1 #include "qemu/osdep.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/cpu_ldst.h"
13 #include <zlib.h> /* For crc32 */
14 #include "exec/semihost.h"
15 #include "sysemu/kvm.h"
17 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
19 #ifndef CONFIG_USER_ONLY
20 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
21 int access_type
, ARMMMUIdx mmu_idx
,
22 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
23 target_ulong
*page_size
, uint32_t *fsr
,
26 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
27 int access_type
, ARMMMUIdx mmu_idx
,
28 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
29 target_ulong
*page_size_ptr
, uint32_t *fsr
,
32 /* Definitions for the PMCCNTR and PMCR registers */
38 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
42 /* VFP data registers are always little-endian. */
43 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
45 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
48 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
49 /* Aliases for Q regs. */
52 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
53 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
57 switch (reg
- nregs
) {
58 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
59 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
60 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
65 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
69 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
71 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
74 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
77 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
78 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
82 switch (reg
- nregs
) {
83 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
84 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
85 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
90 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
94 /* 128 bit FP register */
95 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
96 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
100 stl_p(buf
, vfp_get_fpsr(env
));
104 stl_p(buf
, vfp_get_fpcr(env
));
111 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
115 /* 128 bit FP register */
116 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
117 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
121 vfp_set_fpsr(env
, ldl_p(buf
));
125 vfp_set_fpcr(env
, ldl_p(buf
));
132 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
134 assert(ri
->fieldoffset
);
135 if (cpreg_field_is_64bit(ri
)) {
136 return CPREG_FIELD64(env
, ri
);
138 return CPREG_FIELD32(env
, ri
);
142 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
145 assert(ri
->fieldoffset
);
146 if (cpreg_field_is_64bit(ri
)) {
147 CPREG_FIELD64(env
, ri
) = value
;
149 CPREG_FIELD32(env
, ri
) = value
;
153 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
155 return (char *)env
+ ri
->fieldoffset
;
158 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
160 /* Raw read of a coprocessor register (as needed for migration, etc). */
161 if (ri
->type
& ARM_CP_CONST
) {
162 return ri
->resetvalue
;
163 } else if (ri
->raw_readfn
) {
164 return ri
->raw_readfn(env
, ri
);
165 } else if (ri
->readfn
) {
166 return ri
->readfn(env
, ri
);
168 return raw_read(env
, ri
);
172 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
175 /* Raw write of a coprocessor register (as needed for migration, etc).
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
180 if (ri
->type
& ARM_CP_CONST
) {
182 } else if (ri
->raw_writefn
) {
183 ri
->raw_writefn(env
, ri
, v
);
184 } else if (ri
->writefn
) {
185 ri
->writefn(env
, ri
, v
);
187 raw_write(env
, ri
, v
);
191 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
204 if ((ri
->type
& ARM_CP_CONST
) ||
206 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
212 bool write_cpustate_to_list(ARMCPU
*cpu
)
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
218 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
219 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
220 const ARMCPRegInfo
*ri
;
222 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
227 if (ri
->type
& ARM_CP_NO_RAW
) {
230 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
235 bool write_list_to_cpustate(ARMCPU
*cpu
)
240 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
241 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
242 uint64_t v
= cpu
->cpreg_values
[i
];
243 const ARMCPRegInfo
*ri
;
245 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (ri
->type
& ARM_CP_NO_RAW
) {
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
257 write_raw_cp_reg(&cpu
->env
, ri
, v
);
258 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
265 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
267 ARMCPU
*cpu
= opaque
;
269 const ARMCPRegInfo
*ri
;
271 regidx
= *(uint32_t *)key
;
272 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
274 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
275 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
276 /* The value array need not be initialized at this point */
277 cpu
->cpreg_array_len
++;
281 static void count_cpreg(gpointer key
, gpointer opaque
)
283 ARMCPU
*cpu
= opaque
;
285 const ARMCPRegInfo
*ri
;
287 regidx
= *(uint32_t *)key
;
288 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
290 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
291 cpu
->cpreg_array_len
++;
295 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
297 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
298 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
309 void init_cpreg_list(ARMCPU
*cpu
)
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
317 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
318 keys
= g_list_sort(keys
, cpreg_key_compare
);
320 cpu
->cpreg_array_len
= 0;
322 g_list_foreach(keys
, count_cpreg
, cpu
);
324 arraylen
= cpu
->cpreg_array_len
;
325 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
326 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
327 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
328 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
329 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
330 cpu
->cpreg_array_len
= 0;
332 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
334 assert(cpu
->cpreg_array_len
== arraylen
);
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
346 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
347 const ARMCPRegInfo
*ri
)
349 bool secure
= arm_is_secure_below_el3(env
);
351 assert(!arm_el_is_aa64(env
, 3));
353 return CP_ACCESS_TRAP_UNCATEGORIZED
;
358 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
359 const ARMCPRegInfo
*ri
)
361 if (!arm_el_is_aa64(env
, 3)) {
362 return access_el3_aa32ns(env
, ri
);
367 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
369 ARMCPU
*cpu
= arm_env_get_cpu(env
);
371 raw_write(env
, ri
, value
);
372 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
375 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
377 ARMCPU
*cpu
= arm_env_get_cpu(env
);
379 if (raw_read(env
, ri
) != value
) {
380 /* Unlike real hardware the qemu TLB uses virtual addresses,
381 * not modified virtual addresses, so this causes a TLB flush.
383 tlb_flush(CPU(cpu
), 1);
384 raw_write(env
, ri
, value
);
388 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
391 ARMCPU
*cpu
= arm_env_get_cpu(env
);
393 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
394 && !extended_addresses_enabled(env
)) {
395 /* For VMSA (when not using the LPAE long descriptor page table
396 * format) this register includes the ASID, so do a TLB flush.
397 * For PMSA it is purely a process ID and no action is needed.
399 tlb_flush(CPU(cpu
), 1);
401 raw_write(env
, ri
, value
);
404 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
407 /* Invalidate all (TLBIALL) */
408 ARMCPU
*cpu
= arm_env_get_cpu(env
);
410 tlb_flush(CPU(cpu
), 1);
413 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
416 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
417 ARMCPU
*cpu
= arm_env_get_cpu(env
);
419 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
422 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
425 /* Invalidate by ASID (TLBIASID) */
426 ARMCPU
*cpu
= arm_env_get_cpu(env
);
428 tlb_flush(CPU(cpu
), value
== 0);
431 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
434 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
435 ARMCPU
*cpu
= arm_env_get_cpu(env
);
437 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
440 /* IS variants of TLB operations must affect all cores */
441 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
446 CPU_FOREACH(other_cs
) {
447 tlb_flush(other_cs
, 1);
451 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
456 CPU_FOREACH(other_cs
) {
457 tlb_flush(other_cs
, value
== 0);
461 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
466 CPU_FOREACH(other_cs
) {
467 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
471 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
476 CPU_FOREACH(other_cs
) {
477 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
481 static const ARMCPRegInfo cp_reginfo
[] = {
482 /* Define the secure and non-secure FCSE identifier CP registers
483 * separately because there is no secure bank in V8 (no _EL3). This allows
484 * the secure register to be properly reset and migrated. There is also no
485 * v8 EL1 version of the register so the non-secure instance stands alone.
487 { .name
= "FCSEIDR(NS)",
488 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
489 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
490 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
491 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
492 { .name
= "FCSEIDR(S)",
493 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
494 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
495 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
496 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
497 /* Define the secure and non-secure context identifier CP registers
498 * separately because there is no secure bank in V8 (no _EL3). This allows
499 * the secure register to be properly reset and migrated. In the
500 * non-secure case, the 32-bit register will have reset and migration
501 * disabled during registration as it is handled by the 64-bit instance.
503 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
504 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
505 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
506 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
507 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
508 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
509 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
510 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
511 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
512 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
516 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
517 /* NB: Some of these registers exist in v8 but with more precise
518 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
520 /* MMU Domain access control / MPU write buffer control */
522 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
523 .access
= PL1_RW
, .resetvalue
= 0,
524 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
525 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
526 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
527 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
528 * For v6 and v5, these mappings are overly broad.
530 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
531 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
532 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
533 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
534 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
535 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
536 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
537 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
538 /* Cache maintenance ops; some of this space may be overridden later. */
539 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
540 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
541 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
545 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
546 /* Not all pre-v6 cores implemented this WFI, so this is slightly
549 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
550 .access
= PL1_W
, .type
= ARM_CP_WFI
},
554 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
555 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
556 * is UNPREDICTABLE; we choose to NOP as most implementations do).
558 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
559 .access
= PL1_W
, .type
= ARM_CP_WFI
},
560 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
561 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
562 * OMAPCP will override this space.
564 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
565 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
567 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
568 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
570 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
571 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
572 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
574 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
575 * implementing it as RAZ means the "debug architecture version" bits
576 * will read as a reserved value, which should cause Linux to not try
577 * to use the debug hardware.
579 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
580 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
581 /* MMU TLB control. Note that the wildcarding means we cover not just
582 * the unified TLB ops but also the dside/iside/inner-shareable variants.
584 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
585 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
586 .type
= ARM_CP_NO_RAW
},
587 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
588 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
589 .type
= ARM_CP_NO_RAW
},
590 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
591 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
592 .type
= ARM_CP_NO_RAW
},
593 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
594 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
595 .type
= ARM_CP_NO_RAW
},
596 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
597 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
598 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
599 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
603 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
608 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
609 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
610 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
611 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
612 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
614 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
615 /* VFP coprocessor: cp10 & cp11 [23:20] */
616 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
618 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
619 /* ASEDIS [31] bit is RAO/WI */
623 /* VFPv3 and upwards with NEON implement 32 double precision
624 * registers (D0-D31).
626 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
627 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
628 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
634 env
->cp15
.cpacr_el1
= value
;
637 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
639 if (arm_feature(env
, ARM_FEATURE_V8
)) {
640 /* Check if CPACR accesses are to be trapped to EL2 */
641 if (arm_current_el(env
) == 1 &&
642 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
643 return CP_ACCESS_TRAP_EL2
;
644 /* Check if CPACR accesses are to be trapped to EL3 */
645 } else if (arm_current_el(env
) < 3 &&
646 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
647 return CP_ACCESS_TRAP_EL3
;
654 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
656 /* Check if CPTR accesses are set to trap to EL3 */
657 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
658 return CP_ACCESS_TRAP_EL3
;
664 static const ARMCPRegInfo v6_cp_reginfo
[] = {
665 /* prefetch by MVA in v6, NOP in v7 */
666 { .name
= "MVA_prefetch",
667 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
668 .access
= PL1_W
, .type
= ARM_CP_NOP
},
669 /* We need to break the TB after ISB to execute self-modifying code
670 * correctly and also to take any pending interrupts immediately.
671 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
673 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
674 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
675 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
676 .access
= PL0_W
, .type
= ARM_CP_NOP
},
677 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
678 .access
= PL0_W
, .type
= ARM_CP_NOP
},
679 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
681 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
682 offsetof(CPUARMState
, cp15
.ifar_ns
) },
684 /* Watchpoint Fault Address Register : should actually only be present
685 * for 1136, 1176, 11MPCore.
687 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
688 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
689 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
690 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
691 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
692 .resetvalue
= 0, .writefn
= cpacr_write
},
696 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
698 /* Performance monitor registers user accessibility is controlled
701 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
702 return CP_ACCESS_TRAP
;
707 #ifndef CONFIG_USER_ONLY
709 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
711 /* This does not support checking PMCCFILTR_EL0 register */
713 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
720 void pmccntr_sync(CPUARMState
*env
)
724 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
725 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
727 if (env
->cp15
.c9_pmcr
& PMCRD
) {
728 /* Increment once every 64 processor clock cycles */
732 if (arm_ccnt_enabled(env
)) {
733 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
737 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
743 /* The counter has been reset */
744 env
->cp15
.c15_ccnt
= 0;
747 /* only the DP, X, D and E bits are writable */
748 env
->cp15
.c9_pmcr
&= ~0x39;
749 env
->cp15
.c9_pmcr
|= (value
& 0x39);
754 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
756 uint64_t total_ticks
;
758 if (!arm_ccnt_enabled(env
)) {
759 /* Counter is disabled, do not change value */
760 return env
->cp15
.c15_ccnt
;
763 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
764 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
766 if (env
->cp15
.c9_pmcr
& PMCRD
) {
767 /* Increment once every 64 processor clock cycles */
770 return total_ticks
- env
->cp15
.c15_ccnt
;
773 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
776 uint64_t total_ticks
;
778 if (!arm_ccnt_enabled(env
)) {
779 /* Counter is disabled, set the absolute value */
780 env
->cp15
.c15_ccnt
= value
;
784 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
785 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
787 if (env
->cp15
.c9_pmcr
& PMCRD
) {
788 /* Increment once every 64 processor clock cycles */
791 env
->cp15
.c15_ccnt
= total_ticks
- value
;
794 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
797 uint64_t cur_val
= pmccntr_read(env
, NULL
);
799 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
802 #else /* CONFIG_USER_ONLY */
804 void pmccntr_sync(CPUARMState
*env
)
810 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
814 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
818 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
822 env
->cp15
.c9_pmcnten
|= value
;
825 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
829 env
->cp15
.c9_pmcnten
&= ~value
;
832 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
835 env
->cp15
.c9_pmovsr
&= ~value
;
838 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
841 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
844 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
847 env
->cp15
.c9_pmuserenr
= value
& 1;
850 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
853 /* We have no event counters so only the C bit can be changed */
855 env
->cp15
.c9_pminten
|= value
;
858 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
862 env
->cp15
.c9_pminten
&= ~value
;
865 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
868 /* Note that even though the AArch64 view of this register has bits
869 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
870 * architectural requirements for bits which are RES0 only in some
871 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
872 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
874 raw_write(env
, ri
, value
& ~0x1FULL
);
877 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
879 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
880 * For bits that vary between AArch32/64, code needs to check the
881 * current execution mode before directly using the feature bit.
883 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
885 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
886 valid_mask
&= ~SCR_HCE
;
888 /* On ARMv7, SMD (or SCD as it is called in v7) is only
889 * supported if EL2 exists. The bit is UNK/SBZP when
890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
891 * when EL2 is unavailable.
892 * On ARMv8, this bit is always available.
894 if (arm_feature(env
, ARM_FEATURE_V7
) &&
895 !arm_feature(env
, ARM_FEATURE_V8
)) {
896 valid_mask
&= ~SCR_SMD
;
900 /* Clear all-context RES0 bits. */
902 raw_write(env
, ri
, value
);
905 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
907 ARMCPU
*cpu
= arm_env_get_cpu(env
);
909 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
912 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
913 ri
->secure
& ARM_CP_SECSTATE_S
);
915 return cpu
->ccsidr
[index
];
918 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
921 raw_write(env
, ri
, value
& 0xf);
924 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
926 CPUState
*cs
= ENV_GET_CPU(env
);
929 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
932 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
935 /* External aborts are not possible in QEMU so A bit is always clear */
939 static const ARMCPRegInfo v7_cp_reginfo
[] = {
940 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
941 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
942 .access
= PL1_W
, .type
= ARM_CP_NOP
},
943 /* Performance monitors are implementation defined in v7,
944 * but with an ARM recommended set of registers, which we
945 * follow (although we don't actually implement any counters)
947 * Performance registers fall into three categories:
948 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
949 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
950 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
951 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
952 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
954 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
955 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
956 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
957 .writefn
= pmcntenset_write
,
958 .accessfn
= pmreg_access
,
959 .raw_writefn
= raw_write
},
960 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
961 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
962 .access
= PL0_RW
, .accessfn
= pmreg_access
,
963 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
964 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
965 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
967 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
968 .accessfn
= pmreg_access
,
969 .writefn
= pmcntenclr_write
,
970 .type
= ARM_CP_ALIAS
},
971 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
972 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
973 .access
= PL0_RW
, .accessfn
= pmreg_access
,
974 .type
= ARM_CP_ALIAS
,
975 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
976 .writefn
= pmcntenclr_write
},
977 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
978 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
979 .accessfn
= pmreg_access
,
980 .writefn
= pmovsr_write
,
981 .raw_writefn
= raw_write
},
982 /* Unimplemented so WI. */
983 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
984 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
985 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
986 * We choose to RAZ/WI.
988 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
989 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
990 .accessfn
= pmreg_access
},
991 #ifndef CONFIG_USER_ONLY
992 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
993 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
994 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
995 .accessfn
= pmreg_access
},
996 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
997 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
998 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1000 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1002 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1003 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1004 .writefn
= pmccfiltr_write
,
1005 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1007 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1009 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1011 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
1012 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1013 .raw_writefn
= raw_write
},
1014 /* Unimplemented, RAZ/WI. */
1015 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1016 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1017 .accessfn
= pmreg_access
},
1018 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1019 .access
= PL0_R
| PL1_RW
,
1020 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1022 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1023 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1025 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1027 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1028 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1029 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1030 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1031 .writefn
= pmintenclr_write
, },
1032 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1033 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1034 .access
= PL1_RW
, .writefn
= vbar_write
,
1035 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1036 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1038 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1039 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1040 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1041 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1042 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1043 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1044 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1045 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1046 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1047 * just RAZ for all cores:
1049 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1050 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1051 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1052 /* Auxiliary fault status registers: these also are IMPDEF, and we
1053 * choose to RAZ/WI for all cores.
1055 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1056 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1057 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1058 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1059 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1060 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1061 /* MAIR can just read-as-written because we don't implement caches
1062 * and so don't need to care about memory attributes.
1064 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1065 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1066 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1068 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1069 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1070 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1072 /* For non-long-descriptor page tables these are PRRR and NMRR;
1073 * regardless they still act as reads-as-written for QEMU.
1075 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1076 * allows them to assign the correct fieldoffset based on the endianness
1077 * handled in the field definitions.
1079 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1080 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1081 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1082 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1083 .resetfn
= arm_cp_reset_ignore
},
1084 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1085 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1086 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1087 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1088 .resetfn
= arm_cp_reset_ignore
},
1089 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1090 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1091 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1092 /* 32 bit ITLB invalidates */
1093 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1094 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1095 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1096 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1097 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1098 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1099 /* 32 bit DTLB invalidates */
1100 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1101 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1102 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1103 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1104 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1105 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1106 /* 32 bit TLB invalidates */
1107 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1108 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1109 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1110 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1111 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1112 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1113 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1114 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1118 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1119 /* 32 bit TLB invalidates, Inner Shareable */
1120 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1121 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1122 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1123 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1124 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1125 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1126 .writefn
= tlbiasid_is_write
},
1127 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1128 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1129 .writefn
= tlbimvaa_is_write
},
1133 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1140 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1142 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1143 return CP_ACCESS_TRAP
;
1145 return CP_ACCESS_OK
;
1148 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1149 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1150 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1152 .writefn
= teecr_write
},
1153 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1154 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1155 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1159 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1160 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1161 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1163 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1164 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1166 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1167 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1168 .resetfn
= arm_cp_reset_ignore
},
1169 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1170 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1171 .access
= PL0_R
|PL1_W
,
1172 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1174 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1175 .access
= PL0_R
|PL1_W
,
1176 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1177 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1178 .resetfn
= arm_cp_reset_ignore
},
1179 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1180 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1182 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1183 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1185 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1186 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1191 #ifndef CONFIG_USER_ONLY
1193 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1195 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1196 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1197 return CP_ACCESS_TRAP
;
1199 return CP_ACCESS_OK
;
1202 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1204 unsigned int cur_el
= arm_current_el(env
);
1205 bool secure
= arm_is_secure(env
);
1207 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1209 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1210 return CP_ACCESS_TRAP
;
1213 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1214 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1215 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1216 return CP_ACCESS_TRAP_EL2
;
1218 return CP_ACCESS_OK
;
1221 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1223 unsigned int cur_el
= arm_current_el(env
);
1224 bool secure
= arm_is_secure(env
);
1226 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1227 * EL0[PV]TEN is zero.
1230 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1231 return CP_ACCESS_TRAP
;
1234 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1235 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1236 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1237 return CP_ACCESS_TRAP_EL2
;
1239 return CP_ACCESS_OK
;
1242 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1243 const ARMCPRegInfo
*ri
)
1245 return gt_counter_access(env
, GTIMER_PHYS
);
1248 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1249 const ARMCPRegInfo
*ri
)
1251 return gt_counter_access(env
, GTIMER_VIRT
);
1254 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1256 return gt_timer_access(env
, GTIMER_PHYS
);
1259 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1261 return gt_timer_access(env
, GTIMER_VIRT
);
1264 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1265 const ARMCPRegInfo
*ri
)
1267 /* The AArch64 register view of the secure physical timer is
1268 * always accessible from EL3, and configurably accessible from
1271 switch (arm_current_el(env
)) {
1273 if (!arm_is_secure(env
)) {
1274 return CP_ACCESS_TRAP
;
1276 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1277 return CP_ACCESS_TRAP_EL3
;
1279 return CP_ACCESS_OK
;
1282 return CP_ACCESS_TRAP
;
1284 return CP_ACCESS_OK
;
1286 g_assert_not_reached();
1290 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1292 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1295 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1297 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1300 /* Timer enabled: calculate and set current ISTATUS, irq, and
1301 * reset timer to when ISTATUS next has to change
1303 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1304 cpu
->env
.cp15
.cntvoff_el2
: 0;
1305 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1306 /* Note that this must be unsigned 64 bit arithmetic: */
1307 int istatus
= count
- offset
>= gt
->cval
;
1310 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1311 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1312 (istatus
&& !(gt
->ctl
& 2)));
1314 /* Next transition is when count rolls back over to zero */
1315 nexttick
= UINT64_MAX
;
1317 /* Next transition is when we hit cval */
1318 nexttick
= gt
->cval
+ offset
;
1320 /* Note that the desired next expiry time might be beyond the
1321 * signed-64-bit range of a QEMUTimer -- in this case we just
1322 * set the timer for as far in the future as possible. When the
1323 * timer expires we will reset the timer for any remaining period.
1325 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1326 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1328 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1330 /* Timer disabled: ISTATUS and timer output always clear */
1332 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1333 timer_del(cpu
->gt_timer
[timeridx
]);
1337 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1340 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1342 timer_del(cpu
->gt_timer
[timeridx
]);
1345 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1347 return gt_get_countervalue(env
);
1350 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1352 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1355 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1359 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1360 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1363 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1366 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1368 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1369 (gt_get_countervalue(env
) - offset
));
1372 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1376 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1378 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1379 sextract64(value
, 0, 32);
1380 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1383 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1387 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1388 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1390 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1391 if ((oldval
^ value
) & 1) {
1392 /* Enable toggled */
1393 gt_recalc_timer(cpu
, timeridx
);
1394 } else if ((oldval
^ value
) & 2) {
1395 /* IMASK toggled: don't need to recalculate,
1396 * just set the interrupt line based on ISTATUS
1398 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1399 (oldval
& 4) && !(value
& 2));
1403 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1405 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1408 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1411 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1414 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1416 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1419 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1422 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1425 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1428 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1431 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1433 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1436 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1439 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1442 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1444 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1447 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1450 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1453 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1456 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1459 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1462 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1464 raw_write(env
, ri
, value
);
1465 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1468 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1470 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1473 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1476 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1479 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1481 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1484 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1487 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1490 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1493 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1496 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1498 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1501 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1504 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1507 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1509 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1512 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1515 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1518 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1521 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1524 void arm_gt_ptimer_cb(void *opaque
)
1526 ARMCPU
*cpu
= opaque
;
1528 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1531 void arm_gt_vtimer_cb(void *opaque
)
1533 ARMCPU
*cpu
= opaque
;
1535 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1538 void arm_gt_htimer_cb(void *opaque
)
1540 ARMCPU
*cpu
= opaque
;
1542 gt_recalc_timer(cpu
, GTIMER_HYP
);
1545 void arm_gt_stimer_cb(void *opaque
)
1547 ARMCPU
*cpu
= opaque
;
1549 gt_recalc_timer(cpu
, GTIMER_SEC
);
1552 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1553 /* Note that CNTFRQ is purely reads-as-written for the benefit
1554 * of software; writing it doesn't actually change the timer frequency.
1555 * Our reset value matches the fixed frequency we implement the timer at.
1557 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1558 .type
= ARM_CP_ALIAS
,
1559 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1560 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1562 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1563 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1564 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1565 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1566 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1568 /* overall control: mostly access permissions */
1569 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1570 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1572 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1575 /* per-timer control */
1576 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1577 .secure
= ARM_CP_SECSTATE_NS
,
1578 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1579 .accessfn
= gt_ptimer_access
,
1580 .fieldoffset
= offsetoflow32(CPUARMState
,
1581 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1582 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1584 { .name
= "CNTP_CTL(S)",
1585 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1586 .secure
= ARM_CP_SECSTATE_S
,
1587 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1588 .accessfn
= gt_ptimer_access
,
1589 .fieldoffset
= offsetoflow32(CPUARMState
,
1590 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1591 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1593 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1594 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1595 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1596 .accessfn
= gt_ptimer_access
,
1597 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1599 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1601 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1602 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1603 .accessfn
= gt_vtimer_access
,
1604 .fieldoffset
= offsetoflow32(CPUARMState
,
1605 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1606 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1608 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1609 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1610 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1611 .accessfn
= gt_vtimer_access
,
1612 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1614 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1616 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1617 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1618 .secure
= ARM_CP_SECSTATE_NS
,
1619 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1620 .accessfn
= gt_ptimer_access
,
1621 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1623 { .name
= "CNTP_TVAL(S)",
1624 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1625 .secure
= ARM_CP_SECSTATE_S
,
1626 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1627 .accessfn
= gt_ptimer_access
,
1628 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1630 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1631 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1632 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1633 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1634 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1636 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1637 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1638 .accessfn
= gt_vtimer_access
,
1639 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1641 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1642 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1643 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1644 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1645 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1647 /* The counter itself */
1648 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1649 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1650 .accessfn
= gt_pct_access
,
1651 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1653 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1654 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1655 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1656 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1658 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1659 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1660 .accessfn
= gt_vct_access
,
1661 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1663 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1664 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1665 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1666 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1668 /* Comparison value, indicating when the timer goes off */
1669 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1670 .secure
= ARM_CP_SECSTATE_NS
,
1671 .access
= PL1_RW
| PL0_R
,
1672 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1673 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1674 .accessfn
= gt_ptimer_access
,
1675 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1677 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1678 .secure
= ARM_CP_SECSTATE_S
,
1679 .access
= PL1_RW
| PL0_R
,
1680 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1681 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1682 .accessfn
= gt_ptimer_access
,
1683 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1685 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1686 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1687 .access
= PL1_RW
| PL0_R
,
1689 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1690 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1691 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1693 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1694 .access
= PL1_RW
| PL0_R
,
1695 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1696 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1697 .accessfn
= gt_vtimer_access
,
1698 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1700 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1701 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1702 .access
= PL1_RW
| PL0_R
,
1704 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1705 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1706 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1708 /* Secure timer -- this is actually restricted to only EL3
1709 * and configurably Secure-EL1 via the accessfn.
1711 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1712 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1713 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1714 .accessfn
= gt_stimer_access
,
1715 .readfn
= gt_sec_tval_read
,
1716 .writefn
= gt_sec_tval_write
,
1717 .resetfn
= gt_sec_timer_reset
,
1719 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1720 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1721 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1722 .accessfn
= gt_stimer_access
,
1723 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1725 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1727 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1728 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1729 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1730 .accessfn
= gt_stimer_access
,
1731 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1732 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1738 /* In user-mode none of the generic timer registers are accessible,
1739 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1740 * so instead just don't register any of them.
1742 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1748 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1750 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1751 raw_write(env
, ri
, value
);
1752 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1753 raw_write(env
, ri
, value
& 0xfffff6ff);
1755 raw_write(env
, ri
, value
& 0xfffff1ff);
1759 #ifndef CONFIG_USER_ONLY
1760 /* get_phys_addr() isn't present for user-mode-only targets */
1762 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1765 /* The ATS12NSO* operations must trap to EL3 if executed in
1766 * Secure EL1 (which can only happen if EL3 is AArch64).
1767 * They are simply UNDEF if executed from NS EL1.
1768 * They function normally from EL2 or EL3.
1770 if (arm_current_el(env
) == 1) {
1771 if (arm_is_secure_below_el3(env
)) {
1772 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1774 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1777 return CP_ACCESS_OK
;
1780 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1781 int access_type
, ARMMMUIdx mmu_idx
)
1784 target_ulong page_size
;
1789 MemTxAttrs attrs
= {};
1790 ARMMMUFaultInfo fi
= {};
1792 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1793 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
, &fi
);
1794 if (extended_addresses_enabled(env
)) {
1795 /* fsr is a DFSR/IFSR value for the long descriptor
1796 * translation table format, but with WnR always clear.
1797 * Convert it to a 64-bit PAR.
1799 par64
= (1 << 11); /* LPAE bit always set */
1801 par64
|= phys_addr
& ~0xfffULL
;
1802 if (!attrs
.secure
) {
1803 par64
|= (1 << 9); /* NS */
1805 /* We don't set the ATTR or SH fields in the PAR. */
1808 par64
|= (fsr
& 0x3f) << 1; /* FS */
1809 /* Note that S2WLK and FSTAGE are always zero, because we don't
1810 * implement virtualization and therefore there can't be a stage 2
1815 /* fsr is a DFSR/IFSR value for the short descriptor
1816 * translation table format (with WnR always clear).
1817 * Convert it to a 32-bit PAR.
1820 /* We do not set any attribute bits in the PAR */
1821 if (page_size
== (1 << 24)
1822 && arm_feature(env
, ARM_FEATURE_V7
)) {
1823 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1825 par64
= phys_addr
& 0xfffff000;
1827 if (!attrs
.secure
) {
1828 par64
|= (1 << 9); /* NS */
1831 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1832 ((fsr
& 0xf) << 1) | 1;
1838 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1840 int access_type
= ri
->opc2
& 1;
1843 int el
= arm_current_el(env
);
1844 bool secure
= arm_is_secure_below_el3(env
);
1846 switch (ri
->opc2
& 6) {
1848 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1851 mmu_idx
= ARMMMUIdx_S1E3
;
1854 mmu_idx
= ARMMMUIdx_S1NSE1
;
1857 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1860 g_assert_not_reached();
1864 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1867 mmu_idx
= ARMMMUIdx_S1SE0
;
1870 mmu_idx
= ARMMMUIdx_S1NSE0
;
1873 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1876 g_assert_not_reached();
1880 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1881 mmu_idx
= ARMMMUIdx_S12NSE1
;
1884 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1885 mmu_idx
= ARMMMUIdx_S12NSE0
;
1888 g_assert_not_reached();
1891 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
1893 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1896 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1899 int access_type
= ri
->opc2
& 1;
1902 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
1904 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1907 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1909 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
1910 return CP_ACCESS_TRAP
;
1912 return CP_ACCESS_OK
;
1915 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1918 int access_type
= ri
->opc2
& 1;
1920 int secure
= arm_is_secure_below_el3(env
);
1922 switch (ri
->opc2
& 6) {
1925 case 0: /* AT S1E1R, AT S1E1W */
1926 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1928 case 4: /* AT S1E2R, AT S1E2W */
1929 mmu_idx
= ARMMMUIdx_S1E2
;
1931 case 6: /* AT S1E3R, AT S1E3W */
1932 mmu_idx
= ARMMMUIdx_S1E3
;
1935 g_assert_not_reached();
1938 case 2: /* AT S1E0R, AT S1E0W */
1939 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1941 case 4: /* AT S12E1R, AT S12E1W */
1942 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
1944 case 6: /* AT S12E0R, AT S12E0W */
1945 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
1948 g_assert_not_reached();
1951 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
1955 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1956 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1957 .access
= PL1_RW
, .resetvalue
= 0,
1958 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1959 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1960 .writefn
= par_write
},
1961 #ifndef CONFIG_USER_ONLY
1962 /* This underdecoding is safe because the reginfo is NO_RAW. */
1963 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1964 .access
= PL1_W
, .accessfn
= ats_access
,
1965 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
1970 /* Return basic MPU access permission bits. */
1971 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1978 for (i
= 0; i
< 16; i
+= 2) {
1979 ret
|= (val
>> i
) & mask
;
1985 /* Pad basic MPU access permission bits to extended format. */
1986 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1993 for (i
= 0; i
< 16; i
+= 2) {
1994 ret
|= (val
& mask
) << i
;
2000 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2003 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2006 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2008 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2011 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2014 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2017 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2019 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2022 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2024 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2030 u32p
+= env
->cp15
.c6_rgnr
;
2034 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2037 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2038 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2044 u32p
+= env
->cp15
.c6_rgnr
;
2045 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2049 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2051 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2052 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2058 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2061 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2064 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2065 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2067 if (value
>= nrgs
) {
2068 qemu_log_mask(LOG_GUEST_ERROR
,
2069 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2070 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2074 raw_write(env
, ri
, value
);
2077 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2078 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2079 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2080 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2081 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2082 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2083 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2084 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2085 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2086 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2087 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2088 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2089 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2090 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2092 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2093 .writefn
= pmsav7_rgnr_write
},
2097 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2098 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2099 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2100 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2101 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2102 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2103 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2104 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2105 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2106 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2108 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2110 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2112 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2114 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2116 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2117 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2119 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2120 /* Protection region base and size registers */
2121 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2122 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2123 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2124 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2125 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2126 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2127 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2128 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2129 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2130 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2131 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2132 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2133 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2134 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2135 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2136 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2137 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2138 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2139 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2140 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2141 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2142 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2143 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2144 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2148 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2151 TCR
*tcr
= raw_ptr(env
, ri
);
2152 int maskshift
= extract32(value
, 0, 3);
2154 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2155 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2156 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2157 * using Long-desciptor translation table format */
2158 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2159 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2160 /* In an implementation that includes the Security Extensions
2161 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2162 * Short-descriptor translation table format.
2164 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2170 /* Update the masks corresponding to the TCR bank being written
2171 * Note that we always calculate mask and base_mask, but
2172 * they are only used for short-descriptor tables (ie if EAE is 0);
2173 * for long-descriptor tables the TCR fields are used differently
2174 * and the mask and base_mask values are meaningless.
2176 tcr
->raw_tcr
= value
;
2177 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2178 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2181 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2184 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2186 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2187 /* With LPAE the TTBCR could result in a change of ASID
2188 * via the TTBCR.A1 bit, so do a TLB flush.
2190 tlb_flush(CPU(cpu
), 1);
2192 vmsa_ttbcr_raw_write(env
, ri
, value
);
2195 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2197 TCR
*tcr
= raw_ptr(env
, ri
);
2199 /* Reset both the TCR as well as the masks corresponding to the bank of
2200 * the TCR being reset.
2204 tcr
->base_mask
= 0xffffc000u
;
2207 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2210 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2211 TCR
*tcr
= raw_ptr(env
, ri
);
2213 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2214 tlb_flush(CPU(cpu
), 1);
2215 tcr
->raw_tcr
= value
;
2218 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2221 /* 64 bit accesses to the TTBRs can change the ASID and so we
2222 * must flush the TLB.
2224 if (cpreg_field_is_64bit(ri
)) {
2225 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2227 tlb_flush(CPU(cpu
), 1);
2229 raw_write(env
, ri
, value
);
2232 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2235 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2236 CPUState
*cs
= CPU(cpu
);
2238 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2239 if (raw_read(env
, ri
) != value
) {
2240 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2241 ARMMMUIdx_S2NS
, -1);
2242 raw_write(env
, ri
, value
);
2246 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2247 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2248 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2249 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2250 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2251 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2252 .access
= PL1_RW
, .resetvalue
= 0,
2253 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2254 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2255 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2256 .access
= PL1_RW
, .resetvalue
= 0,
2257 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2258 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2259 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2260 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2261 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2266 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2267 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2268 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2270 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2271 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2272 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2273 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2274 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2275 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2276 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2277 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2278 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2279 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2280 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2281 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2282 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2283 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2284 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2285 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2286 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2287 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2288 .raw_writefn
= vmsa_ttbcr_raw_write
,
2289 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2290 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2294 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2297 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2298 /* The OS_TYPE bit in this register changes the reported CPUID! */
2299 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2300 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2303 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2306 env
->cp15
.c15_threadid
= value
& 0xffff;
2309 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2312 /* Wait-for-interrupt (deprecated) */
2313 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2316 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2319 /* On OMAP there are registers indicating the max/min index of dcache lines
2320 * containing a dirty line; cache flush operations have to reset these.
2322 env
->cp15
.c15_i_max
= 0x000;
2323 env
->cp15
.c15_i_min
= 0xff0;
2326 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2327 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2328 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2329 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2331 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2332 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2333 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2335 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2336 .writefn
= omap_ticonfig_write
},
2337 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2339 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2340 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2341 .access
= PL1_RW
, .resetvalue
= 0xff0,
2342 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2343 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2345 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2346 .writefn
= omap_threadid_write
},
2347 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2348 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2349 .type
= ARM_CP_NO_RAW
,
2350 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2351 /* TODO: Peripheral port remap register:
2352 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2353 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2356 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2357 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2358 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2359 .writefn
= omap_cachemaint_write
},
2360 { .name
= "C9", .cp
= 15, .crn
= 9,
2361 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2362 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2366 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2369 env
->cp15
.c15_cpar
= value
& 0x3fff;
2372 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2373 { .name
= "XSCALE_CPAR",
2374 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2375 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2376 .writefn
= xscale_cpar_write
, },
2377 { .name
= "XSCALE_AUXCR",
2378 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2379 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2381 /* XScale specific cache-lockdown: since we have no cache we NOP these
2382 * and hope the guest does not really rely on cache behaviour.
2384 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2385 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2386 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2387 { .name
= "XSCALE_UNLOCK_ICACHE",
2388 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2389 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2390 { .name
= "XSCALE_DCACHE_LOCK",
2391 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2392 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2393 { .name
= "XSCALE_UNLOCK_DCACHE",
2394 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2395 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2399 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2400 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2401 * implementation of this implementation-defined space.
2402 * Ideally this should eventually disappear in favour of actually
2403 * implementing the correct behaviour for all cores.
2405 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2406 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2408 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2413 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2414 /* Cache status: RAZ because we have no cache so it's always clean */
2415 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2416 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2421 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2422 /* We never have a a block transfer operation in progress */
2423 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2424 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2426 /* The cache ops themselves: these all NOP for QEMU */
2427 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2428 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2429 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2430 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2431 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2432 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2433 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2434 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2435 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2436 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2437 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2438 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2442 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2443 /* The cache test-and-clean instructions always return (1 << 30)
2444 * to indicate that there are no dirty cache lines.
2446 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2447 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2448 .resetvalue
= (1 << 30) },
2449 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2450 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2451 .resetvalue
= (1 << 30) },
2455 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2456 /* Ignore ReadBuffer accesses */
2457 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2458 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2459 .access
= PL1_RW
, .resetvalue
= 0,
2460 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2464 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2466 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2467 unsigned int cur_el
= arm_current_el(env
);
2468 bool secure
= arm_is_secure(env
);
2470 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2471 return env
->cp15
.vpidr_el2
;
2473 return raw_read(env
, ri
);
2476 static uint64_t mpidr_read_val(CPUARMState
*env
)
2478 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2479 uint64_t mpidr
= cpu
->mp_affinity
;
2481 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2482 mpidr
|= (1U << 31);
2483 /* Cores which are uniprocessor (non-coherent)
2484 * but still implement the MP extensions set
2485 * bit 30. (For instance, Cortex-R5).
2487 if (cpu
->mp_is_up
) {
2488 mpidr
|= (1u << 30);
2494 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2496 unsigned int cur_el
= arm_current_el(env
);
2497 bool secure
= arm_is_secure(env
);
2499 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2500 return env
->cp15
.vmpidr_el2
;
2502 return mpidr_read_val(env
);
2505 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2506 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2507 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2508 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2512 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2514 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2515 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2516 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2518 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2519 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2520 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2522 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2523 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2524 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2525 offsetof(CPUARMState
, cp15
.par_ns
)} },
2526 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2527 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2528 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2529 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2530 .writefn
= vmsa_ttbr_write
, },
2531 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2532 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2533 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2534 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2535 .writefn
= vmsa_ttbr_write
, },
2539 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2541 return vfp_get_fpcr(env
);
2544 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2547 vfp_set_fpcr(env
, value
);
2550 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2552 return vfp_get_fpsr(env
);
2555 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2558 vfp_set_fpsr(env
, value
);
2561 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2563 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2564 return CP_ACCESS_TRAP
;
2566 return CP_ACCESS_OK
;
2569 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2572 env
->daif
= value
& PSTATE_DAIF
;
2575 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2576 const ARMCPRegInfo
*ri
)
2578 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2579 * SCTLR_EL1.UCI is set.
2581 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2582 return CP_ACCESS_TRAP
;
2584 return CP_ACCESS_OK
;
2587 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2588 * Page D4-1736 (DDI0487A.b)
2591 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2594 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2595 CPUState
*cs
= CPU(cpu
);
2597 if (arm_is_secure_below_el3(env
)) {
2598 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2600 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2604 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2607 bool sec
= arm_is_secure_below_el3(env
);
2610 CPU_FOREACH(other_cs
) {
2612 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2614 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2615 ARMMMUIdx_S12NSE0
, -1);
2620 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2623 /* Note that the 'ALL' scope must invalidate both stage 1 and
2624 * stage 2 translations, whereas most other scopes only invalidate
2625 * stage 1 translations.
2627 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2628 CPUState
*cs
= CPU(cpu
);
2630 if (arm_is_secure_below_el3(env
)) {
2631 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2633 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2634 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2635 ARMMMUIdx_S2NS
, -1);
2637 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2642 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2645 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2646 CPUState
*cs
= CPU(cpu
);
2648 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2651 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2654 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2655 CPUState
*cs
= CPU(cpu
);
2657 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2660 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2663 /* Note that the 'ALL' scope must invalidate both stage 1 and
2664 * stage 2 translations, whereas most other scopes only invalidate
2665 * stage 1 translations.
2667 bool sec
= arm_is_secure_below_el3(env
);
2668 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2671 CPU_FOREACH(other_cs
) {
2673 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2674 } else if (has_el2
) {
2675 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2676 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2678 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2679 ARMMMUIdx_S12NSE0
, -1);
2684 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2689 CPU_FOREACH(other_cs
) {
2690 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2694 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2699 CPU_FOREACH(other_cs
) {
2700 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2704 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2707 /* Invalidate by VA, EL1&0 (AArch64 version).
2708 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2709 * since we don't support flush-for-specific-ASID-only or
2710 * flush-last-level-only.
2712 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2713 CPUState
*cs
= CPU(cpu
);
2714 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2716 if (arm_is_secure_below_el3(env
)) {
2717 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2718 ARMMMUIdx_S1SE0
, -1);
2720 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2721 ARMMMUIdx_S12NSE0
, -1);
2725 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2728 /* Invalidate by VA, EL2
2729 * Currently handles both VAE2 and VALE2, since we don't support
2730 * flush-last-level-only.
2732 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2733 CPUState
*cs
= CPU(cpu
);
2734 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2736 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2739 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2742 /* Invalidate by VA, EL3
2743 * Currently handles both VAE3 and VALE3, since we don't support
2744 * flush-last-level-only.
2746 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2747 CPUState
*cs
= CPU(cpu
);
2748 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2750 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2753 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2756 bool sec
= arm_is_secure_below_el3(env
);
2758 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2760 CPU_FOREACH(other_cs
) {
2762 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2763 ARMMMUIdx_S1SE0
, -1);
2765 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2766 ARMMMUIdx_S12NSE0
, -1);
2771 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2775 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2777 CPU_FOREACH(other_cs
) {
2778 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2782 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2786 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2788 CPU_FOREACH(other_cs
) {
2789 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2793 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2796 /* Invalidate by IPA. This has to invalidate any structures that
2797 * contain only stage 2 translation information, but does not need
2798 * to apply to structures that contain combined stage 1 and stage 2
2799 * translation information.
2800 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2802 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2803 CPUState
*cs
= CPU(cpu
);
2806 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2810 pageaddr
= sextract64(value
<< 12, 0, 48);
2812 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2815 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2821 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2825 pageaddr
= sextract64(value
<< 12, 0, 48);
2827 CPU_FOREACH(other_cs
) {
2828 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2832 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2834 /* We don't implement EL2, so the only control on DC ZVA is the
2835 * bit in the SCTLR which can prohibit access for EL0.
2837 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2838 return CP_ACCESS_TRAP
;
2840 return CP_ACCESS_OK
;
2843 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2845 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2846 int dzp_bit
= 1 << 4;
2848 /* DZP indicates whether DC ZVA access is allowed */
2849 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2852 return cpu
->dcz_blocksize
| dzp_bit
;
2855 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2857 if (!(env
->pstate
& PSTATE_SP
)) {
2858 /* Access to SP_EL0 is undefined if it's being used as
2859 * the stack pointer.
2861 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2863 return CP_ACCESS_OK
;
2866 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2868 return env
->pstate
& PSTATE_SP
;
2871 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2873 update_spsel(env
, val
);
2876 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2879 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2881 if (raw_read(env
, ri
) == value
) {
2882 /* Skip the TLB flush if nothing actually changed; Linux likes
2883 * to do a lot of pointless SCTLR writes.
2888 raw_write(env
, ri
, value
);
2889 /* ??? Lots of these bits are not implemented. */
2890 /* This may enable/disable the MMU, so do a TLB flush. */
2891 tlb_flush(CPU(cpu
), 1);
2894 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2896 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
2897 return CP_ACCESS_TRAP_EL2
;
2899 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
2900 return CP_ACCESS_TRAP_EL3
;
2902 return CP_ACCESS_OK
;
2905 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2906 /* Minimal set of EL0-visible registers. This will need to be expanded
2907 * significantly for system emulation of AArch64 CPUs.
2909 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2910 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2911 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2912 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2913 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2914 .type
= ARM_CP_NO_RAW
,
2915 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2916 .fieldoffset
= offsetof(CPUARMState
, daif
),
2917 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2918 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2919 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2920 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2921 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2922 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2923 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2924 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2925 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2926 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
2927 .readfn
= aa64_dczid_read
},
2928 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2929 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2930 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2931 #ifndef CONFIG_USER_ONLY
2932 /* Avoid overhead of an access check that always passes in user-mode */
2933 .accessfn
= aa64_zva_access
,
2936 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2937 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2938 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2939 /* Cache ops: all NOPs since we don't emulate caches */
2940 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2941 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2942 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2943 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2944 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2945 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2946 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2947 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2948 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2949 .accessfn
= aa64_cacheop_access
},
2950 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2951 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2952 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2953 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2954 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2955 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2956 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2957 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2958 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2959 .accessfn
= aa64_cacheop_access
},
2960 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2961 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2962 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2963 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2964 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2965 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2966 .accessfn
= aa64_cacheop_access
},
2967 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2968 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2969 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2970 .accessfn
= aa64_cacheop_access
},
2971 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2972 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2973 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2974 /* TLBI operations */
2975 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2976 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2977 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2978 .writefn
= tlbi_aa64_vmalle1is_write
},
2979 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2980 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2981 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2982 .writefn
= tlbi_aa64_vae1is_write
},
2983 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2984 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2985 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2986 .writefn
= tlbi_aa64_vmalle1is_write
},
2987 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2988 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2989 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2990 .writefn
= tlbi_aa64_vae1is_write
},
2991 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2992 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2993 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2994 .writefn
= tlbi_aa64_vae1is_write
},
2995 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2996 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2997 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2998 .writefn
= tlbi_aa64_vae1is_write
},
2999 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
3000 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
3001 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3002 .writefn
= tlbi_aa64_vmalle1_write
},
3003 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
3004 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
3005 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3006 .writefn
= tlbi_aa64_vae1_write
},
3007 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
3008 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
3009 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3010 .writefn
= tlbi_aa64_vmalle1_write
},
3011 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
3012 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3013 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3014 .writefn
= tlbi_aa64_vae1_write
},
3015 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3016 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3017 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3018 .writefn
= tlbi_aa64_vae1_write
},
3019 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3020 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3021 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3022 .writefn
= tlbi_aa64_vae1_write
},
3023 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3024 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3025 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3026 .writefn
= tlbi_aa64_ipas2e1is_write
},
3027 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3028 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3029 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3030 .writefn
= tlbi_aa64_ipas2e1is_write
},
3031 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3032 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3033 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3034 .writefn
= tlbi_aa64_alle1is_write
},
3035 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3036 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3037 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3038 .writefn
= tlbi_aa64_alle1is_write
},
3039 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3040 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3041 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3042 .writefn
= tlbi_aa64_ipas2e1_write
},
3043 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3044 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3045 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3046 .writefn
= tlbi_aa64_ipas2e1_write
},
3047 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3048 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3049 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3050 .writefn
= tlbi_aa64_alle1_write
},
3051 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3052 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3053 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3054 .writefn
= tlbi_aa64_alle1is_write
},
3055 #ifndef CONFIG_USER_ONLY
3056 /* 64 bit address translation operations */
3057 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3058 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3059 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3060 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3061 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3062 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3063 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3064 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3065 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3066 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3067 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3068 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3069 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3070 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3071 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3072 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3073 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3074 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3075 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3076 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3077 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3078 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3079 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3080 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3081 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3082 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3083 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3084 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3085 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3086 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3087 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3088 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3089 .type
= ARM_CP_ALIAS
,
3090 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3091 .access
= PL1_RW
, .resetvalue
= 0,
3092 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3093 .writefn
= par_write
},
3095 /* TLB invalidate last level of translation table walk */
3096 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3097 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3098 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3099 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3100 .writefn
= tlbimvaa_is_write
},
3101 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3102 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3103 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3104 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3105 /* 32 bit cache operations */
3106 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3107 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3108 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3109 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3110 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3111 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3112 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3113 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3114 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3115 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3116 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3117 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3118 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3119 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3120 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3121 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3122 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3123 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3124 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3125 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3126 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3127 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3128 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3129 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3130 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3131 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3132 /* MMU Domain access control / MPU write buffer control */
3133 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3134 .access
= PL1_RW
, .resetvalue
= 0,
3135 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3136 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3137 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3138 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3139 .type
= ARM_CP_ALIAS
,
3140 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3142 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3143 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3144 .type
= ARM_CP_ALIAS
,
3145 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3147 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
3148 /* We rely on the access checks not allowing the guest to write to the
3149 * state field when SPSel indicates that it's being used as the stack
3152 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3153 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3154 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3155 .type
= ARM_CP_ALIAS
,
3156 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3157 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3158 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3159 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3160 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3161 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3162 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3163 .type
= ARM_CP_NO_RAW
,
3164 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3165 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
3166 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
3167 .type
= ARM_CP_ALIAS
,
3168 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
3169 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
3173 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3174 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3175 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3176 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3178 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3179 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3180 .type
= ARM_CP_NO_RAW
,
3181 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3183 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3184 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3185 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3186 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3187 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3188 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3189 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3191 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3192 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3193 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3194 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3195 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3196 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3198 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3199 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3200 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3202 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3203 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3204 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3206 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3207 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3208 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3210 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3211 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3212 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3213 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3214 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3215 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3216 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3217 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3218 .cp
= 15, .opc1
= 6, .crm
= 2,
3219 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3220 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3221 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3222 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3223 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3224 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3225 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3226 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3227 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3228 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3229 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3230 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3231 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3232 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3233 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3234 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3236 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3237 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3238 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3239 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3240 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3241 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3242 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3243 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3245 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3246 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3247 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3248 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3249 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3251 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3252 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3253 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3254 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3255 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3256 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3257 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3258 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3259 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3260 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3261 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3262 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3263 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3267 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3269 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3270 uint64_t valid_mask
= HCR_MASK
;
3272 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3273 valid_mask
&= ~HCR_HCD
;
3275 valid_mask
&= ~HCR_TSC
;
3278 /* Clear RES0 bits. */
3279 value
&= valid_mask
;
3281 /* These bits change the MMU setup:
3282 * HCR_VM enables stage 2 translation
3283 * HCR_PTW forbids certain page-table setups
3284 * HCR_DC Disables stage1 and enables stage2 translation
3286 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3287 tlb_flush(CPU(cpu
), 1);
3289 raw_write(env
, ri
, value
);
3292 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3293 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3294 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3295 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3296 .writefn
= hcr_write
},
3297 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3298 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3299 .access
= PL2_RW
, .resetvalue
= 0,
3300 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3301 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3302 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3303 .type
= ARM_CP_ALIAS
,
3304 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3306 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3307 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3308 .type
= ARM_CP_ALIAS
,
3309 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3310 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3311 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3312 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3313 .access
= PL2_RW
, .resetvalue
= 0,
3314 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3315 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3316 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3317 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3318 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3319 .type
= ARM_CP_ALIAS
,
3320 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3322 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
3323 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3324 .type
= ARM_CP_ALIAS
,
3325 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3327 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
3328 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3329 .type
= ARM_CP_ALIAS
,
3330 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3332 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
3333 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3334 .type
= ARM_CP_ALIAS
,
3335 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3337 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
3338 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3339 .type
= ARM_CP_ALIAS
,
3340 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3342 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
3343 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3344 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3345 .access
= PL2_RW
, .writefn
= vbar_write
,
3346 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3348 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3349 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3350 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3351 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3352 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3353 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3354 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3355 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3356 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3357 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3358 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3360 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3361 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3362 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3363 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3364 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3365 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3366 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3368 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3369 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3370 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3371 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3373 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3374 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3375 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3377 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3378 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3379 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3381 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3382 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3383 .access
= PL2_RW
, .writefn
= vmsa_tcr_el1_write
,
3384 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3385 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3386 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3387 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3388 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3389 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3390 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3391 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3392 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3393 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3394 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3395 .cp
= 15, .opc1
= 6, .crm
= 2,
3396 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3397 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3398 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3399 .writefn
= vttbr_write
},
3400 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3401 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3402 .access
= PL2_RW
, .writefn
= vttbr_write
,
3403 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3404 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3405 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3406 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3407 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3408 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3409 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3410 .access
= PL2_RW
, .resetvalue
= 0,
3411 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3412 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3413 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3414 .access
= PL2_RW
, .resetvalue
= 0,
3415 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3416 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3417 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3418 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3419 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3420 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3421 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3422 .writefn
= tlbi_aa64_alle2_write
},
3423 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3424 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3425 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3426 .writefn
= tlbi_aa64_vae2_write
},
3427 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3428 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3429 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3430 .writefn
= tlbi_aa64_vae2_write
},
3431 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3432 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3433 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3434 .writefn
= tlbi_aa64_alle2is_write
},
3435 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3436 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3437 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3438 .writefn
= tlbi_aa64_vae2is_write
},
3439 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3440 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3441 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3442 .writefn
= tlbi_aa64_vae2is_write
},
3443 #ifndef CONFIG_USER_ONLY
3444 /* Unlike the other EL2-related AT operations, these must
3445 * UNDEF from EL3 if EL2 is not implemented, which is why we
3446 * define them here rather than with the rest of the AT ops.
3448 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3449 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3450 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3451 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3452 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3453 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3454 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3455 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3456 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3457 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3458 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3459 * to behave as if SCR.NS was 1.
3461 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3463 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3464 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3466 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3467 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3468 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3469 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3470 * reset values as IMPDEF. We choose to reset to 3 to comply with
3471 * both ARMv7 and ARMv8.
3473 .access
= PL2_RW
, .resetvalue
= 3,
3474 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3475 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3476 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3477 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3478 .writefn
= gt_cntvoff_write
,
3479 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3480 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3481 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3482 .writefn
= gt_cntvoff_write
,
3483 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3484 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3485 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3486 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3487 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3488 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3489 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3490 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3491 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3492 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3493 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3494 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3495 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3496 .resetfn
= gt_hyp_timer_reset
,
3497 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3498 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3500 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3502 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3504 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3506 /* The only field of MDCR_EL2 that has a defined architectural reset value
3507 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3508 * don't impelment any PMU event counters, so using zero as a reset
3509 * value for MDCR_EL2 is okay
3511 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3512 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3513 .access
= PL2_RW
, .resetvalue
= 0,
3514 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3515 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
3516 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3517 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3518 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3519 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
3520 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3522 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3526 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3527 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3528 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3529 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3530 .resetvalue
= 0, .writefn
= scr_write
},
3531 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3532 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3533 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3534 .writefn
= scr_write
},
3535 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3536 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3537 .access
= PL3_RW
, .resetvalue
= 0,
3538 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3540 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3541 .access
= PL3_RW
, .resetvalue
= 0,
3542 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3543 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3544 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
3545 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
3546 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
3547 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3548 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
3549 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3550 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
3551 .type
= ARM_CP_ALIAS
, /* reset handled by AArch32 view */
3552 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
3553 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3554 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
3555 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3556 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3557 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3558 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3559 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3560 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3561 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
3562 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3563 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3564 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3565 .type
= ARM_CP_ALIAS
,
3566 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3568 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3569 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3570 .type
= ARM_CP_ALIAS
,
3571 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3572 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3573 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3574 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3575 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3576 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3577 .type
= ARM_CP_ALIAS
,
3578 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3580 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
3581 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3582 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3583 .access
= PL3_RW
, .writefn
= vbar_write
,
3584 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3586 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3587 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3588 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3589 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3590 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3591 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3592 .access
= PL3_RW
, .resetvalue
= 0,
3593 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3594 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3595 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3596 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3598 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3599 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3600 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3602 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3603 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3604 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3606 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3607 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3608 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3609 .writefn
= tlbi_aa64_alle3is_write
},
3610 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3611 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3612 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3613 .writefn
= tlbi_aa64_vae3is_write
},
3614 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3615 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3616 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3617 .writefn
= tlbi_aa64_vae3is_write
},
3618 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3619 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3620 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3621 .writefn
= tlbi_aa64_alle3_write
},
3622 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3623 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3624 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3625 .writefn
= tlbi_aa64_vae3_write
},
3626 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3627 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3628 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3629 .writefn
= tlbi_aa64_vae3_write
},
3633 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3635 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3636 * but the AArch32 CTR has its own reginfo struct)
3638 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3639 return CP_ACCESS_TRAP
;
3641 return CP_ACCESS_OK
;
3644 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3647 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3648 * read via a bit in OSLSR_EL1.
3652 if (ri
->state
== ARM_CP_STATE_AA32
) {
3653 oslock
= (value
== 0xC5ACCE55);
3658 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
3661 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3662 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3663 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3664 * unlike DBGDRAR it is never accessible from EL0.
3665 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3668 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3669 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3670 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3671 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3672 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3673 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3674 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3675 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3676 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3677 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3679 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3681 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3682 * We don't implement the configurable EL0 access.
3684 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3685 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3686 .type
= ARM_CP_ALIAS
,
3688 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3689 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3690 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3691 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3692 .writefn
= oslar_write
},
3693 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
3694 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
3695 .access
= PL1_R
, .resetvalue
= 10,
3696 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
3697 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3698 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3699 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3700 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3701 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3702 * implement vector catch debug events yet.
3705 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3706 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3710 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3711 /* 64 bit access versions of the (dummy) debug registers */
3712 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3713 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3714 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3715 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3719 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3721 CPUARMState
*env
= &cpu
->env
;
3723 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3724 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3726 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3728 if (env
->cpu_watchpoint
[n
]) {
3729 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3730 env
->cpu_watchpoint
[n
] = NULL
;
3733 if (!extract64(wcr
, 0, 1)) {
3734 /* E bit clear : watchpoint disabled */
3738 switch (extract64(wcr
, 3, 2)) {
3740 /* LSC 00 is reserved and must behave as if the wp is disabled */
3743 flags
|= BP_MEM_READ
;
3746 flags
|= BP_MEM_WRITE
;
3749 flags
|= BP_MEM_ACCESS
;
3753 /* Attempts to use both MASK and BAS fields simultaneously are
3754 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3755 * thus generating a watchpoint for every byte in the masked region.
3757 mask
= extract64(wcr
, 24, 4);
3758 if (mask
== 1 || mask
== 2) {
3759 /* Reserved values of MASK; we must act as if the mask value was
3760 * some non-reserved value, or as if the watchpoint were disabled.
3761 * We choose the latter.
3765 /* Watchpoint covers an aligned area up to 2GB in size */
3767 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3768 * whether the watchpoint fires when the unmasked bits match; we opt
3769 * to generate the exceptions.
3773 /* Watchpoint covers bytes defined by the byte address select bits */
3774 int bas
= extract64(wcr
, 5, 8);
3778 /* This must act as if the watchpoint is disabled */
3782 if (extract64(wvr
, 2, 1)) {
3783 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3784 * ignored, and BAS[3:0] define which bytes to watch.
3788 /* The BAS bits are supposed to be programmed to indicate a contiguous
3789 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3790 * we fire for each byte in the word/doubleword addressed by the WVR.
3791 * We choose to ignore any non-zero bits after the first range of 1s.
3793 basstart
= ctz32(bas
);
3794 len
= cto32(bas
>> basstart
);
3798 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
3799 &env
->cpu_watchpoint
[n
]);
3802 void hw_watchpoint_update_all(ARMCPU
*cpu
)
3805 CPUARMState
*env
= &cpu
->env
;
3807 /* Completely clear out existing QEMU watchpoints and our array, to
3808 * avoid possible stale entries following migration load.
3810 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
3811 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
3813 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
3814 hw_watchpoint_update(cpu
, i
);
3818 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3821 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3824 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3825 * register reads and behaves as if values written are sign extended.
3826 * Bits [1:0] are RES0.
3828 value
= sextract64(value
, 0, 49) & ~3ULL;
3830 raw_write(env
, ri
, value
);
3831 hw_watchpoint_update(cpu
, i
);
3834 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3837 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3840 raw_write(env
, ri
, value
);
3841 hw_watchpoint_update(cpu
, i
);
3844 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
3846 CPUARMState
*env
= &cpu
->env
;
3847 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
3848 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
3853 if (env
->cpu_breakpoint
[n
]) {
3854 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
3855 env
->cpu_breakpoint
[n
] = NULL
;
3858 if (!extract64(bcr
, 0, 1)) {
3859 /* E bit clear : watchpoint disabled */
3863 bt
= extract64(bcr
, 20, 4);
3866 case 4: /* unlinked address mismatch (reserved if AArch64) */
3867 case 5: /* linked address mismatch (reserved if AArch64) */
3868 qemu_log_mask(LOG_UNIMP
,
3869 "arm: address mismatch breakpoint types not implemented");
3871 case 0: /* unlinked address match */
3872 case 1: /* linked address match */
3874 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3875 * we behave as if the register was sign extended. Bits [1:0] are
3876 * RES0. The BAS field is used to allow setting breakpoints on 16
3877 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3878 * a bp will fire if the addresses covered by the bp and the addresses
3879 * covered by the insn overlap but the insn doesn't start at the
3880 * start of the bp address range. We choose to require the insn and
3881 * the bp to have the same address. The constraints on writing to
3882 * BAS enforced in dbgbcr_write mean we have only four cases:
3883 * 0b0000 => no breakpoint
3884 * 0b0011 => breakpoint on addr
3885 * 0b1100 => breakpoint on addr + 2
3886 * 0b1111 => breakpoint on addr
3887 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3889 int bas
= extract64(bcr
, 5, 4);
3890 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
3899 case 2: /* unlinked context ID match */
3900 case 8: /* unlinked VMID match (reserved if no EL2) */
3901 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3902 qemu_log_mask(LOG_UNIMP
,
3903 "arm: unlinked context breakpoint types not implemented");
3905 case 9: /* linked VMID match (reserved if no EL2) */
3906 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3907 case 3: /* linked context ID match */
3909 /* We must generate no events for Linked context matches (unless
3910 * they are linked to by some other bp/wp, which is handled in
3911 * updates for the linking bp/wp). We choose to also generate no events
3912 * for reserved values.
3917 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
3920 void hw_breakpoint_update_all(ARMCPU
*cpu
)
3923 CPUARMState
*env
= &cpu
->env
;
3925 /* Completely clear out existing QEMU breakpoints and our array, to
3926 * avoid possible stale entries following migration load.
3928 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
3929 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
3931 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
3932 hw_breakpoint_update(cpu
, i
);
3936 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3939 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3942 raw_write(env
, ri
, value
);
3943 hw_breakpoint_update(cpu
, i
);
3946 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3949 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3952 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3955 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
3956 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
3958 raw_write(env
, ri
, value
);
3959 hw_breakpoint_update(cpu
, i
);
3962 static void define_debug_regs(ARMCPU
*cpu
)
3964 /* Define v7 and v8 architectural debug registers.
3965 * These are just dummy implementations for now.
3968 int wrps
, brps
, ctx_cmps
;
3969 ARMCPRegInfo dbgdidr
= {
3970 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
3971 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
3974 /* Note that all these register fields hold "number of Xs minus 1". */
3975 brps
= extract32(cpu
->dbgdidr
, 24, 4);
3976 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
3977 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
3979 assert(ctx_cmps
<= brps
);
3981 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3982 * of the debug registers such as number of breakpoints;
3983 * check that if they both exist then they agree.
3985 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
3986 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
3987 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
3988 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
3991 define_one_arm_cp_reg(cpu
, &dbgdidr
);
3992 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
3994 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
3995 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
3998 for (i
= 0; i
< brps
+ 1; i
++) {
3999 ARMCPRegInfo dbgregs
[] = {
4000 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
4001 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
4003 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
4004 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
4006 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
4007 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
4009 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
4010 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
4014 define_arm_cp_regs(cpu
, dbgregs
);
4017 for (i
= 0; i
< wrps
+ 1; i
++) {
4018 ARMCPRegInfo dbgregs
[] = {
4019 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
4020 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
4022 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
4023 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4025 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4026 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4028 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4029 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4033 define_arm_cp_regs(cpu
, dbgregs
);
4037 void register_cp_regs_for_features(ARMCPU
*cpu
)
4039 /* Register all the coprocessor registers based on feature bits */
4040 CPUARMState
*env
= &cpu
->env
;
4041 if (arm_feature(env
, ARM_FEATURE_M
)) {
4042 /* M profile has no coprocessor registers */
4046 define_arm_cp_regs(cpu
, cp_reginfo
);
4047 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
4048 /* Must go early as it is full of wildcards that may be
4049 * overridden by later definitions.
4051 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
4054 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4055 /* The ID registers all have impdef reset values */
4056 ARMCPRegInfo v6_idregs
[] = {
4057 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
4058 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4059 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4060 .resetvalue
= cpu
->id_pfr0
},
4061 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4062 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4063 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4064 .resetvalue
= cpu
->id_pfr1
},
4065 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4066 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4067 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4068 .resetvalue
= cpu
->id_dfr0
},
4069 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4070 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4071 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4072 .resetvalue
= cpu
->id_afr0
},
4073 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4074 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4075 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4076 .resetvalue
= cpu
->id_mmfr0
},
4077 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4078 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4079 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4080 .resetvalue
= cpu
->id_mmfr1
},
4081 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4082 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4083 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4084 .resetvalue
= cpu
->id_mmfr2
},
4085 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4086 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4087 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4088 .resetvalue
= cpu
->id_mmfr3
},
4089 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4090 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4091 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4092 .resetvalue
= cpu
->id_isar0
},
4093 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4094 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4095 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4096 .resetvalue
= cpu
->id_isar1
},
4097 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4098 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4099 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4100 .resetvalue
= cpu
->id_isar2
},
4101 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4102 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4103 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4104 .resetvalue
= cpu
->id_isar3
},
4105 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4106 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4107 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4108 .resetvalue
= cpu
->id_isar4
},
4109 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4110 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4111 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4112 .resetvalue
= cpu
->id_isar5
},
4113 /* 6..7 are as yet unallocated and must RAZ */
4114 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
4115 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4117 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
4118 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4122 define_arm_cp_regs(cpu
, v6_idregs
);
4123 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4125 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4127 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4128 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4130 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4131 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4132 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4134 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4135 /* v7 performance monitor control register: same implementor
4136 * field as main ID register, and we implement only the cycle
4139 #ifndef CONFIG_USER_ONLY
4140 ARMCPRegInfo pmcr
= {
4141 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4143 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4144 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4145 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4146 .raw_writefn
= raw_write
,
4148 ARMCPRegInfo pmcr64
= {
4149 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4150 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4151 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4153 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4154 .resetvalue
= cpu
->midr
& 0xff000000,
4155 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4157 define_one_arm_cp_reg(cpu
, &pmcr
);
4158 define_one_arm_cp_reg(cpu
, &pmcr64
);
4160 ARMCPRegInfo clidr
= {
4161 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4162 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4163 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4165 define_one_arm_cp_reg(cpu
, &clidr
);
4166 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4167 define_debug_regs(cpu
);
4169 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4171 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4172 /* AArch64 ID registers, which all have impdef reset values */
4173 ARMCPRegInfo v8_idregs
[] = {
4174 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4175 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4176 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4177 .resetvalue
= cpu
->id_aa64pfr0
},
4178 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4179 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4180 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4181 .resetvalue
= cpu
->id_aa64pfr1
},
4182 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4183 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4184 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4185 /* We mask out the PMUVer field, because we don't currently
4186 * implement the PMU. Not advertising it prevents the guest
4187 * from trying to use it and getting UNDEFs on registers we
4190 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4191 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4192 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4193 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4194 .resetvalue
= cpu
->id_aa64dfr1
},
4195 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4196 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4197 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4198 .resetvalue
= cpu
->id_aa64afr0
},
4199 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4200 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4201 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4202 .resetvalue
= cpu
->id_aa64afr1
},
4203 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4204 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4205 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4206 .resetvalue
= cpu
->id_aa64isar0
},
4207 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4208 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4209 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4210 .resetvalue
= cpu
->id_aa64isar1
},
4211 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4212 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4213 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4214 .resetvalue
= cpu
->id_aa64mmfr0
},
4215 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4216 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4217 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4218 .resetvalue
= cpu
->id_aa64mmfr1
},
4219 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4220 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4221 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4222 .resetvalue
= cpu
->mvfr0
},
4223 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4224 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4225 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4226 .resetvalue
= cpu
->mvfr1
},
4227 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4228 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4229 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4230 .resetvalue
= cpu
->mvfr2
},
4233 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4234 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4235 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4236 ARMCPRegInfo rvbar
= {
4237 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4238 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4239 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4241 define_one_arm_cp_reg(cpu
, &rvbar
);
4243 define_arm_cp_regs(cpu
, v8_idregs
);
4244 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4246 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4247 uint64_t vmpidr_def
= mpidr_read_val(env
);
4248 ARMCPRegInfo vpidr_regs
[] = {
4249 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4250 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4251 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4252 .resetvalue
= cpu
->midr
,
4253 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4254 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4255 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4256 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4257 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4258 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4259 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4260 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4261 .resetvalue
= vmpidr_def
,
4262 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4263 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4264 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4266 .resetvalue
= vmpidr_def
,
4267 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4270 define_arm_cp_regs(cpu
, vpidr_regs
);
4271 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4272 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4273 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4274 ARMCPRegInfo rvbar
= {
4275 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4276 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4277 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4279 define_one_arm_cp_reg(cpu
, &rvbar
);
4282 /* If EL2 is missing but higher ELs are enabled, we need to
4283 * register the no_el2 reginfos.
4285 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4286 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4287 * of MIDR_EL1 and MPIDR_EL1.
4289 ARMCPRegInfo vpidr_regs
[] = {
4290 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4291 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4292 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4293 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4294 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4295 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4296 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4297 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4298 .type
= ARM_CP_NO_RAW
,
4299 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4302 define_arm_cp_regs(cpu
, vpidr_regs
);
4303 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4306 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4307 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4308 ARMCPRegInfo rvbar
= {
4309 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4310 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4311 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
4313 define_one_arm_cp_reg(cpu
, &rvbar
);
4315 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4316 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4317 /* PMSAv6 not implemented */
4318 assert(arm_feature(env
, ARM_FEATURE_V7
));
4319 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4320 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4322 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4325 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4326 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4328 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4329 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4331 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4332 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4334 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4335 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4337 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4338 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4340 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4341 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4343 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4344 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4346 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4347 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4349 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4350 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4352 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4353 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4355 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4356 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4358 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4359 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4361 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4362 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4363 * be read-only (ie write causes UNDEF exception).
4366 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4367 /* Pre-v8 MIDR space.
4368 * Note that the MIDR isn't a simple constant register because
4369 * of the TI925 behaviour where writes to another register can
4370 * cause the MIDR value to change.
4372 * Unimplemented registers in the c15 0 0 0 space default to
4373 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4374 * and friends override accordingly.
4377 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4378 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4379 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4380 .readfn
= midr_read
,
4381 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4382 .type
= ARM_CP_OVERRIDE
},
4383 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4385 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4386 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4388 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4389 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4391 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4392 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4394 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4395 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4397 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4398 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4401 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4402 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4403 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4404 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4405 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4406 .readfn
= midr_read
},
4407 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4408 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4409 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4410 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4411 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4412 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4413 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4414 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4415 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4416 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4419 ARMCPRegInfo id_cp_reginfo
[] = {
4420 /* These are common to v8 and pre-v8 */
4422 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4423 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4424 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4425 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4426 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4427 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4428 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4430 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4431 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4434 /* TLBTR is specific to VMSA */
4435 ARMCPRegInfo id_tlbtr_reginfo
= {
4437 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4438 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4440 /* MPUIR is specific to PMSA V6+ */
4441 ARMCPRegInfo id_mpuir_reginfo
= {
4443 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4444 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4445 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4447 ARMCPRegInfo crn0_wi_reginfo
= {
4448 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4449 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4450 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4452 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4453 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4455 /* Register the blanket "writes ignored" value first to cover the
4456 * whole space. Then update the specific ID registers to allow write
4457 * access, so that they ignore writes rather than causing them to
4460 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4461 for (r
= id_pre_v8_midr_cp_reginfo
;
4462 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4465 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4468 id_tlbtr_reginfo
.access
= PL1_RW
;
4469 id_tlbtr_reginfo
.access
= PL1_RW
;
4471 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4472 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4474 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4476 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4477 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4478 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4479 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4480 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4484 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4485 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4488 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4489 ARMCPRegInfo auxcr_reginfo
[] = {
4490 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4491 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4492 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4493 .resetvalue
= cpu
->reset_auxcr
},
4494 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4495 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4496 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4498 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4499 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4500 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4504 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4507 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4508 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4509 /* 32 bit view is [31:18] 0...0 [43:32]. */
4510 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4511 | extract64(cpu
->reset_cbar
, 32, 12);
4512 ARMCPRegInfo cbar_reginfo
[] = {
4514 .type
= ARM_CP_CONST
,
4515 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4516 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4517 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4518 .type
= ARM_CP_CONST
,
4519 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4520 .access
= PL1_R
, .resetvalue
= cbar32
},
4523 /* We don't implement a r/w 64 bit CBAR currently */
4524 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4525 define_arm_cp_regs(cpu
, cbar_reginfo
);
4527 ARMCPRegInfo cbar
= {
4529 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4530 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4531 .fieldoffset
= offsetof(CPUARMState
,
4532 cp15
.c15_config_base_address
)
4534 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4535 cbar
.access
= PL1_R
;
4536 cbar
.fieldoffset
= 0;
4537 cbar
.type
= ARM_CP_CONST
;
4539 define_one_arm_cp_reg(cpu
, &cbar
);
4543 /* Generic registers whose values depend on the implementation */
4545 ARMCPRegInfo sctlr
= {
4546 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4547 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4549 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4550 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4551 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4552 .raw_writefn
= raw_write
,
4554 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4555 /* Normally we would always end the TB on an SCTLR write, but Linux
4556 * arch/arm/mach-pxa/sleep.S expects two instructions following
4557 * an MMU enable to execute from cache. Imitate this behaviour.
4559 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4561 define_one_arm_cp_reg(cpu
, &sctlr
);
4565 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4567 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4570 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4572 CPUState
*cs
= CPU(cpu
);
4573 CPUARMState
*env
= &cpu
->env
;
4575 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4576 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4577 aarch64_fpu_gdb_set_reg
,
4578 34, "aarch64-fpu.xml", 0);
4579 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4580 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4581 51, "arm-neon.xml", 0);
4582 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4583 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4584 35, "arm-vfp3.xml", 0);
4585 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4586 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4587 19, "arm-vfp.xml", 0);
4591 /* Sort alphabetically by type name, except for "any". */
4592 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4594 ObjectClass
*class_a
= (ObjectClass
*)a
;
4595 ObjectClass
*class_b
= (ObjectClass
*)b
;
4596 const char *name_a
, *name_b
;
4598 name_a
= object_class_get_name(class_a
);
4599 name_b
= object_class_get_name(class_b
);
4600 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4602 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4605 return strcmp(name_a
, name_b
);
4609 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4611 ObjectClass
*oc
= data
;
4612 CPUListState
*s
= user_data
;
4613 const char *typename
;
4616 typename
= object_class_get_name(oc
);
4617 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4618 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
4623 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
4627 .cpu_fprintf
= cpu_fprintf
,
4631 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4632 list
= g_slist_sort(list
, arm_cpu_list_compare
);
4633 (*cpu_fprintf
)(f
, "Available CPUs:\n");
4634 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
4637 /* The 'host' CPU type is dynamically registered only if KVM is
4638 * enabled, so we have to special-case it here:
4640 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
4644 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
4646 ObjectClass
*oc
= data
;
4647 CpuDefinitionInfoList
**cpu_list
= user_data
;
4648 CpuDefinitionInfoList
*entry
;
4649 CpuDefinitionInfo
*info
;
4650 const char *typename
;
4652 typename
= object_class_get_name(oc
);
4653 info
= g_malloc0(sizeof(*info
));
4654 info
->name
= g_strndup(typename
,
4655 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4657 entry
= g_malloc0(sizeof(*entry
));
4658 entry
->value
= info
;
4659 entry
->next
= *cpu_list
;
4663 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
4665 CpuDefinitionInfoList
*cpu_list
= NULL
;
4668 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4669 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
4675 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
4676 void *opaque
, int state
, int secstate
,
4677 int crm
, int opc1
, int opc2
)
4679 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4680 * add a single reginfo struct to the hash table.
4682 uint32_t *key
= g_new(uint32_t, 1);
4683 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
4684 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
4685 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
4687 /* Reset the secure state to the specific incoming state. This is
4688 * necessary as the register may have been defined with both states.
4690 r2
->secure
= secstate
;
4692 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4693 /* Register is banked (using both entries in array).
4694 * Overwriting fieldoffset as the array is only used to define
4695 * banked registers but later only fieldoffset is used.
4697 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
4700 if (state
== ARM_CP_STATE_AA32
) {
4701 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4702 /* If the register is banked then we don't need to migrate or
4703 * reset the 32-bit instance in certain cases:
4705 * 1) If the register has both 32-bit and 64-bit instances then we
4706 * can count on the 64-bit instance taking care of the
4708 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4709 * taking care of the secure bank. This requires that separate
4710 * 32 and 64-bit definitions are provided.
4712 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
4713 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
4714 r2
->type
|= ARM_CP_ALIAS
;
4716 } else if ((secstate
!= r
->secure
) && !ns
) {
4717 /* The register is not banked so we only want to allow migration of
4718 * the non-secure instance.
4720 r2
->type
|= ARM_CP_ALIAS
;
4723 if (r
->state
== ARM_CP_STATE_BOTH
) {
4724 /* We assume it is a cp15 register if the .cp field is left unset.
4730 #ifdef HOST_WORDS_BIGENDIAN
4731 if (r2
->fieldoffset
) {
4732 r2
->fieldoffset
+= sizeof(uint32_t);
4737 if (state
== ARM_CP_STATE_AA64
) {
4738 /* To allow abbreviation of ARMCPRegInfo
4739 * definitions, we treat cp == 0 as equivalent to
4740 * the value for "standard guest-visible sysreg".
4741 * STATE_BOTH definitions are also always "standard
4742 * sysreg" in their AArch64 view (the .cp value may
4743 * be non-zero for the benefit of the AArch32 view).
4745 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
4746 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
4748 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
4749 r2
->opc0
, opc1
, opc2
);
4751 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
4754 r2
->opaque
= opaque
;
4756 /* reginfo passed to helpers is correct for the actual access,
4757 * and is never ARM_CP_STATE_BOTH:
4760 /* Make sure reginfo passed to helpers for wildcarded regs
4761 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4766 /* By convention, for wildcarded registers only the first
4767 * entry is used for migration; the others are marked as
4768 * ALIAS so we don't try to transfer the register
4769 * multiple times. Special registers (ie NOP/WFI) are
4770 * never migratable and not even raw-accessible.
4772 if ((r
->type
& ARM_CP_SPECIAL
)) {
4773 r2
->type
|= ARM_CP_NO_RAW
;
4775 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
4776 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
4777 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
4778 r2
->type
|= ARM_CP_ALIAS
;
4781 /* Check that raw accesses are either forbidden or handled. Note that
4782 * we can't assert this earlier because the setup of fieldoffset for
4783 * banked registers has to be done first.
4785 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
4786 assert(!raw_accessors_invalid(r2
));
4789 /* Overriding of an existing definition must be explicitly
4792 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
4793 ARMCPRegInfo
*oldreg
;
4794 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
4795 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
4796 fprintf(stderr
, "Register redefined: cp=%d %d bit "
4797 "crn=%d crm=%d opc1=%d opc2=%d, "
4798 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
4799 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
4800 oldreg
->name
, r2
->name
);
4801 g_assert_not_reached();
4804 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
4808 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
4809 const ARMCPRegInfo
*r
, void *opaque
)
4811 /* Define implementations of coprocessor registers.
4812 * We store these in a hashtable because typically
4813 * there are less than 150 registers in a space which
4814 * is 16*16*16*8*8 = 262144 in size.
4815 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4816 * If a register is defined twice then the second definition is
4817 * used, so this can be used to define some generic registers and
4818 * then override them with implementation specific variations.
4819 * At least one of the original and the second definition should
4820 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4821 * against accidental use.
4823 * The state field defines whether the register is to be
4824 * visible in the AArch32 or AArch64 execution state. If the
4825 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4826 * reginfo structure for the AArch32 view, which sees the lower
4827 * 32 bits of the 64 bit register.
4829 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4830 * be wildcarded. AArch64 registers are always considered to be 64
4831 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4832 * the register, if any.
4834 int crm
, opc1
, opc2
, state
;
4835 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
4836 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
4837 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
4838 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
4839 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
4840 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
4841 /* 64 bit registers have only CRm and Opc1 fields */
4842 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
4843 /* op0 only exists in the AArch64 encodings */
4844 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
4845 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4846 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
4847 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4848 * encodes a minimum access level for the register. We roll this
4849 * runtime check into our general permission check code, so check
4850 * here that the reginfo's specified permissions are strict enough
4851 * to encompass the generic architectural permission check.
4853 if (r
->state
!= ARM_CP_STATE_AA32
) {
4856 case 0: case 1: case 2:
4869 /* unallocated encoding, so not possible */
4877 /* min_EL EL1, secure mode only (we don't check the latter) */
4881 /* broken reginfo with out-of-range opc1 */
4885 /* assert our permissions are not too lax (stricter is fine) */
4886 assert((r
->access
& ~mask
) == 0);
4889 /* Check that the register definition has enough info to handle
4890 * reads and writes if they are permitted.
4892 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
4893 if (r
->access
& PL3_R
) {
4894 assert((r
->fieldoffset
||
4895 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4898 if (r
->access
& PL3_W
) {
4899 assert((r
->fieldoffset
||
4900 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4904 /* Bad type field probably means missing sentinel at end of reg list */
4905 assert(cptype_valid(r
->type
));
4906 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
4907 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
4908 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
4909 for (state
= ARM_CP_STATE_AA32
;
4910 state
<= ARM_CP_STATE_AA64
; state
++) {
4911 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
4914 if (state
== ARM_CP_STATE_AA32
) {
4915 /* Under AArch32 CP registers can be common
4916 * (same for secure and non-secure world) or banked.
4918 switch (r
->secure
) {
4919 case ARM_CP_SECSTATE_S
:
4920 case ARM_CP_SECSTATE_NS
:
4921 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4922 r
->secure
, crm
, opc1
, opc2
);
4925 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4928 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4934 /* AArch64 registers get mapped to non-secure instance
4936 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4946 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
4947 const ARMCPRegInfo
*regs
, void *opaque
)
4949 /* Define a whole list of registers */
4950 const ARMCPRegInfo
*r
;
4951 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4952 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
4956 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
4958 return g_hash_table_lookup(cpregs
, &encoded_cp
);
4961 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4964 /* Helper coprocessor write function for write-ignore registers */
4967 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4969 /* Helper coprocessor write function for read-as-zero registers */
4973 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
4975 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4978 static int bad_mode_switch(CPUARMState
*env
, int mode
)
4980 /* Return true if it is not valid for us to switch to
4981 * this CPU mode (ie all the UNPREDICTABLE cases in
4982 * the ARM ARM CPSRWriteByInstr pseudocode).
4985 case ARM_CPU_MODE_USR
:
4986 case ARM_CPU_MODE_SYS
:
4987 case ARM_CPU_MODE_SVC
:
4988 case ARM_CPU_MODE_ABT
:
4989 case ARM_CPU_MODE_UND
:
4990 case ARM_CPU_MODE_IRQ
:
4991 case ARM_CPU_MODE_FIQ
:
4993 case ARM_CPU_MODE_MON
:
4994 return !arm_is_secure(env
);
5000 uint32_t cpsr_read(CPUARMState
*env
)
5003 ZF
= (env
->ZF
== 0);
5004 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
5005 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
5006 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
5007 | ((env
->condexec_bits
& 0xfc) << 8)
5008 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
5011 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
5013 uint32_t changed_daif
;
5015 if (mask
& CPSR_NZCV
) {
5016 env
->ZF
= (~val
) & CPSR_Z
;
5018 env
->CF
= (val
>> 29) & 1;
5019 env
->VF
= (val
<< 3) & 0x80000000;
5022 env
->QF
= ((val
& CPSR_Q
) != 0);
5024 env
->thumb
= ((val
& CPSR_T
) != 0);
5025 if (mask
& CPSR_IT_0_1
) {
5026 env
->condexec_bits
&= ~3;
5027 env
->condexec_bits
|= (val
>> 25) & 3;
5029 if (mask
& CPSR_IT_2_7
) {
5030 env
->condexec_bits
&= 3;
5031 env
->condexec_bits
|= (val
>> 8) & 0xfc;
5033 if (mask
& CPSR_GE
) {
5034 env
->GE
= (val
>> 16) & 0xf;
5037 /* In a V7 implementation that includes the security extensions but does
5038 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5039 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5040 * bits respectively.
5042 * In a V8 implementation, it is permitted for privileged software to
5043 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5045 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
5046 arm_feature(env
, ARM_FEATURE_EL3
) &&
5047 !arm_feature(env
, ARM_FEATURE_EL2
) &&
5048 !arm_is_secure(env
)) {
5050 changed_daif
= (env
->daif
^ val
) & mask
;
5052 if (changed_daif
& CPSR_A
) {
5053 /* Check to see if we are allowed to change the masking of async
5054 * abort exceptions from a non-secure state.
5056 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
5057 qemu_log_mask(LOG_GUEST_ERROR
,
5058 "Ignoring attempt to switch CPSR_A flag from "
5059 "non-secure world with SCR.AW bit clear\n");
5064 if (changed_daif
& CPSR_F
) {
5065 /* Check to see if we are allowed to change the masking of FIQ
5066 * exceptions from a non-secure state.
5068 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5069 qemu_log_mask(LOG_GUEST_ERROR
,
5070 "Ignoring attempt to switch CPSR_F flag from "
5071 "non-secure world with SCR.FW bit clear\n");
5075 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5076 * If this bit is set software is not allowed to mask
5077 * FIQs, but is allowed to set CPSR_F to 0.
5079 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5081 qemu_log_mask(LOG_GUEST_ERROR
,
5082 "Ignoring attempt to enable CPSR_F flag "
5083 "(non-maskable FIQ [NMFI] support enabled)\n");
5089 env
->daif
&= ~(CPSR_AIF
& mask
);
5090 env
->daif
|= val
& CPSR_AIF
& mask
;
5092 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
5093 if (bad_mode_switch(env
, val
& CPSR_M
)) {
5094 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
5095 * We choose to ignore the attempt and leave the CPSR M field
5100 switch_mode(env
, val
& CPSR_M
);
5103 mask
&= ~CACHED_CPSR_BITS
;
5104 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5107 /* Sign/zero extend */
5108 uint32_t HELPER(sxtb16
)(uint32_t x
)
5111 res
= (uint16_t)(int8_t)x
;
5112 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5116 uint32_t HELPER(uxtb16
)(uint32_t x
)
5119 res
= (uint16_t)(uint8_t)x
;
5120 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5124 uint32_t HELPER(clz
)(uint32_t x
)
5129 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5133 if (num
== INT_MIN
&& den
== -1)
5138 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5145 uint32_t HELPER(rbit
)(uint32_t x
)
5150 #if defined(CONFIG_USER_ONLY)
5152 /* These should probably raise undefined insn exceptions. */
5153 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5155 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5157 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5160 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5162 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5164 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5168 void switch_mode(CPUARMState
*env
, int mode
)
5170 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5172 if (mode
!= ARM_CPU_MODE_USR
) {
5173 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5177 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
5179 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5181 cpu_abort(CPU(cpu
), "banked r13 write\n");
5184 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
5186 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5188 cpu_abort(CPU(cpu
), "banked r13 read\n");
5192 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5193 uint32_t cur_el
, bool secure
)
5198 void aarch64_sync_64_to_32(CPUARMState
*env
)
5200 g_assert_not_reached();
5205 /* Map CPU modes onto saved register banks. */
5206 int bank_number(int mode
)
5209 case ARM_CPU_MODE_USR
:
5210 case ARM_CPU_MODE_SYS
:
5212 case ARM_CPU_MODE_SVC
:
5214 case ARM_CPU_MODE_ABT
:
5216 case ARM_CPU_MODE_UND
:
5218 case ARM_CPU_MODE_IRQ
:
5220 case ARM_CPU_MODE_FIQ
:
5222 case ARM_CPU_MODE_HYP
:
5224 case ARM_CPU_MODE_MON
:
5227 g_assert_not_reached();
5230 void switch_mode(CPUARMState
*env
, int mode
)
5235 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5236 if (mode
== old_mode
)
5239 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5240 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5241 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5242 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5243 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5244 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5247 i
= bank_number(old_mode
);
5248 env
->banked_r13
[i
] = env
->regs
[13];
5249 env
->banked_r14
[i
] = env
->regs
[14];
5250 env
->banked_spsr
[i
] = env
->spsr
;
5252 i
= bank_number(mode
);
5253 env
->regs
[13] = env
->banked_r13
[i
];
5254 env
->regs
[14] = env
->banked_r14
[i
];
5255 env
->spsr
= env
->banked_spsr
[i
];
5258 /* Physical Interrupt Target EL Lookup Table
5260 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5262 * The below multi-dimensional table is used for looking up the target
5263 * exception level given numerous condition criteria. Specifically, the
5264 * target EL is based on SCR and HCR routing controls as well as the
5265 * currently executing EL and secure state.
5268 * target_el_table[2][2][2][2][2][4]
5269 * | | | | | +--- Current EL
5270 * | | | | +------ Non-secure(0)/Secure(1)
5271 * | | | +--------- HCR mask override
5272 * | | +------------ SCR exec state control
5273 * | +--------------- SCR mask override
5274 * +------------------ 32-bit(0)/64-bit(1) EL3
5276 * The table values are as such:
5280 * The ARM ARM target EL table includes entries indicating that an "exception
5281 * is not taken". The two cases where this is applicable are:
5282 * 1) An exception is taken from EL3 but the SCR does not have the exception
5284 * 2) An exception is taken from EL2 but the HCR does not have the exception
5286 * In these two cases, the below table contain a target of EL1. This value is
5287 * returned as it is expected that the consumer of the table data will check
5288 * for "target EL >= current EL" to ensure the exception is not taken.
5292 * BIT IRQ IMO Non-secure Secure
5293 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5295 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5296 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5297 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5298 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5299 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5300 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5301 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5302 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5303 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5304 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5305 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5306 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5307 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5308 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5309 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5310 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5311 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5315 * Determine the target EL for physical exceptions
5317 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5318 uint32_t cur_el
, bool secure
)
5320 CPUARMState
*env
= cs
->env_ptr
;
5325 /* Is the highest EL AArch64? */
5326 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5328 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5329 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5331 /* Either EL2 is the highest EL (and so the EL2 register width
5332 * is given by is64); or there is no EL2 or EL3, in which case
5333 * the value of 'rw' does not affect the table lookup anyway.
5340 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5341 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5344 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5345 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5348 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5349 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5353 /* If HCR.TGE is set then HCR is treated as being 1 */
5354 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5356 /* Perform a table-lookup for the target EL given the current state */
5357 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5359 assert(target_el
> 0);
5364 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5366 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5369 stl_phys(cs
->as
, env
->regs
[13], val
);
5372 static uint32_t v7m_pop(CPUARMState
*env
)
5374 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5377 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5382 /* Switch to V7M main or process stack pointer. */
5383 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5386 if (env
->v7m
.current_sp
!= process
) {
5387 tmp
= env
->v7m
.other_sp
;
5388 env
->v7m
.other_sp
= env
->regs
[13];
5389 env
->regs
[13] = tmp
;
5390 env
->v7m
.current_sp
= process
;
5394 static void do_v7m_exception_exit(CPUARMState
*env
)
5399 type
= env
->regs
[15];
5400 if (env
->v7m
.exception
!= 0)
5401 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5403 /* Switch to the target stack. */
5404 switch_v7m_sp(env
, (type
& 4) != 0);
5405 /* Pop registers. */
5406 env
->regs
[0] = v7m_pop(env
);
5407 env
->regs
[1] = v7m_pop(env
);
5408 env
->regs
[2] = v7m_pop(env
);
5409 env
->regs
[3] = v7m_pop(env
);
5410 env
->regs
[12] = v7m_pop(env
);
5411 env
->regs
[14] = v7m_pop(env
);
5412 env
->regs
[15] = v7m_pop(env
);
5413 if (env
->regs
[15] & 1) {
5414 qemu_log_mask(LOG_GUEST_ERROR
,
5415 "M profile return from interrupt with misaligned "
5416 "PC is UNPREDICTABLE\n");
5417 /* Actual hardware seems to ignore the lsbit, and there are several
5418 * RTOSes out there which incorrectly assume the r15 in the stack
5419 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5421 env
->regs
[15] &= ~1U;
5423 xpsr
= v7m_pop(env
);
5424 xpsr_write(env
, xpsr
, 0xfffffdff);
5425 /* Undo stack alignment. */
5428 /* ??? The exception return type specifies Thread/Handler mode. However
5429 this is also implied by the xPSR value. Not sure what to do
5430 if there is a mismatch. */
5431 /* ??? Likewise for mismatches between the CONTROL register and the stack
5435 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5437 ARMCPU
*cpu
= ARM_CPU(cs
);
5438 CPUARMState
*env
= &cpu
->env
;
5439 uint32_t xpsr
= xpsr_read(env
);
5443 arm_log_exception(cs
->exception_index
);
5446 if (env
->v7m
.current_sp
)
5448 if (env
->v7m
.exception
== 0)
5451 /* For exceptions we just mark as pending on the NVIC, and let that
5453 /* TODO: Need to escalate if the current priority is higher than the
5454 one we're raising. */
5455 switch (cs
->exception_index
) {
5457 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5460 /* The PC already points to the next instruction. */
5461 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5463 case EXCP_PREFETCH_ABORT
:
5464 case EXCP_DATA_ABORT
:
5465 /* TODO: if we implemented the MPU registers, this is where we
5466 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5468 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5471 if (semihosting_enabled()) {
5473 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5476 qemu_log_mask(CPU_LOG_INT
,
5477 "...handling as semihosting call 0x%x\n",
5479 env
->regs
[0] = do_arm_semihosting(env
);
5483 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5486 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5488 case EXCP_EXCEPTION_EXIT
:
5489 do_v7m_exception_exit(env
);
5492 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5493 return; /* Never happens. Keep compiler happy. */
5496 /* Align stack pointer. */
5497 /* ??? Should only do this if Configuration Control Register
5498 STACKALIGN bit is set. */
5499 if (env
->regs
[13] & 4) {
5503 /* Switch to the handler mode. */
5504 v7m_push(env
, xpsr
);
5505 v7m_push(env
, env
->regs
[15]);
5506 v7m_push(env
, env
->regs
[14]);
5507 v7m_push(env
, env
->regs
[12]);
5508 v7m_push(env
, env
->regs
[3]);
5509 v7m_push(env
, env
->regs
[2]);
5510 v7m_push(env
, env
->regs
[1]);
5511 v7m_push(env
, env
->regs
[0]);
5512 switch_v7m_sp(env
, 0);
5514 env
->condexec_bits
= 0;
5516 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5517 env
->regs
[15] = addr
& 0xfffffffe;
5518 env
->thumb
= addr
& 1;
5521 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5522 * register set. This is necessary when switching between AArch32 and AArch64
5525 void aarch64_sync_32_to_64(CPUARMState
*env
)
5528 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5530 /* We can blanket copy R[0:7] to X[0:7] */
5531 for (i
= 0; i
< 8; i
++) {
5532 env
->xregs
[i
] = env
->regs
[i
];
5535 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5536 * Otherwise, they come from the banked user regs.
5538 if (mode
== ARM_CPU_MODE_FIQ
) {
5539 for (i
= 8; i
< 13; i
++) {
5540 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5543 for (i
= 8; i
< 13; i
++) {
5544 env
->xregs
[i
] = env
->regs
[i
];
5548 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5549 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5550 * from the mode banked register.
5552 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5553 env
->xregs
[13] = env
->regs
[13];
5554 env
->xregs
[14] = env
->regs
[14];
5556 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5557 /* HYP is an exception in that it is copied from r14 */
5558 if (mode
== ARM_CPU_MODE_HYP
) {
5559 env
->xregs
[14] = env
->regs
[14];
5561 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5565 if (mode
== ARM_CPU_MODE_HYP
) {
5566 env
->xregs
[15] = env
->regs
[13];
5568 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5571 if (mode
== ARM_CPU_MODE_IRQ
) {
5572 env
->xregs
[16] = env
->regs
[14];
5573 env
->xregs
[17] = env
->regs
[13];
5575 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5576 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5579 if (mode
== ARM_CPU_MODE_SVC
) {
5580 env
->xregs
[18] = env
->regs
[14];
5581 env
->xregs
[19] = env
->regs
[13];
5583 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5584 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5587 if (mode
== ARM_CPU_MODE_ABT
) {
5588 env
->xregs
[20] = env
->regs
[14];
5589 env
->xregs
[21] = env
->regs
[13];
5591 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5592 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5595 if (mode
== ARM_CPU_MODE_UND
) {
5596 env
->xregs
[22] = env
->regs
[14];
5597 env
->xregs
[23] = env
->regs
[13];
5599 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
5600 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
5603 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5604 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5605 * FIQ bank for r8-r14.
5607 if (mode
== ARM_CPU_MODE_FIQ
) {
5608 for (i
= 24; i
< 31; i
++) {
5609 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
5612 for (i
= 24; i
< 29; i
++) {
5613 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
5615 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
5616 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
5619 env
->pc
= env
->regs
[15];
5622 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5623 * register set. This is necessary when switching between AArch32 and AArch64
5626 void aarch64_sync_64_to_32(CPUARMState
*env
)
5629 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5631 /* We can blanket copy X[0:7] to R[0:7] */
5632 for (i
= 0; i
< 8; i
++) {
5633 env
->regs
[i
] = env
->xregs
[i
];
5636 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5637 * Otherwise, we copy x8-x12 into the banked user regs.
5639 if (mode
== ARM_CPU_MODE_FIQ
) {
5640 for (i
= 8; i
< 13; i
++) {
5641 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
5644 for (i
= 8; i
< 13; i
++) {
5645 env
->regs
[i
] = env
->xregs
[i
];
5649 /* Registers r13 & r14 depend on the current mode.
5650 * If we are in a given mode, we copy the corresponding x registers to r13
5651 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5654 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5655 env
->regs
[13] = env
->xregs
[13];
5656 env
->regs
[14] = env
->xregs
[14];
5658 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
5660 /* HYP is an exception in that it does not have its own banked r14 but
5661 * shares the USR r14
5663 if (mode
== ARM_CPU_MODE_HYP
) {
5664 env
->regs
[14] = env
->xregs
[14];
5666 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
5670 if (mode
== ARM_CPU_MODE_HYP
) {
5671 env
->regs
[13] = env
->xregs
[15];
5673 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
5676 if (mode
== ARM_CPU_MODE_IRQ
) {
5677 env
->regs
[14] = env
->xregs
[16];
5678 env
->regs
[13] = env
->xregs
[17];
5680 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
5681 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
5684 if (mode
== ARM_CPU_MODE_SVC
) {
5685 env
->regs
[14] = env
->xregs
[18];
5686 env
->regs
[13] = env
->xregs
[19];
5688 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
5689 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
5692 if (mode
== ARM_CPU_MODE_ABT
) {
5693 env
->regs
[14] = env
->xregs
[20];
5694 env
->regs
[13] = env
->xregs
[21];
5696 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
5697 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
5700 if (mode
== ARM_CPU_MODE_UND
) {
5701 env
->regs
[14] = env
->xregs
[22];
5702 env
->regs
[13] = env
->xregs
[23];
5704 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
5705 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
5708 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5709 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5710 * FIQ bank for r8-r14.
5712 if (mode
== ARM_CPU_MODE_FIQ
) {
5713 for (i
= 24; i
< 31; i
++) {
5714 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
5717 for (i
= 24; i
< 29; i
++) {
5718 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
5720 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
5721 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
5724 env
->regs
[15] = env
->pc
;
5727 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
5729 ARMCPU
*cpu
= ARM_CPU(cs
);
5730 CPUARMState
*env
= &cpu
->env
;
5737 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5738 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
5740 case EC_BREAKPOINT_SAME_EL
:
5744 case EC_WATCHPOINT_SAME_EL
:
5750 case EC_VECTORCATCH
:
5759 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
5762 /* TODO: Vectored interrupt controller. */
5763 switch (cs
->exception_index
) {
5765 new_mode
= ARM_CPU_MODE_UND
;
5774 new_mode
= ARM_CPU_MODE_SVC
;
5777 /* The PC already points to the next instruction. */
5781 env
->exception
.fsr
= 2;
5782 /* Fall through to prefetch abort. */
5783 case EXCP_PREFETCH_ABORT
:
5784 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
5785 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
5786 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
5787 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
5788 new_mode
= ARM_CPU_MODE_ABT
;
5790 mask
= CPSR_A
| CPSR_I
;
5793 case EXCP_DATA_ABORT
:
5794 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
5795 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
5796 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
5798 (uint32_t)env
->exception
.vaddress
);
5799 new_mode
= ARM_CPU_MODE_ABT
;
5801 mask
= CPSR_A
| CPSR_I
;
5805 new_mode
= ARM_CPU_MODE_IRQ
;
5807 /* Disable IRQ and imprecise data aborts. */
5808 mask
= CPSR_A
| CPSR_I
;
5810 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
5811 /* IRQ routed to monitor mode */
5812 new_mode
= ARM_CPU_MODE_MON
;
5817 new_mode
= ARM_CPU_MODE_FIQ
;
5819 /* Disable FIQ, IRQ and imprecise data aborts. */
5820 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5821 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
5822 /* FIQ routed to monitor mode */
5823 new_mode
= ARM_CPU_MODE_MON
;
5828 new_mode
= ARM_CPU_MODE_MON
;
5830 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5834 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5835 return; /* Never happens. Keep compiler happy. */
5838 if (new_mode
== ARM_CPU_MODE_MON
) {
5839 addr
+= env
->cp15
.mvbar
;
5840 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
5841 /* High vectors. When enabled, base address cannot be remapped. */
5844 /* ARM v7 architectures provide a vector base address register to remap
5845 * the interrupt vector table.
5846 * This register is only followed in non-monitor mode, and is banked.
5847 * Note: only bits 31:5 are valid.
5849 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
5852 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
5853 env
->cp15
.scr_el3
&= ~SCR_NS
;
5856 switch_mode (env
, new_mode
);
5857 /* For exceptions taken to AArch32 we must clear the SS bit in both
5858 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5860 env
->uncached_cpsr
&= ~PSTATE_SS
;
5861 env
->spsr
= cpsr_read(env
);
5862 /* Clear IT bits. */
5863 env
->condexec_bits
= 0;
5864 /* Switch to the new mode, and to the correct instruction set. */
5865 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
5867 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5868 * and we should just guard the thumb mode on V4 */
5869 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
5870 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
5872 env
->regs
[14] = env
->regs
[15] + offset
;
5873 env
->regs
[15] = addr
;
5876 /* Handle exception entry to a target EL which is using AArch64 */
5877 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
5879 ARMCPU
*cpu
= ARM_CPU(cs
);
5880 CPUARMState
*env
= &cpu
->env
;
5881 unsigned int new_el
= env
->exception
.target_el
;
5882 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
5883 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
5885 if (arm_current_el(env
) < new_el
) {
5886 /* Entry vector offset depends on whether the implemented EL
5887 * immediately lower than the target level is using AArch32 or AArch64
5893 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
5896 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
5899 is_aa64
= is_a64(env
);
5902 g_assert_not_reached();
5910 } else if (pstate_read(env
) & PSTATE_SP
) {
5914 switch (cs
->exception_index
) {
5915 case EXCP_PREFETCH_ABORT
:
5916 case EXCP_DATA_ABORT
:
5917 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
5918 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
5919 env
->cp15
.far_el
[new_el
]);
5927 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
5938 qemu_log_mask(CPU_LOG_INT
,
5939 "...handling as semihosting call 0x%" PRIx64
"\n",
5941 env
->xregs
[0] = do_arm_semihosting(env
);
5944 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5948 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
5949 aarch64_save_sp(env
, arm_current_el(env
));
5950 env
->elr_el
[new_el
] = env
->pc
;
5952 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
5954 env
->cp15
.esr_el
[new_el
] |= 1 << 25;
5956 env
->elr_el
[new_el
] = env
->regs
[15];
5958 aarch64_sync_32_to_64(env
);
5960 env
->condexec_bits
= 0;
5962 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
5963 env
->elr_el
[new_el
]);
5965 pstate_write(env
, PSTATE_DAIF
| new_mode
);
5967 aarch64_restore_sp(env
, new_el
);
5971 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
5972 new_el
, env
->pc
, pstate_read(env
));
5975 static inline bool check_for_semihosting(CPUState
*cs
)
5977 /* Check whether this exception is a semihosting call; if so
5978 * then handle it and return true; otherwise return false.
5980 ARMCPU
*cpu
= ARM_CPU(cs
);
5981 CPUARMState
*env
= &cpu
->env
;
5984 if (cs
->exception_index
== EXCP_SEMIHOST
) {
5985 /* This is always the 64-bit semihosting exception.
5986 * The "is this usermode" and "is semihosting enabled"
5987 * checks have been done at translate time.
5989 qemu_log_mask(CPU_LOG_INT
,
5990 "...handling as semihosting call 0x%" PRIx64
"\n",
5992 env
->xregs
[0] = do_arm_semihosting(env
);
5999 /* Only intercept calls from privileged modes, to provide some
6000 * semblance of security.
6002 if (!semihosting_enabled() ||
6003 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
)) {
6007 switch (cs
->exception_index
) {
6009 /* Check for semihosting interrupt. */
6011 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
6017 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
6019 if (imm
== 0x123456) {
6025 /* See if this is a semihosting syscall. */
6027 imm
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
)
6039 qemu_log_mask(CPU_LOG_INT
,
6040 "...handling as semihosting call 0x%x\n",
6042 env
->regs
[0] = do_arm_semihosting(env
);
6047 /* Handle a CPU exception for A and R profile CPUs.
6048 * Do any appropriate logging, handle PSCI calls, and then hand off
6049 * to the AArch64-entry or AArch32-entry function depending on the
6050 * target exception level's register width.
6052 void arm_cpu_do_interrupt(CPUState
*cs
)
6054 ARMCPU
*cpu
= ARM_CPU(cs
);
6055 CPUARMState
*env
= &cpu
->env
;
6056 unsigned int new_el
= env
->exception
.target_el
;
6060 arm_log_exception(cs
->exception_index
);
6061 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
6063 if (qemu_loglevel_mask(CPU_LOG_INT
)
6064 && !excp_is_internal(cs
->exception_index
)) {
6065 qemu_log_mask(CPU_LOG_INT
, "...with ESR %x/0x%" PRIx32
"\n",
6066 env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
,
6067 env
->exception
.syndrome
);
6070 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
6071 arm_handle_psci_call(cpu
);
6072 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
6076 /* Semihosting semantics depend on the register width of the
6077 * code that caused the exception, not the target exception level,
6078 * so must be handled here.
6080 if (check_for_semihosting(cs
)) {
6084 assert(!excp_is_internal(cs
->exception_index
));
6085 if (arm_el_is_aa64(env
, new_el
)) {
6086 arm_cpu_do_interrupt_aarch64(cs
);
6088 arm_cpu_do_interrupt_aarch32(cs
);
6091 if (!kvm_enabled()) {
6092 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
6096 /* Return the exception level which controls this address translation regime */
6097 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6100 case ARMMMUIdx_S2NS
:
6101 case ARMMMUIdx_S1E2
:
6103 case ARMMMUIdx_S1E3
:
6105 case ARMMMUIdx_S1SE0
:
6106 return arm_el_is_aa64(env
, 3) ? 1 : 3;
6107 case ARMMMUIdx_S1SE1
:
6108 case ARMMMUIdx_S1NSE0
:
6109 case ARMMMUIdx_S1NSE1
:
6112 g_assert_not_reached();
6116 /* Return true if this address translation regime is secure */
6117 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6120 case ARMMMUIdx_S12NSE0
:
6121 case ARMMMUIdx_S12NSE1
:
6122 case ARMMMUIdx_S1NSE0
:
6123 case ARMMMUIdx_S1NSE1
:
6124 case ARMMMUIdx_S1E2
:
6125 case ARMMMUIdx_S2NS
:
6127 case ARMMMUIdx_S1E3
:
6128 case ARMMMUIdx_S1SE0
:
6129 case ARMMMUIdx_S1SE1
:
6132 g_assert_not_reached();
6136 /* Return the SCTLR value which controls this address translation regime */
6137 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6139 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
6142 /* Return true if the specified stage of address translation is disabled */
6143 static inline bool regime_translation_disabled(CPUARMState
*env
,
6146 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6147 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
6149 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
6152 /* Return the TCR controlling this translation regime */
6153 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6155 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6156 return &env
->cp15
.vtcr_el2
;
6158 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
6161 /* Return the TTBR associated with this translation regime */
6162 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6165 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6166 return env
->cp15
.vttbr_el2
;
6169 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
6171 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
6175 /* Return true if the translation regime is using LPAE format page tables */
6176 static inline bool regime_using_lpae_format(CPUARMState
*env
,
6179 int el
= regime_el(env
, mmu_idx
);
6180 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
6183 if (arm_feature(env
, ARM_FEATURE_LPAE
)
6184 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
6190 /* Returns true if the stage 1 translation regime is using LPAE format page
6191 * tables. Used when raising alignment exceptions, whose FSR changes depending
6192 * on whether the long or short descriptor format is in use. */
6193 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6195 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6196 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6199 return regime_using_lpae_format(env
, mmu_idx
);
6202 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6205 case ARMMMUIdx_S1SE0
:
6206 case ARMMMUIdx_S1NSE0
:
6210 case ARMMMUIdx_S12NSE0
:
6211 case ARMMMUIdx_S12NSE1
:
6212 g_assert_not_reached();
6216 /* Translate section/page access permissions to page
6217 * R/W protection flags
6220 * @mmu_idx: MMU index indicating required translation regime
6221 * @ap: The 3-bit access permissions (AP[2:0])
6222 * @domain_prot: The 2-bit domain access permissions
6224 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6225 int ap
, int domain_prot
)
6227 bool is_user
= regime_is_user(env
, mmu_idx
);
6229 if (domain_prot
== 3) {
6230 return PAGE_READ
| PAGE_WRITE
;
6235 if (arm_feature(env
, ARM_FEATURE_V7
)) {
6238 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
6240 return is_user
? 0 : PAGE_READ
;
6247 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6252 return PAGE_READ
| PAGE_WRITE
;
6255 return PAGE_READ
| PAGE_WRITE
;
6256 case 4: /* Reserved. */
6259 return is_user
? 0 : PAGE_READ
;
6263 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
6268 g_assert_not_reached();
6272 /* Translate section/page access permissions to page
6273 * R/W protection flags.
6275 * @ap: The 2-bit simple AP (AP[2:1])
6276 * @is_user: TRUE if accessing from PL0
6278 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
6282 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6284 return PAGE_READ
| PAGE_WRITE
;
6286 return is_user
? 0 : PAGE_READ
;
6290 g_assert_not_reached();
6295 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6297 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6300 /* Translate S2 section/page access permissions to protection flags
6303 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6304 * @xn: XN (execute-never) bit
6306 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
6322 /* Translate section/page access permissions to protection flags
6325 * @mmu_idx: MMU index indicating required translation regime
6326 * @is_aa64: TRUE if AArch64
6327 * @ap: The 2-bit simple AP (AP[2:1])
6328 * @ns: NS (non-secure) bit
6329 * @xn: XN (execute-never) bit
6330 * @pxn: PXN (privileged execute-never) bit
6332 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6333 int ap
, int ns
, int xn
, int pxn
)
6335 bool is_user
= regime_is_user(env
, mmu_idx
);
6336 int prot_rw
, user_rw
;
6340 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6342 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6346 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6349 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6353 /* TODO have_wxn should be replaced with
6354 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6355 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6356 * compatible processors have EL2, which is required for [U]WXN.
6358 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6361 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6365 switch (regime_el(env
, mmu_idx
)) {
6368 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6375 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6376 switch (regime_el(env
, mmu_idx
)) {
6380 xn
= xn
|| !(user_rw
& PAGE_READ
);
6384 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6386 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6387 (uwxn
&& (user_rw
& PAGE_WRITE
));
6397 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6400 return prot_rw
| PAGE_EXEC
;
6403 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6404 uint32_t *table
, uint32_t address
)
6406 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6407 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6409 if (address
& tcr
->mask
) {
6410 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6411 /* Translation table walk disabled for TTBR1 */
6414 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6416 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6417 /* Translation table walk disabled for TTBR0 */
6420 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6422 *table
|= (address
>> 18) & 0x3ffc;
6426 /* Translate a S1 pagetable walk through S2 if needed. */
6427 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6428 hwaddr addr
, MemTxAttrs txattrs
,
6430 ARMMMUFaultInfo
*fi
)
6432 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
6433 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
6434 target_ulong s2size
;
6439 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
6440 &txattrs
, &s2prot
, &s2size
, fsr
, fi
);
6452 /* All loads done in the course of a page table walk go through here.
6453 * TODO: rather than ignoring errors from physical memory reads (which
6454 * are external aborts in ARM terminology) we should propagate this
6455 * error out so that we can turn it into a Data Abort if this walk
6456 * was being done for a CPU load/store or an address translation instruction
6457 * (but not if it was for a debug access).
6459 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6460 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6461 ARMMMUFaultInfo
*fi
)
6463 ARMCPU
*cpu
= ARM_CPU(cs
);
6464 CPUARMState
*env
= &cpu
->env
;
6465 MemTxAttrs attrs
= {};
6468 attrs
.secure
= is_secure
;
6469 as
= arm_addressspace(cs
, attrs
);
6470 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6474 return address_space_ldl(as
, addr
, attrs
, NULL
);
6477 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6478 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6479 ARMMMUFaultInfo
*fi
)
6481 ARMCPU
*cpu
= ARM_CPU(cs
);
6482 CPUARMState
*env
= &cpu
->env
;
6483 MemTxAttrs attrs
= {};
6486 attrs
.secure
= is_secure
;
6487 as
= arm_addressspace(cs
, attrs
);
6488 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6492 return address_space_ldq(as
, addr
, attrs
, NULL
);
6495 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6496 int access_type
, ARMMMUIdx mmu_idx
,
6497 hwaddr
*phys_ptr
, int *prot
,
6498 target_ulong
*page_size
, uint32_t *fsr
,
6499 ARMMMUFaultInfo
*fi
)
6501 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6512 /* Pagetable walk. */
6513 /* Lookup l1 descriptor. */
6514 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6515 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6519 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6522 domain
= (desc
>> 5) & 0x0f;
6523 if (regime_el(env
, mmu_idx
) == 1) {
6524 dacr
= env
->cp15
.dacr_ns
;
6526 dacr
= env
->cp15
.dacr_s
;
6528 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6530 /* Section translation fault. */
6534 if (domain_prot
== 0 || domain_prot
== 2) {
6536 code
= 9; /* Section domain fault. */
6538 code
= 11; /* Page domain fault. */
6543 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6544 ap
= (desc
>> 10) & 3;
6546 *page_size
= 1024 * 1024;
6548 /* Lookup l2 entry. */
6550 /* Coarse pagetable. */
6551 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6553 /* Fine pagetable. */
6554 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6556 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6559 case 0: /* Page translation fault. */
6562 case 1: /* 64k page. */
6563 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6564 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6565 *page_size
= 0x10000;
6567 case 2: /* 4k page. */
6568 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6569 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6570 *page_size
= 0x1000;
6572 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6574 /* ARMv6/XScale extended small page format */
6575 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
6576 || arm_feature(env
, ARM_FEATURE_V6
)) {
6577 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6578 *page_size
= 0x1000;
6580 /* UNPREDICTABLE in ARMv5; we choose to take a
6581 * page translation fault.
6587 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
6590 ap
= (desc
>> 4) & 3;
6593 /* Never happens, but compiler isn't smart enough to tell. */
6598 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6599 *prot
|= *prot
? PAGE_EXEC
: 0;
6600 if (!(*prot
& (1 << access_type
))) {
6601 /* Access permission fault. */
6604 *phys_ptr
= phys_addr
;
6607 *fsr
= code
| (domain
<< 4);
6611 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
6612 int access_type
, ARMMMUIdx mmu_idx
,
6613 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6614 target_ulong
*page_size
, uint32_t *fsr
,
6615 ARMMMUFaultInfo
*fi
)
6617 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6631 /* Pagetable walk. */
6632 /* Lookup l1 descriptor. */
6633 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6634 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6638 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6641 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
6642 /* Section translation fault, or attempt to use the encoding
6643 * which is Reserved on implementations without PXN.
6648 if ((type
== 1) || !(desc
& (1 << 18))) {
6649 /* Page or Section. */
6650 domain
= (desc
>> 5) & 0x0f;
6652 if (regime_el(env
, mmu_idx
) == 1) {
6653 dacr
= env
->cp15
.dacr_ns
;
6655 dacr
= env
->cp15
.dacr_s
;
6657 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6658 if (domain_prot
== 0 || domain_prot
== 2) {
6660 code
= 9; /* Section domain fault. */
6662 code
= 11; /* Page domain fault. */
6667 if (desc
& (1 << 18)) {
6669 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
6670 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
6671 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
6672 *page_size
= 0x1000000;
6675 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6676 *page_size
= 0x100000;
6678 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
6679 xn
= desc
& (1 << 4);
6682 ns
= extract32(desc
, 19, 1);
6684 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
6685 pxn
= (desc
>> 2) & 1;
6687 ns
= extract32(desc
, 3, 1);
6688 /* Lookup l2 entry. */
6689 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6690 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6692 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
6694 case 0: /* Page translation fault. */
6697 case 1: /* 64k page. */
6698 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6699 xn
= desc
& (1 << 15);
6700 *page_size
= 0x10000;
6702 case 2: case 3: /* 4k page. */
6703 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6705 *page_size
= 0x1000;
6708 /* Never happens, but compiler isn't smart enough to tell. */
6713 if (domain_prot
== 3) {
6714 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
6716 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
6719 if (xn
&& access_type
== 2)
6722 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
6723 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
6724 /* The simplified model uses AP[0] as an access control bit. */
6725 if ((ap
& 1) == 0) {
6726 /* Access flag fault. */
6727 code
= (code
== 15) ? 6 : 3;
6730 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
6732 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6737 if (!(*prot
& (1 << access_type
))) {
6738 /* Access permission fault. */
6743 /* The NS bit will (as required by the architecture) have no effect if
6744 * the CPU doesn't support TZ or this is a non-secure translation
6745 * regime, because the attribute will already be non-secure.
6747 attrs
->secure
= false;
6749 *phys_ptr
= phys_addr
;
6752 *fsr
= code
| (domain
<< 4);
6756 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6757 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6760 translation_fault
= 1,
6762 permission_fault
= 3,
6766 * check_s2_startlevel
6768 * @is_aa64: True if the translation regime is in AArch64 state
6769 * @startlevel: Suggested starting level
6770 * @inputsize: Bitsize of IPAs
6771 * @stride: Page-table stride (See the ARM ARM)
6773 * Returns true if the suggested starting level is OK and false otherwise.
6775 static bool check_s2_startlevel(ARMCPU
*cpu
, bool is_aa64
, int level
,
6776 int inputsize
, int stride
)
6778 /* Negative levels are never allowed. */
6784 unsigned int pamax
= arm_pamax(cpu
);
6787 case 13: /* 64KB Pages. */
6788 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
6792 case 11: /* 16KB Pages. */
6793 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
6797 case 9: /* 4KB Pages. */
6798 if (level
== 0 && pamax
<= 42) {
6803 g_assert_not_reached();
6806 const int grainsize
= stride
+ 3;
6809 /* AArch32 only supports 4KB pages. Assert on that. */
6810 assert(stride
== 9);
6816 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
6817 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
6824 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
6825 int access_type
, ARMMMUIdx mmu_idx
,
6826 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
6827 target_ulong
*page_size_ptr
, uint32_t *fsr
,
6828 ARMMMUFaultInfo
*fi
)
6830 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6831 CPUState
*cs
= CPU(cpu
);
6832 /* Read an LPAE long-descriptor translation table. */
6833 MMUFaultType fault_type
= translation_fault
;
6840 hwaddr descaddr
, descmask
;
6841 uint32_t tableattrs
;
6842 target_ulong page_size
;
6845 int32_t va_size
= 32;
6848 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6849 int ap
, ns
, xn
, pxn
;
6850 uint32_t el
= regime_el(env
, mmu_idx
);
6851 bool ttbr1_valid
= true;
6852 uint64_t descaddrmask
;
6855 * This code does not handle the different format TCR for VTCR_EL2.
6856 * This code also does not support shareability levels.
6857 * Attribute and permission bit handling should also be checked when adding
6858 * support for those page table walks.
6860 if (arm_el_is_aa64(env
, el
)) {
6863 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
6864 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
6867 if (extract64(address
, 55, 1)) {
6868 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
6870 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
6875 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6879 ttbr1_valid
= false;
6882 /* There is no TTBR1 for EL2 */
6884 ttbr1_valid
= false;
6888 /* Determine whether this address is in the region controlled by
6889 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6890 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6891 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6893 if (va_size
== 64) {
6894 /* AArch64 translation. */
6895 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
6896 t0sz
= MIN(t0sz
, 39);
6897 t0sz
= MAX(t0sz
, 16);
6898 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
6899 /* AArch32 stage 1 translation. */
6900 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
6902 /* AArch32 stage 2 translation. */
6903 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
6904 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
6905 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4);
6907 /* If the sign-extend bit is not the same as t0sz[3], the result
6908 * is unpredictable. Flag this as a guest error. */
6910 qemu_log_mask(LOG_GUEST_ERROR
,
6911 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
6914 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
6915 if (va_size
== 64) {
6916 t1sz
= MIN(t1sz
, 39);
6917 t1sz
= MAX(t1sz
, 16);
6919 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
6920 /* there is a ttbr0 region and we are in it (high bits all zero) */
6922 } else if (ttbr1_valid
&& t1sz
&&
6923 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
6924 /* there is a ttbr1 region and we are in it (high bits all one) */
6927 /* ttbr0 region is "everything not in the ttbr1 region" */
6929 } else if (!t1sz
&& ttbr1_valid
) {
6930 /* ttbr1 region is "everything not in the ttbr0 region" */
6933 /* in the gap between the two regions, this is a Translation fault */
6934 fault_type
= translation_fault
;
6938 /* Note that QEMU ignores shareability and cacheability attributes,
6939 * so we don't need to do anything with the SH, ORGN, IRGN fields
6940 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6941 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6942 * implement any ASID-like capability so we can ignore it (instead
6943 * we will always flush the TLB any time the ASID is changed).
6945 if (ttbr_select
== 0) {
6946 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
6948 epd
= extract32(tcr
->raw_tcr
, 7, 1);
6950 inputsize
= va_size
- t0sz
;
6952 tg
= extract32(tcr
->raw_tcr
, 14, 2);
6953 if (tg
== 1) { /* 64KB pages */
6956 if (tg
== 2) { /* 16KB pages */
6960 /* We should only be here if TTBR1 is valid */
6961 assert(ttbr1_valid
);
6963 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
6964 epd
= extract32(tcr
->raw_tcr
, 23, 1);
6965 inputsize
= va_size
- t1sz
;
6967 tg
= extract32(tcr
->raw_tcr
, 30, 2);
6968 if (tg
== 3) { /* 64KB pages */
6971 if (tg
== 1) { /* 16KB pages */
6976 /* Here we should have set up all the parameters for the translation:
6977 * va_size, inputsize, ttbr, epd, stride, tbi
6981 /* Translation table walk disabled => Translation fault on TLB miss
6982 * Note: This is always 0 on 64-bit EL2 and EL3.
6987 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
6988 /* The starting level depends on the virtual address size (which can
6989 * be up to 48 bits) and the translation granule size. It indicates
6990 * the number of strides (stride bits at a time) needed to
6991 * consume the bits of the input address. In the pseudocode this is:
6992 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6993 * where their 'inputsize' is our 'inputsize', 'grainsize' is
6994 * our 'stride + 3' and 'stride' is our 'stride'.
6995 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6996 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
6997 * = 4 - (inputsize - 4) / stride;
6999 level
= 4 - (inputsize
- 4) / stride
;
7001 /* For stage 2 translations the starting level is specified by the
7002 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7004 int startlevel
= extract32(tcr
->raw_tcr
, 6, 2);
7007 if (va_size
== 32 || stride
== 9) {
7008 /* AArch32 or 4KB pages */
7009 level
= 2 - startlevel
;
7011 /* 16KB or 64KB pages */
7012 level
= 3 - startlevel
;
7015 /* Check that the starting level is valid. */
7016 ok
= check_s2_startlevel(cpu
, va_size
== 64, level
,
7019 /* AArch64 reports these as level 0 faults.
7020 * AArch32 reports these as level 1 faults.
7022 level
= va_size
== 64 ? 0 : 1;
7023 fault_type
= translation_fault
;
7028 /* Clear the vaddr bits which aren't part of the within-region address,
7029 * so that we don't have to special case things when calculating the
7030 * first descriptor address.
7032 if (va_size
!= inputsize
) {
7033 address
&= (1ULL << inputsize
) - 1;
7036 descmask
= (1ULL << (stride
+ 3)) - 1;
7038 /* Now we can extract the actual base address from the TTBR */
7039 descaddr
= extract64(ttbr
, 0, 48);
7040 descaddr
&= ~((1ULL << (inputsize
- (stride
* (4 - level
)))) - 1);
7042 /* The address field in the descriptor goes up to bit 39 for ARMv7
7043 * but up to bit 47 for ARMv8.
7045 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7046 descaddrmask
= 0xfffffffff000ULL
;
7048 descaddrmask
= 0xfffffff000ULL
;
7051 /* Secure accesses start with the page table in secure memory and
7052 * can be downgraded to non-secure at any step. Non-secure accesses
7053 * remain non-secure. We implement this by just ORing in the NSTable/NS
7054 * bits at each step.
7056 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
7058 uint64_t descriptor
;
7061 descaddr
|= (address
>> (stride
* (4 - level
))) & descmask
;
7063 nstable
= extract32(tableattrs
, 4, 1);
7064 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fsr
, fi
);
7069 if (!(descriptor
& 1) ||
7070 (!(descriptor
& 2) && (level
== 3))) {
7071 /* Invalid, or the Reserved level 3 encoding */
7074 descaddr
= descriptor
& descaddrmask
;
7076 if ((descriptor
& 2) && (level
< 3)) {
7077 /* Table entry. The top five bits are attributes which may
7078 * propagate down through lower levels of the table (and
7079 * which are all arranged so that 0 means "no effect", so
7080 * we can gather them up by ORing in the bits at each level).
7082 tableattrs
|= extract64(descriptor
, 59, 5);
7086 /* Block entry at level 1 or 2, or page entry at level 3.
7087 * These are basically the same thing, although the number
7088 * of bits we pull in from the vaddr varies.
7090 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
7091 descaddr
|= (address
& (page_size
- 1));
7092 /* Extract attributes from the descriptor */
7093 attrs
= extract64(descriptor
, 2, 10)
7094 | (extract64(descriptor
, 52, 12) << 10);
7096 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7097 /* Stage 2 table descriptors do not include any attribute fields */
7100 /* Merge in attributes from table descriptors */
7101 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
7102 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
7103 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7104 * means "force PL1 access only", which means forcing AP[1] to 0.
7106 if (extract32(tableattrs
, 2, 1)) {
7109 attrs
|= nstable
<< 3; /* NS */
7112 /* Here descaddr is the final physical address, and attributes
7115 fault_type
= access_fault
;
7116 if ((attrs
& (1 << 8)) == 0) {
7121 ap
= extract32(attrs
, 4, 2);
7122 xn
= extract32(attrs
, 12, 1);
7124 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7126 *prot
= get_S2prot(env
, ap
, xn
);
7128 ns
= extract32(attrs
, 3, 1);
7129 pxn
= extract32(attrs
, 11, 1);
7130 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
7133 fault_type
= permission_fault
;
7134 if (!(*prot
& (1 << access_type
))) {
7139 /* The NS bit will (as required by the architecture) have no effect if
7140 * the CPU doesn't support TZ or this is a non-secure translation
7141 * regime, because the attribute will already be non-secure.
7143 txattrs
->secure
= false;
7145 *phys_ptr
= descaddr
;
7146 *page_size_ptr
= page_size
;
7150 /* Long-descriptor format IFSR/DFSR value */
7151 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
7152 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7153 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
7157 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
7159 int32_t address
, int *prot
)
7161 *prot
= PAGE_READ
| PAGE_WRITE
;
7163 case 0xF0000000 ... 0xFFFFFFFF:
7164 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
7168 case 0x00000000 ... 0x7FFFFFFF:
7175 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
7176 int access_type
, ARMMMUIdx mmu_idx
,
7177 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7179 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7181 bool is_user
= regime_is_user(env
, mmu_idx
);
7183 *phys_ptr
= address
;
7186 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
7187 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7188 } else { /* MPU enabled */
7189 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
7191 uint32_t base
= env
->pmsav7
.drbar
[n
];
7192 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
7196 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
7201 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
7205 rmask
= (1ull << rsize
) - 1;
7208 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
7209 "to DRSR region size, mask = %" PRIx32
,
7214 if (address
< base
|| address
> base
+ rmask
) {
7218 /* Region matched */
7220 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
7222 uint32_t srdis_mask
;
7224 rsize
-= 3; /* sub region size (power of 2) */
7225 snd
= ((address
- base
) >> rsize
) & 0x7;
7226 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
7228 srdis_mask
= srdis
? 0x3 : 0x0;
7229 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
7230 /* This will check in groups of 2, 4 and then 8, whether
7231 * the subregion bits are consistent. rsize is incremented
7232 * back up to give the region size, considering consistent
7233 * adjacent subregions as one region. Stop testing if rsize
7234 * is already big enough for an entire QEMU page.
7236 int snd_rounded
= snd
& ~(i
- 1);
7237 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
7238 snd_rounded
+ 8, i
);
7239 if (srdis_mask
^ srdis_multi
) {
7242 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
7246 if (rsize
< TARGET_PAGE_BITS
) {
7247 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
7248 "alignment of %" PRIu32
" bits. Minimum is %d\n",
7249 rsize
, TARGET_PAGE_BITS
);
7258 if (n
== -1) { /* no hits */
7259 if (cpu
->pmsav7_dregion
&&
7260 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
7261 /* background fault */
7265 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7266 } else { /* a MPU hit! */
7267 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
7269 if (is_user
) { /* User mode AP bit decoding */
7274 break; /* no access */
7276 *prot
|= PAGE_WRITE
;
7280 *prot
|= PAGE_READ
| PAGE_EXEC
;
7283 qemu_log_mask(LOG_GUEST_ERROR
,
7284 "Bad value for AP bits in DRACR %"
7287 } else { /* Priv. mode AP bits decoding */
7290 break; /* no access */
7294 *prot
|= PAGE_WRITE
;
7298 *prot
|= PAGE_READ
| PAGE_EXEC
;
7301 qemu_log_mask(LOG_GUEST_ERROR
,
7302 "Bad value for AP bits in DRACR %"
7308 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
7309 *prot
&= ~PAGE_EXEC
;
7314 *fsr
= 0x00d; /* Permission fault */
7315 return !(*prot
& (1 << access_type
));
7318 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
7319 int access_type
, ARMMMUIdx mmu_idx
,
7320 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7325 bool is_user
= regime_is_user(env
, mmu_idx
);
7327 *phys_ptr
= address
;
7328 for (n
= 7; n
>= 0; n
--) {
7329 base
= env
->cp15
.c6_region
[n
];
7330 if ((base
& 1) == 0) {
7333 mask
= 1 << ((base
>> 1) & 0x1f);
7334 /* Keep this shift separate from the above to avoid an
7335 (undefined) << 32. */
7336 mask
= (mask
<< 1) - 1;
7337 if (((base
^ address
) & ~mask
) == 0) {
7346 if (access_type
== 2) {
7347 mask
= env
->cp15
.pmsav5_insn_ap
;
7349 mask
= env
->cp15
.pmsav5_data_ap
;
7351 mask
= (mask
>> (n
* 4)) & 0xf;
7361 *prot
= PAGE_READ
| PAGE_WRITE
;
7366 *prot
|= PAGE_WRITE
;
7370 *prot
= PAGE_READ
| PAGE_WRITE
;
7383 /* Bad permission. */
7391 /* get_phys_addr - get the physical address for this virtual address
7393 * Find the physical address corresponding to the given virtual address,
7394 * by doing a translation table walk on MMU based systems or using the
7395 * MPU state on MPU based systems.
7397 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7398 * prot and page_size may not be filled in, and the populated fsr value provides
7399 * information on why the translation aborted, in the format of a
7400 * DFSR/IFSR fault register, with the following caveats:
7401 * * we honour the short vs long DFSR format differences.
7402 * * the WnR bit is never set (the caller must do this).
7403 * * for PSMAv5 based systems we don't bother to return a full FSR format
7407 * @address: virtual address to get physical address for
7408 * @access_type: 0 for read, 1 for write, 2 for execute
7409 * @mmu_idx: MMU index indicating required translation regime
7410 * @phys_ptr: set to the physical address corresponding to the virtual address
7411 * @attrs: set to the memory transaction attributes to use
7412 * @prot: set to the permissions for the page containing phys_ptr
7413 * @page_size: set to the size of the page containing phys_ptr
7414 * @fsr: set to the DFSR/IFSR value on failure
7416 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
7417 int access_type
, ARMMMUIdx mmu_idx
,
7418 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7419 target_ulong
*page_size
, uint32_t *fsr
,
7420 ARMMMUFaultInfo
*fi
)
7422 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
7423 /* Call ourselves recursively to do the stage 1 and then stage 2
7426 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
7431 ret
= get_phys_addr(env
, address
, access_type
,
7432 mmu_idx
+ ARMMMUIdx_S1NSE0
, &ipa
, attrs
,
7433 prot
, page_size
, fsr
, fi
);
7435 /* If S1 fails or S2 is disabled, return early. */
7436 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
7441 /* S1 is done. Now do S2 translation. */
7442 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
7443 phys_ptr
, attrs
, &s2_prot
,
7444 page_size
, fsr
, fi
);
7446 /* Combine the S1 and S2 perms. */
7451 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7453 mmu_idx
+= ARMMMUIdx_S1NSE0
;
7457 /* The page table entries may downgrade secure to non-secure, but
7458 * cannot upgrade an non-secure translation regime's attributes
7461 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
7462 attrs
->user
= regime_is_user(env
, mmu_idx
);
7464 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7465 * In v7 and earlier it affects all stage 1 translations.
7467 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
7468 && !arm_feature(env
, ARM_FEATURE_V8
)) {
7469 if (regime_el(env
, mmu_idx
) == 3) {
7470 address
+= env
->cp15
.fcseidr_s
;
7472 address
+= env
->cp15
.fcseidr_ns
;
7476 /* pmsav7 has special handling for when MPU is disabled so call it before
7477 * the common MMU/MPU disabled check below.
7479 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
7480 arm_feature(env
, ARM_FEATURE_V7
)) {
7481 *page_size
= TARGET_PAGE_SIZE
;
7482 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
7483 phys_ptr
, prot
, fsr
);
7486 if (regime_translation_disabled(env
, mmu_idx
)) {
7487 /* MMU/MPU disabled. */
7488 *phys_ptr
= address
;
7489 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7490 *page_size
= TARGET_PAGE_SIZE
;
7494 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
7496 *page_size
= TARGET_PAGE_SIZE
;
7497 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
7498 phys_ptr
, prot
, fsr
);
7501 if (regime_using_lpae_format(env
, mmu_idx
)) {
7502 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7503 attrs
, prot
, page_size
, fsr
, fi
);
7504 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
7505 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7506 attrs
, prot
, page_size
, fsr
, fi
);
7508 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7509 prot
, page_size
, fsr
, fi
);
7513 /* Walk the page table and (if the mapping exists) add the page
7514 * to the TLB. Return false on success, or true on failure. Populate
7515 * fsr with ARM DFSR/IFSR fault register format value on failure.
7517 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
7518 int access_type
, int mmu_idx
, uint32_t *fsr
,
7519 ARMMMUFaultInfo
*fi
)
7521 ARMCPU
*cpu
= ARM_CPU(cs
);
7522 CPUARMState
*env
= &cpu
->env
;
7524 target_ulong page_size
;
7527 MemTxAttrs attrs
= {};
7529 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
7530 &attrs
, &prot
, &page_size
, fsr
, fi
);
7532 /* Map a single [sub]page. */
7533 phys_addr
&= TARGET_PAGE_MASK
;
7534 address
&= TARGET_PAGE_MASK
;
7535 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
7536 prot
, mmu_idx
, page_size
);
7543 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
7546 ARMCPU
*cpu
= ARM_CPU(cs
);
7547 CPUARMState
*env
= &cpu
->env
;
7549 target_ulong page_size
;
7553 ARMMMUFaultInfo fi
= {};
7555 *attrs
= (MemTxAttrs
) {};
7557 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
7558 attrs
, &prot
, &page_size
, &fsr
, &fi
);
7566 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
7568 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
7569 env
->regs
[13] = val
;
7571 env
->banked_r13
[bank_number(mode
)] = val
;
7575 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
7577 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
7578 return env
->regs
[13];
7580 return env
->banked_r13
[bank_number(mode
)];
7584 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7586 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7590 return xpsr_read(env
) & 0xf8000000;
7592 return xpsr_read(env
) & 0xf80001ff;
7594 return xpsr_read(env
) & 0xff00fc00;
7596 return xpsr_read(env
) & 0xff00fdff;
7598 return xpsr_read(env
) & 0x000001ff;
7600 return xpsr_read(env
) & 0x0700fc00;
7602 return xpsr_read(env
) & 0x0700edff;
7604 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
7606 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
7607 case 16: /* PRIMASK */
7608 return (env
->daif
& PSTATE_I
) != 0;
7609 case 17: /* BASEPRI */
7610 case 18: /* BASEPRI_MAX */
7611 return env
->v7m
.basepri
;
7612 case 19: /* FAULTMASK */
7613 return (env
->daif
& PSTATE_F
) != 0;
7614 case 20: /* CONTROL */
7615 return env
->v7m
.control
;
7617 /* ??? For debugging only. */
7618 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
7623 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
7625 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7629 xpsr_write(env
, val
, 0xf8000000);
7632 xpsr_write(env
, val
, 0xf8000000);
7635 xpsr_write(env
, val
, 0xfe00fc00);
7638 xpsr_write(env
, val
, 0xfe00fc00);
7641 /* IPSR bits are readonly. */
7644 xpsr_write(env
, val
, 0x0600fc00);
7647 xpsr_write(env
, val
, 0x0600fc00);
7650 if (env
->v7m
.current_sp
)
7651 env
->v7m
.other_sp
= val
;
7653 env
->regs
[13] = val
;
7656 if (env
->v7m
.current_sp
)
7657 env
->regs
[13] = val
;
7659 env
->v7m
.other_sp
= val
;
7661 case 16: /* PRIMASK */
7663 env
->daif
|= PSTATE_I
;
7665 env
->daif
&= ~PSTATE_I
;
7668 case 17: /* BASEPRI */
7669 env
->v7m
.basepri
= val
& 0xff;
7671 case 18: /* BASEPRI_MAX */
7673 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
7674 env
->v7m
.basepri
= val
;
7676 case 19: /* FAULTMASK */
7678 env
->daif
|= PSTATE_F
;
7680 env
->daif
&= ~PSTATE_F
;
7683 case 20: /* CONTROL */
7684 env
->v7m
.control
= val
& 3;
7685 switch_v7m_sp(env
, (val
& 2) != 0);
7688 /* ??? For debugging only. */
7689 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
7696 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
7698 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7699 * Note that we do not implement the (architecturally mandated)
7700 * alignment fault for attempts to use this on Device memory
7701 * (which matches the usual QEMU behaviour of not implementing either
7702 * alignment faults or any memory attribute handling).
7705 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7706 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
7707 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
7709 #ifndef CONFIG_USER_ONLY
7711 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7712 * the block size so we might have to do more than one TLB lookup.
7713 * We know that in fact for any v8 CPU the page size is at least 4K
7714 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7715 * 1K as an artefact of legacy v5 subpage support being present in the
7716 * same QEMU executable.
7718 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
7719 void *hostaddr
[maxidx
];
7721 unsigned mmu_idx
= cpu_mmu_index(env
, false);
7722 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
7724 for (try = 0; try < 2; try++) {
7726 for (i
= 0; i
< maxidx
; i
++) {
7727 hostaddr
[i
] = tlb_vaddr_to_host(env
,
7728 vaddr
+ TARGET_PAGE_SIZE
* i
,
7735 /* If it's all in the TLB it's fair game for just writing to;
7736 * we know we don't need to update dirty status, etc.
7738 for (i
= 0; i
< maxidx
- 1; i
++) {
7739 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
7741 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
7744 /* OK, try a store and see if we can populate the tlb. This
7745 * might cause an exception if the memory isn't writable,
7746 * in which case we will longjmp out of here. We must for
7747 * this purpose use the actual register value passed to us
7748 * so that we get the fault address right.
7750 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
7751 /* Now we can populate the other TLB entries, if any */
7752 for (i
= 0; i
< maxidx
; i
++) {
7753 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
7754 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
7755 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
7760 /* Slow path (probably attempt to do this to an I/O device or
7761 * similar, or clearing of a block of code we have translations
7762 * cached for). Just do a series of byte writes as the architecture
7763 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7764 * memset(), unmap() sequence here because:
7765 * + we'd need to account for the blocksize being larger than a page
7766 * + the direct-RAM access case is almost always going to be dealt
7767 * with in the fastpath code above, so there's no speed benefit
7768 * + we would have to deal with the map returning NULL because the
7769 * bounce buffer was in use
7771 for (i
= 0; i
< blocklen
; i
++) {
7772 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
7776 memset(g2h(vaddr
), 0, blocklen
);
7780 /* Note that signed overflow is undefined in C. The following routines are
7781 careful to use unsigned types where modulo arithmetic is required.
7782 Failure to do so _will_ break on newer gcc. */
7784 /* Signed saturating arithmetic. */
7786 /* Perform 16-bit signed saturating addition. */
7787 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
7792 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
7801 /* Perform 8-bit signed saturating addition. */
7802 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
7807 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
7816 /* Perform 16-bit signed saturating subtraction. */
7817 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
7822 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
7831 /* Perform 8-bit signed saturating subtraction. */
7832 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
7837 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
7846 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7847 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7848 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7849 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7852 #include "op_addsub.h"
7854 /* Unsigned saturating arithmetic. */
7855 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
7864 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
7872 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
7881 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
7889 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7890 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7891 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7892 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7895 #include "op_addsub.h"
7897 /* Signed modulo arithmetic. */
7898 #define SARITH16(a, b, n, op) do { \
7900 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7901 RESULT(sum, n, 16); \
7903 ge |= 3 << (n * 2); \
7906 #define SARITH8(a, b, n, op) do { \
7908 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7909 RESULT(sum, n, 8); \
7915 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7916 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7917 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7918 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7922 #include "op_addsub.h"
7924 /* Unsigned modulo arithmetic. */
7925 #define ADD16(a, b, n) do { \
7927 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7928 RESULT(sum, n, 16); \
7929 if ((sum >> 16) == 1) \
7930 ge |= 3 << (n * 2); \
7933 #define ADD8(a, b, n) do { \
7935 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7936 RESULT(sum, n, 8); \
7937 if ((sum >> 8) == 1) \
7941 #define SUB16(a, b, n) do { \
7943 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7944 RESULT(sum, n, 16); \
7945 if ((sum >> 16) == 0) \
7946 ge |= 3 << (n * 2); \
7949 #define SUB8(a, b, n) do { \
7951 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7952 RESULT(sum, n, 8); \
7953 if ((sum >> 8) == 0) \
7960 #include "op_addsub.h"
7962 /* Halved signed arithmetic. */
7963 #define ADD16(a, b, n) \
7964 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7965 #define SUB16(a, b, n) \
7966 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7967 #define ADD8(a, b, n) \
7968 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7969 #define SUB8(a, b, n) \
7970 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7973 #include "op_addsub.h"
7975 /* Halved unsigned arithmetic. */
7976 #define ADD16(a, b, n) \
7977 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7978 #define SUB16(a, b, n) \
7979 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7980 #define ADD8(a, b, n) \
7981 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7982 #define SUB8(a, b, n) \
7983 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7986 #include "op_addsub.h"
7988 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
7996 /* Unsigned sum of absolute byte differences. */
7997 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
8000 sum
= do_usad(a
, b
);
8001 sum
+= do_usad(a
>> 8, b
>> 8);
8002 sum
+= do_usad(a
>> 16, b
>>16);
8003 sum
+= do_usad(a
>> 24, b
>> 24);
8007 /* For ARMv6 SEL instruction. */
8008 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
8021 return (a
& mask
) | (b
& ~mask
);
8024 /* VFP support. We follow the convention used for VFP instructions:
8025 Single precision routines have a "s" suffix, double precision a
8028 /* Convert host exception flags to vfp form. */
8029 static inline int vfp_exceptbits_from_host(int host_bits
)
8031 int target_bits
= 0;
8033 if (host_bits
& float_flag_invalid
)
8035 if (host_bits
& float_flag_divbyzero
)
8037 if (host_bits
& float_flag_overflow
)
8039 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
8041 if (host_bits
& float_flag_inexact
)
8042 target_bits
|= 0x10;
8043 if (host_bits
& float_flag_input_denormal
)
8044 target_bits
|= 0x80;
8048 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
8053 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
8054 | (env
->vfp
.vec_len
<< 16)
8055 | (env
->vfp
.vec_stride
<< 20);
8056 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
8057 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
8058 fpscr
|= vfp_exceptbits_from_host(i
);
8062 uint32_t vfp_get_fpscr(CPUARMState
*env
)
8064 return HELPER(vfp_get_fpscr
)(env
);
8067 /* Convert vfp exception flags to target form. */
8068 static inline int vfp_exceptbits_to_host(int target_bits
)
8072 if (target_bits
& 1)
8073 host_bits
|= float_flag_invalid
;
8074 if (target_bits
& 2)
8075 host_bits
|= float_flag_divbyzero
;
8076 if (target_bits
& 4)
8077 host_bits
|= float_flag_overflow
;
8078 if (target_bits
& 8)
8079 host_bits
|= float_flag_underflow
;
8080 if (target_bits
& 0x10)
8081 host_bits
|= float_flag_inexact
;
8082 if (target_bits
& 0x80)
8083 host_bits
|= float_flag_input_denormal
;
8087 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
8092 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
8093 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
8094 env
->vfp
.vec_len
= (val
>> 16) & 7;
8095 env
->vfp
.vec_stride
= (val
>> 20) & 3;
8098 if (changed
& (3 << 22)) {
8099 i
= (val
>> 22) & 3;
8101 case FPROUNDING_TIEEVEN
:
8102 i
= float_round_nearest_even
;
8104 case FPROUNDING_POSINF
:
8107 case FPROUNDING_NEGINF
:
8108 i
= float_round_down
;
8110 case FPROUNDING_ZERO
:
8111 i
= float_round_to_zero
;
8114 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
8116 if (changed
& (1 << 24)) {
8117 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8118 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8120 if (changed
& (1 << 25))
8121 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
8123 i
= vfp_exceptbits_to_host(val
);
8124 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
8125 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
8128 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
8130 HELPER(vfp_set_fpscr
)(env
, val
);
8133 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8135 #define VFP_BINOP(name) \
8136 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8138 float_status *fpst = fpstp; \
8139 return float32_ ## name(a, b, fpst); \
8141 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8143 float_status *fpst = fpstp; \
8144 return float64_ ## name(a, b, fpst); \
8156 float32
VFP_HELPER(neg
, s
)(float32 a
)
8158 return float32_chs(a
);
8161 float64
VFP_HELPER(neg
, d
)(float64 a
)
8163 return float64_chs(a
);
8166 float32
VFP_HELPER(abs
, s
)(float32 a
)
8168 return float32_abs(a
);
8171 float64
VFP_HELPER(abs
, d
)(float64 a
)
8173 return float64_abs(a
);
8176 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
8178 return float32_sqrt(a
, &env
->vfp
.fp_status
);
8181 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
8183 return float64_sqrt(a
, &env
->vfp
.fp_status
);
8186 /* XXX: check quiet/signaling case */
8187 #define DO_VFP_cmp(p, type) \
8188 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8191 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8192 case 0: flags = 0x6; break; \
8193 case -1: flags = 0x8; break; \
8194 case 1: flags = 0x2; break; \
8195 default: case 2: flags = 0x3; break; \
8197 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8198 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8200 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8203 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8204 case 0: flags = 0x6; break; \
8205 case -1: flags = 0x8; break; \
8206 case 1: flags = 0x2; break; \
8207 default: case 2: flags = 0x3; break; \
8209 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8210 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8212 DO_VFP_cmp(s
, float32
)
8213 DO_VFP_cmp(d
, float64
)
8216 /* Integer to float and float to integer conversions */
8218 #define CONV_ITOF(name, fsz, sign) \
8219 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8221 float_status *fpst = fpstp; \
8222 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8225 #define CONV_FTOI(name, fsz, sign, round) \
8226 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8228 float_status *fpst = fpstp; \
8229 if (float##fsz##_is_any_nan(x)) { \
8230 float_raise(float_flag_invalid, fpst); \
8233 return float##fsz##_to_##sign##int32##round(x, fpst); \
8236 #define FLOAT_CONVS(name, p, fsz, sign) \
8237 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8238 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8239 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8241 FLOAT_CONVS(si
, s
, 32, )
8242 FLOAT_CONVS(si
, d
, 64, )
8243 FLOAT_CONVS(ui
, s
, 32, u
)
8244 FLOAT_CONVS(ui
, d
, 64, u
)
8250 /* floating point conversion */
8251 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
8253 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
8254 /* ARM requires that S<->D conversion of any kind of NaN generates
8255 * a quiet NaN by forcing the most significant frac bit to 1.
8257 return float64_maybe_silence_nan(r
);
8260 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
8262 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
8263 /* ARM requires that S<->D conversion of any kind of NaN generates
8264 * a quiet NaN by forcing the most significant frac bit to 1.
8266 return float32_maybe_silence_nan(r
);
8269 /* VFP3 fixed point conversion. */
8270 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8271 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8274 float_status *fpst = fpstp; \
8276 tmp = itype##_to_##float##fsz(x, fpst); \
8277 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8280 /* Notice that we want only input-denormal exception flags from the
8281 * scalbn operation: the other possible flags (overflow+inexact if
8282 * we overflow to infinity, output-denormal) aren't correct for the
8283 * complete scale-and-convert operation.
8285 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8286 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8290 float_status *fpst = fpstp; \
8291 int old_exc_flags = get_float_exception_flags(fpst); \
8293 if (float##fsz##_is_any_nan(x)) { \
8294 float_raise(float_flag_invalid, fpst); \
8297 tmp = float##fsz##_scalbn(x, shift, fpst); \
8298 old_exc_flags |= get_float_exception_flags(fpst) \
8299 & float_flag_input_denormal; \
8300 set_float_exception_flags(old_exc_flags, fpst); \
8301 return float##fsz##_to_##itype##round(tmp, fpst); \
8304 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8305 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8306 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8307 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8309 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8310 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8311 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8313 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
8314 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
8315 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
8316 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
8317 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
8318 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
8319 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
8320 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
8321 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
8322 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
8323 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
8324 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
8326 #undef VFP_CONV_FIX_FLOAT
8327 #undef VFP_CONV_FLOAT_FIX_ROUND
8329 /* Set the current fp rounding mode and return the old one.
8330 * The argument is a softfloat float_round_ value.
8332 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8334 float_status
*fp_status
= &env
->vfp
.fp_status
;
8336 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8337 set_float_rounding_mode(rmode
, fp_status
);
8342 /* Set the current fp rounding mode in the standard fp status and return
8343 * the old one. This is for NEON instructions that need to change the
8344 * rounding mode but wish to use the standard FPSCR values for everything
8345 * else. Always set the rounding mode back to the correct value after
8347 * The argument is a softfloat float_round_ value.
8349 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8351 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
8353 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8354 set_float_rounding_mode(rmode
, fp_status
);
8359 /* Half precision conversions. */
8360 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
8362 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8363 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
8365 return float32_maybe_silence_nan(r
);
8370 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
8372 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8373 float16 r
= float32_to_float16(a
, ieee
, s
);
8375 r
= float16_maybe_silence_nan(r
);
8377 return float16_val(r
);
8380 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8382 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
8385 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8387 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
8390 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8392 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
8395 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8397 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
8400 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
8402 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8403 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
8405 return float64_maybe_silence_nan(r
);
8410 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
8412 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8413 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
8415 r
= float16_maybe_silence_nan(r
);
8417 return float16_val(r
);
8420 #define float32_two make_float32(0x40000000)
8421 #define float32_three make_float32(0x40400000)
8422 #define float32_one_point_five make_float32(0x3fc00000)
8424 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8426 float_status
*s
= &env
->vfp
.standard_fp_status
;
8427 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8428 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8429 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8430 float_raise(float_flag_input_denormal
, s
);
8434 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
8437 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8439 float_status
*s
= &env
->vfp
.standard_fp_status
;
8441 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8442 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8443 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8444 float_raise(float_flag_input_denormal
, s
);
8446 return float32_one_point_five
;
8448 product
= float32_mul(a
, b
, s
);
8449 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
8454 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8455 * int->float conversions at run-time. */
8456 #define float64_256 make_float64(0x4070000000000000LL)
8457 #define float64_512 make_float64(0x4080000000000000LL)
8458 #define float32_maxnorm make_float32(0x7f7fffff)
8459 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8461 /* Reciprocal functions
8463 * The algorithm that must be used to calculate the estimate
8464 * is specified by the ARM ARM, see FPRecipEstimate()
8467 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
8469 /* These calculations mustn't set any fp exception flags,
8470 * so we use a local copy of the fp_status.
8472 float_status dummy_status
= *real_fp_status
;
8473 float_status
*s
= &dummy_status
;
8474 /* q = (int)(a * 512.0) */
8475 float64 q
= float64_mul(float64_512
, a
, s
);
8476 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8478 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8479 q
= int64_to_float64(q_int
, s
);
8480 q
= float64_add(q
, float64_half
, s
);
8481 q
= float64_div(q
, float64_512
, s
);
8482 q
= float64_div(float64_one
, q
, s
);
8484 /* s = (int)(256.0 * r + 0.5) */
8485 q
= float64_mul(q
, float64_256
, s
);
8486 q
= float64_add(q
, float64_half
, s
);
8487 q_int
= float64_to_int64_round_to_zero(q
, s
);
8489 /* return (double)s / 256.0 */
8490 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8493 /* Common wrapper to call recip_estimate */
8494 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
8496 uint64_t val64
= float64_val(num
);
8497 uint64_t frac
= extract64(val64
, 0, 52);
8498 int64_t exp
= extract64(val64
, 52, 11);
8500 float64 scaled
, estimate
;
8502 /* Generate the scaled number for the estimate function */
8504 if (extract64(frac
, 51, 1) == 0) {
8506 frac
= extract64(frac
, 0, 50) << 2;
8508 frac
= extract64(frac
, 0, 51) << 1;
8512 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8513 scaled
= make_float64((0x3feULL
<< 52)
8514 | extract64(frac
, 44, 8) << 44);
8516 estimate
= recip_estimate(scaled
, fpst
);
8518 /* Build new result */
8519 val64
= float64_val(estimate
);
8520 sbit
= 0x8000000000000000ULL
& val64
;
8522 frac
= extract64(val64
, 0, 52);
8525 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
8526 } else if (exp
== -1) {
8527 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
8531 return make_float64(sbit
| (exp
<< 52) | frac
);
8534 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
8536 switch (fpst
->float_rounding_mode
) {
8537 case float_round_nearest_even
: /* Round to Nearest */
8539 case float_round_up
: /* Round to +Inf */
8541 case float_round_down
: /* Round to -Inf */
8543 case float_round_to_zero
: /* Round to Zero */
8547 g_assert_not_reached();
8550 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
8552 float_status
*fpst
= fpstp
;
8553 float32 f32
= float32_squash_input_denormal(input
, fpst
);
8554 uint32_t f32_val
= float32_val(f32
);
8555 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
8556 int32_t f32_exp
= extract32(f32_val
, 23, 8);
8557 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
8563 if (float32_is_any_nan(f32
)) {
8565 if (float32_is_signaling_nan(f32
)) {
8566 float_raise(float_flag_invalid
, fpst
);
8567 nan
= float32_maybe_silence_nan(f32
);
8569 if (fpst
->default_nan_mode
) {
8570 nan
= float32_default_nan
;
8573 } else if (float32_is_infinity(f32
)) {
8574 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8575 } else if (float32_is_zero(f32
)) {
8576 float_raise(float_flag_divbyzero
, fpst
);
8577 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8578 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
8579 /* Abs(value) < 2.0^-128 */
8580 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8581 if (round_to_inf(fpst
, f32_sbit
)) {
8582 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8584 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
8586 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
8587 float_raise(float_flag_underflow
, fpst
);
8588 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8592 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
8593 r64
= call_recip_estimate(f64
, 253, fpst
);
8594 r64_val
= float64_val(r64
);
8595 r64_exp
= extract64(r64_val
, 52, 11);
8596 r64_frac
= extract64(r64_val
, 0, 52);
8598 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8599 return make_float32(f32_sbit
|
8600 (r64_exp
& 0xff) << 23 |
8601 extract64(r64_frac
, 29, 24));
8604 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
8606 float_status
*fpst
= fpstp
;
8607 float64 f64
= float64_squash_input_denormal(input
, fpst
);
8608 uint64_t f64_val
= float64_val(f64
);
8609 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
8610 int64_t f64_exp
= extract64(f64_val
, 52, 11);
8616 /* Deal with any special cases */
8617 if (float64_is_any_nan(f64
)) {
8619 if (float64_is_signaling_nan(f64
)) {
8620 float_raise(float_flag_invalid
, fpst
);
8621 nan
= float64_maybe_silence_nan(f64
);
8623 if (fpst
->default_nan_mode
) {
8624 nan
= float64_default_nan
;
8627 } else if (float64_is_infinity(f64
)) {
8628 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8629 } else if (float64_is_zero(f64
)) {
8630 float_raise(float_flag_divbyzero
, fpst
);
8631 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8632 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
8633 /* Abs(value) < 2.0^-1024 */
8634 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8635 if (round_to_inf(fpst
, f64_sbit
)) {
8636 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8638 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
8640 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
8641 float_raise(float_flag_underflow
, fpst
);
8642 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8645 r64
= call_recip_estimate(f64
, 2045, fpst
);
8646 r64_val
= float64_val(r64
);
8647 r64_exp
= extract64(r64_val
, 52, 11);
8648 r64_frac
= extract64(r64_val
, 0, 52);
8650 /* result = sign : result_exp<10:0> : fraction<51:0> */
8651 return make_float64(f64_sbit
|
8652 ((r64_exp
& 0x7ff) << 52) |
8656 /* The algorithm that must be used to calculate the estimate
8657 * is specified by the ARM ARM.
8659 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
8661 /* These calculations mustn't set any fp exception flags,
8662 * so we use a local copy of the fp_status.
8664 float_status dummy_status
= *real_fp_status
;
8665 float_status
*s
= &dummy_status
;
8669 if (float64_lt(a
, float64_half
, s
)) {
8670 /* range 0.25 <= a < 0.5 */
8672 /* a in units of 1/512 rounded down */
8673 /* q0 = (int)(a * 512.0); */
8674 q
= float64_mul(float64_512
, a
, s
);
8675 q_int
= float64_to_int64_round_to_zero(q
, s
);
8677 /* reciprocal root r */
8678 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8679 q
= int64_to_float64(q_int
, s
);
8680 q
= float64_add(q
, float64_half
, s
);
8681 q
= float64_div(q
, float64_512
, s
);
8682 q
= float64_sqrt(q
, s
);
8683 q
= float64_div(float64_one
, q
, s
);
8685 /* range 0.5 <= a < 1.0 */
8687 /* a in units of 1/256 rounded down */
8688 /* q1 = (int)(a * 256.0); */
8689 q
= float64_mul(float64_256
, a
, s
);
8690 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8692 /* reciprocal root r */
8693 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8694 q
= int64_to_float64(q_int
, s
);
8695 q
= float64_add(q
, float64_half
, s
);
8696 q
= float64_div(q
, float64_256
, s
);
8697 q
= float64_sqrt(q
, s
);
8698 q
= float64_div(float64_one
, q
, s
);
8700 /* r in units of 1/256 rounded to nearest */
8701 /* s = (int)(256.0 * r + 0.5); */
8703 q
= float64_mul(q
, float64_256
,s
);
8704 q
= float64_add(q
, float64_half
, s
);
8705 q_int
= float64_to_int64_round_to_zero(q
, s
);
8707 /* return (double)s / 256.0;*/
8708 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8711 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
8713 float_status
*s
= fpstp
;
8714 float32 f32
= float32_squash_input_denormal(input
, s
);
8715 uint32_t val
= float32_val(f32
);
8716 uint32_t f32_sbit
= 0x80000000 & val
;
8717 int32_t f32_exp
= extract32(val
, 23, 8);
8718 uint32_t f32_frac
= extract32(val
, 0, 23);
8724 if (float32_is_any_nan(f32
)) {
8726 if (float32_is_signaling_nan(f32
)) {
8727 float_raise(float_flag_invalid
, s
);
8728 nan
= float32_maybe_silence_nan(f32
);
8730 if (s
->default_nan_mode
) {
8731 nan
= float32_default_nan
;
8734 } else if (float32_is_zero(f32
)) {
8735 float_raise(float_flag_divbyzero
, s
);
8736 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8737 } else if (float32_is_neg(f32
)) {
8738 float_raise(float_flag_invalid
, s
);
8739 return float32_default_nan
;
8740 } else if (float32_is_infinity(f32
)) {
8741 return float32_zero
;
8744 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8745 * preserving the parity of the exponent. */
8747 f64_frac
= ((uint64_t) f32_frac
) << 29;
8749 while (extract64(f64_frac
, 51, 1) == 0) {
8750 f64_frac
= f64_frac
<< 1;
8751 f32_exp
= f32_exp
-1;
8753 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8756 if (extract64(f32_exp
, 0, 1) == 0) {
8757 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8761 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8766 result_exp
= (380 - f32_exp
) / 2;
8768 f64
= recip_sqrt_estimate(f64
, s
);
8770 val64
= float64_val(f64
);
8772 val
= ((result_exp
& 0xff) << 23)
8773 | ((val64
>> 29) & 0x7fffff);
8774 return make_float32(val
);
8777 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
8779 float_status
*s
= fpstp
;
8780 float64 f64
= float64_squash_input_denormal(input
, s
);
8781 uint64_t val
= float64_val(f64
);
8782 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
8783 int64_t f64_exp
= extract64(val
, 52, 11);
8784 uint64_t f64_frac
= extract64(val
, 0, 52);
8786 uint64_t result_frac
;
8788 if (float64_is_any_nan(f64
)) {
8790 if (float64_is_signaling_nan(f64
)) {
8791 float_raise(float_flag_invalid
, s
);
8792 nan
= float64_maybe_silence_nan(f64
);
8794 if (s
->default_nan_mode
) {
8795 nan
= float64_default_nan
;
8798 } else if (float64_is_zero(f64
)) {
8799 float_raise(float_flag_divbyzero
, s
);
8800 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8801 } else if (float64_is_neg(f64
)) {
8802 float_raise(float_flag_invalid
, s
);
8803 return float64_default_nan
;
8804 } else if (float64_is_infinity(f64
)) {
8805 return float64_zero
;
8808 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8809 * preserving the parity of the exponent. */
8812 while (extract64(f64_frac
, 51, 1) == 0) {
8813 f64_frac
= f64_frac
<< 1;
8814 f64_exp
= f64_exp
- 1;
8816 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8819 if (extract64(f64_exp
, 0, 1) == 0) {
8820 f64
= make_float64(f64_sbit
8824 f64
= make_float64(f64_sbit
8829 result_exp
= (3068 - f64_exp
) / 2;
8831 f64
= recip_sqrt_estimate(f64
, s
);
8833 result_frac
= extract64(float64_val(f64
), 0, 52);
8835 return make_float64(f64_sbit
|
8836 ((result_exp
& 0x7ff) << 52) |
8840 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
8842 float_status
*s
= fpstp
;
8845 if ((a
& 0x80000000) == 0) {
8849 f64
= make_float64((0x3feULL
<< 52)
8850 | ((int64_t)(a
& 0x7fffffff) << 21));
8852 f64
= recip_estimate(f64
, s
);
8854 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8857 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
8859 float_status
*fpst
= fpstp
;
8862 if ((a
& 0xc0000000) == 0) {
8866 if (a
& 0x80000000) {
8867 f64
= make_float64((0x3feULL
<< 52)
8868 | ((uint64_t)(a
& 0x7fffffff) << 21));
8869 } else { /* bits 31-30 == '01' */
8870 f64
= make_float64((0x3fdULL
<< 52)
8871 | ((uint64_t)(a
& 0x3fffffff) << 22));
8874 f64
= recip_sqrt_estimate(f64
, fpst
);
8876 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8879 /* VFPv4 fused multiply-accumulate */
8880 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
8882 float_status
*fpst
= fpstp
;
8883 return float32_muladd(a
, b
, c
, 0, fpst
);
8886 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
8888 float_status
*fpst
= fpstp
;
8889 return float64_muladd(a
, b
, c
, 0, fpst
);
8892 /* ARMv8 round to integral */
8893 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
8895 return float32_round_to_int(x
, fp_status
);
8898 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
8900 return float64_round_to_int(x
, fp_status
);
8903 float32
HELPER(rints
)(float32 x
, void *fp_status
)
8905 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8908 ret
= float32_round_to_int(x
, fp_status
);
8910 /* Suppress any inexact exceptions the conversion produced */
8911 if (!(old_flags
& float_flag_inexact
)) {
8912 new_flags
= get_float_exception_flags(fp_status
);
8913 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8919 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
8921 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8924 ret
= float64_round_to_int(x
, fp_status
);
8926 new_flags
= get_float_exception_flags(fp_status
);
8928 /* Suppress any inexact exceptions the conversion produced */
8929 if (!(old_flags
& float_flag_inexact
)) {
8930 new_flags
= get_float_exception_flags(fp_status
);
8931 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8937 /* Convert ARM rounding mode to softfloat */
8938 int arm_rmode_to_sf(int rmode
)
8941 case FPROUNDING_TIEAWAY
:
8942 rmode
= float_round_ties_away
;
8944 case FPROUNDING_ODD
:
8945 /* FIXME: add support for TIEAWAY and ODD */
8946 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
8948 case FPROUNDING_TIEEVEN
:
8950 rmode
= float_round_nearest_even
;
8952 case FPROUNDING_POSINF
:
8953 rmode
= float_round_up
;
8955 case FPROUNDING_NEGINF
:
8956 rmode
= float_round_down
;
8958 case FPROUNDING_ZERO
:
8959 rmode
= float_round_to_zero
;
8966 * The upper bytes of val (above the number specified by 'bytes') must have
8967 * been zeroed out by the caller.
8969 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8975 /* zlib crc32 converts the accumulator and output to one's complement. */
8976 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
8979 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8985 /* Linux crc32c converts the output to one's complement. */
8986 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;