hw/intc/arm_gicv3_redist: Factor out "update bit in pending table" code
[qemu.git] / hw / intc / arm_gicv3_redist.c
blobd54ed9a03321d463c46c46c5406eccde084eacce
1 /*
2 * ARM GICv3 emulation: Redistributor
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited.
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
19 /* Return a 32-bit mask which should be applied for this set of 32
20 * interrupts; each bit is 1 if access is permitted by the
21 * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22 * not affect config register accesses, unlike GICD_NSACR.)
24 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26 return cs->gicr_igroupr0;
28 return 0xFFFFFFFFU;
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
33 /* Return the 2 bit NSACR.NS_access field for this SGI */
34 assert(irq < 16);
35 return extract32(cs->gicr_nsacr, irq * 2, 2);
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39 uint32_t *reg, uint32_t val)
41 /* Helper routine to implement writing to a "set-bitmap" register */
42 val &= mask_group(cs, attrs);
43 *reg |= val;
44 gicv3_redist_update(cs);
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48 uint32_t *reg, uint32_t val)
50 /* Helper routine to implement writing to a "clear-bitmap" register */
51 val &= mask_group(cs, attrs);
52 *reg &= ~val;
53 gicv3_redist_update(cs);
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57 uint32_t reg)
59 reg &= mask_group(cs, attrs);
60 return reg;
63 /**
64 * update_for_one_lpi: Update pending information if this LPI is better
66 * @cs: GICv3CPUState
67 * @irq: interrupt to look up in the LPI Configuration table
68 * @ctbase: physical address of the LPI Configuration table to use
69 * @ds: true if priority value should not be shifted
70 * @hpp: points to pending information to update
72 * Look up @irq in the Configuration table specified by @ctbase
73 * to see if it is enabled and what its priority is. If it is an
74 * enabled interrupt with a higher priority than that currently
75 * recorded in @hpp, update @hpp.
77 static void update_for_one_lpi(GICv3CPUState *cs, int irq,
78 uint64_t ctbase, bool ds, PendingIrq *hpp)
80 uint8_t lpite;
81 uint8_t prio;
83 address_space_read(&cs->gic->dma_as,
84 ctbase + ((irq - GICV3_LPI_INTID_START) * sizeof(lpite)),
85 MEMTXATTRS_UNSPECIFIED, &lpite, sizeof(lpite));
87 if (!(lpite & LPI_CTE_ENABLED)) {
88 return;
91 if (ds) {
92 prio = lpite & LPI_PRIORITY_MASK;
93 } else {
94 prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
97 if ((prio < hpp->prio) ||
98 ((prio == hpp->prio) && (irq <= hpp->irq))) {
99 hpp->irq = irq;
100 hpp->prio = prio;
101 /* LPIs and vLPIs are always non-secure Grp1 interrupts */
102 hpp->grp = GICV3_G1NS;
107 * update_for_all_lpis: Fully scan LPI tables and find best pending LPI
109 * @cs: GICv3CPUState
110 * @ptbase: physical address of LPI Pending table
111 * @ctbase: physical address of LPI Configuration table
112 * @ptsizebits: size of tables, specified as number of interrupt ID bits minus 1
113 * @ds: true if priority value should not be shifted
114 * @hpp: points to pending information to set
116 * Recalculate the highest priority pending enabled LPI from scratch,
117 * and set @hpp accordingly.
119 * We scan the LPI pending table @ptbase; for each pending LPI, we read the
120 * corresponding entry in the LPI configuration table @ctbase to extract
121 * the priority and enabled information.
123 * We take @ptsizebits in the form idbits-1 because this is the way that
124 * LPI table sizes are architecturally specified in GICR_PROPBASER.IDBits
125 * and in the VMAPP command's VPT_size field.
127 static void update_for_all_lpis(GICv3CPUState *cs, uint64_t ptbase,
128 uint64_t ctbase, unsigned ptsizebits,
129 bool ds, PendingIrq *hpp)
131 AddressSpace *as = &cs->gic->dma_as;
132 uint8_t pend;
133 uint32_t pendt_size = (1ULL << (ptsizebits + 1));
134 int i, bit;
136 hpp->prio = 0xff;
138 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
139 address_space_read(as, ptbase + i, MEMTXATTRS_UNSPECIFIED, &pend, 1);
140 while (pend) {
141 bit = ctz32(pend);
142 update_for_one_lpi(cs, i * 8 + bit, ctbase, ds, hpp);
143 pend &= ~(1 << bit);
149 * set_lpi_pending_bit: Set or clear pending bit for an LPI
151 * @cs: GICv3CPUState
152 * @ptbase: physical address of LPI Pending table
153 * @irq: LPI to change pending state for
154 * @level: false to clear pending state, true to set
156 * Returns true if we needed to do something, false if the pending bit
157 * was already at @level.
159 static bool set_pending_table_bit(GICv3CPUState *cs, uint64_t ptbase,
160 int irq, bool level)
162 AddressSpace *as = &cs->gic->dma_as;
163 uint64_t addr = ptbase + irq / 8;
164 uint8_t pend;
166 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
167 if (extract32(pend, irq % 8, 1) == level) {
168 /* Bit already at requested state, no action required */
169 return false;
171 pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
172 address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
173 return true;
176 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
177 int irq)
179 /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
180 * honouring security state (these are RAZ/WI for Group 0 or Secure
181 * Group 1 interrupts).
183 uint32_t prio;
185 prio = cs->gicr_ipriorityr[irq];
187 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
188 if (!(cs->gicr_igroupr0 & (1U << irq))) {
189 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
190 return 0;
192 /* NS view of the interrupt priority */
193 prio = (prio << 1) & 0xff;
195 return prio;
198 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
199 uint8_t value)
201 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
202 * honouring security state (these are RAZ/WI for Group 0 or Secure
203 * Group 1 interrupts).
205 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
206 if (!(cs->gicr_igroupr0 & (1U << irq))) {
207 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
208 return;
210 /* NS view of the interrupt priority */
211 value = 0x80 | (value >> 1);
213 cs->gicr_ipriorityr[irq] = value;
216 static void gicv3_redist_update_vlpi_only(GICv3CPUState *cs)
218 uint64_t ptbase, ctbase, idbits;
220 if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
221 cs->hppvlpi.prio = 0xff;
222 return;
225 ptbase = cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK;
226 ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
227 idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
229 update_for_all_lpis(cs, ptbase, ctbase, idbits, true, &cs->hppvlpi);
232 static void gicv3_redist_update_vlpi(GICv3CPUState *cs)
234 gicv3_redist_update_vlpi_only(cs);
235 gicv3_cpuif_virt_irq_fiq_update(cs);
238 static void gicr_write_vpendbaser(GICv3CPUState *cs, uint64_t newval)
240 /* Write @newval to GICR_VPENDBASER, handling its effects */
241 bool oldvalid = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID);
242 bool newvalid = FIELD_EX64(newval, GICR_VPENDBASER, VALID);
243 bool pendinglast;
246 * The DIRTY bit is read-only and for us is always zero;
247 * other fields are writeable.
249 newval &= R_GICR_VPENDBASER_INNERCACHE_MASK |
250 R_GICR_VPENDBASER_SHAREABILITY_MASK |
251 R_GICR_VPENDBASER_PHYADDR_MASK |
252 R_GICR_VPENDBASER_OUTERCACHE_MASK |
253 R_GICR_VPENDBASER_PENDINGLAST_MASK |
254 R_GICR_VPENDBASER_IDAI_MASK |
255 R_GICR_VPENDBASER_VALID_MASK;
257 if (oldvalid && newvalid) {
259 * Changing other fields while VALID is 1 is UNPREDICTABLE;
260 * we choose to log and ignore the write.
262 if (cs->gicr_vpendbaser ^ newval) {
263 qemu_log_mask(LOG_GUEST_ERROR,
264 "%s: Changing GICR_VPENDBASER when VALID=1 "
265 "is UNPREDICTABLE\n", __func__);
267 return;
269 if (!oldvalid && !newvalid) {
270 cs->gicr_vpendbaser = newval;
271 return;
274 if (newvalid) {
276 * Valid going from 0 to 1: update hppvlpi from tables.
277 * If IDAI is 0 we are allowed to use the info we cached in
278 * the IMPDEF area of the table.
279 * PendingLast is RES1 when we make this transition.
281 pendinglast = true;
282 } else {
284 * Valid going from 1 to 0:
285 * Set PendingLast if there was a pending enabled interrupt
286 * for the vPE that was just descheduled.
287 * If we cache info in the IMPDEF area, write it out here.
289 pendinglast = cs->hppvlpi.prio != 0xff;
292 newval = FIELD_DP64(newval, GICR_VPENDBASER, PENDINGLAST, pendinglast);
293 cs->gicr_vpendbaser = newval;
294 gicv3_redist_update_vlpi(cs);
297 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
298 uint64_t *data, MemTxAttrs attrs)
300 switch (offset) {
301 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
302 *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
303 return MEMTX_OK;
304 default:
305 return MEMTX_ERROR;
309 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
310 uint64_t value, MemTxAttrs attrs)
312 switch (offset) {
313 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
314 gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
315 gicv3_redist_update(cs);
316 return MEMTX_OK;
317 default:
318 return MEMTX_ERROR;
322 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
323 uint64_t *data, MemTxAttrs attrs)
325 switch (offset) {
326 case GICR_CTLR:
327 *data = cs->gicr_ctlr;
328 return MEMTX_OK;
329 case GICR_IIDR:
330 *data = gicv3_iidr();
331 return MEMTX_OK;
332 case GICR_TYPER:
333 *data = extract64(cs->gicr_typer, 0, 32);
334 return MEMTX_OK;
335 case GICR_TYPER + 4:
336 *data = extract64(cs->gicr_typer, 32, 32);
337 return MEMTX_OK;
338 case GICR_STATUSR:
339 /* RAZ/WI for us (this is an optional register and our implementation
340 * does not track RO/WO/reserved violations to report them to the guest)
342 *data = 0;
343 return MEMTX_OK;
344 case GICR_WAKER:
345 *data = cs->gicr_waker;
346 return MEMTX_OK;
347 case GICR_PROPBASER:
348 *data = extract64(cs->gicr_propbaser, 0, 32);
349 return MEMTX_OK;
350 case GICR_PROPBASER + 4:
351 *data = extract64(cs->gicr_propbaser, 32, 32);
352 return MEMTX_OK;
353 case GICR_PENDBASER:
354 *data = extract64(cs->gicr_pendbaser, 0, 32);
355 return MEMTX_OK;
356 case GICR_PENDBASER + 4:
357 *data = extract64(cs->gicr_pendbaser, 32, 32);
358 return MEMTX_OK;
359 case GICR_IGROUPR0:
360 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
361 *data = 0;
362 return MEMTX_OK;
364 *data = cs->gicr_igroupr0;
365 return MEMTX_OK;
366 case GICR_ISENABLER0:
367 case GICR_ICENABLER0:
368 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
369 return MEMTX_OK;
370 case GICR_ISPENDR0:
371 case GICR_ICPENDR0:
373 /* The pending register reads as the logical OR of the pending
374 * latch and the input line level for level-triggered interrupts.
376 uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
377 *data = gicr_read_bitmap_reg(cs, attrs, val);
378 return MEMTX_OK;
380 case GICR_ISACTIVER0:
381 case GICR_ICACTIVER0:
382 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
383 return MEMTX_OK;
384 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
386 int i, irq = offset - GICR_IPRIORITYR;
387 uint32_t value = 0;
389 for (i = irq + 3; i >= irq; i--) {
390 value <<= 8;
391 value |= gicr_read_ipriorityr(cs, attrs, i);
393 *data = value;
394 return MEMTX_OK;
396 case GICR_ICFGR0:
397 case GICR_ICFGR1:
399 /* Our edge_trigger bitmap is one bit per irq; take the correct
400 * half of it, and spread it out into the odd bits.
402 uint32_t value;
404 value = cs->edge_trigger & mask_group(cs, attrs);
405 value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
406 value = half_shuffle32(value) << 1;
407 *data = value;
408 return MEMTX_OK;
410 case GICR_IGRPMODR0:
411 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
412 /* RAZ/WI if security disabled, or if
413 * security enabled and this is an NS access
415 *data = 0;
416 return MEMTX_OK;
418 *data = cs->gicr_igrpmodr0;
419 return MEMTX_OK;
420 case GICR_NSACR:
421 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
422 /* RAZ/WI if security disabled, or if
423 * security enabled and this is an NS access
425 *data = 0;
426 return MEMTX_OK;
428 *data = cs->gicr_nsacr;
429 return MEMTX_OK;
430 case GICR_IDREGS ... GICR_IDREGS + 0x2f:
431 *data = gicv3_idreg(offset - GICR_IDREGS, GICV3_PIDR0_REDIST);
432 return MEMTX_OK;
434 * VLPI frame registers. We don't need a version check for
435 * VPROPBASER and VPENDBASER because gicv3_redist_size() will
436 * prevent pre-v4 GIC from passing us offsets this high.
438 case GICR_VPROPBASER:
439 *data = extract64(cs->gicr_vpropbaser, 0, 32);
440 return MEMTX_OK;
441 case GICR_VPROPBASER + 4:
442 *data = extract64(cs->gicr_vpropbaser, 32, 32);
443 return MEMTX_OK;
444 case GICR_VPENDBASER:
445 *data = extract64(cs->gicr_vpendbaser, 0, 32);
446 return MEMTX_OK;
447 case GICR_VPENDBASER + 4:
448 *data = extract64(cs->gicr_vpendbaser, 32, 32);
449 return MEMTX_OK;
450 default:
451 return MEMTX_ERROR;
455 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
456 uint64_t value, MemTxAttrs attrs)
458 switch (offset) {
459 case GICR_CTLR:
460 /* For our implementation, GICR_TYPER.DPGS is 0 and so all
461 * the DPG bits are RAZ/WI. We don't do anything asynchronously,
462 * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
463 * implement LPIs) so Enable_LPIs is programmable.
465 if (cs->gicr_typer & GICR_TYPER_PLPIS) {
466 if (value & GICR_CTLR_ENABLE_LPIS) {
467 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
468 /* Check for any pending interr in pending table */
469 gicv3_redist_update_lpi(cs);
470 } else {
471 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
472 /* cs->hppi might have been an LPI; recalculate */
473 gicv3_redist_update(cs);
476 return MEMTX_OK;
477 case GICR_STATUSR:
478 /* RAZ/WI for our implementation */
479 return MEMTX_OK;
480 case GICR_WAKER:
481 /* Only the ProcessorSleep bit is writeable. When the guest sets
482 * it it requests that we transition the channel between the
483 * redistributor and the cpu interface to quiescent, and that
484 * we set the ChildrenAsleep bit once the inteface has reached the
485 * quiescent state.
486 * Setting the ProcessorSleep to 0 reverses the quiescing, and
487 * ChildrenAsleep is cleared once the transition is complete.
488 * Since our interface is not asynchronous, we complete these
489 * transitions instantaneously, so we set ChildrenAsleep to the
490 * same value as ProcessorSleep here.
492 value &= GICR_WAKER_ProcessorSleep;
493 if (value & GICR_WAKER_ProcessorSleep) {
494 value |= GICR_WAKER_ChildrenAsleep;
496 cs->gicr_waker = value;
497 return MEMTX_OK;
498 case GICR_PROPBASER:
499 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
500 return MEMTX_OK;
501 case GICR_PROPBASER + 4:
502 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
503 return MEMTX_OK;
504 case GICR_PENDBASER:
505 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
506 return MEMTX_OK;
507 case GICR_PENDBASER + 4:
508 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
509 return MEMTX_OK;
510 case GICR_IGROUPR0:
511 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
512 return MEMTX_OK;
514 cs->gicr_igroupr0 = value;
515 gicv3_redist_update(cs);
516 return MEMTX_OK;
517 case GICR_ISENABLER0:
518 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
519 return MEMTX_OK;
520 case GICR_ICENABLER0:
521 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
522 return MEMTX_OK;
523 case GICR_ISPENDR0:
524 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
525 return MEMTX_OK;
526 case GICR_ICPENDR0:
527 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
528 return MEMTX_OK;
529 case GICR_ISACTIVER0:
530 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
531 return MEMTX_OK;
532 case GICR_ICACTIVER0:
533 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
534 return MEMTX_OK;
535 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
537 int i, irq = offset - GICR_IPRIORITYR;
539 for (i = irq; i < irq + 4; i++, value >>= 8) {
540 gicr_write_ipriorityr(cs, attrs, i, value);
542 gicv3_redist_update(cs);
543 return MEMTX_OK;
545 case GICR_ICFGR0:
546 /* Register is all RAZ/WI or RAO/WI bits */
547 return MEMTX_OK;
548 case GICR_ICFGR1:
550 uint32_t mask;
552 /* Since our edge_trigger bitmap is one bit per irq, our input
553 * 32-bits will compress down into 16 bits which we need
554 * to write into the bitmap.
556 value = half_unshuffle32(value >> 1) << 16;
557 mask = mask_group(cs, attrs) & 0xffff0000U;
559 cs->edge_trigger &= ~mask;
560 cs->edge_trigger |= (value & mask);
562 gicv3_redist_update(cs);
563 return MEMTX_OK;
565 case GICR_IGRPMODR0:
566 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
567 /* RAZ/WI if security disabled, or if
568 * security enabled and this is an NS access
570 return MEMTX_OK;
572 cs->gicr_igrpmodr0 = value;
573 gicv3_redist_update(cs);
574 return MEMTX_OK;
575 case GICR_NSACR:
576 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
577 /* RAZ/WI if security disabled, or if
578 * security enabled and this is an NS access
580 return MEMTX_OK;
582 cs->gicr_nsacr = value;
583 /* no update required as this only affects access permission checks */
584 return MEMTX_OK;
585 case GICR_IIDR:
586 case GICR_TYPER:
587 case GICR_IDREGS ... GICR_IDREGS + 0x2f:
588 /* RO registers, ignore the write */
589 qemu_log_mask(LOG_GUEST_ERROR,
590 "%s: invalid guest write to RO register at offset "
591 TARGET_FMT_plx "\n", __func__, offset);
592 return MEMTX_OK;
594 * VLPI frame registers. We don't need a version check for
595 * VPROPBASER and VPENDBASER because gicv3_redist_size() will
596 * prevent pre-v4 GIC from passing us offsets this high.
598 case GICR_VPROPBASER:
599 cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 0, 32, value);
600 return MEMTX_OK;
601 case GICR_VPROPBASER + 4:
602 cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 32, 32, value);
603 return MEMTX_OK;
604 case GICR_VPENDBASER:
605 gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 0, 32, value));
606 return MEMTX_OK;
607 case GICR_VPENDBASER + 4:
608 gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 32, 32, value));
609 return MEMTX_OK;
610 default:
611 return MEMTX_ERROR;
615 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
616 uint64_t *data, MemTxAttrs attrs)
618 switch (offset) {
619 case GICR_TYPER:
620 *data = cs->gicr_typer;
621 return MEMTX_OK;
622 case GICR_PROPBASER:
623 *data = cs->gicr_propbaser;
624 return MEMTX_OK;
625 case GICR_PENDBASER:
626 *data = cs->gicr_pendbaser;
627 return MEMTX_OK;
629 * VLPI frame registers. We don't need a version check for
630 * VPROPBASER and VPENDBASER because gicv3_redist_size() will
631 * prevent pre-v4 GIC from passing us offsets this high.
633 case GICR_VPROPBASER:
634 *data = cs->gicr_vpropbaser;
635 return MEMTX_OK;
636 case GICR_VPENDBASER:
637 *data = cs->gicr_vpendbaser;
638 return MEMTX_OK;
639 default:
640 return MEMTX_ERROR;
644 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
645 uint64_t value, MemTxAttrs attrs)
647 switch (offset) {
648 case GICR_PROPBASER:
649 cs->gicr_propbaser = value;
650 return MEMTX_OK;
651 case GICR_PENDBASER:
652 cs->gicr_pendbaser = value;
653 return MEMTX_OK;
654 case GICR_TYPER:
655 /* RO register, ignore the write */
656 qemu_log_mask(LOG_GUEST_ERROR,
657 "%s: invalid guest write to RO register at offset "
658 TARGET_FMT_plx "\n", __func__, offset);
659 return MEMTX_OK;
661 * VLPI frame registers. We don't need a version check for
662 * VPROPBASER and VPENDBASER because gicv3_redist_size() will
663 * prevent pre-v4 GIC from passing us offsets this high.
665 case GICR_VPROPBASER:
666 cs->gicr_vpropbaser = value;
667 return MEMTX_OK;
668 case GICR_VPENDBASER:
669 gicr_write_vpendbaser(cs, value);
670 return MEMTX_OK;
671 default:
672 return MEMTX_ERROR;
676 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
677 unsigned size, MemTxAttrs attrs)
679 GICv3RedistRegion *region = opaque;
680 GICv3State *s = region->gic;
681 GICv3CPUState *cs;
682 MemTxResult r;
683 int cpuidx;
685 assert((offset & (size - 1)) == 0);
688 * There are (for GICv3) two 64K redistributor pages per CPU.
689 * In some cases the redistributor pages for all CPUs are not
690 * contiguous (eg on the virt board they are split into two
691 * parts if there are too many CPUs to all fit in the same place
692 * in the memory map); if so then the GIC has multiple MemoryRegions
693 * for the redistributors.
695 cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
696 offset %= gicv3_redist_size(s);
698 cs = &s->cpu[cpuidx];
700 switch (size) {
701 case 1:
702 r = gicr_readb(cs, offset, data, attrs);
703 break;
704 case 4:
705 r = gicr_readl(cs, offset, data, attrs);
706 break;
707 case 8:
708 r = gicr_readll(cs, offset, data, attrs);
709 break;
710 default:
711 r = MEMTX_ERROR;
712 break;
715 if (r != MEMTX_OK) {
716 qemu_log_mask(LOG_GUEST_ERROR,
717 "%s: invalid guest read at offset " TARGET_FMT_plx
718 " size %u\n", __func__, offset, size);
719 trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
720 size, attrs.secure);
721 /* The spec requires that reserved registers are RAZ/WI;
722 * so use MEMTX_ERROR returns from leaf functions as a way to
723 * trigger the guest-error logging but don't return it to
724 * the caller, or we'll cause a spurious guest data abort.
726 r = MEMTX_OK;
727 *data = 0;
728 } else {
729 trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
730 size, attrs.secure);
732 return r;
735 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
736 unsigned size, MemTxAttrs attrs)
738 GICv3RedistRegion *region = opaque;
739 GICv3State *s = region->gic;
740 GICv3CPUState *cs;
741 MemTxResult r;
742 int cpuidx;
744 assert((offset & (size - 1)) == 0);
747 * There are (for GICv3) two 64K redistributor pages per CPU.
748 * In some cases the redistributor pages for all CPUs are not
749 * contiguous (eg on the virt board they are split into two
750 * parts if there are too many CPUs to all fit in the same place
751 * in the memory map); if so then the GIC has multiple MemoryRegions
752 * for the redistributors.
754 cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
755 offset %= gicv3_redist_size(s);
757 cs = &s->cpu[cpuidx];
759 switch (size) {
760 case 1:
761 r = gicr_writeb(cs, offset, data, attrs);
762 break;
763 case 4:
764 r = gicr_writel(cs, offset, data, attrs);
765 break;
766 case 8:
767 r = gicr_writell(cs, offset, data, attrs);
768 break;
769 default:
770 r = MEMTX_ERROR;
771 break;
774 if (r != MEMTX_OK) {
775 qemu_log_mask(LOG_GUEST_ERROR,
776 "%s: invalid guest write at offset " TARGET_FMT_plx
777 " size %u\n", __func__, offset, size);
778 trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
779 size, attrs.secure);
780 /* The spec requires that reserved registers are RAZ/WI;
781 * so use MEMTX_ERROR returns from leaf functions as a way to
782 * trigger the guest-error logging but don't return it to
783 * the caller, or we'll cause a spurious guest data abort.
785 r = MEMTX_OK;
786 } else {
787 trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
788 size, attrs.secure);
790 return r;
793 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
795 uint64_t lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
797 update_for_one_lpi(cs, irq, lpict_baddr,
798 cs->gic->gicd_ctlr & GICD_CTLR_DS,
799 &cs->hpplpi);
802 void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
805 * This function scans the LPI pending table and for each pending
806 * LPI, reads the corresponding entry from LPI configuration table
807 * to extract the priority info and determine if the current LPI
808 * priority is lower than the last computed high priority lpi interrupt.
809 * If yes, replace current LPI as the new high priority lpi interrupt.
811 uint64_t lpipt_baddr, lpict_baddr;
812 uint64_t idbits;
814 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
815 GICD_TYPER_IDBITS);
817 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
818 return;
821 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
822 lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
824 update_for_all_lpis(cs, lpipt_baddr, lpict_baddr, idbits,
825 cs->gic->gicd_ctlr & GICD_CTLR_DS, &cs->hpplpi);
828 void gicv3_redist_update_lpi(GICv3CPUState *cs)
830 gicv3_redist_update_lpi_only(cs);
831 gicv3_redist_update(cs);
834 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
837 * This function updates the pending bit in lpi pending table for
838 * the irq being activated or deactivated.
840 uint64_t lpipt_baddr;
842 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
843 if (!set_pending_table_bit(cs, lpipt_baddr, irq, level)) {
844 /* no change in the value of pending bit, return */
845 return;
849 * check if this LPI is better than the current hpplpi, if yes
850 * just set hpplpi.prio and .irq without doing a full rescan
852 if (level) {
853 gicv3_redist_check_lpi_priority(cs, irq);
854 gicv3_redist_update(cs);
855 } else {
856 if (irq == cs->hpplpi.irq) {
857 gicv3_redist_update_lpi(cs);
862 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
864 uint64_t idbits;
866 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
867 GICD_TYPER_IDBITS);
869 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
870 (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) {
871 return;
874 /* set/clear the pending bit for this irq */
875 gicv3_redist_lpi_pending(cs, irq, level);
878 void gicv3_redist_inv_lpi(GICv3CPUState *cs, int irq)
881 * The only cached information for LPIs we have is the HPPLPI.
882 * We could be cleverer about identifying when we don't need
883 * to do a full rescan of the pending table, but until we find
884 * this is a performance issue, just always recalculate.
886 gicv3_redist_update_lpi(cs);
889 void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq)
892 * Move the specified LPI's pending state from the source redistributor
893 * to the destination.
895 * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
896 * we choose to NOP. If LPIs are disabled on source there's nothing
897 * to be transferred anyway.
899 AddressSpace *as = &src->gic->dma_as;
900 uint64_t idbits;
901 uint32_t pendt_size;
902 uint64_t src_baddr;
903 uint8_t src_pend;
905 if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
906 !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
907 return;
910 idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
911 GICD_TYPER_IDBITS);
912 idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
913 idbits);
915 pendt_size = 1ULL << (idbits + 1);
916 if ((irq / 8) >= pendt_size) {
917 return;
920 src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
922 address_space_read(as, src_baddr + (irq / 8),
923 MEMTXATTRS_UNSPECIFIED, &src_pend, sizeof(src_pend));
924 if (!extract32(src_pend, irq % 8, 1)) {
925 /* Not pending on source, nothing to do */
926 return;
928 src_pend &= ~(1 << (irq % 8));
929 address_space_write(as, src_baddr + (irq / 8),
930 MEMTXATTRS_UNSPECIFIED, &src_pend, sizeof(src_pend));
931 if (irq == src->hpplpi.irq) {
933 * We just made this LPI not-pending so only need to update
934 * if it was previously the highest priority pending LPI
936 gicv3_redist_update_lpi(src);
938 /* Mark it pending on the destination */
939 gicv3_redist_lpi_pending(dest, irq, 1);
942 void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest)
945 * We must move all pending LPIs from the source redistributor
946 * to the destination. That is, for every pending LPI X on
947 * src, we must set it not-pending on src and pending on dest.
948 * LPIs that are already pending on dest are not cleared.
950 * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
951 * we choose to NOP. If LPIs are disabled on source there's nothing
952 * to be transferred anyway.
954 AddressSpace *as = &src->gic->dma_as;
955 uint64_t idbits;
956 uint32_t pendt_size;
957 uint64_t src_baddr, dest_baddr;
958 int i;
960 if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
961 !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
962 return;
965 idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
966 GICD_TYPER_IDBITS);
967 idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
968 idbits);
970 pendt_size = 1ULL << (idbits + 1);
971 src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
972 dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
974 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
975 uint8_t src_pend, dest_pend;
977 address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
978 &src_pend, sizeof(src_pend));
979 if (!src_pend) {
980 continue;
982 address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
983 &dest_pend, sizeof(dest_pend));
984 dest_pend |= src_pend;
985 src_pend = 0;
986 address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
987 &src_pend, sizeof(src_pend));
988 address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
989 &dest_pend, sizeof(dest_pend));
992 gicv3_redist_update_lpi(src);
993 gicv3_redist_update_lpi(dest);
996 void gicv3_redist_vlpi_pending(GICv3CPUState *cs, int irq, int level)
999 * The redistributor handling for changing the pending state
1000 * of a vLPI will be added in a subsequent commit.
1004 void gicv3_redist_process_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr,
1005 int doorbell, int level)
1008 * The redistributor handling for being handed a VLPI by the ITS
1009 * will be added in a subsequent commit.
1013 void gicv3_redist_mov_vlpi(GICv3CPUState *src, uint64_t src_vptaddr,
1014 GICv3CPUState *dest, uint64_t dest_vptaddr,
1015 int irq, int doorbell)
1018 * The redistributor handling for moving a VLPI will be added
1019 * in a subsequent commit.
1023 void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr)
1025 /* The redistributor handling will be added in a subsequent commit */
1028 void gicv3_redist_inv_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr)
1031 * The redistributor handling for invalidating cached information
1032 * about a VLPI will be added in a subsequent commit.
1036 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
1038 /* Update redistributor state for a change in an external PPI input line */
1039 if (level == extract32(cs->level, irq, 1)) {
1040 return;
1043 trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
1045 cs->level = deposit32(cs->level, irq, 1, level);
1047 if (level) {
1048 /* 0->1 edges latch the pending bit for edge-triggered interrupts */
1049 if (extract32(cs->edge_trigger, irq, 1)) {
1050 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
1054 gicv3_redist_update(cs);
1057 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
1059 /* Update redistributor state for a generated SGI */
1060 int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
1062 /* If we are asked for a Secure Group 1 SGI and it's actually
1063 * configured as Secure Group 0 this is OK (subject to the usual
1064 * NSACR checks).
1066 if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
1067 grp = GICV3_G0;
1070 if (grp != irqgrp) {
1071 return;
1074 if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
1075 /* If security is enabled we must test the NSACR bits */
1076 int nsaccess = gicr_ns_access(cs, irq);
1078 if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
1079 (irqgrp == GICV3_G1 && nsaccess < 2)) {
1080 return;
1084 /* OK, we can accept the SGI */
1085 trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
1086 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
1087 gicv3_redist_update(cs);