu_get_sbe32s(f, &new);
1057 if (*old <= new)
1058 return 0;
1059 return -EINVAL;
1062 const VMStateInfo vmstate_info_int32_le = {
1063 .name = "int32 equal",
1064 .get = get_int32_le,
1065 .put = put_int32,
1068 /* 64 bit int */
1070 static int get_int64(QEMUFile *f, void *pv, size_t size)
1072 int64_t *v = pv;
1073 qemu_get_sbe64s(f, v);
1074 return 0;
1077 static void put_int64(QEMUFile *f, void *pv, size_t size)
1079 int64_t *v = pv;
1080 qemu_put_sbe64s(f, v);
1083 const VMStateInfo vmstate_info_int64 = {
1084 .name = "int64",
1085 .get = get_int64,
1086 .put = put_int64,
1089 /* 8 bit unsigned int */
1091 static int get_uint8(QEMUFile *f, void *pv, size_t size)
1093 uint8_t *v = pv;
1094 qemu_get_8s(f, v);
1095 return 0;
1098 static void put_uint8(QEMUFile *f, void *pv, size_t size)
1100 uint8_t *v = pv;
1101 qemu_put_8s(f, v);
1104 const VMStateInfo vmstate_info_uint8 = {
1105 .name = "uint8",
1106 .get = get_uint8,
1107 .put = put_uint8,
1110 /* 16 bit unsigned int */
1112 static int get_uint16(QEMUFile *f, void *pv, size_t size)
1114 uint16_t *v = pv;
1115 qemu_get_be16s(f, v);
1116 return 0;
1119 static void put_uint16(QEMUFile *f, void *pv, size_t size)
1121 uint16_t *v = pv;
1122 qemu_put_be16s(f, v);
1125 const VMStateInfo vmstate_info_uint16 = {
1126 .name = "uint16",
1127 .get = get_uint16,
1128 .put = put_uint16,
1131 /* 32 bit unsigned int */
1133 static int get_uint32(QEMUFile *f, void *pv, size_t size)
1135 uint32_t *v = pv;
1136 qemu_get_be32s(f, v);
1137 return 0;
1140 static void put_uint32(QEMUFile *f, void *pv, size_t size)
1142 uint32_t *v = pv;
1143 qemu_put_be32s(f, v);
1146 const VMStateInfo vmstate_info_uint32 = {
1147 .name = "uint32",
1148 .get = get_uint32,
1149 .put = put_uint32,
1152 /* 32 bit uint. See that the received value is the same than the one
1153 in the field */
1155 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1157 uint32_t *v = pv;
1158 uint32_t v2;
1159 qemu_get_be32s(f, &v2);
1161 if (*v == v2) {
1162 return 0;
1164 return -EINVAL;
1167 const VMStateInfo vmstate_info_uint32_equal = {
1168 .name = "uint32 equal",
1169 .get = get_uint32_equal,
1170 .put = put_uint32,
1173 /* 64 bit unsigned int */
1175 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1177 uint64_t *v = pv;
1178 qemu_get_be64s(f, v);
1179 return 0;
1182 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1184 uint64_t *v = pv;
1185 qemu_put_be64s(f, v);
1188 const VMStateInfo vmstate_info_uint64 = {
1189 .name = "uint64",
1190 .get = get_uint64,
1191 .put = put_uint64,
1194 /* 64 bit unsigned int. See that the received value is the same than the one
1195 in the field */
1197 static int get_uint64_equal(QEMUFile *f, void *pv, size_t size)
1199 uint64_t *v = pv;
1200 uint64_t v2;
1201 qemu_get_be64s(f, &v2);
1203 if (*v == v2) {
1204 return 0;
1206 return -EINVAL;
1209 const VMStateInfo vmstate_info_uint64_equal = {
1210 .name = "int64 equal",
1211 .get = get_uint64_equal,
1212 .put = put_uint64,
1215 /* 8 bit int. See that the received value is the same than the one
1216 in the field */
1218 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1220 uint8_t *v = pv;
1221 uint8_t v2;
1222 qemu_get_8s(f, &v2);
1224 if (*v == v2)
1225 return 0;
1226 return -EINVAL;
1229 const VMStateInfo vmstate_info_uint8_equal = {
1230 .name = "uint8 equal",
1231 .get = get_uint8_equal,
1232 .put = put_uint8,
1235 /* 16 bit unsigned int int. See that the received value is the same than the one
1236 in the field */
1238 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1240 uint16_t *v = pv;
1241 uint16_t v2;
1242 qemu_get_be16s(f, &v2);
1244 if (*v == v2)
1245 return 0;
1246 return -EINVAL;
1249 const VMStateInfo vmstate_info_uint16_equal = {
1250 .name = "uint16 equal",
1251 .get = get_uint16_equal,
1252 .put = put_uint16,
1255 /* floating point */
1257 static int get_float64(QEMUFile *f, void *pv, size_t size)
1259 float64 *v = pv;
1261 *v = make_float64(qemu_get_be64(f));
1262 return 0;
1265 static void put_float64(QEMUFile *f, void *pv, size_t size)
1267 uint64_t *v = pv;
1269 qemu_put_be64(f, float64_val(*v));
1272 const VMStateInfo vmstate_info_float64 = {
1273 .name = "float64",
1274 .get = get_float64,
1275 .put = put_float64,
1278 /* timers */
1280 static int get_timer(QEMUFile *f, void *pv, size_t size)
1282 QEMUTimer *v = pv;
1283 qemu_get_timer(f, v);
1284 return 0;
1287 static void put_timer(QEMUFile *f, void *pv, size_t size)
1289 QEMUTimer *v = pv;
1290 qemu_put_timer(f, v);
1293 const VMStateInfo vmstate_info_timer = {
1294 .name = "timer",
1295 .get = get_timer,
1296 .put = put_timer,
1299 /* uint8_t buffers */
1301 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1303 uint8_t *v = pv;
1304 qemu_get_buffer(f, v, size);
1305 return 0;
1308 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1310 uint8_t *v = pv;
1311 qemu_put_buffer(f, v, size);
1314 const VMStateInfo vmstate_info_buffer = {
1315 .name = "buffer",
1316 .get = get_buffer,
1317 .put = put_buffer,
1320 /* unused buffers: space that was used for some fields that are
1321 not useful anymore */
1323 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1325 uint8_t buf[1024];
1326 int block_len;
1328 while (size > 0) {
1329 block_len = MIN(sizeof(buf), size);
1330 size -= block_len;
1331 qemu_get_buffer(f, buf, block_len);
1333 return 0;
1336 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1338 static const uint8_t buf[1024];
1339 int block_len;
1341 while (size > 0) {
1342 block_len = MIN(sizeof(buf), size);
1343 size -= block_len;
1344 qemu_put_buffer(f, buf, block_len);
1348 const VMStateInfo vmstate_info_unused_buffer = {
1349 .name = "unused_buffer",
1350 .get = get_unused_buffer,
1351 .put = put_unused_buffer,
1354 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1355 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1356 * bit words with the bits in big endian order. The in-memory format
1357 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1359 /* This is the number of 64 bit words sent over the wire */
1360 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1361 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1363 unsigned long *bmp = pv;
1364 int i, idx = 0;
1365 for (i = 0; i < BITS_TO_U64S(size); i++) {
1366 uint64_t w = qemu_get_be64(f);
1367 bmp[idx++] = w;
1368 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1369 bmp[idx++] = w >> 32;
1372 return 0;
1375 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1377 unsigned long *bmp = pv;
1378 int i, idx = 0;
1379 for (i = 0; i < BITS_TO_U64S(size); i++) {
1380 uint64_t w = bmp[idx++];
1381 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1382 w |= ((uint64_t)bmp[idx++]) << 32;
1384 qemu_put_be64(f, w);
1388 const VMStateInfo vmstate_info_bitmap = {
1389 .name = "bitmap",
1390 .get = get_bitmap,
1391 .put = put_bitmap,
1394 typedef struct CompatEntry {
1395 char idstr[256];
1396 int instance_id;
1397 } CompatEntry;
1399 typedef struct SaveStateEntry {
1400 QTAILQ_ENTRY(SaveStateEntry) entry;
1401 char idstr[256];
1402 int instance_id;
1403 int alias_id;
1404 int version_id;
1405 int section_id;
1406 SaveVMHandlers *ops;
1407 const VMStateDescription *vmsd;
1408 void *opaque;
1409 CompatEntry *compat;
1410 int no_migrate;
1411 int is_ram;
1412 } SaveStateEntry;
1415 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1416 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1417 static int global_section_id;
1419 static int calculate_new_instance_id(const char *idstr)
1421 SaveStateEntry *se;
1422 int instance_id = 0;
1424 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1425 if (strcmp(idstr, se->idstr) == 0
1426 && instance_id <= se->instance_id) {
1427 instance_id = se->instance_id + 1;
1430 return instance_id;
1433 static int calculate_compat_instance_id(const char *idstr)
1435 SaveStateEntry *se;
1436 int instance_id = 0;
1438 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1439 if (!se->compat)
1440 continue;
1442 if (strcmp(idstr, se->compat->idstr) == 0
1443 && instance_id <= se->compat->instance_id) {
1444 instance_id = se->compat->instance_id + 1;
1447 return instance_id;
1450 /* TODO: Individual devices generally have very little idea about the rest
1451 of the system, so instance_id should be removed/replaced.
1452 Meanwhile pass -1 as instance_id if you do not already have a clearly
1453 distinguishing id for all instances of your device class. */
1454 int register_savevm_live(DeviceState *dev,
1455 const char *idstr,
1456 int instance_id,
1457 int version_id,
1458 SaveVMHandlers *ops,
1459 void *opaque)
1461 SaveStateEntry *se;
1463 se = g_malloc0(sizeof(SaveStateEntry));
1464 se->version_id = version_id;
1465 se->section_id = global_section_id++;
1466 se->ops = ops;
1467 se->opaque = opaque;
1468 se->vmsd = NULL;
1469 se->no_migrate = 0;
1470 /* if this is a live_savem then set is_ram */
1471 if (ops->save_live_setup != NULL) {
1472 se->is_ram = 1;
1475 if (dev) {
1476 char *id = qdev_get_dev_path(dev);
1477 if (id) {
1478 pstrcpy(se->idstr, sizeof(se->idstr), id);
1479 pstrcat(se->idstr, sizeof(se->idstr), "/");
1480 g_free(id);
1482 se->compat = g_malloc0(sizeof(CompatEntry));
1483 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1484 se->compat->instance_id = instance_id == -1 ?
1485 calculate_compat_instance_id(idstr) : instance_id;
1486 instance_id = -1;
1489 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1491 if (instance_id == -1) {
1492 se->instance_id = calculate_new_instance_id(se->idstr);
1493 } else {
1494 se->instance_id = instance_id;
1496 assert(!se->compat || se->instance_id == 0);
1497 /* add at the end of list */
1498 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1499 return 0;
1502 int register_savevm(DeviceState *dev,
1503 const char *idstr,
1504 int instance_id,
1505 int version_id,
1506 SaveStateHandler *save_state,
1507 LoadStateHandler *load_state,
1508 void *opaque)
1510 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1511 ops->save_state = save_state;
1512 ops->load_state = load_state;
1513 return register_savevm_live(dev, idstr, instance_id, version_id,
1514 ops, opaque);
1517 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1519 SaveStateEntry *se, *new_se;
1520 char id[256] = "";
1522 if (dev) {
1523 char *path = qdev_get_dev_path(dev);
1524 if (path) {
1525 pstrcpy(id, sizeof(id), path);
1526 pstrcat(id, sizeof(id), "/");
1527 g_free(path);
1530 pstrcat(id, sizeof(id), idstr);
1532 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1533 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1534 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1535 if (se->compat) {
1536 g_free(se->compat);
1538 g_free(se->ops);
1539 g_free(se);
1544 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1545 const VMStateDescription *vmsd,
1546 void *opaque, int alias_id,
1547 int required_for_version)
1549 SaveStateEntry *se;
1551 /* If this triggers, alias support can be dropped for the vmsd. */
1552 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1554 se = g_malloc0(sizeof(SaveStateEntry));
1555 se->version_id = vmsd->version_id;
1556 se->section_id = global_section_id++;
1557 se->opaque = opaque;
1558 se->vmsd = vmsd;
1559 se->alias_id = alias_id;
1560 se->no_migrate = vmsd->unmigratable;
1562 if (dev) {
1563 char *id = qdev_get_dev_path(dev);
1564 if (id) {
1565 pstrcpy(se->idstr, sizeof(se->idstr), id);
1566 pstrcat(se->idstr, sizeof(se->idstr), "/");
1567 g_free(id);
1569 se->compat = g_malloc0(sizeof(CompatEntry));
1570 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1571 se->compat->instance_id = instance_id == -1 ?
1572 calculate_compat_instance_id(vmsd->name) : instance_id;
1573 instance_id = -1;
1576 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1578 if (instance_id == -1) {
1579 se->instance_id = calculate_new_instance_id(se->idstr);
1580 } else {
1581 se->instance_id = instance_id;
1583 assert(!se->compat || se->instance_id == 0);
1584 /* add at the end of list */
1585 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1586 return 0;
1589 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1590 void *opaque)
1592 SaveStateEntry *se, *new_se;
1594 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1595 if (se->vmsd == vmsd && se->opaque == opaque) {
1596 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1597 if (se->compat) {
1598 g_free(se->compat);
1600 g_free(se);
1605 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1606 void *opaque);
1607 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1608 void *opaque);
1610 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1611 void *opaque, int version_id)
1613 VMStateField *field = vmsd->fields;
1614 int ret;
1616 if (version_id > vmsd->version_id) {
1617 return -EINVAL;
1619 if (version_id < vmsd->minimum_version_id_old) {
1620 return -EINVAL;
1622 if (version_id < vmsd->minimum_version_id) {
1623 return vmsd->load_state_old(f, opaque, version_id);
1625 if (vmsd->pre_load) {
1626 int ret = vmsd->pre_load(opaque);
1627 if (ret)
1628 return ret;
1630 while(field->name) {
1631 if ((field->field_exists &&
1632 field->field_exists(opaque, version_id)) ||
1633 (!field->field_exists &&
1634 field->version_id <= version_id)) {
1635 void *base_addr = opaque + field->offset;
1636 int i, n_elems = 1;
1637 int size = field->size;
1639 if (field->flags & VMS_VBUFFER) {
1640 size = *(int32_t *)(opaque+field->size_offset);
1641 if (field->flags & VMS_MULTIPLY) {
1642 size *= field->size;
1645 if (field->flags & VMS_ARRAY) {
1646 n_elems = field->num;
1647 } else if (field->flags & VMS_VARRAY_INT32) {
1648 n_elems = *(int32_t *)(opaque+field->num_offset);
1649 } else if (field->flags & VMS_VARRAY_UINT32) {
1650 n_elems = *(uint32_t *)(opaque+field->num_offset);
1651 } else if (field->flags & VMS_VARRAY_UINT16) {
1652 n_elems = *(uint16_t *)(opaque+field->num_offset);
1653 } else if (field->flags & VMS_VARRAY_UINT8) {
1654 n_elems = *(uint8_t *)(opaque+field->num_offset);
1656 if (field->flags & VMS_POINTER) {
1657 base_addr = *(void **)base_addr + field->start;
1659 for (i = 0; i < n_elems; i++) {
1660 void *addr = base_addr + size * i;
1662 if (field->flags & VMS_ARRAY_OF_POINTER) {
1663 addr = *(void **)addr;
1665 if (field->flags & VMS_STRUCT) {
1666 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1667 } else {
1668 ret = field->info->get(f, addr, size);
1671 if (ret < 0) {
1672 return ret;
1676 field++;
1678 ret = vmstate_subsection_load(f, vmsd, opaque);
1679 if (ret != 0) {
1680 return ret;
1682 if (vmsd->post_load) {
1683 return vmsd->post_load(opaque, version_id);
1685 return 0;
1688 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1689 void *opaque)
1691 VMStateField *field = vmsd->fields;
1693 if (vmsd->pre_save) {
1694 vmsd->pre_save(opaque);
1696 while(field->name) {
1697 if (!field->field_exists ||
1698 field->field_exists(opaque, vmsd->version_id)) {
1699 void *base_addr = opaque + field->offset;
1700 int i, n_elems = 1;
1701 int size = field->size;
1703 if (field->flags & VMS_VBUFFER) {
1704 size = *(int32_t *)(opaque+field->size_offset);
1705 if (field->flags & VMS_MULTIPLY) {
1706 size *= field->size;
1709 if (field->flags & VMS_ARRAY) {
1710 n_elems = field->num;
1711 } else if (field->flags & VMS_VARRAY_INT32) {
1712 n_elems = *(int32_t *)(opaque+field->num_offset);
1713 } else if (field->flags & VMS_VARRAY_UINT32) {
1714 n_elems = *(uint32_t *)(opaque+field->num_offset);
1715 } else if (field->flags & VMS_VARRAY_UINT16) {
1716 n_elems = *(uint16_t *)(opaque+field->num_offset);
1717 } else if (field->flags & VMS_VARRAY_UINT8) {
1718 n_elems = *(uint8_t *)(opaque+field->num_offset);
1720 if (field->flags & VMS_POINTER) {
1721 base_addr = *(void **)base_addr + field->start;
1723 for (i = 0; i < n_elems; i++) {
1724 void *addr = base_addr + size * i;
1726 if (field->flags & VMS_ARRAY_OF_POINTER) {
1727 addr = *(void **)addr;
1729 if (field->flags & VMS_STRUCT) {
1730 vmstate_save_state(f, field->vmsd, addr);
1731 } else {
1732 field->info->put(f, addr, size);
1736 field++;
1738 vmstate_subsection_save(f, vmsd, opaque);
1741 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1743 if (!se->vmsd) { /* Old style */
1744 return se->ops->load_state(f, se->opaque, version_id);
1746 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1749 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1751 if (!se->vmsd) { /* Old style */
1752 se->ops->save_state(f, se->opaque);
1753 return;
1755 vmstate_save_state(f,se->vmsd, se->opaque);
1758 #define QEMU_VM_FILE_MAGIC 0x5145564d
1759 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1760 #define QEMU_VM_FILE_VERSION 0x00000003
1762 #define QEMU_VM_EOF 0x00
1763 #define QEMU_VM_SECTION_START 0x01
1764 #define QEMU_VM_SECTION_PART 0x02
1765 #define QEMU_VM_SECTION_END 0x03
1766 #define QEMU_VM_SECTION_FULL 0x04
1767 #define QEMU_VM_SUBSECTION 0x05
1769 bool qemu_savevm_state_blocked(Error **errp)
1771 SaveStateEntry *se;
1773 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1774 if (se->no_migrate) {
1775 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1776 return true;
1779 return false;
1782 void qemu_savevm_state_begin(QEMUFile *f,
1783 const MigrationParams *params)
1785 SaveStateEntry *se;
1786 int ret;
1788 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1789 if (!se->ops || !se->ops->set_params) {
1790 continue;
1792 se->ops->set_params(params, se->opaque);
1795 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1796 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1798 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1799 int len;
1801 if (!se->ops || !se->ops->save_live_setup) {
1802 continue;
1804 if (se->ops && se->ops->is_active) {
1805 if (!se->ops->is_active(se->opaque)) {
1806 continue;
1809 /* Section type */
1810 qemu_put_byte(f, QEMU_VM_SECTION_START);
1811 qemu_put_be32(f, se->section_id);
1813 /* ID string */
1814 len = strlen(se->idstr);
1815 qemu_put_byte(f, len);
1816 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1818 qemu_put_be32(f, se->instance_id);
1819 qemu_put_be32(f, se->version_id);
1821 ret = se->ops->save_live_setup(f, se->opaque);
1822 if (ret < 0) {
1823 qemu_file_set_error(f, ret);
1824 break;
1830 * this function has three return values:
1831 * negative: there was one error, and we have -errno.
1832 * 0 : We haven't finished, caller have to go again
1833 * 1 : We have finished, we can go to complete phase
1835 int qemu_savevm_state_iterate(QEMUFile *f)
1837 SaveStateEntry *se;
1838 int ret = 1;
1840 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1841 if (!se->ops || !se->ops->save_live_iterate) {
1842 continue;
1844 if (se->ops && se->ops->is_active) {
1845 if (!se->ops->is_active(se->opaque)) {
1846 continue;
1849 if (qemu_file_rate_limit(f)) {
1850 return 0;
1852 trace_savevm_section_start();
1853 /* Section type */
1854 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1855 qemu_put_be32(f, se->section_id);
1857 ret = se->ops->save_live_iterate(f, se->opaque);
1858 trace_savevm_section_end(se->section_id);
1860 if (ret < 0) {
1861 qemu_file_set_error(f, ret);
1863 if (ret <= 0) {
1864 /* Do not proceed to the next vmstate before this one reported
1865 completion of the current stage. This serializes the migration
1866 and reduces the probability that a faster changing state is
1867 synchronized over and over again. */
1868 break;
1871 return ret;
1874 void qemu_savevm_state_complete(QEMUFile *f)
1876 SaveStateEntry *se;
1877 int ret;
1879 cpu_synchronize_all_states();
1881 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1882 if (!se->ops || !se->ops->save_live_complete) {
1883 continue;
1885 if (se->ops && se->ops->is_active) {
1886 if (!se->ops->is_active(se->opaque)) {
1887 continue;
1890 trace_savevm_section_start();
1891 /* Section type */
1892 qemu_put_byte(f, QEMU_VM_SECTION_END);
1893 qemu_put_be32(f, se->section_id);
1895 ret = se->ops->save_live_complete(f, se->opaque);
1896 trace_savevm_section_end(se->section_id);
1897 if (ret < 0) {
1898 qemu_file_set_error(f, ret);
1899 return;
1903 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1904 int len;
1906 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1907 continue;
1909 trace_savevm_section_start();
1910 /* Section type */
1911 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1912 qemu_put_be32(f, se->section_id);
1914 /* ID string */
1915 len = strlen(se->idstr);
1916 qemu_put_byte(f, len);
1917 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1919 qemu_put_be32(f, se->instance_id);
1920 qemu_put_be32(f, se->version_id);
1922 vmstate_save(f, se);
1923 trace_savevm_section_end(se->section_id);
1926 qemu_put_byte(f, QEMU_VM_EOF);
1927 qemu_fflush(f);
1930 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1932 SaveStateEntry *se;
1933 uint64_t ret = 0;
1935 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1936 if (!se->ops || !se->ops->save_live_pending) {
1937 continue;
1939 if (se->ops && se->ops->is_active) {
1940 if (!se->ops->is_active(se->opaque)) {
1941 continue;
1944 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1946 return ret;
1949 void qemu_savevm_state_cancel(void)
1951 SaveStateEntry *se;
1953 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1954 if (se->ops && se->ops->cancel) {
1955 se->ops->cancel(se->opaque);
1960 static int qemu_savevm_state(QEMUFile *f)
1962 int ret;
1963 MigrationParams params = {
1964 .blk = 0,
1965 .shared = 0
1968 if (qemu_savevm_state_blocked(NULL)) {
1969 return -EINVAL;
1972 qemu_mutex_unlock_iothread();
1973 qemu_savevm_state_begin(f, &params);
1974 qemu_mutex_lock_iothread();
1976 while (qemu_file_get_error(f) == 0) {
1977 if (qemu_savevm_state_iterate(f) > 0) {
1978 break;
1982 ret = qemu_file_get_error(f);
1983 if (ret == 0) {
1984 qemu_savevm_state_complete(f);
1985 ret = qemu_file_get_error(f);
1987 if (ret != 0) {
1988 qemu_savevm_state_cancel();
1990 return ret;
1993 static int qemu_save_device_state(QEMUFile *f)
1995 SaveStateEntry *se;
1997 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1998 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
2000 cpu_synchronize_all_states();
2002 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
2003 int len;
2005 if (se->is_ram) {
2006 continue;
2008 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
2009 continue;
2012 /* Section type */
2013 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
2014 qemu_put_be32(f, se->section_id);
2016 /* ID string */
2017 len = strlen(se->idstr);
2018 qemu_put_byte(f, len);
2019 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
2021 qemu_put_be32(f, se->instance_id);
2022 qemu_put_be32(f, se->version_id);
2024 vmstate_save(f, se);
2027 qemu_put_byte(f, QEMU_VM_EOF);
2029 return qemu_file_get_error(f);
2032 static SaveStateEntry *find_se(const char *idstr, int instance_id)
2034 SaveStateEntry *se;
2036 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
2037 if (!strcmp(se->idstr, idstr) &&
2038 (instance_id == se->instance_id ||
2039 instance_id == se->alias_id))
2040 return se;
2041 /* Migrating from an older version? */
2042 if (strstr(se->idstr, idstr) && se->compat) {
2043 if (!strcmp(se->compat->idstr, idstr) &&
2044 (instance_id == se->compat->instance_id ||
2045 instance_id == se->alias_id))
2046 return se;
2049 return NULL;
2052 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
2054 while(sub && sub->needed) {
2055 if (strcmp(idstr, sub->vmsd->name) == 0) {
2056 return sub->vmsd;
2058 sub++;
2060 return NULL;
2063 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
2064 void *opaque)
2066 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
2067 char idstr[256];
2068 int ret;
2069 uint8_t version_id, len, size;
2070 const VMStateDescription *sub_vmsd;
2072 len = qemu_peek_byte(f, 1);
2073 if (len < strlen(vmsd->name) + 1) {
2074 /* subsection name has be be "section_name/a" */
2075 return 0;
2077 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
2078 if (size != len) {
2079 return 0;
2081 idstr[size] = 0;
2083 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
2084 /* it don't have a valid subsection name */
2085 return 0;
2087 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
2088 if (sub_vmsd == NULL) {
2089 return -ENOENT;
2091 qemu_file_skip(f, 1); /* subsection */
2092 qemu_file_skip(f, 1); /* len */
2093 qemu_file_skip(f, len); /* idstr */
2094 version_id = qemu_get_be32(f);
2096 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
2097 if (ret) {
2098 return ret;
2101 return 0;
2104 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
2105 void *opaque)
2107 const VMStateSubsection *sub = vmsd->subsections;
2109 while (sub && sub->needed) {
2110 if (sub->needed(opaque)) {
2111 const VMStateDescription *vmsd = sub->vmsd;
2112 uint8_t len;
2114 qemu_put_byte(f, QEMU_VM_SUBSECTION);
2115 len = strlen(vmsd->name);
2116 qemu_put_byte(f, len);
2117 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
2118 qemu_put_be32(f, vmsd->version_id);
2119 vmstate_save_state(f, vmsd, opaque);
2121 sub++;
2125 typedef struct LoadStateEntry {
2126 QLIST_ENTRY(LoadStateEntry) entry;
2127 SaveStateEntry *se;
2128 int section_id;
2129 int version_id;
2130 } LoadStateEntry;
2132 int qemu_loadvm_state(QEMUFile *f)
2134 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
2135 QLIST_HEAD_INITIALIZER(loadvm_handlers);
2136 LoadStateEntry *le, *new_le;
2137 uint8_t section_type;
2138 unsigned int v;
2139 int ret;
2141 if (qemu_savevm_state_blocked(NULL)) {
2142 return -EINVAL;
2145 v = qemu_get_be32(f);
2146 if (v != QEMU_VM_FILE_MAGIC)
2147 return -EINVAL;
2149 v = qemu_get_be32(f);
2150 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2151 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
2152 return -ENOTSUP;
2154 if (v != QEMU_VM_FILE_VERSION)
2155 return -ENOTSUP;
2157 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
2158 uint32_t instance_id, version_id, section_id;
2159 SaveStateEntry *se;
2160 char idstr[257];
2161 int len;
2163 switch (section_type) {
2164 case QEMU_VM_SECTION_START:
2165 case QEMU_VM_SECTION_FULL:
2166 /* Read section start */
2167 section_id = qemu_get_be32(f);
2168 len = qemu_get_byte(f);
2169 qemu_get_buffer(f, (uint8_t *)idstr, len);
2170 idstr[len] = 0;
2171 instance_id = qemu_get_be32(f);
2172 version_id = qemu_get_be32(f);
2174 /* Find savevm section */
2175 se = find_se(idstr, instance_id);
2176 if (se == NULL) {
2177 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
2178 ret = -EINVAL;
2179 goto out;
2182 /* Validate version */
2183 if (version_id > se->version_id) {
2184 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2185 version_id, idstr, se->version_id);
2186 ret = -EINVAL;
2187 goto out;
2190 /* Add entry */
2191 le = g_malloc0(sizeof(*le));
2193 le->se = se;
2194 le->section_id = section_id;
2195 le->version_id = version_id;
2196 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2198 ret = vmstate_load(f, le->se, le->version_id);
2199 if (ret < 0) {
2200 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2201 instance_id, idstr);
2202 goto out;
2204 break;
2205 case QEMU_VM_SECTION_PART:
2206 case QEMU_VM_SECTION_END:
2207 section_id = qemu_get_be32(f);
2209 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2210 if (le->section_id == section_id) {
2211 break;
2214 if (le == NULL) {
2215 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2216 ret = -EINVAL;
2217 goto out;
2220 ret = vmstate_load(f, le->se, le->version_id);
2221 if (ret < 0) {
2222 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2223 section_id);
2224 goto out;
2226 break;
2227 default:
2228 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2229 ret = -EINVAL;
2230 goto out;
2234 cpu_synchronize_all_post_init();
2236 ret = 0;
2238 out:
2239 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2240 QLIST_REMOVE(le, entry);
2241 g_free(le);
2244 if (ret == 0) {
2245 ret = qemu_file_get_error(f);
2248 return ret;
2251 static BlockDriverState *find_vmstate_bs(void)
2253 BlockDriverState *bs = NULL;
2254 while ((bs = bdrv_next(bs))) {
2255 if (bdrv_can_snapshot(bs)) {
2256 return bs;
2259 return NULL;
2263 * Deletes snapshots of a given name in all opened images.
2265 static int del_existing_snapshots(Monitor *mon, const char *name)
2267 BlockDriverState *bs;
2268 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2269 int ret;
2271 bs = NULL;
2272 while ((bs = bdrv_next(bs))) {
2273 if (bdrv_can_snapshot(bs) &&
2274 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2276 ret = bdrv_snapshot_delete(bs, name);
2277 if (ret < 0) {
2278 monitor_printf(mon,
2279 "Error while deleting snapshot on '%s'\n",
2280 bdrv_get_device_name(bs));
2281 return -1;
2286 return 0;
2289 void do_savevm(Monitor *mon, const QDict *qdict)
2291 BlockDriverState *bs, *bs1;
2292 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2293 int ret;
2294 QEMUFile *f;
2295 int saved_vm_running;
2296 uint64_t vm_state_size;
2297 qemu_timeval tv;
2298 struct tm tm;
2299 const char *name = qdict_get_try_str(qdict, "name");
2301 /* Verify if there is a device that doesn't support snapshots and is writable */
2302 bs = NULL;
2303 while ((bs = bdrv_next(bs))) {
2305 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2306 continue;
2309 if (!bdrv_can_snapshot(bs)) {
2310 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2311 bdrv_get_device_name(bs));
2312 return;
2316 bs = find_vmstate_bs();
2317 if (!bs) {
2318 monitor_printf(mon, "No block device can accept snapshots\n");
2319 return;
2322 saved_vm_running = runstate_is_running();
2323 vm_stop(RUN_STATE_SAVE_VM);
2325 memset(sn, 0, sizeof(*sn));
2327 /* fill auxiliary fields */
2328 qemu_gettimeofday(&tv);
2329 sn->date_sec = tv.tv_sec;
2330 sn->date_nsec = tv.tv_usec * 1000;
2331 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2333 if (name) {
2334 ret = bdrv_snapshot_find(bs, old_sn, name);
2335 if (ret >= 0) {
2336 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2337 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2338 } else {
2339 pstrcpy(sn->name, sizeof(sn->name), name);
2341 } else {
2342 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2343 localtime_r((const time_t *)&tv.tv_sec, &tm);
2344 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2347 /* Delete old snapshots of the same name */
2348 if (name && del_existing_snapshots(mon, name) < 0) {
2349 goto the_end;
2352 /* save the VM state */
2353 f = qemu_fopen_bdrv(bs, 1);
2354 if (!f) {
2355 monitor_printf(mon, "Could not open VM state file\n");
2356 goto the_end;
2358 ret = qemu_savevm_state(f);
2359 vm_state_size = qemu_ftell(f);
2360 qemu_fclose(f);
2361 if (ret < 0) {
2362 monitor_printf(mon, "Error %d while writing VM\n", ret);
2363 goto the_end;
2366 /* create the snapshots */
2368 bs1 = NULL;
2369 while ((bs1 = bdrv_next(bs1))) {
2370 if (bdrv_can_snapshot(bs1)) {
2371 /* Write VM state size only to the image that contains the state */
2372 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2373 ret = bdrv_snapshot_create(bs1, sn);
2374 if (ret < 0) {
2375 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2376 bdrv_get_device_name(bs1));
2381 the_end:
2382 if (saved_vm_running)
2383 vm_start();
2386 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2388 QEMUFile *f;
2389 int saved_vm_running;
2390 int ret;
2392 saved_vm_running = runstate_is_running();
2393 vm_stop(RUN_STATE_SAVE_VM);
2395 f = qemu_fopen(filename, "wb");
2396 if (!f) {
2397 error_setg_file_open(errp, errno, filename);
2398 goto the_end;
2400 ret = qemu_save_device_state(f);
2401 qemu_fclose(f);
2402 if (ret < 0) {
2403 error_set(errp, QERR_IO_ERROR);
2406 the_end:
2407 if (saved_vm_running)
2408 vm_start();
2411 int load_vmstate(const char *name)
2413 BlockDriverState *bs, *bs_vm_state;
2414 QEMUSnapshotInfo sn;
2415 QEMUFile *f;
2416 int ret;
2418 bs_vm_state = find_vmstate_bs();
2419 if (!bs_vm_state) {
2420 error_report("No block device supports snapshots");
2421 return -ENOTSUP;
2424 /* Don't even try to load empty VM states */
2425 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2426 if (ret < 0) {
2427 return ret;
2428 } else if (sn.vm_state_size == 0) {
2429 error_report("This is a disk-only snapshot. Revert to it offline "
2430 "using qemu-img.");
2431 return -EINVAL;
2434 /* Verify if there is any device that doesn't support snapshots and is
2435 writable and check if the requested snapshot is available too. */
2436 bs = NULL;
2437 while ((bs = bdrv_next(bs))) {
2439 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2440 continue;
2443 if (!bdrv_can_snapshot(bs)) {
2444 error_report("Device '%s' is writable but does not support snapshots.",
2445 bdrv_get_device_name(bs));
2446 return -ENOTSUP;
2449 ret = bdrv_snapshot_find(bs, &sn, name);
2450 if (ret < 0) {
2451 error_report("Device '%s' does not have the requested snapshot '%s'",
2452 bdrv_get_device_name(bs), name);
2453 return ret;
2457 /* Flush all IO requests so they don't interfere with the new state. */
2458 bdrv_drain_all();
2460 bs = NULL;
2461 while ((bs = bdrv_next(bs))) {
2462 if (bdrv_can_snapshot(bs)) {
2463 ret = bdrv_snapshot_goto(bs, name);
2464 if (ret < 0) {
2465 error_report("Error %d while activating snapshot '%s' on '%s'",
2466 ret, name, bdrv_get_device_name(bs));
2467 return ret;
2472 /* restore the VM state */
2473 f = qemu_fopen_bdrv(bs_vm_state, 0);
2474 if (!f) {
2475 error_report("Could not open VM state file");
2476 return -EINVAL;
2479 qemu_system_reset(VMRESET_SILENT);
2480 ret = qemu_loadvm_state(f);
2482 qemu_fclose(f);
2483 if (ret < 0) {
2484 error_report("Error %d while loading VM state", ret);
2485 return ret;
2488 return 0;
2491 void do_delvm(Monitor *mon, const QDict *qdict)
2493 BlockDriverState *bs, *bs1;
2494 int ret;
2495 const char *name = qdict_get_str(qdict, "name");
2497 bs = find_vmstate_bs();
2498 if (!bs) {
2499 monitor_printf(mon, "No block device supports snapshots\n");
2500 return;
2503 bs1 = NULL;
2504 while ((bs1 = bdrv_next(bs1))) {
2505 if (bdrv_can_snapshot(bs1)) {
2506 ret = bdrv_snapshot_delete(bs1, name);
2507 if (ret < 0) {
2508 if (ret == -ENOTSUP)
2509 monitor_printf(mon,
2510 "Snapshots not supported on device '%s'\n",
2511 bdrv_get_device_name(bs1));
2512 else
2513 monitor_printf(mon, "Error %d while deleting snapshot on "
2514 "'%s'\n", ret, bdrv_get_device_name(bs1));
2520 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2522 BlockDriverState *bs, *bs1;
2523 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2524 int nb_sns, i, ret, available;
2525 int total;
2526 int *available_snapshots;
2528 bs = find_vmstate_bs();
2529 if (!bs) {
2530 monitor_printf(mon, "No available block device supports snapshots\n");
2531 return;
2534 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2535 if (nb_sns < 0) {
2536 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2537 return;
2540 if (nb_sns == 0) {
2541 monitor_printf(mon, "There is no snapshot available.\n");
2542 return;
2545 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2546 total = 0;
2547 for (i = 0; i < nb_sns; i++) {
2548 sn = &sn_tab[i];
2549 available = 1;
2550 bs1 = NULL;
2552 while ((bs1 = bdrv_next(bs1))) {
2553 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2554 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2555 if (ret < 0) {
2556 available = 0;
2557 break;
2562 if (available) {
2563 available_snapshots[total] = i;
2564 total++;
2568 if (total > 0) {
2569 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL);
2570 monitor_printf(mon, "\n");
2571 for (i = 0; i < total; i++) {
2572 sn = &sn_tab[available_snapshots[i]];
2573 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn);
2574 monitor_printf(mon, "\n");
2576 } else {
2577 monitor_printf(mon, "There is no suitable snapshot available\n");
2580 g_free(sn_tab);
2581 g_free(available_snapshots);
2585 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2587 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2588 memory_region_name(mr), dev);
2591 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2593 /* Nothing do to while the implementation is in RAMBlock */
2596 void vmstate_register_ram_global(MemoryRegion *mr)
2598 vmstate_register_ram(mr, NULL);