4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #define DPRINTF(fmt, ...) \
44 typedef struct KVMSlot
46 target_phys_addr_t start_addr
;
47 ram_addr_t memory_size
;
48 ram_addr_t phys_offset
;
53 typedef struct kvm_dirty_log KVMDirtyLog
;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
64 int broken_set_mem_region
;
67 int robust_singlestep
;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
72 int irqchip_in_kernel
;
77 static KVMState
*kvm_state
;
79 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
83 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
84 /* KVM private memory slots */
87 if (s
->slots
[i
].memory_size
== 0)
91 fprintf(stderr
, "%s: no free slot available\n", __func__
);
95 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
96 target_phys_addr_t start_addr
,
97 target_phys_addr_t end_addr
)
101 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
102 KVMSlot
*mem
= &s
->slots
[i
];
104 if (start_addr
== mem
->start_addr
&&
105 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
114 * Find overlapping slot with lowest start address
116 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
117 target_phys_addr_t start_addr
,
118 target_phys_addr_t end_addr
)
120 KVMSlot
*found
= NULL
;
123 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
124 KVMSlot
*mem
= &s
->slots
[i
];
126 if (mem
->memory_size
== 0 ||
127 (found
&& found
->start_addr
< mem
->start_addr
)) {
131 if (end_addr
> mem
->start_addr
&&
132 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
140 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
142 struct kvm_userspace_memory_region mem
;
144 mem
.slot
= slot
->slot
;
145 mem
.guest_phys_addr
= slot
->start_addr
;
146 mem
.memory_size
= slot
->memory_size
;
147 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
148 mem
.flags
= slot
->flags
;
149 if (s
->migration_log
) {
150 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
152 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
155 static void kvm_reset_vcpu(void *opaque
)
157 CPUState
*env
= opaque
;
159 kvm_arch_reset_vcpu(env
);
162 int kvm_irqchip_in_kernel(void)
164 return kvm_state
->irqchip_in_kernel
;
167 int kvm_pit_in_kernel(void)
169 return kvm_state
->pit_in_kernel
;
173 int kvm_init_vcpu(CPUState
*env
)
175 KVMState
*s
= kvm_state
;
179 DPRINTF("kvm_init_vcpu\n");
181 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
183 DPRINTF("kvm_create_vcpu failed\n");
190 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
192 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
196 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
198 if (env
->kvm_run
== MAP_FAILED
) {
200 DPRINTF("mmap'ing vcpu state failed\n");
204 #ifdef KVM_CAP_COALESCED_MMIO
205 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
)
206 s
->coalesced_mmio_ring
= (void *) env
->kvm_run
+
207 s
->coalesced_mmio
* PAGE_SIZE
;
210 ret
= kvm_arch_init_vcpu(env
);
212 qemu_register_reset(kvm_reset_vcpu
, env
);
213 kvm_arch_reset_vcpu(env
);
220 * dirty pages logging control
222 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
223 ram_addr_t size
, int flags
, int mask
)
225 KVMState
*s
= kvm_state
;
226 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
230 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
231 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
232 (target_phys_addr_t
)(phys_addr
+ size
- 1));
236 old_flags
= mem
->flags
;
238 flags
= (mem
->flags
& ~mask
) | flags
;
241 /* If nothing changed effectively, no need to issue ioctl */
242 if (s
->migration_log
) {
243 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
245 if (flags
== old_flags
) {
249 return kvm_set_user_memory_region(s
, mem
);
252 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
254 return kvm_dirty_pages_log_change(phys_addr
, size
,
255 KVM_MEM_LOG_DIRTY_PAGES
,
256 KVM_MEM_LOG_DIRTY_PAGES
);
259 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
261 return kvm_dirty_pages_log_change(phys_addr
, size
,
263 KVM_MEM_LOG_DIRTY_PAGES
);
266 static int kvm_set_migration_log(int enable
)
268 KVMState
*s
= kvm_state
;
272 s
->migration_log
= enable
;
274 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
277 if (!mem
->memory_size
) {
280 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
283 err
= kvm_set_user_memory_region(s
, mem
);
291 /* get kvm's dirty pages bitmap and update qemu's */
292 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
293 unsigned long *bitmap
,
294 unsigned long offset
,
295 unsigned long mem_size
)
298 unsigned long page_number
, addr
, addr1
, c
;
300 unsigned int len
= ((mem_size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) /
304 * bitmap-traveling is faster than memory-traveling (for addr...)
305 * especially when most of the memory is not dirty.
307 for (i
= 0; i
< len
; i
++) {
308 if (bitmap
[i
] != 0) {
309 c
= leul_to_cpu(bitmap
[i
]);
313 page_number
= i
* HOST_LONG_BITS
+ j
;
314 addr1
= page_number
* TARGET_PAGE_SIZE
;
315 addr
= offset
+ addr1
;
316 ram_addr
= cpu_get_physical_page_desc(addr
);
317 cpu_physical_memory_set_dirty(ram_addr
);
324 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
327 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
328 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
329 * This means all bits are set to dirty.
331 * @start_add: start of logged region.
332 * @end_addr: end of logged region.
334 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
335 target_phys_addr_t end_addr
)
337 KVMState
*s
= kvm_state
;
338 unsigned long size
, allocated_size
= 0;
343 d
.dirty_bitmap
= NULL
;
344 while (start_addr
< end_addr
) {
345 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
350 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
), HOST_LONG_BITS
) / 8;
351 if (!d
.dirty_bitmap
) {
352 d
.dirty_bitmap
= qemu_malloc(size
);
353 } else if (size
> allocated_size
) {
354 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
356 allocated_size
= size
;
357 memset(d
.dirty_bitmap
, 0, allocated_size
);
361 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
362 DPRINTF("ioctl failed %d\n", errno
);
367 kvm_get_dirty_pages_log_range(mem
->start_addr
, d
.dirty_bitmap
,
368 mem
->start_addr
, mem
->memory_size
);
369 start_addr
= mem
->start_addr
+ mem
->memory_size
;
371 qemu_free(d
.dirty_bitmap
);
376 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
379 #ifdef KVM_CAP_COALESCED_MMIO
380 KVMState
*s
= kvm_state
;
382 if (s
->coalesced_mmio
) {
383 struct kvm_coalesced_mmio_zone zone
;
388 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
395 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
398 #ifdef KVM_CAP_COALESCED_MMIO
399 KVMState
*s
= kvm_state
;
401 if (s
->coalesced_mmio
) {
402 struct kvm_coalesced_mmio_zone zone
;
407 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
414 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
418 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
426 static void kvm_set_phys_mem(target_phys_addr_t start_addr
,
428 ram_addr_t phys_offset
)
430 KVMState
*s
= kvm_state
;
431 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
435 /* kvm works in page size chunks, but the function may be called
436 with sub-page size and unaligned start address. */
437 size
= TARGET_PAGE_ALIGN(size
);
438 start_addr
= TARGET_PAGE_ALIGN(start_addr
);
440 /* KVM does not support read-only slots */
441 phys_offset
&= ~IO_MEM_ROM
;
444 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
449 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
450 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
451 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
452 /* The new slot fits into the existing one and comes with
453 * identical parameters - nothing to be done. */
459 /* unregister the overlapping slot */
460 mem
->memory_size
= 0;
461 err
= kvm_set_user_memory_region(s
, mem
);
463 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
464 __func__
, strerror(-err
));
468 /* Workaround for older KVM versions: we can't join slots, even not by
469 * unregistering the previous ones and then registering the larger
470 * slot. We have to maintain the existing fragmentation. Sigh.
472 * This workaround assumes that the new slot starts at the same
473 * address as the first existing one. If not or if some overlapping
474 * slot comes around later, we will fail (not seen in practice so far)
475 * - and actually require a recent KVM version. */
476 if (s
->broken_set_mem_region
&&
477 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
478 flags
< IO_MEM_UNASSIGNED
) {
479 mem
= kvm_alloc_slot(s
);
480 mem
->memory_size
= old
.memory_size
;
481 mem
->start_addr
= old
.start_addr
;
482 mem
->phys_offset
= old
.phys_offset
;
485 err
= kvm_set_user_memory_region(s
, mem
);
487 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
492 start_addr
+= old
.memory_size
;
493 phys_offset
+= old
.memory_size
;
494 size
-= old
.memory_size
;
498 /* register prefix slot */
499 if (old
.start_addr
< start_addr
) {
500 mem
= kvm_alloc_slot(s
);
501 mem
->memory_size
= start_addr
- old
.start_addr
;
502 mem
->start_addr
= old
.start_addr
;
503 mem
->phys_offset
= old
.phys_offset
;
506 err
= kvm_set_user_memory_region(s
, mem
);
508 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
509 __func__
, strerror(-err
));
514 /* register suffix slot */
515 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
516 ram_addr_t size_delta
;
518 mem
= kvm_alloc_slot(s
);
519 mem
->start_addr
= start_addr
+ size
;
520 size_delta
= mem
->start_addr
- old
.start_addr
;
521 mem
->memory_size
= old
.memory_size
- size_delta
;
522 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
525 err
= kvm_set_user_memory_region(s
, mem
);
527 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
528 __func__
, strerror(-err
));
534 /* in case the KVM bug workaround already "consumed" the new slot */
538 /* KVM does not need to know about this memory */
539 if (flags
>= IO_MEM_UNASSIGNED
)
542 mem
= kvm_alloc_slot(s
);
543 mem
->memory_size
= size
;
544 mem
->start_addr
= start_addr
;
545 mem
->phys_offset
= phys_offset
;
548 err
= kvm_set_user_memory_region(s
, mem
);
550 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
556 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
557 target_phys_addr_t start_addr
,
559 ram_addr_t phys_offset
)
561 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
564 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
565 target_phys_addr_t start_addr
,
566 target_phys_addr_t end_addr
)
568 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
571 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
574 return kvm_set_migration_log(enable
);
577 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
578 .set_memory
= kvm_client_set_memory
,
579 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
580 .migration_log
= kvm_client_migration_log
,
583 int kvm_init(int smp_cpus
)
585 static const char upgrade_note
[] =
586 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
587 "(see http://sourceforge.net/projects/kvm).\n";
592 s
= qemu_mallocz(sizeof(KVMState
));
594 #ifdef KVM_CAP_SET_GUEST_DEBUG
595 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
597 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
598 s
->slots
[i
].slot
= i
;
601 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
603 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
608 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
609 if (ret
< KVM_API_VERSION
) {
612 fprintf(stderr
, "kvm version too old\n");
616 if (ret
> KVM_API_VERSION
) {
618 fprintf(stderr
, "kvm version not supported\n");
622 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
625 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
626 "your host kernel command line\n");
631 /* initially, KVM allocated its own memory and we had to jump through
632 * hooks to make phys_ram_base point to this. Modern versions of KVM
633 * just use a user allocated buffer so we can use regular pages
634 * unmodified. Make sure we have a sufficiently modern version of KVM.
636 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
638 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
643 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
644 * destroyed properly. Since we rely on this capability, refuse to work
645 * with any kernel without this capability. */
646 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
650 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
655 s
->coalesced_mmio
= 0;
656 #ifdef KVM_CAP_COALESCED_MMIO
657 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
658 s
->coalesced_mmio_ring
= NULL
;
661 s
->broken_set_mem_region
= 1;
662 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
663 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
665 s
->broken_set_mem_region
= 0;
670 #ifdef KVM_CAP_VCPU_EVENTS
671 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
674 s
->robust_singlestep
= 0;
675 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
676 s
->robust_singlestep
=
677 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
681 #ifdef KVM_CAP_DEBUGREGS
682 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
687 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
692 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
695 ret
= kvm_arch_init(s
, smp_cpus
);
700 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
716 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
722 for (i
= 0; i
< count
; i
++) {
723 if (direction
== KVM_EXIT_IO_IN
) {
726 stb_p(ptr
, cpu_inb(port
));
729 stw_p(ptr
, cpu_inw(port
));
732 stl_p(ptr
, cpu_inl(port
));
738 cpu_outb(port
, ldub_p(ptr
));
741 cpu_outw(port
, lduw_p(ptr
));
744 cpu_outl(port
, ldl_p(ptr
));
755 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
756 static void kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
759 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
762 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
763 run
->internal
.suberror
);
765 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
766 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
767 i
, (uint64_t)run
->internal
.data
[i
]);
770 cpu_dump_state(env
, stderr
, fprintf
, 0);
771 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
772 fprintf(stderr
, "emulation failure\n");
773 if (!kvm_arch_stop_on_emulation_error(env
))
776 /* FIXME: Should trigger a qmp message to let management know
777 * something went wrong.
783 void kvm_flush_coalesced_mmio_buffer(void)
785 #ifdef KVM_CAP_COALESCED_MMIO
786 KVMState
*s
= kvm_state
;
787 if (s
->coalesced_mmio_ring
) {
788 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
789 while (ring
->first
!= ring
->last
) {
790 struct kvm_coalesced_mmio
*ent
;
792 ent
= &ring
->coalesced_mmio
[ring
->first
];
794 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
796 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
802 static void do_kvm_cpu_synchronize_state(void *_env
)
804 CPUState
*env
= _env
;
806 if (!env
->kvm_vcpu_dirty
) {
807 kvm_arch_get_registers(env
);
808 env
->kvm_vcpu_dirty
= 1;
812 void kvm_cpu_synchronize_state(CPUState
*env
)
814 if (!env
->kvm_vcpu_dirty
)
815 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
818 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
820 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
821 env
->kvm_vcpu_dirty
= 0;
824 void kvm_cpu_synchronize_post_init(CPUState
*env
)
826 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
827 env
->kvm_vcpu_dirty
= 0;
830 int kvm_cpu_exec(CPUState
*env
)
832 struct kvm_run
*run
= env
->kvm_run
;
835 DPRINTF("kvm_cpu_exec()\n");
838 #ifndef CONFIG_IOTHREAD
839 if (env
->exit_request
) {
840 DPRINTF("interrupt exit requested\n");
846 if (kvm_arch_process_irqchip_events(env
)) {
851 if (env
->kvm_vcpu_dirty
) {
852 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
853 env
->kvm_vcpu_dirty
= 0;
856 kvm_arch_pre_run(env
, run
);
857 cpu_single_env
= NULL
;
858 qemu_mutex_unlock_iothread();
859 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
860 qemu_mutex_lock_iothread();
861 cpu_single_env
= env
;
862 kvm_arch_post_run(env
, run
);
864 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
866 DPRINTF("io window exit\n");
872 DPRINTF("kvm run failed %s\n", strerror(-ret
));
876 kvm_flush_coalesced_mmio_buffer();
878 ret
= 0; /* exit loop */
879 switch (run
->exit_reason
) {
881 DPRINTF("handle_io\n");
882 ret
= kvm_handle_io(run
->io
.port
,
883 (uint8_t *)run
+ run
->io
.data_offset
,
889 DPRINTF("handle_mmio\n");
890 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
896 case KVM_EXIT_IRQ_WINDOW_OPEN
:
897 DPRINTF("irq_window_open\n");
899 case KVM_EXIT_SHUTDOWN
:
900 DPRINTF("shutdown\n");
901 qemu_system_reset_request();
904 case KVM_EXIT_UNKNOWN
:
905 DPRINTF("kvm_exit_unknown\n");
907 case KVM_EXIT_FAIL_ENTRY
:
908 DPRINTF("kvm_exit_fail_entry\n");
910 case KVM_EXIT_EXCEPTION
:
911 DPRINTF("kvm_exit_exception\n");
913 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
914 case KVM_EXIT_INTERNAL_ERROR
:
915 kvm_handle_internal_error(env
, run
);
919 DPRINTF("kvm_exit_debug\n");
920 #ifdef KVM_CAP_SET_GUEST_DEBUG
921 if (kvm_arch_debug(&run
->debug
.arch
)) {
922 env
->exception_index
= EXCP_DEBUG
;
925 /* re-enter, this exception was guest-internal */
927 #endif /* KVM_CAP_SET_GUEST_DEBUG */
930 DPRINTF("kvm_arch_handle_exit\n");
931 ret
= kvm_arch_handle_exit(env
, run
);
936 if (env
->exit_request
) {
937 env
->exit_request
= 0;
938 env
->exception_index
= EXCP_INTERRUPT
;
944 int kvm_ioctl(KVMState
*s
, int type
, ...)
951 arg
= va_arg(ap
, void *);
954 ret
= ioctl(s
->fd
, type
, arg
);
961 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
968 arg
= va_arg(ap
, void *);
971 ret
= ioctl(s
->vmfd
, type
, arg
);
978 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
985 arg
= va_arg(ap
, void *);
988 ret
= ioctl(env
->kvm_fd
, type
, arg
);
995 int kvm_has_sync_mmu(void)
997 #ifdef KVM_CAP_SYNC_MMU
998 KVMState
*s
= kvm_state
;
1000 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
1006 int kvm_has_vcpu_events(void)
1008 return kvm_state
->vcpu_events
;
1011 int kvm_has_robust_singlestep(void)
1013 return kvm_state
->robust_singlestep
;
1016 int kvm_has_debugregs(void)
1018 return kvm_state
->debugregs
;
1021 int kvm_has_xsave(void)
1023 return kvm_state
->xsave
;
1026 int kvm_has_xcrs(void)
1028 return kvm_state
->xcrs
;
1031 void kvm_setup_guest_memory(void *start
, size_t size
)
1033 if (!kvm_has_sync_mmu()) {
1034 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1037 perror("qemu_madvise");
1039 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1045 #ifdef KVM_CAP_SET_GUEST_DEBUG
1046 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1049 struct kvm_sw_breakpoint
*bp
;
1051 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1058 int kvm_sw_breakpoints_active(CPUState
*env
)
1060 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1063 struct kvm_set_guest_debug_data
{
1064 struct kvm_guest_debug dbg
;
1069 static void kvm_invoke_set_guest_debug(void *data
)
1071 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1072 CPUState
*env
= dbg_data
->env
;
1074 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1077 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1079 struct kvm_set_guest_debug_data data
;
1081 data
.dbg
.control
= reinject_trap
;
1083 if (env
->singlestep_enabled
) {
1084 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1086 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1089 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1093 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1094 target_ulong len
, int type
)
1096 struct kvm_sw_breakpoint
*bp
;
1100 if (type
== GDB_BREAKPOINT_SW
) {
1101 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1107 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1113 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1119 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1122 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1127 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1128 err
= kvm_update_guest_debug(env
, 0);
1135 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1136 target_ulong len
, int type
)
1138 struct kvm_sw_breakpoint
*bp
;
1142 if (type
== GDB_BREAKPOINT_SW
) {
1143 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1147 if (bp
->use_count
> 1) {
1152 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1156 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1159 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1164 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1165 err
= kvm_update_guest_debug(env
, 0);
1172 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1174 struct kvm_sw_breakpoint
*bp
, *next
;
1175 KVMState
*s
= current_env
->kvm_state
;
1178 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1179 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1180 /* Try harder to find a CPU that currently sees the breakpoint. */
1181 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1182 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1187 kvm_arch_remove_all_hw_breakpoints();
1189 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1190 kvm_update_guest_debug(env
, 0);
1193 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1195 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1200 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1201 target_ulong len
, int type
)
1206 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1207 target_ulong len
, int type
)
1212 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1215 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1217 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1219 struct kvm_signal_mask
*sigmask
;
1223 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1225 sigmask
= qemu_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1228 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1229 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1235 int kvm_set_ioeventfd_mmio_long(int fd
, uint32_t addr
, uint32_t val
, bool assign
)
1237 #ifdef KVM_IOEVENTFD
1239 struct kvm_ioeventfd iofd
;
1241 iofd
.datamatch
= val
;
1244 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1247 if (!kvm_enabled()) {
1252 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1255 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1267 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1269 #ifdef KVM_IOEVENTFD
1270 struct kvm_ioeventfd kick
= {
1274 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1281 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1282 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);