kvm: Improve reporting of fatal errors
[qemu.git] / target-i386 / kvm.c
blob0ba13fc55dfee371009268d218f63ffe674b258c
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 static int lm_capable_kernel;
59 #ifdef KVM_CAP_EXT_CPUID
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
83 return cpuid;
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
129 break;
131 break;
136 qemu_free(cpuid);
138 return ret;
141 #else
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
146 return -1U;
149 #endif
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
153 int cap;
154 int feature;
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158 #endif
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161 #endif
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164 #endif
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167 #endif
168 { -1, -1 }
171 static int get_para_features(CPUState *env)
173 int i, features = 0;
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
177 features |= (1 << para_features[i].feature);
180 return features;
182 #endif
184 #ifdef KVM_CAP_MCE
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
188 int r;
190 r = kvm_check_extension(s, KVM_CAP_MCE);
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
195 return -ENOSYS;
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_progress(CPUState *env)
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
227 int r;
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 fprintf(stderr, "Failed to get MCE status\n");
232 return 0;
234 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
237 struct kvm_x86_mce_data
239 CPUState *env;
240 struct kvm_x86_mce *mce;
241 int abort_on_error;
244 static void kvm_do_inject_x86_mce(void *_data)
246 struct kvm_x86_mce_data *data = _data;
247 int r;
249 /* If there is an MCE exception being processed, ignore this SRAO MCE */
250 if ((data->env->mcg_cap & MCG_SER_P) &&
251 !(data->mce->status & MCI_STATUS_AR)) {
252 if (kvm_mce_in_progress(data->env)) {
253 return;
257 r = kvm_set_mce(data->env, data->mce);
258 if (r < 0) {
259 perror("kvm_set_mce FAILED");
260 if (data->abort_on_error) {
261 abort();
266 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
267 int flag)
269 struct kvm_x86_mce_data data = {
270 .env = env,
271 .mce = mce,
272 .abort_on_error = (flag & ABORT_ON_ERROR),
275 if (!env->mcg_cap) {
276 fprintf(stderr, "MCE support is not enabled!\n");
277 return;
280 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
283 static void kvm_mce_broadcast_rest(CPUState *env);
284 #endif
286 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
287 uint64_t mcg_status, uint64_t addr, uint64_t misc,
288 int flag)
290 #ifdef KVM_CAP_MCE
291 struct kvm_x86_mce mce = {
292 .bank = bank,
293 .status = status,
294 .mcg_status = mcg_status,
295 .addr = addr,
296 .misc = misc,
299 if (flag & MCE_BROADCAST) {
300 kvm_mce_broadcast_rest(cenv);
303 kvm_inject_x86_mce_on(cenv, &mce, flag);
304 #else
305 if (flag & ABORT_ON_ERROR) {
306 abort();
308 #endif
311 int kvm_arch_init_vcpu(CPUState *env)
313 struct {
314 struct kvm_cpuid2 cpuid;
315 struct kvm_cpuid_entry2 entries[100];
316 } __attribute__((packed)) cpuid_data;
317 uint32_t limit, i, j, cpuid_i;
318 uint32_t unused;
319 struct kvm_cpuid_entry2 *c;
320 #ifdef KVM_CPUID_SIGNATURE
321 uint32_t signature[3];
322 #endif
324 env->mp_state = KVM_MP_STATE_RUNNABLE;
326 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
328 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
329 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
330 env->cpuid_ext_features |= i;
332 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333 0, R_EDX);
334 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
335 0, R_ECX);
336 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
337 0, R_EDX);
340 cpuid_i = 0;
342 #ifdef CONFIG_KVM_PARA
343 /* Paravirtualization CPUIDs */
344 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
345 c = &cpuid_data.entries[cpuid_i++];
346 memset(c, 0, sizeof(*c));
347 c->function = KVM_CPUID_SIGNATURE;
348 c->eax = 0;
349 c->ebx = signature[0];
350 c->ecx = signature[1];
351 c->edx = signature[2];
353 c = &cpuid_data.entries[cpuid_i++];
354 memset(c, 0, sizeof(*c));
355 c->function = KVM_CPUID_FEATURES;
356 c->eax = env->cpuid_kvm_features & get_para_features(env);
357 #endif
359 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
361 for (i = 0; i <= limit; i++) {
362 c = &cpuid_data.entries[cpuid_i++];
364 switch (i) {
365 case 2: {
366 /* Keep reading function 2 till all the input is received */
367 int times;
369 c->function = i;
370 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
371 KVM_CPUID_FLAG_STATE_READ_NEXT;
372 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
373 times = c->eax & 0xff;
375 for (j = 1; j < times; ++j) {
376 c = &cpuid_data.entries[cpuid_i++];
377 c->function = i;
378 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
379 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
381 break;
383 case 4:
384 case 0xb:
385 case 0xd:
386 for (j = 0; ; j++) {
387 c->function = i;
388 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
389 c->index = j;
390 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
392 if (i == 4 && c->eax == 0) {
393 break;
395 if (i == 0xb && !(c->ecx & 0xff00)) {
396 break;
398 if (i == 0xd && c->eax == 0) {
399 break;
401 c = &cpuid_data.entries[cpuid_i++];
403 break;
404 default:
405 c->function = i;
406 c->flags = 0;
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408 break;
411 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
413 for (i = 0x80000000; i <= limit; i++) {
414 c = &cpuid_data.entries[cpuid_i++];
416 c->function = i;
417 c->flags = 0;
418 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
421 cpuid_data.cpuid.nent = cpuid_i;
423 #ifdef KVM_CAP_MCE
424 if (((env->cpuid_version >> 8)&0xF) >= 6
425 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
426 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
427 uint64_t mcg_cap;
428 int banks;
430 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
431 perror("kvm_get_mce_cap_supported FAILED");
432 } else {
433 if (banks > MCE_BANKS_DEF)
434 banks = MCE_BANKS_DEF;
435 mcg_cap &= MCE_CAP_DEF;
436 mcg_cap |= banks;
437 if (kvm_setup_mce(env, &mcg_cap)) {
438 perror("kvm_setup_mce FAILED");
439 } else {
440 env->mcg_cap = mcg_cap;
444 #endif
446 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
449 void kvm_arch_reset_vcpu(CPUState *env)
451 env->exception_injected = -1;
452 env->interrupt_injected = -1;
453 env->nmi_injected = 0;
454 env->nmi_pending = 0;
455 if (kvm_irqchip_in_kernel()) {
456 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
457 KVM_MP_STATE_UNINITIALIZED;
458 } else {
459 env->mp_state = KVM_MP_STATE_RUNNABLE;
463 int has_msr_star;
464 int has_msr_hsave_pa;
466 static void kvm_supported_msrs(CPUState *env)
468 static int kvm_supported_msrs;
469 int ret;
471 /* first time */
472 if (kvm_supported_msrs == 0) {
473 struct kvm_msr_list msr_list, *kvm_msr_list;
475 kvm_supported_msrs = -1;
477 /* Obtain MSR list from KVM. These are the MSRs that we must
478 * save/restore */
479 msr_list.nmsrs = 0;
480 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
481 if (ret < 0 && ret != -E2BIG) {
482 return;
484 /* Old kernel modules had a bug and could write beyond the provided
485 memory. Allocate at least a safe amount of 1K. */
486 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
487 msr_list.nmsrs *
488 sizeof(msr_list.indices[0])));
490 kvm_msr_list->nmsrs = msr_list.nmsrs;
491 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
492 if (ret >= 0) {
493 int i;
495 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
496 if (kvm_msr_list->indices[i] == MSR_STAR) {
497 has_msr_star = 1;
498 continue;
500 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
501 has_msr_hsave_pa = 1;
502 continue;
507 free(kvm_msr_list);
510 return;
513 static int kvm_has_msr_hsave_pa(CPUState *env)
515 kvm_supported_msrs(env);
516 return has_msr_hsave_pa;
519 static int kvm_has_msr_star(CPUState *env)
521 kvm_supported_msrs(env);
522 return has_msr_star;
525 static int kvm_init_identity_map_page(KVMState *s)
527 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
528 int ret;
529 uint64_t addr = 0xfffbc000;
531 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
532 return 0;
535 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
536 if (ret < 0) {
537 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
538 return ret;
540 #endif
541 return 0;
544 int kvm_arch_init(KVMState *s, int smp_cpus)
546 int ret;
548 struct utsname utsname;
550 uname(&utsname);
551 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
553 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
554 * directly. In order to use vm86 mode, a TSS is needed. Since this
555 * must be part of guest physical memory, we need to allocate it. Older
556 * versions of KVM just assumed that it would be at the end of physical
557 * memory but that doesn't work with more than 4GB of memory. We simply
558 * refuse to work with those older versions of KVM. */
559 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
560 if (ret <= 0) {
561 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
562 return ret;
565 /* this address is 3 pages before the bios, and the bios should present
566 * as unavaible memory. FIXME, need to ensure the e820 map deals with
567 * this?
570 * Tell fw_cfg to notify the BIOS to reserve the range.
572 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
573 perror("e820_add_entry() table is full");
574 exit(1);
576 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
577 if (ret < 0) {
578 return ret;
581 return kvm_init_identity_map_page(s);
584 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
586 lhs->selector = rhs->selector;
587 lhs->base = rhs->base;
588 lhs->limit = rhs->limit;
589 lhs->type = 3;
590 lhs->present = 1;
591 lhs->dpl = 3;
592 lhs->db = 0;
593 lhs->s = 1;
594 lhs->l = 0;
595 lhs->g = 0;
596 lhs->avl = 0;
597 lhs->unusable = 0;
600 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
602 unsigned flags = rhs->flags;
603 lhs->selector = rhs->selector;
604 lhs->base = rhs->base;
605 lhs->limit = rhs->limit;
606 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
607 lhs->present = (flags & DESC_P_MASK) != 0;
608 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
609 lhs->db = (flags >> DESC_B_SHIFT) & 1;
610 lhs->s = (flags & DESC_S_MASK) != 0;
611 lhs->l = (flags >> DESC_L_SHIFT) & 1;
612 lhs->g = (flags & DESC_G_MASK) != 0;
613 lhs->avl = (flags & DESC_AVL_MASK) != 0;
614 lhs->unusable = 0;
617 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
619 lhs->selector = rhs->selector;
620 lhs->base = rhs->base;
621 lhs->limit = rhs->limit;
622 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
623 (rhs->present * DESC_P_MASK) |
624 (rhs->dpl << DESC_DPL_SHIFT) |
625 (rhs->db << DESC_B_SHIFT) |
626 (rhs->s * DESC_S_MASK) |
627 (rhs->l << DESC_L_SHIFT) |
628 (rhs->g * DESC_G_MASK) |
629 (rhs->avl * DESC_AVL_MASK);
632 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
634 if (set) {
635 *kvm_reg = *qemu_reg;
636 } else {
637 *qemu_reg = *kvm_reg;
641 static int kvm_getput_regs(CPUState *env, int set)
643 struct kvm_regs regs;
644 int ret = 0;
646 if (!set) {
647 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
648 if (ret < 0) {
649 return ret;
653 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
654 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
655 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
656 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
657 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
658 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
659 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
660 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
661 #ifdef TARGET_X86_64
662 kvm_getput_reg(&regs.r8, &env->regs[8], set);
663 kvm_getput_reg(&regs.r9, &env->regs[9], set);
664 kvm_getput_reg(&regs.r10, &env->regs[10], set);
665 kvm_getput_reg(&regs.r11, &env->regs[11], set);
666 kvm_getput_reg(&regs.r12, &env->regs[12], set);
667 kvm_getput_reg(&regs.r13, &env->regs[13], set);
668 kvm_getput_reg(&regs.r14, &env->regs[14], set);
669 kvm_getput_reg(&regs.r15, &env->regs[15], set);
670 #endif
672 kvm_getput_reg(&regs.rflags, &env->eflags, set);
673 kvm_getput_reg(&regs.rip, &env->eip, set);
675 if (set) {
676 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
679 return ret;
682 static int kvm_put_fpu(CPUState *env)
684 struct kvm_fpu fpu;
685 int i;
687 memset(&fpu, 0, sizeof fpu);
688 fpu.fsw = env->fpus & ~(7 << 11);
689 fpu.fsw |= (env->fpstt & 7) << 11;
690 fpu.fcw = env->fpuc;
691 for (i = 0; i < 8; ++i) {
692 fpu.ftwx |= (!env->fptags[i]) << i;
694 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
695 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
696 fpu.mxcsr = env->mxcsr;
698 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
701 #ifdef KVM_CAP_XSAVE
702 #define XSAVE_CWD_RIP 2
703 #define XSAVE_CWD_RDP 4
704 #define XSAVE_MXCSR 6
705 #define XSAVE_ST_SPACE 8
706 #define XSAVE_XMM_SPACE 40
707 #define XSAVE_XSTATE_BV 128
708 #define XSAVE_YMMH_SPACE 144
709 #endif
711 static int kvm_put_xsave(CPUState *env)
713 #ifdef KVM_CAP_XSAVE
714 int i, r;
715 struct kvm_xsave* xsave;
716 uint16_t cwd, swd, twd, fop;
718 if (!kvm_has_xsave()) {
719 return kvm_put_fpu(env);
722 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
723 memset(xsave, 0, sizeof(struct kvm_xsave));
724 cwd = swd = twd = fop = 0;
725 swd = env->fpus & ~(7 << 11);
726 swd |= (env->fpstt & 7) << 11;
727 cwd = env->fpuc;
728 for (i = 0; i < 8; ++i) {
729 twd |= (!env->fptags[i]) << i;
731 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
732 xsave->region[1] = (uint32_t)(fop << 16) + twd;
733 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
734 sizeof env->fpregs);
735 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
736 sizeof env->xmm_regs);
737 xsave->region[XSAVE_MXCSR] = env->mxcsr;
738 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
739 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
740 sizeof env->ymmh_regs);
741 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
742 qemu_free(xsave);
743 return r;
744 #else
745 return kvm_put_fpu(env);
746 #endif
749 static int kvm_put_xcrs(CPUState *env)
751 #ifdef KVM_CAP_XCRS
752 struct kvm_xcrs xcrs;
754 if (!kvm_has_xcrs()) {
755 return 0;
758 xcrs.nr_xcrs = 1;
759 xcrs.flags = 0;
760 xcrs.xcrs[0].xcr = 0;
761 xcrs.xcrs[0].value = env->xcr0;
762 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
763 #else
764 return 0;
765 #endif
768 static int kvm_put_sregs(CPUState *env)
770 struct kvm_sregs sregs;
772 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
773 if (env->interrupt_injected >= 0) {
774 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
775 (uint64_t)1 << (env->interrupt_injected % 64);
778 if ((env->eflags & VM_MASK)) {
779 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
780 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
781 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
782 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
783 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
784 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
785 } else {
786 set_seg(&sregs.cs, &env->segs[R_CS]);
787 set_seg(&sregs.ds, &env->segs[R_DS]);
788 set_seg(&sregs.es, &env->segs[R_ES]);
789 set_seg(&sregs.fs, &env->segs[R_FS]);
790 set_seg(&sregs.gs, &env->segs[R_GS]);
791 set_seg(&sregs.ss, &env->segs[R_SS]);
794 set_seg(&sregs.tr, &env->tr);
795 set_seg(&sregs.ldt, &env->ldt);
797 sregs.idt.limit = env->idt.limit;
798 sregs.idt.base = env->idt.base;
799 sregs.gdt.limit = env->gdt.limit;
800 sregs.gdt.base = env->gdt.base;
802 sregs.cr0 = env->cr[0];
803 sregs.cr2 = env->cr[2];
804 sregs.cr3 = env->cr[3];
805 sregs.cr4 = env->cr[4];
807 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
808 sregs.apic_base = cpu_get_apic_base(env->apic_state);
810 sregs.efer = env->efer;
812 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
815 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
816 uint32_t index, uint64_t value)
818 entry->index = index;
819 entry->data = value;
822 static int kvm_put_msrs(CPUState *env, int level)
824 struct {
825 struct kvm_msrs info;
826 struct kvm_msr_entry entries[100];
827 } msr_data;
828 struct kvm_msr_entry *msrs = msr_data.entries;
829 int n = 0;
831 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
832 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
833 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
834 if (kvm_has_msr_star(env)) {
835 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
837 if (kvm_has_msr_hsave_pa(env)) {
838 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
840 #ifdef TARGET_X86_64
841 if (lm_capable_kernel) {
842 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
843 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
844 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
845 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
847 #endif
848 if (level == KVM_PUT_FULL_STATE) {
850 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
851 * writeback. Until this is fixed, we only write the offset to SMP
852 * guests after migration, desynchronizing the VCPUs, but avoiding
853 * huge jump-backs that would occur without any writeback at all.
855 if (smp_cpus == 1 || env->tsc != 0) {
856 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
858 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
859 env->system_time_msr);
860 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
861 #ifdef KVM_CAP_ASYNC_PF
862 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
863 #endif
865 #ifdef KVM_CAP_MCE
866 if (env->mcg_cap) {
867 int i;
869 if (level == KVM_PUT_RESET_STATE) {
870 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
871 } else if (level == KVM_PUT_FULL_STATE) {
872 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
873 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
874 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
875 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
879 #endif
881 msr_data.info.nmsrs = n;
883 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
888 static int kvm_get_fpu(CPUState *env)
890 struct kvm_fpu fpu;
891 int i, ret;
893 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
894 if (ret < 0) {
895 return ret;
898 env->fpstt = (fpu.fsw >> 11) & 7;
899 env->fpus = fpu.fsw;
900 env->fpuc = fpu.fcw;
901 for (i = 0; i < 8; ++i) {
902 env->fptags[i] = !((fpu.ftwx >> i) & 1);
904 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
905 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
906 env->mxcsr = fpu.mxcsr;
908 return 0;
911 static int kvm_get_xsave(CPUState *env)
913 #ifdef KVM_CAP_XSAVE
914 struct kvm_xsave* xsave;
915 int ret, i;
916 uint16_t cwd, swd, twd, fop;
918 if (!kvm_has_xsave()) {
919 return kvm_get_fpu(env);
922 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
923 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
924 if (ret < 0) {
925 qemu_free(xsave);
926 return ret;
929 cwd = (uint16_t)xsave->region[0];
930 swd = (uint16_t)(xsave->region[0] >> 16);
931 twd = (uint16_t)xsave->region[1];
932 fop = (uint16_t)(xsave->region[1] >> 16);
933 env->fpstt = (swd >> 11) & 7;
934 env->fpus = swd;
935 env->fpuc = cwd;
936 for (i = 0; i < 8; ++i) {
937 env->fptags[i] = !((twd >> i) & 1);
939 env->mxcsr = xsave->region[XSAVE_MXCSR];
940 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
941 sizeof env->fpregs);
942 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
943 sizeof env->xmm_regs);
944 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
945 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
946 sizeof env->ymmh_regs);
947 qemu_free(xsave);
948 return 0;
949 #else
950 return kvm_get_fpu(env);
951 #endif
954 static int kvm_get_xcrs(CPUState *env)
956 #ifdef KVM_CAP_XCRS
957 int i, ret;
958 struct kvm_xcrs xcrs;
960 if (!kvm_has_xcrs()) {
961 return 0;
964 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
965 if (ret < 0) {
966 return ret;
969 for (i = 0; i < xcrs.nr_xcrs; i++) {
970 /* Only support xcr0 now */
971 if (xcrs.xcrs[0].xcr == 0) {
972 env->xcr0 = xcrs.xcrs[0].value;
973 break;
976 return 0;
977 #else
978 return 0;
979 #endif
982 static int kvm_get_sregs(CPUState *env)
984 struct kvm_sregs sregs;
985 uint32_t hflags;
986 int bit, i, ret;
988 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
989 if (ret < 0) {
990 return ret;
993 /* There can only be one pending IRQ set in the bitmap at a time, so try
994 to find it and save its number instead (-1 for none). */
995 env->interrupt_injected = -1;
996 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
997 if (sregs.interrupt_bitmap[i]) {
998 bit = ctz64(sregs.interrupt_bitmap[i]);
999 env->interrupt_injected = i * 64 + bit;
1000 break;
1004 get_seg(&env->segs[R_CS], &sregs.cs);
1005 get_seg(&env->segs[R_DS], &sregs.ds);
1006 get_seg(&env->segs[R_ES], &sregs.es);
1007 get_seg(&env->segs[R_FS], &sregs.fs);
1008 get_seg(&env->segs[R_GS], &sregs.gs);
1009 get_seg(&env->segs[R_SS], &sregs.ss);
1011 get_seg(&env->tr, &sregs.tr);
1012 get_seg(&env->ldt, &sregs.ldt);
1014 env->idt.limit = sregs.idt.limit;
1015 env->idt.base = sregs.idt.base;
1016 env->gdt.limit = sregs.gdt.limit;
1017 env->gdt.base = sregs.gdt.base;
1019 env->cr[0] = sregs.cr0;
1020 env->cr[2] = sregs.cr2;
1021 env->cr[3] = sregs.cr3;
1022 env->cr[4] = sregs.cr4;
1024 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1026 env->efer = sregs.efer;
1027 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1029 #define HFLAG_COPY_MASK \
1030 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1031 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1032 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1033 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1035 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1036 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1037 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1038 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1039 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1040 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1041 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1043 if (env->efer & MSR_EFER_LMA) {
1044 hflags |= HF_LMA_MASK;
1047 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1048 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1049 } else {
1050 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1051 (DESC_B_SHIFT - HF_CS32_SHIFT);
1052 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1053 (DESC_B_SHIFT - HF_SS32_SHIFT);
1054 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1055 !(hflags & HF_CS32_MASK)) {
1056 hflags |= HF_ADDSEG_MASK;
1057 } else {
1058 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1059 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1062 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1064 return 0;
1067 static int kvm_get_msrs(CPUState *env)
1069 struct {
1070 struct kvm_msrs info;
1071 struct kvm_msr_entry entries[100];
1072 } msr_data;
1073 struct kvm_msr_entry *msrs = msr_data.entries;
1074 int ret, i, n;
1076 n = 0;
1077 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1078 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1079 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1080 if (kvm_has_msr_star(env)) {
1081 msrs[n++].index = MSR_STAR;
1083 if (kvm_has_msr_hsave_pa(env)) {
1084 msrs[n++].index = MSR_VM_HSAVE_PA;
1086 msrs[n++].index = MSR_IA32_TSC;
1087 #ifdef TARGET_X86_64
1088 if (lm_capable_kernel) {
1089 msrs[n++].index = MSR_CSTAR;
1090 msrs[n++].index = MSR_KERNELGSBASE;
1091 msrs[n++].index = MSR_FMASK;
1092 msrs[n++].index = MSR_LSTAR;
1094 #endif
1095 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1096 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1097 #ifdef KVM_CAP_ASYNC_PF
1098 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1099 #endif
1101 #ifdef KVM_CAP_MCE
1102 if (env->mcg_cap) {
1103 msrs[n++].index = MSR_MCG_STATUS;
1104 msrs[n++].index = MSR_MCG_CTL;
1105 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1106 msrs[n++].index = MSR_MC0_CTL + i;
1109 #endif
1111 msr_data.info.nmsrs = n;
1112 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1113 if (ret < 0) {
1114 return ret;
1117 for (i = 0; i < ret; i++) {
1118 switch (msrs[i].index) {
1119 case MSR_IA32_SYSENTER_CS:
1120 env->sysenter_cs = msrs[i].data;
1121 break;
1122 case MSR_IA32_SYSENTER_ESP:
1123 env->sysenter_esp = msrs[i].data;
1124 break;
1125 case MSR_IA32_SYSENTER_EIP:
1126 env->sysenter_eip = msrs[i].data;
1127 break;
1128 case MSR_STAR:
1129 env->star = msrs[i].data;
1130 break;
1131 #ifdef TARGET_X86_64
1132 case MSR_CSTAR:
1133 env->cstar = msrs[i].data;
1134 break;
1135 case MSR_KERNELGSBASE:
1136 env->kernelgsbase = msrs[i].data;
1137 break;
1138 case MSR_FMASK:
1139 env->fmask = msrs[i].data;
1140 break;
1141 case MSR_LSTAR:
1142 env->lstar = msrs[i].data;
1143 break;
1144 #endif
1145 case MSR_IA32_TSC:
1146 env->tsc = msrs[i].data;
1147 break;
1148 case MSR_VM_HSAVE_PA:
1149 env->vm_hsave = msrs[i].data;
1150 break;
1151 case MSR_KVM_SYSTEM_TIME:
1152 env->system_time_msr = msrs[i].data;
1153 break;
1154 case MSR_KVM_WALL_CLOCK:
1155 env->wall_clock_msr = msrs[i].data;
1156 break;
1157 #ifdef KVM_CAP_MCE
1158 case MSR_MCG_STATUS:
1159 env->mcg_status = msrs[i].data;
1160 break;
1161 case MSR_MCG_CTL:
1162 env->mcg_ctl = msrs[i].data;
1163 break;
1164 #endif
1165 default:
1166 #ifdef KVM_CAP_MCE
1167 if (msrs[i].index >= MSR_MC0_CTL &&
1168 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1169 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1171 #endif
1172 break;
1173 #ifdef KVM_CAP_ASYNC_PF
1174 case MSR_KVM_ASYNC_PF_EN:
1175 env->async_pf_en_msr = msrs[i].data;
1176 break;
1177 #endif
1181 return 0;
1184 static int kvm_put_mp_state(CPUState *env)
1186 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1188 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1191 static int kvm_get_mp_state(CPUState *env)
1193 struct kvm_mp_state mp_state;
1194 int ret;
1196 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1197 if (ret < 0) {
1198 return ret;
1200 env->mp_state = mp_state.mp_state;
1201 return 0;
1204 static int kvm_put_vcpu_events(CPUState *env, int level)
1206 #ifdef KVM_CAP_VCPU_EVENTS
1207 struct kvm_vcpu_events events;
1209 if (!kvm_has_vcpu_events()) {
1210 return 0;
1213 events.exception.injected = (env->exception_injected >= 0);
1214 events.exception.nr = env->exception_injected;
1215 events.exception.has_error_code = env->has_error_code;
1216 events.exception.error_code = env->error_code;
1218 events.interrupt.injected = (env->interrupt_injected >= 0);
1219 events.interrupt.nr = env->interrupt_injected;
1220 events.interrupt.soft = env->soft_interrupt;
1222 events.nmi.injected = env->nmi_injected;
1223 events.nmi.pending = env->nmi_pending;
1224 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1226 events.sipi_vector = env->sipi_vector;
1228 events.flags = 0;
1229 if (level >= KVM_PUT_RESET_STATE) {
1230 events.flags |=
1231 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1234 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1235 #else
1236 return 0;
1237 #endif
1240 static int kvm_get_vcpu_events(CPUState *env)
1242 #ifdef KVM_CAP_VCPU_EVENTS
1243 struct kvm_vcpu_events events;
1244 int ret;
1246 if (!kvm_has_vcpu_events()) {
1247 return 0;
1250 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1251 if (ret < 0) {
1252 return ret;
1254 env->exception_injected =
1255 events.exception.injected ? events.exception.nr : -1;
1256 env->has_error_code = events.exception.has_error_code;
1257 env->error_code = events.exception.error_code;
1259 env->interrupt_injected =
1260 events.interrupt.injected ? events.interrupt.nr : -1;
1261 env->soft_interrupt = events.interrupt.soft;
1263 env->nmi_injected = events.nmi.injected;
1264 env->nmi_pending = events.nmi.pending;
1265 if (events.nmi.masked) {
1266 env->hflags2 |= HF2_NMI_MASK;
1267 } else {
1268 env->hflags2 &= ~HF2_NMI_MASK;
1271 env->sipi_vector = events.sipi_vector;
1272 #endif
1274 return 0;
1277 static int kvm_guest_debug_workarounds(CPUState *env)
1279 int ret = 0;
1280 #ifdef KVM_CAP_SET_GUEST_DEBUG
1281 unsigned long reinject_trap = 0;
1283 if (!kvm_has_vcpu_events()) {
1284 if (env->exception_injected == 1) {
1285 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1286 } else if (env->exception_injected == 3) {
1287 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1289 env->exception_injected = -1;
1293 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1294 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1295 * by updating the debug state once again if single-stepping is on.
1296 * Another reason to call kvm_update_guest_debug here is a pending debug
1297 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1298 * reinject them via SET_GUEST_DEBUG.
1300 if (reinject_trap ||
1301 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1302 ret = kvm_update_guest_debug(env, reinject_trap);
1304 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1305 return ret;
1308 static int kvm_put_debugregs(CPUState *env)
1310 #ifdef KVM_CAP_DEBUGREGS
1311 struct kvm_debugregs dbgregs;
1312 int i;
1314 if (!kvm_has_debugregs()) {
1315 return 0;
1318 for (i = 0; i < 4; i++) {
1319 dbgregs.db[i] = env->dr[i];
1321 dbgregs.dr6 = env->dr[6];
1322 dbgregs.dr7 = env->dr[7];
1323 dbgregs.flags = 0;
1325 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1326 #else
1327 return 0;
1328 #endif
1331 static int kvm_get_debugregs(CPUState *env)
1333 #ifdef KVM_CAP_DEBUGREGS
1334 struct kvm_debugregs dbgregs;
1335 int i, ret;
1337 if (!kvm_has_debugregs()) {
1338 return 0;
1341 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1342 if (ret < 0) {
1343 return ret;
1345 for (i = 0; i < 4; i++) {
1346 env->dr[i] = dbgregs.db[i];
1348 env->dr[4] = env->dr[6] = dbgregs.dr6;
1349 env->dr[5] = env->dr[7] = dbgregs.dr7;
1350 #endif
1352 return 0;
1355 int kvm_arch_put_registers(CPUState *env, int level)
1357 int ret;
1359 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1361 ret = kvm_getput_regs(env, 1);
1362 if (ret < 0) {
1363 return ret;
1365 ret = kvm_put_xsave(env);
1366 if (ret < 0) {
1367 return ret;
1369 ret = kvm_put_xcrs(env);
1370 if (ret < 0) {
1371 return ret;
1373 ret = kvm_put_sregs(env);
1374 if (ret < 0) {
1375 return ret;
1377 ret = kvm_put_msrs(env, level);
1378 if (ret < 0) {
1379 return ret;
1381 if (level >= KVM_PUT_RESET_STATE) {
1382 ret = kvm_put_mp_state(env);
1383 if (ret < 0) {
1384 return ret;
1387 ret = kvm_put_vcpu_events(env, level);
1388 if (ret < 0) {
1389 return ret;
1391 /* must be last */
1392 ret = kvm_guest_debug_workarounds(env);
1393 if (ret < 0) {
1394 return ret;
1396 ret = kvm_put_debugregs(env);
1397 if (ret < 0) {
1398 return ret;
1400 return 0;
1403 int kvm_arch_get_registers(CPUState *env)
1405 int ret;
1407 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1409 ret = kvm_getput_regs(env, 0);
1410 if (ret < 0) {
1411 return ret;
1413 ret = kvm_get_xsave(env);
1414 if (ret < 0) {
1415 return ret;
1417 ret = kvm_get_xcrs(env);
1418 if (ret < 0) {
1419 return ret;
1421 ret = kvm_get_sregs(env);
1422 if (ret < 0) {
1423 return ret;
1425 ret = kvm_get_msrs(env);
1426 if (ret < 0) {
1427 return ret;
1429 ret = kvm_get_mp_state(env);
1430 if (ret < 0) {
1431 return ret;
1433 ret = kvm_get_vcpu_events(env);
1434 if (ret < 0) {
1435 return ret;
1437 ret = kvm_get_debugregs(env);
1438 if (ret < 0) {
1439 return ret;
1441 return 0;
1444 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1446 /* Inject NMI */
1447 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1448 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1449 DPRINTF("injected NMI\n");
1450 kvm_vcpu_ioctl(env, KVM_NMI);
1453 /* Try to inject an interrupt if the guest can accept it */
1454 if (run->ready_for_interrupt_injection &&
1455 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1456 (env->eflags & IF_MASK)) {
1457 int irq;
1459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1460 irq = cpu_get_pic_interrupt(env);
1461 if (irq >= 0) {
1462 struct kvm_interrupt intr;
1463 intr.irq = irq;
1464 /* FIXME: errors */
1465 DPRINTF("injected interrupt %d\n", irq);
1466 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1470 /* If we have an interrupt but the guest is not ready to receive an
1471 * interrupt, request an interrupt window exit. This will
1472 * cause a return to userspace as soon as the guest is ready to
1473 * receive interrupts. */
1474 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1475 run->request_interrupt_window = 1;
1476 } else {
1477 run->request_interrupt_window = 0;
1480 DPRINTF("setting tpr\n");
1481 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1483 return 0;
1486 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1488 if (run->if_flag) {
1489 env->eflags |= IF_MASK;
1490 } else {
1491 env->eflags &= ~IF_MASK;
1493 cpu_set_apic_tpr(env->apic_state, run->cr8);
1494 cpu_set_apic_base(env->apic_state, run->apic_base);
1496 return 0;
1499 int kvm_arch_process_irqchip_events(CPUState *env)
1501 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1502 kvm_cpu_synchronize_state(env);
1503 do_cpu_init(env);
1504 env->exception_index = EXCP_HALTED;
1507 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1508 kvm_cpu_synchronize_state(env);
1509 do_cpu_sipi(env);
1512 return env->halted;
1515 static int kvm_handle_halt(CPUState *env)
1517 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1518 (env->eflags & IF_MASK)) &&
1519 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1520 env->halted = 1;
1521 env->exception_index = EXCP_HLT;
1522 return 0;
1525 return 1;
1528 static bool host_supports_vmx(void)
1530 uint32_t ecx, unused;
1532 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1533 return ecx & CPUID_EXT_VMX;
1536 #define VMX_INVALID_GUEST_STATE 0x80000021
1538 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1540 uint64_t code;
1541 int ret = 0;
1543 switch (run->exit_reason) {
1544 case KVM_EXIT_HLT:
1545 DPRINTF("handle_hlt\n");
1546 ret = kvm_handle_halt(env);
1547 break;
1548 case KVM_EXIT_SET_TPR:
1549 ret = 1;
1550 break;
1551 case KVM_EXIT_FAIL_ENTRY:
1552 code = run->fail_entry.hardware_entry_failure_reason;
1553 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1554 code);
1555 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1556 fprintf(stderr,
1557 "\nIf you're runnning a guest on an Intel machine without "
1558 "unrestricted mode\n"
1559 "support, the failure can be most likely due to the guest "
1560 "entering an invalid\n"
1561 "state for Intel VT. For example, the guest maybe running "
1562 "in big real mode\n"
1563 "which is not supported on less recent Intel processors."
1564 "\n\n");
1566 ret = -1;
1567 break;
1568 case KVM_EXIT_EXCEPTION:
1569 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1570 run->ex.exception, run->ex.error_code);
1571 ret = -1;
1572 break;
1573 default:
1574 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1575 ret = -1;
1576 break;
1579 return ret;
1582 #ifdef KVM_CAP_SET_GUEST_DEBUG
1583 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1585 static const uint8_t int3 = 0xcc;
1587 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1588 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1589 return -EINVAL;
1591 return 0;
1594 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1596 uint8_t int3;
1598 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1599 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1600 return -EINVAL;
1602 return 0;
1605 static struct {
1606 target_ulong addr;
1607 int len;
1608 int type;
1609 } hw_breakpoint[4];
1611 static int nb_hw_breakpoint;
1613 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1615 int n;
1617 for (n = 0; n < nb_hw_breakpoint; n++) {
1618 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1619 (hw_breakpoint[n].len == len || len == -1)) {
1620 return n;
1623 return -1;
1626 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1627 target_ulong len, int type)
1629 switch (type) {
1630 case GDB_BREAKPOINT_HW:
1631 len = 1;
1632 break;
1633 case GDB_WATCHPOINT_WRITE:
1634 case GDB_WATCHPOINT_ACCESS:
1635 switch (len) {
1636 case 1:
1637 break;
1638 case 2:
1639 case 4:
1640 case 8:
1641 if (addr & (len - 1)) {
1642 return -EINVAL;
1644 break;
1645 default:
1646 return -EINVAL;
1648 break;
1649 default:
1650 return -ENOSYS;
1653 if (nb_hw_breakpoint == 4) {
1654 return -ENOBUFS;
1656 if (find_hw_breakpoint(addr, len, type) >= 0) {
1657 return -EEXIST;
1659 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1660 hw_breakpoint[nb_hw_breakpoint].len = len;
1661 hw_breakpoint[nb_hw_breakpoint].type = type;
1662 nb_hw_breakpoint++;
1664 return 0;
1667 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1668 target_ulong len, int type)
1670 int n;
1672 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1673 if (n < 0) {
1674 return -ENOENT;
1676 nb_hw_breakpoint--;
1677 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1679 return 0;
1682 void kvm_arch_remove_all_hw_breakpoints(void)
1684 nb_hw_breakpoint = 0;
1687 static CPUWatchpoint hw_watchpoint;
1689 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1691 int handle = 0;
1692 int n;
1694 if (arch_info->exception == 1) {
1695 if (arch_info->dr6 & (1 << 14)) {
1696 if (cpu_single_env->singlestep_enabled) {
1697 handle = 1;
1699 } else {
1700 for (n = 0; n < 4; n++) {
1701 if (arch_info->dr6 & (1 << n)) {
1702 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1703 case 0x0:
1704 handle = 1;
1705 break;
1706 case 0x1:
1707 handle = 1;
1708 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1709 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1710 hw_watchpoint.flags = BP_MEM_WRITE;
1711 break;
1712 case 0x3:
1713 handle = 1;
1714 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1715 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1716 hw_watchpoint.flags = BP_MEM_ACCESS;
1717 break;
1722 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1723 handle = 1;
1725 if (!handle) {
1726 cpu_synchronize_state(cpu_single_env);
1727 assert(cpu_single_env->exception_injected == -1);
1729 cpu_single_env->exception_injected = arch_info->exception;
1730 cpu_single_env->has_error_code = 0;
1733 return handle;
1736 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1738 const uint8_t type_code[] = {
1739 [GDB_BREAKPOINT_HW] = 0x0,
1740 [GDB_WATCHPOINT_WRITE] = 0x1,
1741 [GDB_WATCHPOINT_ACCESS] = 0x3
1743 const uint8_t len_code[] = {
1744 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1746 int n;
1748 if (kvm_sw_breakpoints_active(env)) {
1749 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1751 if (nb_hw_breakpoint > 0) {
1752 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1753 dbg->arch.debugreg[7] = 0x0600;
1754 for (n = 0; n < nb_hw_breakpoint; n++) {
1755 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1756 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1757 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1758 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1761 /* Legal xcr0 for loading */
1762 env->xcr0 = 1;
1764 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1766 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1768 return !(env->cr[0] & CR0_PE_MASK) ||
1769 ((env->segs[R_CS].selector & 3) != 3);
1772 static void hardware_memory_error(void)
1774 fprintf(stderr, "Hardware memory error!\n");
1775 exit(1);
1778 #ifdef KVM_CAP_MCE
1779 static void kvm_mce_broadcast_rest(CPUState *env)
1781 struct kvm_x86_mce mce = {
1782 .bank = 1,
1783 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1784 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1785 .addr = 0,
1786 .misc = 0,
1788 CPUState *cenv;
1790 /* Broadcast MCA signal for processor version 06H_EH and above */
1791 if (cpu_x86_support_mca_broadcast(env)) {
1792 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1793 if (cenv == env) {
1794 continue;
1796 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1801 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1803 struct kvm_x86_mce mce = {
1804 .bank = 9,
1805 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1807 | MCI_STATUS_AR | 0x134,
1808 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1809 .addr = paddr,
1810 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1812 int r;
1814 r = kvm_set_mce(env, &mce);
1815 if (r < 0) {
1816 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1817 abort();
1819 kvm_mce_broadcast_rest(env);
1822 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1824 struct kvm_x86_mce mce = {
1825 .bank = 9,
1826 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1828 | 0xc0,
1829 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1830 .addr = paddr,
1831 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1833 int r;
1835 r = kvm_set_mce(env, &mce);
1836 if (r < 0) {
1837 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1838 abort();
1840 kvm_mce_broadcast_rest(env);
1843 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1845 struct kvm_x86_mce mce = {
1846 .bank = 9,
1847 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1848 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1849 | 0xc0,
1850 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1851 .addr = paddr,
1852 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1855 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1856 kvm_mce_broadcast_rest(env);
1859 #endif
1861 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1863 #if defined(KVM_CAP_MCE)
1864 void *vaddr;
1865 ram_addr_t ram_addr;
1866 target_phys_addr_t paddr;
1868 if ((env->mcg_cap & MCG_SER_P) && addr
1869 && (code == BUS_MCEERR_AR
1870 || code == BUS_MCEERR_AO)) {
1871 vaddr = (void *)addr;
1872 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1873 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1874 fprintf(stderr, "Hardware memory error for memory used by "
1875 "QEMU itself instead of guest system!\n");
1876 /* Hope we are lucky for AO MCE */
1877 if (code == BUS_MCEERR_AO) {
1878 return 0;
1879 } else {
1880 hardware_memory_error();
1884 if (code == BUS_MCEERR_AR) {
1885 /* Fake an Intel architectural Data Load SRAR UCR */
1886 kvm_mce_inj_srar_dataload(env, paddr);
1887 } else {
1889 * If there is an MCE excpetion being processed, ignore
1890 * this SRAO MCE
1892 if (!kvm_mce_in_progress(env)) {
1893 /* Fake an Intel architectural Memory scrubbing UCR */
1894 kvm_mce_inj_srao_memscrub(env, paddr);
1897 } else
1898 #endif
1900 if (code == BUS_MCEERR_AO) {
1901 return 0;
1902 } else if (code == BUS_MCEERR_AR) {
1903 hardware_memory_error();
1904 } else {
1905 return 1;
1908 return 0;
1911 int kvm_on_sigbus(int code, void *addr)
1913 #if defined(KVM_CAP_MCE)
1914 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1915 void *vaddr;
1916 ram_addr_t ram_addr;
1917 target_phys_addr_t paddr;
1919 /* Hope we are lucky for AO MCE */
1920 vaddr = addr;
1921 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1922 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1923 fprintf(stderr, "Hardware memory error for memory used by "
1924 "QEMU itself instead of guest system!: %p\n", addr);
1925 return 0;
1927 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1928 } else
1929 #endif
1931 if (code == BUS_MCEERR_AO) {
1932 return 0;
1933 } else if (code == BUS_MCEERR_AR) {
1934 hardware_memory_error();
1935 } else {
1936 return 1;
1939 return 0;