2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
33 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
);
34 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
35 int64_t offset
, int64_t length
, uint64_t addend
,
36 bool decrease
, enum qcow2_discard_type type
);
38 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
);
39 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
);
40 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
);
41 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
);
42 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
);
43 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
);
44 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
);
46 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
48 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
50 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
52 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
54 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
56 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
58 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
62 static Qcow2GetRefcountFunc
*const get_refcount_funcs
[] = {
72 static Qcow2SetRefcountFunc
*const set_refcount_funcs
[] = {
83 /*********************************************************/
84 /* refcount handling */
86 int qcow2_refcount_init(BlockDriverState
*bs
)
88 BDRVQcow2State
*s
= bs
->opaque
;
89 unsigned int refcount_table_size2
, i
;
92 assert(s
->refcount_order
>= 0 && s
->refcount_order
<= 6);
94 s
->get_refcount
= get_refcount_funcs
[s
->refcount_order
];
95 s
->set_refcount
= set_refcount_funcs
[s
->refcount_order
];
97 assert(s
->refcount_table_size
<= INT_MAX
/ sizeof(uint64_t));
98 refcount_table_size2
= s
->refcount_table_size
* sizeof(uint64_t);
99 s
->refcount_table
= g_try_malloc(refcount_table_size2
);
101 if (s
->refcount_table_size
> 0) {
102 if (s
->refcount_table
== NULL
) {
106 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_LOAD
);
107 ret
= bdrv_pread(bs
->file
->bs
, s
->refcount_table_offset
,
108 s
->refcount_table
, refcount_table_size2
);
112 for(i
= 0; i
< s
->refcount_table_size
; i
++)
113 be64_to_cpus(&s
->refcount_table
[i
]);
120 void qcow2_refcount_close(BlockDriverState
*bs
)
122 BDRVQcow2State
*s
= bs
->opaque
;
123 g_free(s
->refcount_table
);
127 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
)
129 return (((const uint8_t *)refcount_array
)[index
/ 8] >> (index
% 8)) & 0x1;
132 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
135 assert(!(value
>> 1));
136 ((uint8_t *)refcount_array
)[index
/ 8] &= ~(0x1 << (index
% 8));
137 ((uint8_t *)refcount_array
)[index
/ 8] |= value
<< (index
% 8);
140 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
)
142 return (((const uint8_t *)refcount_array
)[index
/ 4] >> (2 * (index
% 4)))
146 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
149 assert(!(value
>> 2));
150 ((uint8_t *)refcount_array
)[index
/ 4] &= ~(0x3 << (2 * (index
% 4)));
151 ((uint8_t *)refcount_array
)[index
/ 4] |= value
<< (2 * (index
% 4));
154 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
)
156 return (((const uint8_t *)refcount_array
)[index
/ 2] >> (4 * (index
% 2)))
160 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
163 assert(!(value
>> 4));
164 ((uint8_t *)refcount_array
)[index
/ 2] &= ~(0xf << (4 * (index
% 2)));
165 ((uint8_t *)refcount_array
)[index
/ 2] |= value
<< (4 * (index
% 2));
168 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
)
170 return ((const uint8_t *)refcount_array
)[index
];
173 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
176 assert(!(value
>> 8));
177 ((uint8_t *)refcount_array
)[index
] = value
;
180 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
)
182 return be16_to_cpu(((const uint16_t *)refcount_array
)[index
]);
185 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
188 assert(!(value
>> 16));
189 ((uint16_t *)refcount_array
)[index
] = cpu_to_be16(value
);
192 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
)
194 return be32_to_cpu(((const uint32_t *)refcount_array
)[index
]);
197 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
200 assert(!(value
>> 32));
201 ((uint32_t *)refcount_array
)[index
] = cpu_to_be32(value
);
204 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
)
206 return be64_to_cpu(((const uint64_t *)refcount_array
)[index
]);
209 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
212 ((uint64_t *)refcount_array
)[index
] = cpu_to_be64(value
);
216 static int load_refcount_block(BlockDriverState
*bs
,
217 int64_t refcount_block_offset
,
218 void **refcount_block
)
220 BDRVQcow2State
*s
= bs
->opaque
;
223 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_LOAD
);
224 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
231 * Retrieves the refcount of the cluster given by its index and stores it in
232 * *refcount. Returns 0 on success and -errno on failure.
234 int qcow2_get_refcount(BlockDriverState
*bs
, int64_t cluster_index
,
237 BDRVQcow2State
*s
= bs
->opaque
;
238 uint64_t refcount_table_index
, block_index
;
239 int64_t refcount_block_offset
;
241 void *refcount_block
;
243 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
244 if (refcount_table_index
>= s
->refcount_table_size
) {
248 refcount_block_offset
=
249 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
250 if (!refcount_block_offset
) {
255 if (offset_into_cluster(s
, refcount_block_offset
)) {
256 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#" PRIx64
257 " unaligned (reftable index: %#" PRIx64
")",
258 refcount_block_offset
, refcount_table_index
);
262 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
268 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
269 *refcount
= s
->get_refcount(refcount_block
, block_index
);
271 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
277 * Rounds the refcount table size up to avoid growing the table for each single
278 * refcount block that is allocated.
280 static unsigned int next_refcount_table_size(BDRVQcow2State
*s
,
281 unsigned int min_size
)
283 unsigned int min_clusters
= (min_size
>> (s
->cluster_bits
- 3)) + 1;
284 unsigned int refcount_table_clusters
=
285 MAX(1, s
->refcount_table_size
>> (s
->cluster_bits
- 3));
287 while (min_clusters
> refcount_table_clusters
) {
288 refcount_table_clusters
= (refcount_table_clusters
* 3 + 1) / 2;
291 return refcount_table_clusters
<< (s
->cluster_bits
- 3);
295 /* Checks if two offsets are described by the same refcount block */
296 static int in_same_refcount_block(BDRVQcow2State
*s
, uint64_t offset_a
,
299 uint64_t block_a
= offset_a
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
300 uint64_t block_b
= offset_b
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
302 return (block_a
== block_b
);
306 * Loads a refcount block. If it doesn't exist yet, it is allocated first
307 * (including growing the refcount table if needed).
309 * Returns 0 on success or -errno in error case
311 static int alloc_refcount_block(BlockDriverState
*bs
,
312 int64_t cluster_index
, void **refcount_block
)
314 BDRVQcow2State
*s
= bs
->opaque
;
315 unsigned int refcount_table_index
;
318 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC
);
320 /* Find the refcount block for the given cluster */
321 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
323 if (refcount_table_index
< s
->refcount_table_size
) {
325 uint64_t refcount_block_offset
=
326 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
328 /* If it's already there, we're done */
329 if (refcount_block_offset
) {
330 if (offset_into_cluster(s
, refcount_block_offset
)) {
331 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#"
332 PRIx64
" unaligned (reftable index: "
333 "%#x)", refcount_block_offset
,
334 refcount_table_index
);
338 return load_refcount_block(bs
, refcount_block_offset
,
344 * If we came here, we need to allocate something. Something is at least
345 * a cluster for the new refcount block. It may also include a new refcount
346 * table if the old refcount table is too small.
348 * Note that allocating clusters here needs some special care:
350 * - We can't use the normal qcow2_alloc_clusters(), it would try to
351 * increase the refcount and very likely we would end up with an endless
352 * recursion. Instead we must place the refcount blocks in a way that
353 * they can describe them themselves.
355 * - We need to consider that at this point we are inside update_refcounts
356 * and potentially doing an initial refcount increase. This means that
357 * some clusters have already been allocated by the caller, but their
358 * refcount isn't accurate yet. If we allocate clusters for metadata, we
359 * need to return -EAGAIN to signal the caller that it needs to restart
360 * the search for free clusters.
362 * - alloc_clusters_noref and qcow2_free_clusters may load a different
363 * refcount block into the cache
366 *refcount_block
= NULL
;
368 /* We write to the refcount table, so we might depend on L2 tables */
369 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
374 /* Allocate the refcount block itself and mark it as used */
375 int64_t new_block
= alloc_clusters_noref(bs
, s
->cluster_size
);
381 fprintf(stderr
, "qcow2: Allocate refcount block %d for %" PRIx64
383 refcount_table_index
, cluster_index
<< s
->cluster_bits
, new_block
);
386 if (in_same_refcount_block(s
, new_block
, cluster_index
<< s
->cluster_bits
)) {
387 /* Zero the new refcount block before updating it */
388 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
394 memset(*refcount_block
, 0, s
->cluster_size
);
396 /* The block describes itself, need to update the cache */
397 int block_index
= (new_block
>> s
->cluster_bits
) &
398 (s
->refcount_block_size
- 1);
399 s
->set_refcount(*refcount_block
, block_index
, 1);
401 /* Described somewhere else. This can recurse at most twice before we
402 * arrive at a block that describes itself. */
403 ret
= update_refcount(bs
, new_block
, s
->cluster_size
, 1, false,
404 QCOW2_DISCARD_NEVER
);
409 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
414 /* Initialize the new refcount block only after updating its refcount,
415 * update_refcount uses the refcount cache itself */
416 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
422 memset(*refcount_block
, 0, s
->cluster_size
);
425 /* Now the new refcount block needs to be written to disk */
426 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE
);
427 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
, *refcount_block
);
428 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
433 /* If the refcount table is big enough, just hook the block up there */
434 if (refcount_table_index
< s
->refcount_table_size
) {
435 uint64_t data64
= cpu_to_be64(new_block
);
436 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_HOOKUP
);
437 ret
= bdrv_pwrite_sync(bs
->file
->bs
,
438 s
->refcount_table_offset
+ refcount_table_index
* sizeof(uint64_t),
439 &data64
, sizeof(data64
));
444 s
->refcount_table
[refcount_table_index
] = new_block
;
446 /* The new refcount block may be where the caller intended to put its
447 * data, so let it restart the search. */
451 qcow2_cache_put(bs
, s
->refcount_block_cache
, refcount_block
);
454 * If we come here, we need to grow the refcount table. Again, a new
455 * refcount table needs some space and we can't simply allocate to avoid
458 * Therefore let's grab new refcount blocks at the end of the image, which
459 * will describe themselves and the new refcount table. This way we can
460 * reference them only in the new table and do the switch to the new
461 * refcount table at once without producing an inconsistent state in
464 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_GROW
);
466 /* Calculate the number of refcount blocks needed so far; this will be the
467 * basis for calculating the index of the first cluster used for the
468 * self-describing refcount structures which we are about to create.
470 * Because we reached this point, there cannot be any refcount entries for
471 * cluster_index or higher indices yet. However, because new_block has been
472 * allocated to describe that cluster (and it will assume this role later
473 * on), we cannot use that index; also, new_block may actually have a higher
474 * cluster index than cluster_index, so it needs to be taken into account
475 * here (and 1 needs to be added to its value because that cluster is used).
477 uint64_t blocks_used
= DIV_ROUND_UP(MAX(cluster_index
+ 1,
478 (new_block
>> s
->cluster_bits
) + 1),
479 s
->refcount_block_size
);
481 if (blocks_used
> QCOW_MAX_REFTABLE_SIZE
/ sizeof(uint64_t)) {
485 /* And now we need at least one block more for the new metadata */
486 uint64_t table_size
= next_refcount_table_size(s
, blocks_used
+ 1);
487 uint64_t last_table_size
;
488 uint64_t blocks_clusters
;
490 uint64_t table_clusters
=
491 size_to_clusters(s
, table_size
* sizeof(uint64_t));
492 blocks_clusters
= 1 +
493 ((table_clusters
+ s
->refcount_block_size
- 1)
494 / s
->refcount_block_size
);
495 uint64_t meta_clusters
= table_clusters
+ blocks_clusters
;
497 last_table_size
= table_size
;
498 table_size
= next_refcount_table_size(s
, blocks_used
+
499 ((meta_clusters
+ s
->refcount_block_size
- 1)
500 / s
->refcount_block_size
));
502 } while (last_table_size
!= table_size
);
505 fprintf(stderr
, "qcow2: Grow refcount table %" PRId32
" => %" PRId64
"\n",
506 s
->refcount_table_size
, table_size
);
509 /* Create the new refcount table and blocks */
510 uint64_t meta_offset
= (blocks_used
* s
->refcount_block_size
) *
512 uint64_t table_offset
= meta_offset
+ blocks_clusters
* s
->cluster_size
;
513 uint64_t *new_table
= g_try_new0(uint64_t, table_size
);
514 void *new_blocks
= g_try_malloc0(blocks_clusters
* s
->cluster_size
);
516 assert(table_size
> 0 && blocks_clusters
> 0);
517 if (new_table
== NULL
|| new_blocks
== NULL
) {
522 /* Fill the new refcount table */
523 memcpy(new_table
, s
->refcount_table
,
524 s
->refcount_table_size
* sizeof(uint64_t));
525 new_table
[refcount_table_index
] = new_block
;
528 for (i
= 0; i
< blocks_clusters
; i
++) {
529 new_table
[blocks_used
+ i
] = meta_offset
+ (i
* s
->cluster_size
);
532 /* Fill the refcount blocks */
533 uint64_t table_clusters
= size_to_clusters(s
, table_size
* sizeof(uint64_t));
535 for (i
= 0; i
< table_clusters
+ blocks_clusters
; i
++) {
536 s
->set_refcount(new_blocks
, block
++, 1);
539 /* Write refcount blocks to disk */
540 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS
);
541 ret
= bdrv_pwrite_sync(bs
->file
->bs
, meta_offset
, new_blocks
,
542 blocks_clusters
* s
->cluster_size
);
549 /* Write refcount table to disk */
550 for(i
= 0; i
< table_size
; i
++) {
551 cpu_to_be64s(&new_table
[i
]);
554 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE
);
555 ret
= bdrv_pwrite_sync(bs
->file
->bs
, table_offset
, new_table
,
556 table_size
* sizeof(uint64_t));
561 for(i
= 0; i
< table_size
; i
++) {
562 be64_to_cpus(&new_table
[i
]);
565 /* Hook up the new refcount table in the qcow2 header */
570 cpu_to_be64w(&data
.d64
, table_offset
);
571 cpu_to_be32w(&data
.d32
, table_clusters
);
572 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE
);
573 ret
= bdrv_pwrite_sync(bs
->file
->bs
,
574 offsetof(QCowHeader
, refcount_table_offset
),
575 &data
, sizeof(data
));
580 /* And switch it in memory */
581 uint64_t old_table_offset
= s
->refcount_table_offset
;
582 uint64_t old_table_size
= s
->refcount_table_size
;
584 g_free(s
->refcount_table
);
585 s
->refcount_table
= new_table
;
586 s
->refcount_table_size
= table_size
;
587 s
->refcount_table_offset
= table_offset
;
589 /* Free old table. */
590 qcow2_free_clusters(bs
, old_table_offset
, old_table_size
* sizeof(uint64_t),
591 QCOW2_DISCARD_OTHER
);
593 ret
= load_refcount_block(bs
, new_block
, refcount_block
);
598 /* If we were trying to do the initial refcount update for some cluster
599 * allocation, we might have used the same clusters to store newly
600 * allocated metadata. Make the caller search some new space. */
607 if (*refcount_block
!= NULL
) {
608 qcow2_cache_put(bs
, s
->refcount_block_cache
, refcount_block
);
613 void qcow2_process_discards(BlockDriverState
*bs
, int ret
)
615 BDRVQcow2State
*s
= bs
->opaque
;
616 Qcow2DiscardRegion
*d
, *next
;
618 QTAILQ_FOREACH_SAFE(d
, &s
->discards
, next
, next
) {
619 QTAILQ_REMOVE(&s
->discards
, d
, next
);
621 /* Discard is optional, ignore the return value */
623 bdrv_discard(bs
->file
->bs
,
624 d
->offset
>> BDRV_SECTOR_BITS
,
625 d
->bytes
>> BDRV_SECTOR_BITS
);
632 static void update_refcount_discard(BlockDriverState
*bs
,
633 uint64_t offset
, uint64_t length
)
635 BDRVQcow2State
*s
= bs
->opaque
;
636 Qcow2DiscardRegion
*d
, *p
, *next
;
638 QTAILQ_FOREACH(d
, &s
->discards
, next
) {
639 uint64_t new_start
= MIN(offset
, d
->offset
);
640 uint64_t new_end
= MAX(offset
+ length
, d
->offset
+ d
->bytes
);
642 if (new_end
- new_start
<= length
+ d
->bytes
) {
643 /* There can't be any overlap, areas ending up here have no
644 * references any more and therefore shouldn't get freed another
646 assert(d
->bytes
+ length
== new_end
- new_start
);
647 d
->offset
= new_start
;
648 d
->bytes
= new_end
- new_start
;
653 d
= g_malloc(sizeof(*d
));
654 *d
= (Qcow2DiscardRegion
) {
659 QTAILQ_INSERT_TAIL(&s
->discards
, d
, next
);
662 /* Merge discard requests if they are adjacent now */
663 QTAILQ_FOREACH_SAFE(p
, &s
->discards
, next
, next
) {
665 || p
->offset
> d
->offset
+ d
->bytes
666 || d
->offset
> p
->offset
+ p
->bytes
)
671 /* Still no overlap possible */
672 assert(p
->offset
== d
->offset
+ d
->bytes
673 || d
->offset
== p
->offset
+ p
->bytes
);
675 QTAILQ_REMOVE(&s
->discards
, p
, next
);
676 d
->offset
= MIN(d
->offset
, p
->offset
);
677 d
->bytes
+= p
->bytes
;
682 /* XXX: cache several refcount block clusters ? */
683 /* @addend is the absolute value of the addend; if @decrease is set, @addend
684 * will be subtracted from the current refcount, otherwise it will be added */
685 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
690 enum qcow2_discard_type type
)
692 BDRVQcow2State
*s
= bs
->opaque
;
693 int64_t start
, last
, cluster_offset
;
694 void *refcount_block
= NULL
;
695 int64_t old_table_index
= -1;
699 fprintf(stderr
, "update_refcount: offset=%" PRId64
" size=%" PRId64
700 " addend=%s%" PRIu64
"\n", offset
, length
, decrease
? "-" : "",
705 } else if (length
== 0) {
710 qcow2_cache_set_dependency(bs
, s
->refcount_block_cache
,
714 start
= start_of_cluster(s
, offset
);
715 last
= start_of_cluster(s
, offset
+ length
- 1);
716 for(cluster_offset
= start
; cluster_offset
<= last
;
717 cluster_offset
+= s
->cluster_size
)
721 int64_t cluster_index
= cluster_offset
>> s
->cluster_bits
;
722 int64_t table_index
= cluster_index
>> s
->refcount_block_bits
;
724 /* Load the refcount block and allocate it if needed */
725 if (table_index
!= old_table_index
) {
726 if (refcount_block
) {
727 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
729 ret
= alloc_refcount_block(bs
, cluster_index
, &refcount_block
);
734 old_table_index
= table_index
;
736 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
,
739 /* we can update the count and save it */
740 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
742 refcount
= s
->get_refcount(refcount_block
, block_index
);
743 if (decrease
? (refcount
- addend
> refcount
)
744 : (refcount
+ addend
< refcount
||
745 refcount
+ addend
> s
->refcount_max
))
755 if (refcount
== 0 && cluster_index
< s
->free_cluster_index
) {
756 s
->free_cluster_index
= cluster_index
;
758 s
->set_refcount(refcount_block
, block_index
, refcount
);
760 if (refcount
== 0 && s
->discard_passthrough
[type
]) {
761 update_refcount_discard(bs
, cluster_offset
, s
->cluster_size
);
767 if (!s
->cache_discards
) {
768 qcow2_process_discards(bs
, ret
);
771 /* Write last changed block to disk */
772 if (refcount_block
) {
773 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
777 * Try do undo any updates if an error is returned (This may succeed in
778 * some cases like ENOSPC for allocating a new refcount block)
782 dummy
= update_refcount(bs
, offset
, cluster_offset
- offset
, addend
,
783 !decrease
, QCOW2_DISCARD_NEVER
);
791 * Increases or decreases the refcount of a given cluster.
793 * @addend is the absolute value of the addend; if @decrease is set, @addend
794 * will be subtracted from the current refcount, otherwise it will be added.
796 * On success 0 is returned; on failure -errno is returned.
798 int qcow2_update_cluster_refcount(BlockDriverState
*bs
,
799 int64_t cluster_index
,
800 uint64_t addend
, bool decrease
,
801 enum qcow2_discard_type type
)
803 BDRVQcow2State
*s
= bs
->opaque
;
806 ret
= update_refcount(bs
, cluster_index
<< s
->cluster_bits
, 1, addend
,
817 /*********************************************************/
818 /* cluster allocation functions */
822 /* return < 0 if error */
823 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
)
825 BDRVQcow2State
*s
= bs
->opaque
;
826 uint64_t i
, nb_clusters
, refcount
;
829 /* We can't allocate clusters if they may still be queued for discard. */
830 if (s
->cache_discards
) {
831 qcow2_process_discards(bs
, 0);
834 nb_clusters
= size_to_clusters(s
, size
);
836 for(i
= 0; i
< nb_clusters
; i
++) {
837 uint64_t next_cluster_index
= s
->free_cluster_index
++;
838 ret
= qcow2_get_refcount(bs
, next_cluster_index
, &refcount
);
842 } else if (refcount
!= 0) {
847 /* Make sure that all offsets in the "allocated" range are representable
849 if (s
->free_cluster_index
> 0 &&
850 s
->free_cluster_index
- 1 > (INT64_MAX
>> s
->cluster_bits
))
856 fprintf(stderr
, "alloc_clusters: size=%" PRId64
" -> %" PRId64
"\n",
858 (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
);
860 return (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
;
863 int64_t qcow2_alloc_clusters(BlockDriverState
*bs
, uint64_t size
)
868 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC
);
870 offset
= alloc_clusters_noref(bs
, size
);
875 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
876 } while (ret
== -EAGAIN
);
885 int64_t qcow2_alloc_clusters_at(BlockDriverState
*bs
, uint64_t offset
,
888 BDRVQcow2State
*s
= bs
->opaque
;
889 uint64_t cluster_index
, refcount
;
893 assert(nb_clusters
>= 0);
894 if (nb_clusters
== 0) {
899 /* Check how many clusters there are free */
900 cluster_index
= offset
>> s
->cluster_bits
;
901 for(i
= 0; i
< nb_clusters
; i
++) {
902 ret
= qcow2_get_refcount(bs
, cluster_index
++, &refcount
);
905 } else if (refcount
!= 0) {
910 /* And then allocate them */
911 ret
= update_refcount(bs
, offset
, i
<< s
->cluster_bits
, 1, false,
912 QCOW2_DISCARD_NEVER
);
913 } while (ret
== -EAGAIN
);
922 /* only used to allocate compressed sectors. We try to allocate
923 contiguous sectors. size must be <= cluster_size */
924 int64_t qcow2_alloc_bytes(BlockDriverState
*bs
, int size
)
926 BDRVQcow2State
*s
= bs
->opaque
;
928 size_t free_in_cluster
;
931 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC_BYTES
);
932 assert(size
> 0 && size
<= s
->cluster_size
);
933 assert(!s
->free_byte_offset
|| offset_into_cluster(s
, s
->free_byte_offset
));
935 offset
= s
->free_byte_offset
;
939 ret
= qcow2_get_refcount(bs
, offset
>> s
->cluster_bits
, &refcount
);
944 if (refcount
== s
->refcount_max
) {
949 free_in_cluster
= s
->cluster_size
- offset_into_cluster(s
, offset
);
951 if (!offset
|| free_in_cluster
< size
) {
952 int64_t new_cluster
= alloc_clusters_noref(bs
, s
->cluster_size
);
953 if (new_cluster
< 0) {
957 if (!offset
|| ROUND_UP(offset
, s
->cluster_size
) != new_cluster
) {
958 offset
= new_cluster
;
959 free_in_cluster
= s
->cluster_size
;
961 free_in_cluster
+= s
->cluster_size
;
966 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
970 } while (ret
== -EAGAIN
);
975 /* The cluster refcount was incremented; refcount blocks must be flushed
976 * before the caller's L2 table updates. */
977 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
, s
->refcount_block_cache
);
979 s
->free_byte_offset
= offset
+ size
;
980 if (!offset_into_cluster(s
, s
->free_byte_offset
)) {
981 s
->free_byte_offset
= 0;
987 void qcow2_free_clusters(BlockDriverState
*bs
,
988 int64_t offset
, int64_t size
,
989 enum qcow2_discard_type type
)
993 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_FREE
);
994 ret
= update_refcount(bs
, offset
, size
, 1, true, type
);
996 fprintf(stderr
, "qcow2_free_clusters failed: %s\n", strerror(-ret
));
997 /* TODO Remember the clusters to free them later and avoid leaking */
1002 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1003 * normal cluster, compressed cluster, etc.)
1005 void qcow2_free_any_clusters(BlockDriverState
*bs
, uint64_t l2_entry
,
1006 int nb_clusters
, enum qcow2_discard_type type
)
1008 BDRVQcow2State
*s
= bs
->opaque
;
1010 switch (qcow2_get_cluster_type(l2_entry
)) {
1011 case QCOW2_CLUSTER_COMPRESSED
:
1014 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1016 qcow2_free_clusters(bs
,
1017 (l2_entry
& s
->cluster_offset_mask
) & ~511,
1018 nb_csectors
* 512, type
);
1021 case QCOW2_CLUSTER_NORMAL
:
1022 case QCOW2_CLUSTER_ZERO
:
1023 if (l2_entry
& L2E_OFFSET_MASK
) {
1024 if (offset_into_cluster(s
, l2_entry
& L2E_OFFSET_MASK
)) {
1025 qcow2_signal_corruption(bs
, false, -1, -1,
1026 "Cannot free unaligned cluster %#llx",
1027 l2_entry
& L2E_OFFSET_MASK
);
1029 qcow2_free_clusters(bs
, l2_entry
& L2E_OFFSET_MASK
,
1030 nb_clusters
<< s
->cluster_bits
, type
);
1034 case QCOW2_CLUSTER_UNALLOCATED
:
1043 /*********************************************************/
1044 /* snapshots and image creation */
1048 /* update the refcounts of snapshots and the copied flag */
1049 int qcow2_update_snapshot_refcount(BlockDriverState
*bs
,
1050 int64_t l1_table_offset
, int l1_size
, int addend
)
1052 BDRVQcow2State
*s
= bs
->opaque
;
1053 uint64_t *l1_table
, *l2_table
, l2_offset
, offset
, l1_size2
, refcount
;
1054 bool l1_allocated
= false;
1055 int64_t old_offset
, old_l2_offset
;
1056 int i
, j
, l1_modified
= 0, nb_csectors
;
1059 assert(addend
>= -1 && addend
<= 1);
1063 l1_size2
= l1_size
* sizeof(uint64_t);
1065 s
->cache_discards
= true;
1067 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1068 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1069 * when changing this! */
1070 if (l1_table_offset
!= s
->l1_table_offset
) {
1071 l1_table
= g_try_malloc0(align_offset(l1_size2
, 512));
1072 if (l1_size2
&& l1_table
== NULL
) {
1076 l1_allocated
= true;
1078 ret
= bdrv_pread(bs
->file
->bs
, l1_table_offset
, l1_table
, l1_size2
);
1083 for(i
= 0;i
< l1_size
; i
++)
1084 be64_to_cpus(&l1_table
[i
]);
1086 assert(l1_size
== s
->l1_size
);
1087 l1_table
= s
->l1_table
;
1088 l1_allocated
= false;
1091 for(i
= 0; i
< l1_size
; i
++) {
1092 l2_offset
= l1_table
[i
];
1094 old_l2_offset
= l2_offset
;
1095 l2_offset
&= L1E_OFFSET_MASK
;
1097 if (offset_into_cluster(s
, l2_offset
)) {
1098 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1099 PRIx64
" unaligned (L1 index: %#x)",
1105 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1106 (void**) &l2_table
);
1111 for(j
= 0; j
< s
->l2_size
; j
++) {
1112 uint64_t cluster_index
;
1114 offset
= be64_to_cpu(l2_table
[j
]);
1115 old_offset
= offset
;
1116 offset
&= ~QCOW_OFLAG_COPIED
;
1118 switch (qcow2_get_cluster_type(offset
)) {
1119 case QCOW2_CLUSTER_COMPRESSED
:
1120 nb_csectors
= ((offset
>> s
->csize_shift
) &
1123 ret
= update_refcount(bs
,
1124 (offset
& s
->cluster_offset_mask
) & ~511,
1125 nb_csectors
* 512, abs(addend
), addend
< 0,
1126 QCOW2_DISCARD_SNAPSHOT
);
1131 /* compressed clusters are never modified */
1135 case QCOW2_CLUSTER_NORMAL
:
1136 case QCOW2_CLUSTER_ZERO
:
1137 if (offset_into_cluster(s
, offset
& L2E_OFFSET_MASK
)) {
1138 qcow2_signal_corruption(bs
, true, -1, -1, "Data "
1139 "cluster offset %#llx "
1140 "unaligned (L2 offset: %#"
1141 PRIx64
", L2 index: %#x)",
1142 offset
& L2E_OFFSET_MASK
,
1148 cluster_index
= (offset
& L2E_OFFSET_MASK
) >> s
->cluster_bits
;
1149 if (!cluster_index
) {
1155 ret
= qcow2_update_cluster_refcount(bs
,
1156 cluster_index
, abs(addend
), addend
< 0,
1157 QCOW2_DISCARD_SNAPSHOT
);
1163 ret
= qcow2_get_refcount(bs
, cluster_index
, &refcount
);
1169 case QCOW2_CLUSTER_UNALLOCATED
:
1177 if (refcount
== 1) {
1178 offset
|= QCOW_OFLAG_COPIED
;
1180 if (offset
!= old_offset
) {
1182 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1183 s
->refcount_block_cache
);
1185 l2_table
[j
] = cpu_to_be64(offset
);
1186 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
,
1191 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1194 ret
= qcow2_update_cluster_refcount(bs
, l2_offset
>>
1196 abs(addend
), addend
< 0,
1197 QCOW2_DISCARD_SNAPSHOT
);
1202 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1206 } else if (refcount
== 1) {
1207 l2_offset
|= QCOW_OFLAG_COPIED
;
1209 if (l2_offset
!= old_l2_offset
) {
1210 l1_table
[i
] = l2_offset
;
1216 ret
= bdrv_flush(bs
);
1219 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1222 s
->cache_discards
= false;
1223 qcow2_process_discards(bs
, ret
);
1225 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1226 if (ret
== 0 && addend
>= 0 && l1_modified
) {
1227 for (i
= 0; i
< l1_size
; i
++) {
1228 cpu_to_be64s(&l1_table
[i
]);
1231 ret
= bdrv_pwrite_sync(bs
->file
->bs
, l1_table_offset
,
1232 l1_table
, l1_size2
);
1234 for (i
= 0; i
< l1_size
; i
++) {
1235 be64_to_cpus(&l1_table
[i
]);
1246 /*********************************************************/
1247 /* refcount checking functions */
1250 static uint64_t refcount_array_byte_size(BDRVQcow2State
*s
, uint64_t entries
)
1252 /* This assertion holds because there is no way we can address more than
1253 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1254 * offsets have to be representable in bytes); due to every cluster
1255 * corresponding to one refcount entry, we are well below that limit */
1256 assert(entries
< (UINT64_C(1) << (64 - 9)));
1258 /* Thanks to the assertion this will not overflow, because
1259 * s->refcount_order < 7.
1260 * (note: x << s->refcount_order == x * s->refcount_bits) */
1261 return DIV_ROUND_UP(entries
<< s
->refcount_order
, 8);
1265 * Reallocates *array so that it can hold new_size entries. *size must contain
1266 * the current number of entries in *array. If the reallocation fails, *array
1267 * and *size will not be modified and -errno will be returned. If the
1268 * reallocation is successful, *array will be set to the new buffer, *size
1269 * will be set to new_size and 0 will be returned. The size of the reallocated
1270 * refcount array buffer will be aligned to a cluster boundary, and the newly
1271 * allocated area will be zeroed.
1273 static int realloc_refcount_array(BDRVQcow2State
*s
, void **array
,
1274 int64_t *size
, int64_t new_size
)
1276 int64_t old_byte_size
, new_byte_size
;
1279 /* Round to clusters so the array can be directly written to disk */
1280 old_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, *size
))
1282 new_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, new_size
))
1285 if (new_byte_size
== old_byte_size
) {
1290 assert(new_byte_size
> 0);
1292 if (new_byte_size
> SIZE_MAX
) {
1296 new_ptr
= g_try_realloc(*array
, new_byte_size
);
1301 if (new_byte_size
> old_byte_size
) {
1302 memset((char *)new_ptr
+ old_byte_size
, 0,
1303 new_byte_size
- old_byte_size
);
1313 * Increases the refcount for a range of clusters in a given refcount table.
1314 * This is used to construct a temporary refcount table out of L1 and L2 tables
1315 * which can be compared to the refcount table saved in the image.
1317 * Modifies the number of errors in res.
1319 static int inc_refcounts(BlockDriverState
*bs
,
1320 BdrvCheckResult
*res
,
1321 void **refcount_table
,
1322 int64_t *refcount_table_size
,
1323 int64_t offset
, int64_t size
)
1325 BDRVQcow2State
*s
= bs
->opaque
;
1326 uint64_t start
, last
, cluster_offset
, k
, refcount
;
1333 start
= start_of_cluster(s
, offset
);
1334 last
= start_of_cluster(s
, offset
+ size
- 1);
1335 for(cluster_offset
= start
; cluster_offset
<= last
;
1336 cluster_offset
+= s
->cluster_size
) {
1337 k
= cluster_offset
>> s
->cluster_bits
;
1338 if (k
>= *refcount_table_size
) {
1339 ret
= realloc_refcount_array(s
, refcount_table
,
1340 refcount_table_size
, k
+ 1);
1342 res
->check_errors
++;
1347 refcount
= s
->get_refcount(*refcount_table
, k
);
1348 if (refcount
== s
->refcount_max
) {
1349 fprintf(stderr
, "ERROR: overflow cluster offset=0x%" PRIx64
1350 "\n", cluster_offset
);
1351 fprintf(stderr
, "Use qemu-img amend to increase the refcount entry "
1352 "width or qemu-img convert to create a clean copy if the "
1353 "image cannot be opened for writing\n");
1357 s
->set_refcount(*refcount_table
, k
, refcount
+ 1);
1363 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1365 CHECK_FRAG_INFO
= 0x2, /* update BlockFragInfo counters */
1369 * Increases the refcount in the given refcount table for the all clusters
1370 * referenced in the L2 table. While doing so, performs some checks on L2
1373 * Returns the number of errors found by the checks or -errno if an internal
1376 static int check_refcounts_l2(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1377 void **refcount_table
,
1378 int64_t *refcount_table_size
, int64_t l2_offset
,
1381 BDRVQcow2State
*s
= bs
->opaque
;
1382 uint64_t *l2_table
, l2_entry
;
1383 uint64_t next_contiguous_offset
= 0;
1384 int i
, l2_size
, nb_csectors
, ret
;
1386 /* Read L2 table from disk */
1387 l2_size
= s
->l2_size
* sizeof(uint64_t);
1388 l2_table
= g_malloc(l2_size
);
1390 ret
= bdrv_pread(bs
->file
->bs
, l2_offset
, l2_table
, l2_size
);
1392 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l2\n");
1393 res
->check_errors
++;
1397 /* Do the actual checks */
1398 for(i
= 0; i
< s
->l2_size
; i
++) {
1399 l2_entry
= be64_to_cpu(l2_table
[i
]);
1401 switch (qcow2_get_cluster_type(l2_entry
)) {
1402 case QCOW2_CLUSTER_COMPRESSED
:
1403 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1404 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1405 fprintf(stderr
, "ERROR: cluster %" PRId64
": "
1406 "copied flag must never be set for compressed "
1407 "clusters\n", l2_entry
>> s
->cluster_bits
);
1408 l2_entry
&= ~QCOW_OFLAG_COPIED
;
1412 /* Mark cluster as used */
1413 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1415 l2_entry
&= s
->cluster_offset_mask
;
1416 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1417 l2_entry
& ~511, nb_csectors
* 512);
1422 if (flags
& CHECK_FRAG_INFO
) {
1423 res
->bfi
.allocated_clusters
++;
1424 res
->bfi
.compressed_clusters
++;
1426 /* Compressed clusters are fragmented by nature. Since they
1427 * take up sub-sector space but we only have sector granularity
1428 * I/O we need to re-read the same sectors even for adjacent
1429 * compressed clusters.
1431 res
->bfi
.fragmented_clusters
++;
1435 case QCOW2_CLUSTER_ZERO
:
1436 if ((l2_entry
& L2E_OFFSET_MASK
) == 0) {
1441 case QCOW2_CLUSTER_NORMAL
:
1443 uint64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1445 if (flags
& CHECK_FRAG_INFO
) {
1446 res
->bfi
.allocated_clusters
++;
1447 if (next_contiguous_offset
&&
1448 offset
!= next_contiguous_offset
) {
1449 res
->bfi
.fragmented_clusters
++;
1451 next_contiguous_offset
= offset
+ s
->cluster_size
;
1454 /* Mark cluster as used */
1455 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1456 offset
, s
->cluster_size
);
1461 /* Correct offsets are cluster aligned */
1462 if (offset_into_cluster(s
, offset
)) {
1463 fprintf(stderr
, "ERROR offset=%" PRIx64
": Cluster is not "
1464 "properly aligned; L2 entry corrupted.\n", offset
);
1470 case QCOW2_CLUSTER_UNALLOCATED
:
1487 * Increases the refcount for the L1 table, its L2 tables and all referenced
1488 * clusters in the given refcount table. While doing so, performs some checks
1489 * on L1 and L2 entries.
1491 * Returns the number of errors found by the checks or -errno if an internal
1494 static int check_refcounts_l1(BlockDriverState
*bs
,
1495 BdrvCheckResult
*res
,
1496 void **refcount_table
,
1497 int64_t *refcount_table_size
,
1498 int64_t l1_table_offset
, int l1_size
,
1501 BDRVQcow2State
*s
= bs
->opaque
;
1502 uint64_t *l1_table
= NULL
, l2_offset
, l1_size2
;
1505 l1_size2
= l1_size
* sizeof(uint64_t);
1507 /* Mark L1 table as used */
1508 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1509 l1_table_offset
, l1_size2
);
1514 /* Read L1 table entries from disk */
1516 l1_table
= g_try_malloc(l1_size2
);
1517 if (l1_table
== NULL
) {
1519 res
->check_errors
++;
1522 ret
= bdrv_pread(bs
->file
->bs
, l1_table_offset
, l1_table
, l1_size2
);
1524 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l1\n");
1525 res
->check_errors
++;
1528 for(i
= 0;i
< l1_size
; i
++)
1529 be64_to_cpus(&l1_table
[i
]);
1532 /* Do the actual checks */
1533 for(i
= 0; i
< l1_size
; i
++) {
1534 l2_offset
= l1_table
[i
];
1536 /* Mark L2 table as used */
1537 l2_offset
&= L1E_OFFSET_MASK
;
1538 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1539 l2_offset
, s
->cluster_size
);
1544 /* L2 tables are cluster aligned */
1545 if (offset_into_cluster(s
, l2_offset
)) {
1546 fprintf(stderr
, "ERROR l2_offset=%" PRIx64
": Table is not "
1547 "cluster aligned; L1 entry corrupted\n", l2_offset
);
1551 /* Process and check L2 entries */
1552 ret
= check_refcounts_l2(bs
, res
, refcount_table
,
1553 refcount_table_size
, l2_offset
, flags
);
1568 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1570 * This function does not print an error message nor does it increment
1571 * check_errors if qcow2_get_refcount fails (this is because such an error will
1572 * have been already detected and sufficiently signaled by the calling function
1573 * (qcow2_check_refcounts) by the time this function is called).
1575 static int check_oflag_copied(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1578 BDRVQcow2State
*s
= bs
->opaque
;
1579 uint64_t *l2_table
= qemu_blockalign(bs
, s
->cluster_size
);
1584 for (i
= 0; i
< s
->l1_size
; i
++) {
1585 uint64_t l1_entry
= s
->l1_table
[i
];
1586 uint64_t l2_offset
= l1_entry
& L1E_OFFSET_MASK
;
1587 bool l2_dirty
= false;
1593 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1596 /* don't print message nor increment check_errors */
1599 if ((refcount
== 1) != ((l1_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1600 fprintf(stderr
, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1601 "l1_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1602 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1604 i
, l1_entry
, refcount
);
1605 if (fix
& BDRV_FIX_ERRORS
) {
1606 s
->l1_table
[i
] = refcount
== 1
1607 ? l1_entry
| QCOW_OFLAG_COPIED
1608 : l1_entry
& ~QCOW_OFLAG_COPIED
;
1609 ret
= qcow2_write_l1_entry(bs
, i
);
1611 res
->check_errors
++;
1614 res
->corruptions_fixed
++;
1620 ret
= bdrv_pread(bs
->file
->bs
, l2_offset
, l2_table
,
1621 s
->l2_size
* sizeof(uint64_t));
1623 fprintf(stderr
, "ERROR: Could not read L2 table: %s\n",
1625 res
->check_errors
++;
1629 for (j
= 0; j
< s
->l2_size
; j
++) {
1630 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1631 uint64_t data_offset
= l2_entry
& L2E_OFFSET_MASK
;
1632 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1634 if ((cluster_type
== QCOW2_CLUSTER_NORMAL
) ||
1635 ((cluster_type
== QCOW2_CLUSTER_ZERO
) && (data_offset
!= 0))) {
1636 ret
= qcow2_get_refcount(bs
,
1637 data_offset
>> s
->cluster_bits
,
1640 /* don't print message nor increment check_errors */
1643 if ((refcount
== 1) != ((l2_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1644 fprintf(stderr
, "%s OFLAG_COPIED data cluster: "
1645 "l2_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1646 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1648 l2_entry
, refcount
);
1649 if (fix
& BDRV_FIX_ERRORS
) {
1650 l2_table
[j
] = cpu_to_be64(refcount
== 1
1651 ? l2_entry
| QCOW_OFLAG_COPIED
1652 : l2_entry
& ~QCOW_OFLAG_COPIED
);
1654 res
->corruptions_fixed
++;
1663 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L2
,
1664 l2_offset
, s
->cluster_size
);
1666 fprintf(stderr
, "ERROR: Could not write L2 table; metadata "
1667 "overlap check failed: %s\n", strerror(-ret
));
1668 res
->check_errors
++;
1672 ret
= bdrv_pwrite(bs
->file
->bs
, l2_offset
, l2_table
,
1675 fprintf(stderr
, "ERROR: Could not write L2 table: %s\n",
1677 res
->check_errors
++;
1686 qemu_vfree(l2_table
);
1691 * Checks consistency of refblocks and accounts for each refblock in
1694 static int check_refblocks(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1695 BdrvCheckMode fix
, bool *rebuild
,
1696 void **refcount_table
, int64_t *nb_clusters
)
1698 BDRVQcow2State
*s
= bs
->opaque
;
1702 for(i
= 0; i
< s
->refcount_table_size
; i
++) {
1703 uint64_t offset
, cluster
;
1704 offset
= s
->refcount_table
[i
];
1705 cluster
= offset
>> s
->cluster_bits
;
1707 /* Refcount blocks are cluster aligned */
1708 if (offset_into_cluster(s
, offset
)) {
1709 fprintf(stderr
, "ERROR refcount block %" PRId64
" is not "
1710 "cluster aligned; refcount table entry corrupted\n", i
);
1716 if (cluster
>= *nb_clusters
) {
1717 fprintf(stderr
, "%s refcount block %" PRId64
" is outside image\n",
1718 fix
& BDRV_FIX_ERRORS
? "Repairing" : "ERROR", i
);
1720 if (fix
& BDRV_FIX_ERRORS
) {
1721 int64_t new_nb_clusters
;
1723 if (offset
> INT64_MAX
- s
->cluster_size
) {
1728 ret
= bdrv_truncate(bs
->file
->bs
, offset
+ s
->cluster_size
);
1732 size
= bdrv_getlength(bs
->file
->bs
);
1738 new_nb_clusters
= size_to_clusters(s
, size
);
1739 assert(new_nb_clusters
>= *nb_clusters
);
1741 ret
= realloc_refcount_array(s
, refcount_table
,
1742 nb_clusters
, new_nb_clusters
);
1744 res
->check_errors
++;
1748 if (cluster
>= *nb_clusters
) {
1753 res
->corruptions_fixed
++;
1754 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1755 offset
, s
->cluster_size
);
1759 /* No need to check whether the refcount is now greater than 1:
1760 * This area was just allocated and zeroed, so it can only be
1761 * exactly 1 after inc_refcounts() */
1767 fprintf(stderr
, "ERROR could not resize image: %s\n",
1776 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1777 offset
, s
->cluster_size
);
1781 if (s
->get_refcount(*refcount_table
, cluster
) != 1) {
1782 fprintf(stderr
, "ERROR refcount block %" PRId64
1783 " refcount=%" PRIu64
"\n", i
,
1784 s
->get_refcount(*refcount_table
, cluster
));
1795 * Calculates an in-memory refcount table.
1797 static int calculate_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1798 BdrvCheckMode fix
, bool *rebuild
,
1799 void **refcount_table
, int64_t *nb_clusters
)
1801 BDRVQcow2State
*s
= bs
->opaque
;
1806 if (!*refcount_table
) {
1807 int64_t old_size
= 0;
1808 ret
= realloc_refcount_array(s
, refcount_table
,
1809 &old_size
, *nb_clusters
);
1811 res
->check_errors
++;
1817 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1818 0, s
->cluster_size
);
1823 /* current L1 table */
1824 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
1825 s
->l1_table_offset
, s
->l1_size
, CHECK_FRAG_INFO
);
1831 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1832 sn
= s
->snapshots
+ i
;
1833 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
1834 sn
->l1_table_offset
, sn
->l1_size
, 0);
1839 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1840 s
->snapshots_offset
, s
->snapshots_size
);
1846 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1847 s
->refcount_table_offset
,
1848 s
->refcount_table_size
* sizeof(uint64_t));
1853 return check_refblocks(bs
, res
, fix
, rebuild
, refcount_table
, nb_clusters
);
1857 * Compares the actual reference count for each cluster in the image against the
1858 * refcount as reported by the refcount structures on-disk.
1860 static void compare_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1861 BdrvCheckMode fix
, bool *rebuild
,
1862 int64_t *highest_cluster
,
1863 void *refcount_table
, int64_t nb_clusters
)
1865 BDRVQcow2State
*s
= bs
->opaque
;
1867 uint64_t refcount1
, refcount2
;
1870 for (i
= 0, *highest_cluster
= 0; i
< nb_clusters
; i
++) {
1871 ret
= qcow2_get_refcount(bs
, i
, &refcount1
);
1873 fprintf(stderr
, "Can't get refcount for cluster %" PRId64
": %s\n",
1875 res
->check_errors
++;
1879 refcount2
= s
->get_refcount(refcount_table
, i
);
1881 if (refcount1
> 0 || refcount2
> 0) {
1882 *highest_cluster
= i
;
1885 if (refcount1
!= refcount2
) {
1886 /* Check if we're allowed to fix the mismatch */
1887 int *num_fixed
= NULL
;
1888 if (refcount1
== 0) {
1890 } else if (refcount1
> refcount2
&& (fix
& BDRV_FIX_LEAKS
)) {
1891 num_fixed
= &res
->leaks_fixed
;
1892 } else if (refcount1
< refcount2
&& (fix
& BDRV_FIX_ERRORS
)) {
1893 num_fixed
= &res
->corruptions_fixed
;
1896 fprintf(stderr
, "%s cluster %" PRId64
" refcount=%" PRIu64
1897 " reference=%" PRIu64
"\n",
1898 num_fixed
!= NULL
? "Repairing" :
1899 refcount1
< refcount2
? "ERROR" :
1901 i
, refcount1
, refcount2
);
1904 ret
= update_refcount(bs
, i
<< s
->cluster_bits
, 1,
1905 refcount_diff(refcount1
, refcount2
),
1906 refcount1
> refcount2
,
1907 QCOW2_DISCARD_ALWAYS
);
1914 /* And if we couldn't, print an error */
1915 if (refcount1
< refcount2
) {
1925 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1926 * the on-disk refcount structures.
1928 * On input, *first_free_cluster tells where to start looking, and need not
1929 * actually be a free cluster; the returned offset will not be before that
1930 * cluster. On output, *first_free_cluster points to the first gap found, even
1931 * if that gap was too small to be used as the returned offset.
1933 * Note that *first_free_cluster is a cluster index whereas the return value is
1936 static int64_t alloc_clusters_imrt(BlockDriverState
*bs
,
1938 void **refcount_table
,
1939 int64_t *imrt_nb_clusters
,
1940 int64_t *first_free_cluster
)
1942 BDRVQcow2State
*s
= bs
->opaque
;
1943 int64_t cluster
= *first_free_cluster
, i
;
1944 bool first_gap
= true;
1945 int contiguous_free_clusters
;
1948 /* Starting at *first_free_cluster, find a range of at least cluster_count
1949 * continuously free clusters */
1950 for (contiguous_free_clusters
= 0;
1951 cluster
< *imrt_nb_clusters
&&
1952 contiguous_free_clusters
< cluster_count
;
1955 if (!s
->get_refcount(*refcount_table
, cluster
)) {
1956 contiguous_free_clusters
++;
1958 /* If this is the first free cluster found, update
1959 * *first_free_cluster accordingly */
1960 *first_free_cluster
= cluster
;
1963 } else if (contiguous_free_clusters
) {
1964 contiguous_free_clusters
= 0;
1968 /* If contiguous_free_clusters is greater than zero, it contains the number
1969 * of continuously free clusters until the current cluster; the first free
1970 * cluster in the current "gap" is therefore
1971 * cluster - contiguous_free_clusters */
1973 /* If no such range could be found, grow the in-memory refcount table
1974 * accordingly to append free clusters at the end of the image */
1975 if (contiguous_free_clusters
< cluster_count
) {
1976 /* contiguous_free_clusters clusters are already empty at the image end;
1977 * we need cluster_count clusters; therefore, we have to allocate
1978 * cluster_count - contiguous_free_clusters new clusters at the end of
1979 * the image (which is the current value of cluster; note that cluster
1980 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1982 ret
= realloc_refcount_array(s
, refcount_table
, imrt_nb_clusters
,
1983 cluster
+ cluster_count
1984 - contiguous_free_clusters
);
1990 /* Go back to the first free cluster */
1991 cluster
-= contiguous_free_clusters
;
1992 for (i
= 0; i
< cluster_count
; i
++) {
1993 s
->set_refcount(*refcount_table
, cluster
+ i
, 1);
1996 return cluster
<< s
->cluster_bits
;
2000 * Creates a new refcount structure based solely on the in-memory information
2001 * given through *refcount_table. All necessary allocations will be reflected
2004 * On success, the old refcount structure is leaked (it will be covered by the
2005 * new refcount structure).
2007 static int rebuild_refcount_structure(BlockDriverState
*bs
,
2008 BdrvCheckResult
*res
,
2009 void **refcount_table
,
2010 int64_t *nb_clusters
)
2012 BDRVQcow2State
*s
= bs
->opaque
;
2013 int64_t first_free_cluster
= 0, reftable_offset
= -1, cluster
= 0;
2014 int64_t refblock_offset
, refblock_start
, refblock_index
;
2015 uint32_t reftable_size
= 0;
2016 uint64_t *on_disk_reftable
= NULL
;
2017 void *on_disk_refblock
;
2020 uint64_t reftable_offset
;
2021 uint32_t reftable_clusters
;
2022 } QEMU_PACKED reftable_offset_and_clusters
;
2024 qcow2_cache_empty(bs
, s
->refcount_block_cache
);
2027 for (; cluster
< *nb_clusters
; cluster
++) {
2028 if (!s
->get_refcount(*refcount_table
, cluster
)) {
2032 refblock_index
= cluster
>> s
->refcount_block_bits
;
2033 refblock_start
= refblock_index
<< s
->refcount_block_bits
;
2035 /* Don't allocate a cluster in a refblock already written to disk */
2036 if (first_free_cluster
< refblock_start
) {
2037 first_free_cluster
= refblock_start
;
2039 refblock_offset
= alloc_clusters_imrt(bs
, 1, refcount_table
,
2040 nb_clusters
, &first_free_cluster
);
2041 if (refblock_offset
< 0) {
2042 fprintf(stderr
, "ERROR allocating refblock: %s\n",
2043 strerror(-refblock_offset
));
2044 res
->check_errors
++;
2045 ret
= refblock_offset
;
2049 if (reftable_size
<= refblock_index
) {
2050 uint32_t old_reftable_size
= reftable_size
;
2051 uint64_t *new_on_disk_reftable
;
2053 reftable_size
= ROUND_UP((refblock_index
+ 1) * sizeof(uint64_t),
2054 s
->cluster_size
) / sizeof(uint64_t);
2055 new_on_disk_reftable
= g_try_realloc(on_disk_reftable
,
2058 if (!new_on_disk_reftable
) {
2059 res
->check_errors
++;
2063 on_disk_reftable
= new_on_disk_reftable
;
2065 memset(on_disk_reftable
+ old_reftable_size
, 0,
2066 (reftable_size
- old_reftable_size
) * sizeof(uint64_t));
2068 /* The offset we have for the reftable is now no longer valid;
2069 * this will leak that range, but we can easily fix that by running
2070 * a leak-fixing check after this rebuild operation */
2071 reftable_offset
= -1;
2073 on_disk_reftable
[refblock_index
] = refblock_offset
;
2075 /* If this is apparently the last refblock (for now), try to squeeze the
2077 if (refblock_index
== (*nb_clusters
- 1) >> s
->refcount_block_bits
&&
2078 reftable_offset
< 0)
2080 uint64_t reftable_clusters
= size_to_clusters(s
, reftable_size
*
2082 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2083 refcount_table
, nb_clusters
,
2084 &first_free_cluster
);
2085 if (reftable_offset
< 0) {
2086 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2087 strerror(-reftable_offset
));
2088 res
->check_errors
++;
2089 ret
= reftable_offset
;
2094 ret
= qcow2_pre_write_overlap_check(bs
, 0, refblock_offset
,
2097 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2101 /* The size of *refcount_table is always cluster-aligned, therefore the
2102 * write operation will not overflow */
2103 on_disk_refblock
= (void *)((char *) *refcount_table
+
2104 refblock_index
* s
->cluster_size
);
2106 ret
= bdrv_write(bs
->file
->bs
, refblock_offset
/ BDRV_SECTOR_SIZE
,
2107 on_disk_refblock
, s
->cluster_sectors
);
2109 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2113 /* Go to the end of this refblock */
2114 cluster
= refblock_start
+ s
->refcount_block_size
- 1;
2117 if (reftable_offset
< 0) {
2118 uint64_t post_refblock_start
, reftable_clusters
;
2120 post_refblock_start
= ROUND_UP(*nb_clusters
, s
->refcount_block_size
);
2121 reftable_clusters
= size_to_clusters(s
,
2122 reftable_size
* sizeof(uint64_t));
2123 /* Not pretty but simple */
2124 if (first_free_cluster
< post_refblock_start
) {
2125 first_free_cluster
= post_refblock_start
;
2127 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2128 refcount_table
, nb_clusters
,
2129 &first_free_cluster
);
2130 if (reftable_offset
< 0) {
2131 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2132 strerror(-reftable_offset
));
2133 res
->check_errors
++;
2134 ret
= reftable_offset
;
2138 goto write_refblocks
;
2141 assert(on_disk_reftable
);
2143 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2144 cpu_to_be64s(&on_disk_reftable
[refblock_index
]);
2147 ret
= qcow2_pre_write_overlap_check(bs
, 0, reftable_offset
,
2148 reftable_size
* sizeof(uint64_t));
2150 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2154 assert(reftable_size
< INT_MAX
/ sizeof(uint64_t));
2155 ret
= bdrv_pwrite(bs
->file
->bs
, reftable_offset
, on_disk_reftable
,
2156 reftable_size
* sizeof(uint64_t));
2158 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2162 /* Enter new reftable into the image header */
2163 cpu_to_be64w(&reftable_offset_and_clusters
.reftable_offset
,
2165 cpu_to_be32w(&reftable_offset_and_clusters
.reftable_clusters
,
2166 size_to_clusters(s
, reftable_size
* sizeof(uint64_t)));
2167 ret
= bdrv_pwrite_sync(bs
->file
->bs
, offsetof(QCowHeader
,
2168 refcount_table_offset
),
2169 &reftable_offset_and_clusters
,
2170 sizeof(reftable_offset_and_clusters
));
2172 fprintf(stderr
, "ERROR setting reftable: %s\n", strerror(-ret
));
2176 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2177 be64_to_cpus(&on_disk_reftable
[refblock_index
]);
2179 s
->refcount_table
= on_disk_reftable
;
2180 s
->refcount_table_offset
= reftable_offset
;
2181 s
->refcount_table_size
= reftable_size
;
2186 g_free(on_disk_reftable
);
2191 * Checks an image for refcount consistency.
2193 * Returns 0 if no errors are found, the number of errors in case the image is
2194 * detected as corrupted, and -errno when an internal error occurred.
2196 int qcow2_check_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
2199 BDRVQcow2State
*s
= bs
->opaque
;
2200 BdrvCheckResult pre_compare_res
;
2201 int64_t size
, highest_cluster
, nb_clusters
;
2202 void *refcount_table
= NULL
;
2203 bool rebuild
= false;
2206 size
= bdrv_getlength(bs
->file
->bs
);
2208 res
->check_errors
++;
2212 nb_clusters
= size_to_clusters(s
, size
);
2213 if (nb_clusters
> INT_MAX
) {
2214 res
->check_errors
++;
2218 res
->bfi
.total_clusters
=
2219 size_to_clusters(s
, bs
->total_sectors
* BDRV_SECTOR_SIZE
);
2221 ret
= calculate_refcounts(bs
, res
, fix
, &rebuild
, &refcount_table
,
2227 /* In case we don't need to rebuild the refcount structure (but want to fix
2228 * something), this function is immediately called again, in which case the
2229 * result should be ignored */
2230 pre_compare_res
= *res
;
2231 compare_refcounts(bs
, res
, 0, &rebuild
, &highest_cluster
, refcount_table
,
2234 if (rebuild
&& (fix
& BDRV_FIX_ERRORS
)) {
2235 BdrvCheckResult old_res
= *res
;
2236 int fresh_leaks
= 0;
2238 fprintf(stderr
, "Rebuilding refcount structure\n");
2239 ret
= rebuild_refcount_structure(bs
, res
, &refcount_table
,
2245 res
->corruptions
= 0;
2248 /* Because the old reftable has been exchanged for a new one the
2249 * references have to be recalculated */
2251 memset(refcount_table
, 0, refcount_array_byte_size(s
, nb_clusters
));
2252 ret
= calculate_refcounts(bs
, res
, 0, &rebuild
, &refcount_table
,
2258 if (fix
& BDRV_FIX_LEAKS
) {
2259 /* The old refcount structures are now leaked, fix it; the result
2260 * can be ignored, aside from leaks which were introduced by
2261 * rebuild_refcount_structure() that could not be fixed */
2262 BdrvCheckResult saved_res
= *res
;
2263 *res
= (BdrvCheckResult
){ 0 };
2265 compare_refcounts(bs
, res
, BDRV_FIX_LEAKS
, &rebuild
,
2266 &highest_cluster
, refcount_table
, nb_clusters
);
2268 fprintf(stderr
, "ERROR rebuilt refcount structure is still "
2272 /* Any leaks accounted for here were introduced by
2273 * rebuild_refcount_structure() because that function has created a
2274 * new refcount structure from scratch */
2275 fresh_leaks
= res
->leaks
;
2279 if (res
->corruptions
< old_res
.corruptions
) {
2280 res
->corruptions_fixed
+= old_res
.corruptions
- res
->corruptions
;
2282 if (res
->leaks
< old_res
.leaks
) {
2283 res
->leaks_fixed
+= old_res
.leaks
- res
->leaks
;
2285 res
->leaks
+= fresh_leaks
;
2288 fprintf(stderr
, "ERROR need to rebuild refcount structures\n");
2289 res
->check_errors
++;
2294 if (res
->leaks
|| res
->corruptions
) {
2295 *res
= pre_compare_res
;
2296 compare_refcounts(bs
, res
, fix
, &rebuild
, &highest_cluster
,
2297 refcount_table
, nb_clusters
);
2301 /* check OFLAG_COPIED */
2302 ret
= check_oflag_copied(bs
, res
, fix
);
2307 res
->image_end_offset
= (highest_cluster
+ 1) * s
->cluster_size
;
2311 g_free(refcount_table
);
2316 #define overlaps_with(ofs, sz) \
2317 ranges_overlap(offset, size, ofs, sz)
2320 * Checks if the given offset into the image file is actually free to use by
2321 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2322 * i.e. a sanity check without relying on the refcount tables.
2324 * The ign parameter specifies what checks not to perform (being a bitmask of
2325 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2328 * - 0 if writing to this offset will not affect the mentioned metadata
2329 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2330 * - a negative value (-errno) indicating an error while performing a check,
2331 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2333 int qcow2_check_metadata_overlap(BlockDriverState
*bs
, int ign
, int64_t offset
,
2336 BDRVQcow2State
*s
= bs
->opaque
;
2337 int chk
= s
->overlap_check
& ~ign
;
2344 if (chk
& QCOW2_OL_MAIN_HEADER
) {
2345 if (offset
< s
->cluster_size
) {
2346 return QCOW2_OL_MAIN_HEADER
;
2350 /* align range to test to cluster boundaries */
2351 size
= align_offset(offset_into_cluster(s
, offset
) + size
, s
->cluster_size
);
2352 offset
= start_of_cluster(s
, offset
);
2354 if ((chk
& QCOW2_OL_ACTIVE_L1
) && s
->l1_size
) {
2355 if (overlaps_with(s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t))) {
2356 return QCOW2_OL_ACTIVE_L1
;
2360 if ((chk
& QCOW2_OL_REFCOUNT_TABLE
) && s
->refcount_table_size
) {
2361 if (overlaps_with(s
->refcount_table_offset
,
2362 s
->refcount_table_size
* sizeof(uint64_t))) {
2363 return QCOW2_OL_REFCOUNT_TABLE
;
2367 if ((chk
& QCOW2_OL_SNAPSHOT_TABLE
) && s
->snapshots_size
) {
2368 if (overlaps_with(s
->snapshots_offset
, s
->snapshots_size
)) {
2369 return QCOW2_OL_SNAPSHOT_TABLE
;
2373 if ((chk
& QCOW2_OL_INACTIVE_L1
) && s
->snapshots
) {
2374 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2375 if (s
->snapshots
[i
].l1_size
&&
2376 overlaps_with(s
->snapshots
[i
].l1_table_offset
,
2377 s
->snapshots
[i
].l1_size
* sizeof(uint64_t))) {
2378 return QCOW2_OL_INACTIVE_L1
;
2383 if ((chk
& QCOW2_OL_ACTIVE_L2
) && s
->l1_table
) {
2384 for (i
= 0; i
< s
->l1_size
; i
++) {
2385 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) &&
2386 overlaps_with(s
->l1_table
[i
] & L1E_OFFSET_MASK
,
2388 return QCOW2_OL_ACTIVE_L2
;
2393 if ((chk
& QCOW2_OL_REFCOUNT_BLOCK
) && s
->refcount_table
) {
2394 for (i
= 0; i
< s
->refcount_table_size
; i
++) {
2395 if ((s
->refcount_table
[i
] & REFT_OFFSET_MASK
) &&
2396 overlaps_with(s
->refcount_table
[i
] & REFT_OFFSET_MASK
,
2398 return QCOW2_OL_REFCOUNT_BLOCK
;
2403 if ((chk
& QCOW2_OL_INACTIVE_L2
) && s
->snapshots
) {
2404 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2405 uint64_t l1_ofs
= s
->snapshots
[i
].l1_table_offset
;
2406 uint32_t l1_sz
= s
->snapshots
[i
].l1_size
;
2407 uint64_t l1_sz2
= l1_sz
* sizeof(uint64_t);
2408 uint64_t *l1
= g_try_malloc(l1_sz2
);
2411 if (l1_sz2
&& l1
== NULL
) {
2415 ret
= bdrv_pread(bs
->file
->bs
, l1_ofs
, l1
, l1_sz2
);
2421 for (j
= 0; j
< l1_sz
; j
++) {
2422 uint64_t l2_ofs
= be64_to_cpu(l1
[j
]) & L1E_OFFSET_MASK
;
2423 if (l2_ofs
&& overlaps_with(l2_ofs
, s
->cluster_size
)) {
2425 return QCOW2_OL_INACTIVE_L2
;
2436 static const char *metadata_ol_names
[] = {
2437 [QCOW2_OL_MAIN_HEADER_BITNR
] = "qcow2_header",
2438 [QCOW2_OL_ACTIVE_L1_BITNR
] = "active L1 table",
2439 [QCOW2_OL_ACTIVE_L2_BITNR
] = "active L2 table",
2440 [QCOW2_OL_REFCOUNT_TABLE_BITNR
] = "refcount table",
2441 [QCOW2_OL_REFCOUNT_BLOCK_BITNR
] = "refcount block",
2442 [QCOW2_OL_SNAPSHOT_TABLE_BITNR
] = "snapshot table",
2443 [QCOW2_OL_INACTIVE_L1_BITNR
] = "inactive L1 table",
2444 [QCOW2_OL_INACTIVE_L2_BITNR
] = "inactive L2 table",
2448 * First performs a check for metadata overlaps (through
2449 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2450 * while performing a check), that value is returned. If an impending overlap
2451 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2452 * and -EIO returned.
2454 * Returns 0 if there were neither overlaps nor errors while checking for
2455 * overlaps; or a negative value (-errno) on error.
2457 int qcow2_pre_write_overlap_check(BlockDriverState
*bs
, int ign
, int64_t offset
,
2460 int ret
= qcow2_check_metadata_overlap(bs
, ign
, offset
, size
);
2464 } else if (ret
> 0) {
2465 int metadata_ol_bitnr
= ctz32(ret
);
2466 assert(metadata_ol_bitnr
< QCOW2_OL_MAX_BITNR
);
2468 qcow2_signal_corruption(bs
, true, offset
, size
, "Preventing invalid "
2469 "write on metadata (overlaps with %s)",
2470 metadata_ol_names
[metadata_ol_bitnr
]);
2477 /* A pointer to a function of this type is given to walk_over_reftable(). That
2478 * function will create refblocks and pass them to a RefblockFinishOp once they
2479 * are completed (@refblock). @refblock_empty is set if the refblock is
2482 * Along with the refblock, a corresponding reftable entry is passed, in the
2483 * reftable @reftable (which may be reallocated) at @reftable_index.
2485 * @allocated should be set to true if a new cluster has been allocated.
2487 typedef int (RefblockFinishOp
)(BlockDriverState
*bs
, uint64_t **reftable
,
2488 uint64_t reftable_index
, uint64_t *reftable_size
,
2489 void *refblock
, bool refblock_empty
,
2490 bool *allocated
, Error
**errp
);
2493 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2494 * it is not empty) and inserts its offset into the new reftable. The size of
2495 * this new reftable is increased as required.
2497 static int alloc_refblock(BlockDriverState
*bs
, uint64_t **reftable
,
2498 uint64_t reftable_index
, uint64_t *reftable_size
,
2499 void *refblock
, bool refblock_empty
, bool *allocated
,
2502 BDRVQcow2State
*s
= bs
->opaque
;
2505 if (!refblock_empty
&& reftable_index
>= *reftable_size
) {
2506 uint64_t *new_reftable
;
2507 uint64_t new_reftable_size
;
2509 new_reftable_size
= ROUND_UP(reftable_index
+ 1,
2510 s
->cluster_size
/ sizeof(uint64_t));
2511 if (new_reftable_size
> QCOW_MAX_REFTABLE_SIZE
/ sizeof(uint64_t)) {
2513 "This operation would make the refcount table grow "
2514 "beyond the maximum size supported by QEMU, aborting");
2518 new_reftable
= g_try_realloc(*reftable
, new_reftable_size
*
2520 if (!new_reftable
) {
2521 error_setg(errp
, "Failed to increase reftable buffer size");
2525 memset(new_reftable
+ *reftable_size
, 0,
2526 (new_reftable_size
- *reftable_size
) * sizeof(uint64_t));
2528 *reftable
= new_reftable
;
2529 *reftable_size
= new_reftable_size
;
2532 if (!refblock_empty
&& !(*reftable
)[reftable_index
]) {
2533 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2535 error_setg_errno(errp
, -offset
, "Failed to allocate refblock");
2538 (*reftable
)[reftable_index
] = offset
;
2546 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2547 * offset specified by the new reftable's entry. It does not modify the new
2548 * reftable or change any refcounts.
2550 static int flush_refblock(BlockDriverState
*bs
, uint64_t **reftable
,
2551 uint64_t reftable_index
, uint64_t *reftable_size
,
2552 void *refblock
, bool refblock_empty
, bool *allocated
,
2555 BDRVQcow2State
*s
= bs
->opaque
;
2559 if (reftable_index
< *reftable_size
&& (*reftable
)[reftable_index
]) {
2560 offset
= (*reftable
)[reftable_index
];
2562 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
2564 error_setg_errno(errp
, -ret
, "Overlap check failed");
2568 ret
= bdrv_pwrite(bs
->file
->bs
, offset
, refblock
, s
->cluster_size
);
2570 error_setg_errno(errp
, -ret
, "Failed to write refblock");
2574 assert(refblock_empty
);
2581 * This function walks over the existing reftable and every referenced refblock;
2582 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2583 * create an equal new entry in the passed @new_refblock. Once that
2584 * @new_refblock is completely filled, @operation will be called.
2586 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2587 * @index is the index of the walk_over_reftable() calls and @total is the total
2588 * number of walk_over_reftable() calls per amend operation. Both are used for
2589 * calculating the parameters for the status callback.
2591 * @allocated is set to true if a new cluster has been allocated.
2593 static int walk_over_reftable(BlockDriverState
*bs
, uint64_t **new_reftable
,
2594 uint64_t *new_reftable_index
,
2595 uint64_t *new_reftable_size
,
2596 void *new_refblock
, int new_refblock_size
,
2597 int new_refcount_bits
,
2598 RefblockFinishOp
*operation
, bool *allocated
,
2599 Qcow2SetRefcountFunc
*new_set_refcount
,
2600 BlockDriverAmendStatusCB
*status_cb
,
2601 void *cb_opaque
, int index
, int total
,
2604 BDRVQcow2State
*s
= bs
->opaque
;
2605 uint64_t reftable_index
;
2606 bool new_refblock_empty
= true;
2608 int new_refblock_index
= 0;
2611 for (reftable_index
= 0; reftable_index
< s
->refcount_table_size
;
2614 uint64_t refblock_offset
= s
->refcount_table
[reftable_index
]
2617 status_cb(bs
, (uint64_t)index
* s
->refcount_table_size
+ reftable_index
,
2618 (uint64_t)total
* s
->refcount_table_size
, cb_opaque
);
2620 if (refblock_offset
) {
2623 if (offset_into_cluster(s
, refblock_offset
)) {
2624 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#"
2625 PRIx64
" unaligned (reftable index: %#"
2626 PRIx64
")", refblock_offset
,
2629 "Image is corrupt (unaligned refblock offset)");
2633 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refblock_offset
,
2636 error_setg_errno(errp
, -ret
, "Failed to retrieve refblock");
2640 for (refblock_index
= 0; refblock_index
< s
->refcount_block_size
;
2645 if (new_refblock_index
>= new_refblock_size
) {
2646 /* new_refblock is now complete */
2647 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2648 new_reftable_size
, new_refblock
,
2649 new_refblock_empty
, allocated
, errp
);
2651 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
2655 (*new_reftable_index
)++;
2656 new_refblock_index
= 0;
2657 new_refblock_empty
= true;
2660 refcount
= s
->get_refcount(refblock
, refblock_index
);
2661 if (new_refcount_bits
< 64 && refcount
>> new_refcount_bits
) {
2664 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
2666 offset
= ((reftable_index
<< s
->refcount_block_bits
)
2667 + refblock_index
) << s
->cluster_bits
;
2669 error_setg(errp
, "Cannot decrease refcount entry width to "
2670 "%i bits: Cluster at offset %#" PRIx64
" has a "
2671 "refcount of %" PRIu64
, new_refcount_bits
,
2676 if (new_set_refcount
) {
2677 new_set_refcount(new_refblock
, new_refblock_index
++,
2680 new_refblock_index
++;
2682 new_refblock_empty
= new_refblock_empty
&& refcount
== 0;
2685 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
2687 /* No refblock means every refcount is 0 */
2688 for (refblock_index
= 0; refblock_index
< s
->refcount_block_size
;
2691 if (new_refblock_index
>= new_refblock_size
) {
2692 /* new_refblock is now complete */
2693 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2694 new_reftable_size
, new_refblock
,
2695 new_refblock_empty
, allocated
, errp
);
2700 (*new_reftable_index
)++;
2701 new_refblock_index
= 0;
2702 new_refblock_empty
= true;
2705 if (new_set_refcount
) {
2706 new_set_refcount(new_refblock
, new_refblock_index
++, 0);
2708 new_refblock_index
++;
2714 if (new_refblock_index
> 0) {
2715 /* Complete the potentially existing partially filled final refblock */
2716 if (new_set_refcount
) {
2717 for (; new_refblock_index
< new_refblock_size
;
2718 new_refblock_index
++)
2720 new_set_refcount(new_refblock
, new_refblock_index
, 0);
2724 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2725 new_reftable_size
, new_refblock
, new_refblock_empty
,
2731 (*new_reftable_index
)++;
2734 status_cb(bs
, (uint64_t)(index
+ 1) * s
->refcount_table_size
,
2735 (uint64_t)total
* s
->refcount_table_size
, cb_opaque
);
2740 int qcow2_change_refcount_order(BlockDriverState
*bs
, int refcount_order
,
2741 BlockDriverAmendStatusCB
*status_cb
,
2742 void *cb_opaque
, Error
**errp
)
2744 BDRVQcow2State
*s
= bs
->opaque
;
2745 Qcow2GetRefcountFunc
*new_get_refcount
;
2746 Qcow2SetRefcountFunc
*new_set_refcount
;
2747 void *new_refblock
= qemu_blockalign(bs
->file
->bs
, s
->cluster_size
);
2748 uint64_t *new_reftable
= NULL
, new_reftable_size
= 0;
2749 uint64_t *old_reftable
, old_reftable_size
, old_reftable_offset
;
2750 uint64_t new_reftable_index
= 0;
2752 int64_t new_reftable_offset
= 0, allocated_reftable_size
= 0;
2753 int new_refblock_size
, new_refcount_bits
= 1 << refcount_order
;
2754 int old_refcount_order
;
2757 bool new_allocation
;
2759 assert(s
->qcow_version
>= 3);
2760 assert(refcount_order
>= 0 && refcount_order
<= 6);
2762 /* see qcow2_open() */
2763 new_refblock_size
= 1 << (s
->cluster_bits
- (refcount_order
- 3));
2765 new_get_refcount
= get_refcount_funcs
[refcount_order
];
2766 new_set_refcount
= set_refcount_funcs
[refcount_order
];
2772 new_allocation
= false;
2774 /* At least we have to do this walk and the one which writes the
2775 * refblocks; also, at least we have to do this loop here at least
2776 * twice (normally), first to do the allocations, and second to
2777 * determine that everything is correctly allocated, this then makes
2778 * three walks in total */
2779 total_walks
= MAX(walk_index
+ 2, 3);
2781 /* First, allocate the structures so they are present in the refcount
2783 ret
= walk_over_reftable(bs
, &new_reftable
, &new_reftable_index
,
2784 &new_reftable_size
, NULL
, new_refblock_size
,
2785 new_refcount_bits
, &alloc_refblock
,
2786 &new_allocation
, NULL
, status_cb
, cb_opaque
,
2787 walk_index
++, total_walks
, errp
);
2792 new_reftable_index
= 0;
2794 if (new_allocation
) {
2795 if (new_reftable_offset
) {
2796 qcow2_free_clusters(bs
, new_reftable_offset
,
2797 allocated_reftable_size
* sizeof(uint64_t),
2798 QCOW2_DISCARD_NEVER
);
2801 new_reftable_offset
= qcow2_alloc_clusters(bs
, new_reftable_size
*
2803 if (new_reftable_offset
< 0) {
2804 error_setg_errno(errp
, -new_reftable_offset
,
2805 "Failed to allocate the new reftable");
2806 ret
= new_reftable_offset
;
2809 allocated_reftable_size
= new_reftable_size
;
2811 } while (new_allocation
);
2813 /* Second, write the new refblocks */
2814 ret
= walk_over_reftable(bs
, &new_reftable
, &new_reftable_index
,
2815 &new_reftable_size
, new_refblock
,
2816 new_refblock_size
, new_refcount_bits
,
2817 &flush_refblock
, &new_allocation
, new_set_refcount
,
2818 status_cb
, cb_opaque
, walk_index
, walk_index
+ 1,
2823 assert(!new_allocation
);
2826 /* Write the new reftable */
2827 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_reftable_offset
,
2828 new_reftable_size
* sizeof(uint64_t));
2830 error_setg_errno(errp
, -ret
, "Overlap check failed");
2834 for (i
= 0; i
< new_reftable_size
; i
++) {
2835 cpu_to_be64s(&new_reftable
[i
]);
2838 ret
= bdrv_pwrite(bs
->file
->bs
, new_reftable_offset
, new_reftable
,
2839 new_reftable_size
* sizeof(uint64_t));
2841 for (i
= 0; i
< new_reftable_size
; i
++) {
2842 be64_to_cpus(&new_reftable
[i
]);
2846 error_setg_errno(errp
, -ret
, "Failed to write the new reftable");
2851 /* Empty the refcount cache */
2852 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
2854 error_setg_errno(errp
, -ret
, "Failed to flush the refblock cache");
2858 /* Update the image header to point to the new reftable; this only updates
2859 * the fields which are relevant to qcow2_update_header(); other fields
2860 * such as s->refcount_table or s->refcount_bits stay stale for now
2861 * (because we have to restore everything if qcow2_update_header() fails) */
2862 old_refcount_order
= s
->refcount_order
;
2863 old_reftable_size
= s
->refcount_table_size
;
2864 old_reftable_offset
= s
->refcount_table_offset
;
2866 s
->refcount_order
= refcount_order
;
2867 s
->refcount_table_size
= new_reftable_size
;
2868 s
->refcount_table_offset
= new_reftable_offset
;
2870 ret
= qcow2_update_header(bs
);
2872 s
->refcount_order
= old_refcount_order
;
2873 s
->refcount_table_size
= old_reftable_size
;
2874 s
->refcount_table_offset
= old_reftable_offset
;
2875 error_setg_errno(errp
, -ret
, "Failed to update the qcow2 header");
2879 /* Now update the rest of the in-memory information */
2880 old_reftable
= s
->refcount_table
;
2881 s
->refcount_table
= new_reftable
;
2883 s
->refcount_bits
= 1 << refcount_order
;
2884 s
->refcount_max
= UINT64_C(1) << (s
->refcount_bits
- 1);
2885 s
->refcount_max
+= s
->refcount_max
- 1;
2887 s
->refcount_block_bits
= s
->cluster_bits
- (refcount_order
- 3);
2888 s
->refcount_block_size
= 1 << s
->refcount_block_bits
;
2890 s
->get_refcount
= new_get_refcount
;
2891 s
->set_refcount
= new_set_refcount
;
2893 /* For cleaning up all old refblocks and the old reftable below the "done"
2895 new_reftable
= old_reftable
;
2896 new_reftable_size
= old_reftable_size
;
2897 new_reftable_offset
= old_reftable_offset
;
2901 /* On success, new_reftable actually points to the old reftable (and
2902 * new_reftable_size is the old reftable's size); but that is just
2904 for (i
= 0; i
< new_reftable_size
; i
++) {
2905 uint64_t offset
= new_reftable
[i
] & REFT_OFFSET_MASK
;
2907 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2908 QCOW2_DISCARD_OTHER
);
2911 g_free(new_reftable
);
2913 if (new_reftable_offset
> 0) {
2914 qcow2_free_clusters(bs
, new_reftable_offset
,
2915 new_reftable_size
* sizeof(uint64_t),
2916 QCOW2_DISCARD_OTHER
);
2920 qemu_vfree(new_refblock
);