qemu-iotests: qemu-img info on afl VMDK image with a huge capacity
[qemu.git] / bsd-user / qemu.h
blob5362297fe18bb6a77d212848694ab21fb7106876
1 /*
2 * qemu bsd user mode definition
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 #ifndef QEMU_H
18 #define QEMU_H
20 #include <signal.h>
21 #include <string.h>
23 #include "cpu.h"
24 #include "exec/cpu_ldst.h"
26 #undef DEBUG_REMAP
27 #ifdef DEBUG_REMAP
28 #include <stdlib.h>
29 #endif /* DEBUG_REMAP */
31 #include "exec/user/abitypes.h"
33 enum BSDType {
34 target_freebsd,
35 target_netbsd,
36 target_openbsd,
38 extern enum BSDType bsd_type;
40 #include "syscall_defs.h"
41 #include "syscall.h"
42 #include "target_signal.h"
43 #include "exec/gdbstub.h"
45 #if defined(CONFIG_USE_NPTL)
46 #define THREAD __thread
47 #else
48 #define THREAD
49 #endif
51 /* This struct is used to hold certain information about the image.
52 * Basically, it replicates in user space what would be certain
53 * task_struct fields in the kernel
55 struct image_info {
56 abi_ulong load_addr;
57 abi_ulong start_code;
58 abi_ulong end_code;
59 abi_ulong start_data;
60 abi_ulong end_data;
61 abi_ulong start_brk;
62 abi_ulong brk;
63 abi_ulong start_mmap;
64 abi_ulong mmap;
65 abi_ulong rss;
66 abi_ulong start_stack;
67 abi_ulong entry;
68 abi_ulong code_offset;
69 abi_ulong data_offset;
70 int personality;
73 #define MAX_SIGQUEUE_SIZE 1024
75 struct sigqueue {
76 struct sigqueue *next;
77 //target_siginfo_t info;
80 struct emulated_sigtable {
81 int pending; /* true if signal is pending */
82 struct sigqueue *first;
83 struct sigqueue info; /* in order to always have memory for the
84 first signal, we put it here */
87 /* NOTE: we force a big alignment so that the stack stored after is
88 aligned too */
89 typedef struct TaskState {
90 struct TaskState *next;
91 int used; /* non zero if used */
92 struct image_info *info;
94 struct emulated_sigtable sigtab[TARGET_NSIG];
95 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
96 struct sigqueue *first_free; /* first free siginfo queue entry */
97 int signal_pending; /* non zero if a signal may be pending */
99 uint8_t stack[0];
100 } __attribute__((aligned(16))) TaskState;
102 void init_task_state(TaskState *ts);
103 extern const char *qemu_uname_release;
104 #if defined(CONFIG_USE_GUEST_BASE)
105 extern unsigned long mmap_min_addr;
106 #endif
108 /* ??? See if we can avoid exposing so much of the loader internals. */
110 * MAX_ARG_PAGES defines the number of pages allocated for arguments
111 * and envelope for the new program. 32 should suffice, this gives
112 * a maximum env+arg of 128kB w/4KB pages!
114 #define MAX_ARG_PAGES 32
117 * This structure is used to hold the arguments that are
118 * used when loading binaries.
120 struct linux_binprm {
121 char buf[128];
122 void *page[MAX_ARG_PAGES];
123 abi_ulong p;
124 int fd;
125 int e_uid, e_gid;
126 int argc, envc;
127 char **argv;
128 char **envp;
129 char * filename; /* Name of binary */
132 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
133 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
134 abi_ulong stringp, int push_ptr);
135 int loader_exec(const char * filename, char ** argv, char ** envp,
136 struct target_pt_regs * regs, struct image_info *infop);
138 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
139 struct image_info * info);
140 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
141 struct image_info * info);
143 abi_long memcpy_to_target(abi_ulong dest, const void *src,
144 unsigned long len);
145 void target_set_brk(abi_ulong new_brk);
146 abi_long do_brk(abi_ulong new_brk);
147 void syscall_init(void);
148 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
149 abi_long arg2, abi_long arg3, abi_long arg4,
150 abi_long arg5, abi_long arg6, abi_long arg7,
151 abi_long arg8);
152 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
153 abi_long arg2, abi_long arg3, abi_long arg4,
154 abi_long arg5, abi_long arg6);
155 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
156 abi_long arg2, abi_long arg3, abi_long arg4,
157 abi_long arg5, abi_long arg6);
158 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
159 extern THREAD CPUState *thread_cpu;
160 void cpu_loop(CPUArchState *env);
161 char *target_strerror(int err);
162 int get_osversion(void);
163 void fork_start(void);
164 void fork_end(int child);
166 #include "qemu/log.h"
168 /* strace.c */
169 struct syscallname {
170 int nr;
171 const char *name;
172 const char *format;
173 void (*call)(const struct syscallname *,
174 abi_long, abi_long, abi_long,
175 abi_long, abi_long, abi_long);
176 void (*result)(const struct syscallname *, abi_long);
179 void
180 print_freebsd_syscall(int num,
181 abi_long arg1, abi_long arg2, abi_long arg3,
182 abi_long arg4, abi_long arg5, abi_long arg6);
183 void print_freebsd_syscall_ret(int num, abi_long ret);
184 void
185 print_netbsd_syscall(int num,
186 abi_long arg1, abi_long arg2, abi_long arg3,
187 abi_long arg4, abi_long arg5, abi_long arg6);
188 void print_netbsd_syscall_ret(int num, abi_long ret);
189 void
190 print_openbsd_syscall(int num,
191 abi_long arg1, abi_long arg2, abi_long arg3,
192 abi_long arg4, abi_long arg5, abi_long arg6);
193 void print_openbsd_syscall_ret(int num, abi_long ret);
194 extern int do_strace;
196 /* signal.c */
197 void process_pending_signals(CPUArchState *cpu_env);
198 void signal_init(void);
199 //int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
200 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
201 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
202 long do_sigreturn(CPUArchState *env);
203 long do_rt_sigreturn(CPUArchState *env);
204 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
206 /* mmap.c */
207 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
208 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
209 int flags, int fd, abi_ulong offset);
210 int target_munmap(abi_ulong start, abi_ulong len);
211 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
212 abi_ulong new_size, unsigned long flags,
213 abi_ulong new_addr);
214 int target_msync(abi_ulong start, abi_ulong len, int flags);
215 extern unsigned long last_brk;
216 void mmap_lock(void);
217 void mmap_unlock(void);
218 void cpu_list_lock(void);
219 void cpu_list_unlock(void);
220 #if defined(CONFIG_USE_NPTL)
221 void mmap_fork_start(void);
222 void mmap_fork_end(int child);
223 #endif
225 /* main.c */
226 extern unsigned long x86_stack_size;
228 /* user access */
230 #define VERIFY_READ 0
231 #define VERIFY_WRITE 1 /* implies read access */
233 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
235 return page_check_range((target_ulong)addr, size,
236 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
239 /* NOTE __get_user and __put_user use host pointers and don't check access. */
240 /* These are usually used to access struct data members once the
241 * struct has been locked - usually with lock_user_struct().
243 #define __put_user(x, hptr)\
245 int size = sizeof(*hptr);\
246 switch(size) {\
247 case 1:\
248 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
249 break;\
250 case 2:\
251 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
252 break;\
253 case 4:\
254 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
255 break;\
256 case 8:\
257 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
258 break;\
259 default:\
260 abort();\
265 #define __get_user(x, hptr) \
267 int size = sizeof(*hptr);\
268 switch(size) {\
269 case 1:\
270 x = (typeof(*hptr))*(uint8_t *)(hptr);\
271 break;\
272 case 2:\
273 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
274 break;\
275 case 4:\
276 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
277 break;\
278 case 8:\
279 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
280 break;\
281 default:\
282 /* avoid warning */\
283 x = 0;\
284 abort();\
289 /* put_user()/get_user() take a guest address and check access */
290 /* These are usually used to access an atomic data type, such as an int,
291 * that has been passed by address. These internally perform locking
292 * and unlocking on the data type.
294 #define put_user(x, gaddr, target_type) \
295 ({ \
296 abi_ulong __gaddr = (gaddr); \
297 target_type *__hptr; \
298 abi_long __ret; \
299 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
300 __ret = __put_user((x), __hptr); \
301 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
302 } else \
303 __ret = -TARGET_EFAULT; \
304 __ret; \
307 #define get_user(x, gaddr, target_type) \
308 ({ \
309 abi_ulong __gaddr = (gaddr); \
310 target_type *__hptr; \
311 abi_long __ret; \
312 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
313 __ret = __get_user((x), __hptr); \
314 unlock_user(__hptr, __gaddr, 0); \
315 } else { \
316 /* avoid warning */ \
317 (x) = 0; \
318 __ret = -TARGET_EFAULT; \
320 __ret; \
323 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
324 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
325 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
326 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
327 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
328 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
329 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
330 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
331 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
332 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
334 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
335 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
336 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
337 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
338 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
339 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
340 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
341 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
342 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
343 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
345 /* copy_from_user() and copy_to_user() are usually used to copy data
346 * buffers between the target and host. These internally perform
347 * locking/unlocking of the memory.
349 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
350 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
352 /* Functions for accessing guest memory. The tget and tput functions
353 read/write single values, byteswapping as necessary. The lock_user function
354 gets a pointer to a contiguous area of guest memory, but does not perform
355 any byteswapping. lock_user may return either a pointer to the guest
356 memory, or a temporary buffer. */
358 /* Lock an area of guest memory into the host. If copy is true then the
359 host area will have the same contents as the guest. */
360 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
362 if (!access_ok(type, guest_addr, len))
363 return NULL;
364 #ifdef DEBUG_REMAP
366 void *addr;
367 addr = malloc(len);
368 if (copy)
369 memcpy(addr, g2h(guest_addr), len);
370 else
371 memset(addr, 0, len);
372 return addr;
374 #else
375 return g2h(guest_addr);
376 #endif
379 /* Unlock an area of guest memory. The first LEN bytes must be
380 flushed back to guest memory. host_ptr = NULL is explicitly
381 allowed and does nothing. */
382 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
383 long len)
386 #ifdef DEBUG_REMAP
387 if (!host_ptr)
388 return;
389 if (host_ptr == g2h(guest_addr))
390 return;
391 if (len > 0)
392 memcpy(g2h(guest_addr), host_ptr, len);
393 free(host_ptr);
394 #endif
397 /* Return the length of a string in target memory or -TARGET_EFAULT if
398 access error. */
399 abi_long target_strlen(abi_ulong gaddr);
401 /* Like lock_user but for null terminated strings. */
402 static inline void *lock_user_string(abi_ulong guest_addr)
404 abi_long len;
405 len = target_strlen(guest_addr);
406 if (len < 0)
407 return NULL;
408 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
411 /* Helper macros for locking/unlocking a target struct. */
412 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
413 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
414 #define unlock_user_struct(host_ptr, guest_addr, copy) \
415 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
417 #if defined(CONFIG_USE_NPTL)
418 #include <pthread.h>
419 #endif
421 #endif /* QEMU_H */