nbd: Improve server handling of shutdown requests
[qemu.git] / target-arm / helper.c
blob25b15dc100fc8319cbd95be0020229ea040c7b10
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD 0x8
36 #define PMCRC 0x4
37 #define PMCRE 0x1
38 #endif
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
42 int nregs;
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
64 return 0;
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
69 int nregs;
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
89 return 0;
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
139 } else {
140 return CPREG_FIELD32(env, ri);
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
157 return (char *)env + ri->fieldoffset;
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
169 } else {
170 return raw_read(env, ri);
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t v)
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
182 if (ri->type & ARM_CP_CONST) {
183 return;
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
188 } else {
189 raw_write(env, ri, v);
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
211 return true;
214 bool write_cpustate_to_list(ARMCPU *cpu)
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 if (!ri) {
226 ok = false;
227 continue;
229 if (ri->type & ARM_CP_NO_RAW) {
230 continue;
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
234 return ok;
237 bool write_list_to_cpustate(ARMCPU *cpu)
239 int i;
240 bool ok = true;
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!ri) {
249 ok = false;
250 continue;
252 if (ri->type & ARM_CP_NO_RAW) {
253 continue;
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 ok = false;
264 return ok;
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
283 static void count_cpreg(gpointer key, gpointer opaque)
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
302 if (aidx > bidx) {
303 return 1;
305 if (aidx < bidx) {
306 return -1;
308 return 0;
311 void init_cpreg_list(ARMCPU *cpu)
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
316 GList *keys;
317 int arraylen;
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
322 cpu->cpreg_array_len = 0;
324 g_list_foreach(keys, count_cpreg, cpu);
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
336 assert(cpu->cpreg_array_len == arraylen);
338 g_list_free(keys);
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
350 bool isread)
352 bool secure = arm_is_secure_below_el3(env);
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
358 return CP_ACCESS_OK;
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
363 bool isread)
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
368 return CP_ACCESS_OK;
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
390 /* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
396 int el = arm_current_el(env);
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
405 return CP_ACCESS_OK;
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
414 int el = arm_current_el(env);
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
423 return CP_ACCESS_OK;
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
432 int el = arm_current_el(env);
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
441 return CP_ACCESS_OK;
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
450 int el = arm_current_el(env);
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
459 return CP_ACCESS_OK;
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
464 ARMCPU *cpu = arm_env_get_cpu(env);
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
472 ARMCPU *cpu = arm_env_get_cpu(env);
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
478 tlb_flush(CPU(cpu), 1);
479 raw_write(env, ri, value);
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
486 ARMCPU *cpu = arm_env_get_cpu(env);
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
494 tlb_flush(CPU(cpu), 1);
496 raw_write(env, ri, value);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
505 tlb_flush(CPU(cpu), 1);
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
523 tlb_flush(CPU(cpu), value == 0);
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
539 CPUState *other_cs;
541 CPU_FOREACH(other_cs) {
542 tlb_flush(other_cs, 1);
546 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
549 CPUState *other_cs;
551 CPU_FOREACH(other_cs) {
552 tlb_flush(other_cs, value == 0);
556 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
559 CPUState *other_cs;
561 CPU_FOREACH(other_cs) {
562 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
566 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 uint64_t value)
569 CPUState *other_cs;
571 CPU_FOREACH(other_cs) {
572 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
576 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
577 uint64_t value)
579 CPUState *cs = ENV_GET_CPU(env);
581 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
582 ARMMMUIdx_S2NS, -1);
585 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
588 CPUState *other_cs;
590 CPU_FOREACH(other_cs) {
591 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
592 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
596 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
597 uint64_t value)
599 /* Invalidate by IPA. This has to invalidate any structures that
600 * contain only stage 2 translation information, but does not need
601 * to apply to structures that contain combined stage 1 and stage 2
602 * translation information.
603 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
605 CPUState *cs = ENV_GET_CPU(env);
606 uint64_t pageaddr;
608 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
609 return;
612 pageaddr = sextract64(value << 12, 0, 40);
614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
617 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
620 CPUState *other_cs;
621 uint64_t pageaddr;
623 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
624 return;
627 pageaddr = sextract64(value << 12, 0, 40);
629 CPU_FOREACH(other_cs) {
630 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
634 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
635 uint64_t value)
637 CPUState *cs = ENV_GET_CPU(env);
639 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
642 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
643 uint64_t value)
645 CPUState *other_cs;
647 CPU_FOREACH(other_cs) {
648 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
652 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
658 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
661 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
662 uint64_t value)
664 CPUState *other_cs;
665 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
667 CPU_FOREACH(other_cs) {
668 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
672 static const ARMCPRegInfo cp_reginfo[] = {
673 /* Define the secure and non-secure FCSE identifier CP registers
674 * separately because there is no secure bank in V8 (no _EL3). This allows
675 * the secure register to be properly reset and migrated. There is also no
676 * v8 EL1 version of the register so the non-secure instance stands alone.
678 { .name = "FCSEIDR(NS)",
679 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
680 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
681 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
682 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
683 { .name = "FCSEIDR(S)",
684 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
685 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
686 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
687 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
688 /* Define the secure and non-secure context identifier CP registers
689 * separately because there is no secure bank in V8 (no _EL3). This allows
690 * the secure register to be properly reset and migrated. In the
691 * non-secure case, the 32-bit register will have reset and migration
692 * disabled during registration as it is handled by the 64-bit instance.
694 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
695 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
696 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
697 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
698 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
699 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
700 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
701 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
702 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
703 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
704 REGINFO_SENTINEL
707 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
708 /* NB: Some of these registers exist in v8 but with more precise
709 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
711 /* MMU Domain access control / MPU write buffer control */
712 { .name = "DACR",
713 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
714 .access = PL1_RW, .resetvalue = 0,
715 .writefn = dacr_write, .raw_writefn = raw_write,
716 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
717 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
718 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
719 * For v6 and v5, these mappings are overly broad.
721 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
722 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
723 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
729 /* Cache maintenance ops; some of this space may be overridden later. */
730 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
732 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
733 REGINFO_SENTINEL
736 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
737 /* Not all pre-v6 cores implemented this WFI, so this is slightly
738 * over-broad.
740 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
741 .access = PL1_W, .type = ARM_CP_WFI },
742 REGINFO_SENTINEL
745 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
746 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
747 * is UNPREDICTABLE; we choose to NOP as most implementations do).
749 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
750 .access = PL1_W, .type = ARM_CP_WFI },
751 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
752 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
753 * OMAPCP will override this space.
755 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
756 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
757 .resetvalue = 0 },
758 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
759 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
760 .resetvalue = 0 },
761 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
762 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
763 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
764 .resetvalue = 0 },
765 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
766 * implementing it as RAZ means the "debug architecture version" bits
767 * will read as a reserved value, which should cause Linux to not try
768 * to use the debug hardware.
770 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
772 /* MMU TLB control. Note that the wildcarding means we cover not just
773 * the unified TLB ops but also the dside/iside/inner-shareable variants.
775 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
776 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
777 .type = ARM_CP_NO_RAW },
778 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
779 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
780 .type = ARM_CP_NO_RAW },
781 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
782 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
783 .type = ARM_CP_NO_RAW },
784 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
785 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
786 .type = ARM_CP_NO_RAW },
787 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
788 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
789 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
790 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
791 REGINFO_SENTINEL
794 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
797 uint32_t mask = 0;
799 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
800 if (!arm_feature(env, ARM_FEATURE_V8)) {
801 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
802 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
803 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
805 if (arm_feature(env, ARM_FEATURE_VFP)) {
806 /* VFP coprocessor: cp10 & cp11 [23:20] */
807 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
809 if (!arm_feature(env, ARM_FEATURE_NEON)) {
810 /* ASEDIS [31] bit is RAO/WI */
811 value |= (1 << 31);
814 /* VFPv3 and upwards with NEON implement 32 double precision
815 * registers (D0-D31).
817 if (!arm_feature(env, ARM_FEATURE_NEON) ||
818 !arm_feature(env, ARM_FEATURE_VFP3)) {
819 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
820 value |= (1 << 30);
823 value &= mask;
825 env->cp15.cpacr_el1 = value;
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 &&
834 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
843 return CP_ACCESS_OK;
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
851 return CP_ACCESS_TRAP_EL3;
854 return CP_ACCESS_OK;
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858 /* prefetch by MVA in v6, NOP in v7 */
859 { .name = "MVA_prefetch",
860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861 .access = PL1_W, .type = ARM_CP_NOP },
862 /* We need to break the TB after ISB to execute self-modifying code
863 * correctly and also to take any pending interrupts immediately.
864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NOP },
870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
873 .access = PL1_RW,
874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
875 offsetof(CPUARMState, cp15.ifar_ns) },
876 .resetvalue = 0, },
877 /* Watchpoint Fault Address Register : should actually only be present
878 * for 1136, 1176, 11MPCore.
880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
885 .resetvalue = 0, .writefn = cpacr_write },
886 REGINFO_SENTINEL
889 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
890 bool isread)
892 /* Performance monitor registers user accessibility is controlled
893 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
894 * trapping to EL2 or EL3 for other accesses.
896 int el = arm_current_el(env);
898 if (el == 0 && !env->cp15.c9_pmuserenr) {
899 return CP_ACCESS_TRAP;
901 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
902 && !arm_is_secure_below_el3(env)) {
903 return CP_ACCESS_TRAP_EL2;
905 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
906 return CP_ACCESS_TRAP_EL3;
909 return CP_ACCESS_OK;
912 #ifndef CONFIG_USER_ONLY
914 static inline bool arm_ccnt_enabled(CPUARMState *env)
916 /* This does not support checking PMCCFILTR_EL0 register */
918 if (!(env->cp15.c9_pmcr & PMCRE)) {
919 return false;
922 return true;
925 void pmccntr_sync(CPUARMState *env)
927 uint64_t temp_ticks;
929 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
932 if (env->cp15.c9_pmcr & PMCRD) {
933 /* Increment once every 64 processor clock cycles */
934 temp_ticks /= 64;
937 if (arm_ccnt_enabled(env)) {
938 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
942 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
943 uint64_t value)
945 pmccntr_sync(env);
947 if (value & PMCRC) {
948 /* The counter has been reset */
949 env->cp15.c15_ccnt = 0;
952 /* only the DP, X, D and E bits are writable */
953 env->cp15.c9_pmcr &= ~0x39;
954 env->cp15.c9_pmcr |= (value & 0x39);
956 pmccntr_sync(env);
959 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
961 uint64_t total_ticks;
963 if (!arm_ccnt_enabled(env)) {
964 /* Counter is disabled, do not change value */
965 return env->cp15.c15_ccnt;
968 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
969 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
971 if (env->cp15.c9_pmcr & PMCRD) {
972 /* Increment once every 64 processor clock cycles */
973 total_ticks /= 64;
975 return total_ticks - env->cp15.c15_ccnt;
978 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
979 uint64_t value)
981 uint64_t total_ticks;
983 if (!arm_ccnt_enabled(env)) {
984 /* Counter is disabled, set the absolute value */
985 env->cp15.c15_ccnt = value;
986 return;
989 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
990 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
992 if (env->cp15.c9_pmcr & PMCRD) {
993 /* Increment once every 64 processor clock cycles */
994 total_ticks /= 64;
996 env->cp15.c15_ccnt = total_ticks - value;
999 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1000 uint64_t value)
1002 uint64_t cur_val = pmccntr_read(env, NULL);
1004 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1007 #else /* CONFIG_USER_ONLY */
1009 void pmccntr_sync(CPUARMState *env)
1013 #endif
1015 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1016 uint64_t value)
1018 pmccntr_sync(env);
1019 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1020 pmccntr_sync(env);
1023 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1024 uint64_t value)
1026 value &= (1 << 31);
1027 env->cp15.c9_pmcnten |= value;
1030 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1031 uint64_t value)
1033 value &= (1 << 31);
1034 env->cp15.c9_pmcnten &= ~value;
1037 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1038 uint64_t value)
1040 env->cp15.c9_pmovsr &= ~value;
1043 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1044 uint64_t value)
1046 env->cp15.c9_pmxevtyper = value & 0xff;
1049 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1050 uint64_t value)
1052 env->cp15.c9_pmuserenr = value & 1;
1055 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1056 uint64_t value)
1058 /* We have no event counters so only the C bit can be changed */
1059 value &= (1 << 31);
1060 env->cp15.c9_pminten |= value;
1063 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1064 uint64_t value)
1066 value &= (1 << 31);
1067 env->cp15.c9_pminten &= ~value;
1070 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1071 uint64_t value)
1073 /* Note that even though the AArch64 view of this register has bits
1074 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1075 * architectural requirements for bits which are RES0 only in some
1076 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1077 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1079 raw_write(env, ri, value & ~0x1FULL);
1082 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1084 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1085 * For bits that vary between AArch32/64, code needs to check the
1086 * current execution mode before directly using the feature bit.
1088 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1090 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1091 valid_mask &= ~SCR_HCE;
1093 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1094 * supported if EL2 exists. The bit is UNK/SBZP when
1095 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1096 * when EL2 is unavailable.
1097 * On ARMv8, this bit is always available.
1099 if (arm_feature(env, ARM_FEATURE_V7) &&
1100 !arm_feature(env, ARM_FEATURE_V8)) {
1101 valid_mask &= ~SCR_SMD;
1105 /* Clear all-context RES0 bits. */
1106 value &= valid_mask;
1107 raw_write(env, ri, value);
1110 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1112 ARMCPU *cpu = arm_env_get_cpu(env);
1114 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1115 * bank
1117 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1118 ri->secure & ARM_CP_SECSTATE_S);
1120 return cpu->ccsidr[index];
1123 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t value)
1126 raw_write(env, ri, value & 0xf);
1129 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1131 CPUState *cs = ENV_GET_CPU(env);
1132 uint64_t ret = 0;
1134 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1135 ret |= CPSR_I;
1137 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1138 ret |= CPSR_F;
1140 /* External aborts are not possible in QEMU so A bit is always clear */
1141 return ret;
1144 static const ARMCPRegInfo v7_cp_reginfo[] = {
1145 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1146 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1147 .access = PL1_W, .type = ARM_CP_NOP },
1148 /* Performance monitors are implementation defined in v7,
1149 * but with an ARM recommended set of registers, which we
1150 * follow (although we don't actually implement any counters)
1152 * Performance registers fall into three categories:
1153 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1154 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1155 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1156 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1157 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1159 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1160 .access = PL0_RW, .type = ARM_CP_ALIAS,
1161 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1162 .writefn = pmcntenset_write,
1163 .accessfn = pmreg_access,
1164 .raw_writefn = raw_write },
1165 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1167 .access = PL0_RW, .accessfn = pmreg_access,
1168 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1169 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1170 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1171 .access = PL0_RW,
1172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1173 .accessfn = pmreg_access,
1174 .writefn = pmcntenclr_write,
1175 .type = ARM_CP_ALIAS },
1176 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1177 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1178 .access = PL0_RW, .accessfn = pmreg_access,
1179 .type = ARM_CP_ALIAS,
1180 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1181 .writefn = pmcntenclr_write },
1182 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1183 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1184 .accessfn = pmreg_access,
1185 .writefn = pmovsr_write,
1186 .raw_writefn = raw_write },
1187 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1188 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1189 .access = PL0_RW, .accessfn = pmreg_access,
1190 .type = ARM_CP_ALIAS,
1191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1192 .writefn = pmovsr_write,
1193 .raw_writefn = raw_write },
1194 /* Unimplemented so WI. */
1195 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1196 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1197 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1198 * We choose to RAZ/WI.
1200 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1201 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1202 .accessfn = pmreg_access },
1203 #ifndef CONFIG_USER_ONLY
1204 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1205 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1206 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1207 .accessfn = pmreg_access },
1208 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1209 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1210 .access = PL0_RW, .accessfn = pmreg_access,
1211 .type = ARM_CP_IO,
1212 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1213 #endif
1214 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1215 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1216 .writefn = pmccfiltr_write,
1217 .access = PL0_RW, .accessfn = pmreg_access,
1218 .type = ARM_CP_IO,
1219 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1220 .resetvalue = 0, },
1221 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1222 .access = PL0_RW,
1223 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1224 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1225 .raw_writefn = raw_write },
1226 /* Unimplemented, RAZ/WI. */
1227 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1228 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1229 .accessfn = pmreg_access },
1230 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1231 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1232 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1233 .resetvalue = 0,
1234 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1235 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1236 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1237 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1238 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1239 .resetvalue = 0,
1240 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1241 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1242 .access = PL1_RW, .accessfn = access_tpm,
1243 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1244 .resetvalue = 0,
1245 .writefn = pmintenset_write, .raw_writefn = raw_write },
1246 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1247 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1248 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1249 .writefn = pmintenclr_write, },
1250 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1251 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1252 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1253 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1254 .writefn = pmintenclr_write },
1255 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1256 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1257 .access = PL1_RW, .writefn = vbar_write,
1258 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1259 offsetof(CPUARMState, cp15.vbar_ns) },
1260 .resetvalue = 0 },
1261 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1262 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1263 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1264 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1265 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1266 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1267 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1268 offsetof(CPUARMState, cp15.csselr_ns) } },
1269 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1270 * just RAZ for all cores:
1272 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1273 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1274 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1275 /* Auxiliary fault status registers: these also are IMPDEF, and we
1276 * choose to RAZ/WI for all cores.
1278 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1279 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1280 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1281 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1282 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1283 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1284 /* MAIR can just read-as-written because we don't implement caches
1285 * and so don't need to care about memory attributes.
1287 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1288 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1289 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1290 .resetvalue = 0 },
1291 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1292 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1293 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1294 .resetvalue = 0 },
1295 /* For non-long-descriptor page tables these are PRRR and NMRR;
1296 * regardless they still act as reads-as-written for QEMU.
1298 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1299 * allows them to assign the correct fieldoffset based on the endianness
1300 * handled in the field definitions.
1302 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1303 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1304 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1305 offsetof(CPUARMState, cp15.mair0_ns) },
1306 .resetfn = arm_cp_reset_ignore },
1307 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1308 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1309 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1310 offsetof(CPUARMState, cp15.mair1_ns) },
1311 .resetfn = arm_cp_reset_ignore },
1312 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1313 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1314 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1315 /* 32 bit ITLB invalidates */
1316 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1317 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1318 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1319 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1320 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1321 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1322 /* 32 bit DTLB invalidates */
1323 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1324 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1325 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1326 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1327 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1328 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1329 /* 32 bit TLB invalidates */
1330 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1331 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1332 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1333 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1334 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1335 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1336 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1337 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1338 REGINFO_SENTINEL
1341 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1342 /* 32 bit TLB invalidates, Inner Shareable */
1343 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1344 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1345 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1346 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1347 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1348 .type = ARM_CP_NO_RAW, .access = PL1_W,
1349 .writefn = tlbiasid_is_write },
1350 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1351 .type = ARM_CP_NO_RAW, .access = PL1_W,
1352 .writefn = tlbimvaa_is_write },
1353 REGINFO_SENTINEL
1356 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1357 uint64_t value)
1359 value &= 1;
1360 env->teecr = value;
1363 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1364 bool isread)
1366 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1367 return CP_ACCESS_TRAP;
1369 return CP_ACCESS_OK;
1372 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1373 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1374 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1375 .resetvalue = 0,
1376 .writefn = teecr_write },
1377 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1378 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1379 .accessfn = teehbr_access, .resetvalue = 0 },
1380 REGINFO_SENTINEL
1383 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1384 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1385 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1386 .access = PL0_RW,
1387 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1388 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1389 .access = PL0_RW,
1390 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1391 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1392 .resetfn = arm_cp_reset_ignore },
1393 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1394 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1395 .access = PL0_R|PL1_W,
1396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1397 .resetvalue = 0},
1398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1399 .access = PL0_R|PL1_W,
1400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1402 .resetfn = arm_cp_reset_ignore },
1403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1405 .access = PL1_RW,
1406 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1407 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1408 .access = PL1_RW,
1409 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1410 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1411 .resetvalue = 0 },
1412 REGINFO_SENTINEL
1415 #ifndef CONFIG_USER_ONLY
1417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1418 bool isread)
1420 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1421 * Writable only at the highest implemented exception level.
1423 int el = arm_current_el(env);
1425 switch (el) {
1426 case 0:
1427 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1428 return CP_ACCESS_TRAP;
1430 break;
1431 case 1:
1432 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1433 arm_is_secure_below_el3(env)) {
1434 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1435 return CP_ACCESS_TRAP_UNCATEGORIZED;
1437 break;
1438 case 2:
1439 case 3:
1440 break;
1443 if (!isread && el < arm_highest_el(env)) {
1444 return CP_ACCESS_TRAP_UNCATEGORIZED;
1447 return CP_ACCESS_OK;
1450 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1451 bool isread)
1453 unsigned int cur_el = arm_current_el(env);
1454 bool secure = arm_is_secure(env);
1456 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1457 if (cur_el == 0 &&
1458 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1459 return CP_ACCESS_TRAP;
1462 if (arm_feature(env, ARM_FEATURE_EL2) &&
1463 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1464 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1465 return CP_ACCESS_TRAP_EL2;
1467 return CP_ACCESS_OK;
1470 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1471 bool isread)
1473 unsigned int cur_el = arm_current_el(env);
1474 bool secure = arm_is_secure(env);
1476 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1477 * EL0[PV]TEN is zero.
1479 if (cur_el == 0 &&
1480 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1481 return CP_ACCESS_TRAP;
1484 if (arm_feature(env, ARM_FEATURE_EL2) &&
1485 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1486 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1487 return CP_ACCESS_TRAP_EL2;
1489 return CP_ACCESS_OK;
1492 static CPAccessResult gt_pct_access(CPUARMState *env,
1493 const ARMCPRegInfo *ri,
1494 bool isread)
1496 return gt_counter_access(env, GTIMER_PHYS, isread);
1499 static CPAccessResult gt_vct_access(CPUARMState *env,
1500 const ARMCPRegInfo *ri,
1501 bool isread)
1503 return gt_counter_access(env, GTIMER_VIRT, isread);
1506 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1507 bool isread)
1509 return gt_timer_access(env, GTIMER_PHYS, isread);
1512 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1513 bool isread)
1515 return gt_timer_access(env, GTIMER_VIRT, isread);
1518 static CPAccessResult gt_stimer_access(CPUARMState *env,
1519 const ARMCPRegInfo *ri,
1520 bool isread)
1522 /* The AArch64 register view of the secure physical timer is
1523 * always accessible from EL3, and configurably accessible from
1524 * Secure EL1.
1526 switch (arm_current_el(env)) {
1527 case 1:
1528 if (!arm_is_secure(env)) {
1529 return CP_ACCESS_TRAP;
1531 if (!(env->cp15.scr_el3 & SCR_ST)) {
1532 return CP_ACCESS_TRAP_EL3;
1534 return CP_ACCESS_OK;
1535 case 0:
1536 case 2:
1537 return CP_ACCESS_TRAP;
1538 case 3:
1539 return CP_ACCESS_OK;
1540 default:
1541 g_assert_not_reached();
1545 static uint64_t gt_get_countervalue(CPUARMState *env)
1547 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1550 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1552 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1554 if (gt->ctl & 1) {
1555 /* Timer enabled: calculate and set current ISTATUS, irq, and
1556 * reset timer to when ISTATUS next has to change
1558 uint64_t offset = timeridx == GTIMER_VIRT ?
1559 cpu->env.cp15.cntvoff_el2 : 0;
1560 uint64_t count = gt_get_countervalue(&cpu->env);
1561 /* Note that this must be unsigned 64 bit arithmetic: */
1562 int istatus = count - offset >= gt->cval;
1563 uint64_t nexttick;
1564 int irqstate;
1566 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1568 irqstate = (istatus && !(gt->ctl & 2));
1569 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1571 if (istatus) {
1572 /* Next transition is when count rolls back over to zero */
1573 nexttick = UINT64_MAX;
1574 } else {
1575 /* Next transition is when we hit cval */
1576 nexttick = gt->cval + offset;
1578 /* Note that the desired next expiry time might be beyond the
1579 * signed-64-bit range of a QEMUTimer -- in this case we just
1580 * set the timer for as far in the future as possible. When the
1581 * timer expires we will reset the timer for any remaining period.
1583 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1584 nexttick = INT64_MAX / GTIMER_SCALE;
1586 timer_mod(cpu->gt_timer[timeridx], nexttick);
1587 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1588 } else {
1589 /* Timer disabled: ISTATUS and timer output always clear */
1590 gt->ctl &= ~4;
1591 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1592 timer_del(cpu->gt_timer[timeridx]);
1593 trace_arm_gt_recalc_disabled(timeridx);
1597 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1598 int timeridx)
1600 ARMCPU *cpu = arm_env_get_cpu(env);
1602 timer_del(cpu->gt_timer[timeridx]);
1605 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1607 return gt_get_countervalue(env);
1610 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1612 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1615 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1616 int timeridx,
1617 uint64_t value)
1619 trace_arm_gt_cval_write(timeridx, value);
1620 env->cp15.c14_timer[timeridx].cval = value;
1621 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1624 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1625 int timeridx)
1627 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1629 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1630 (gt_get_countervalue(env) - offset));
1633 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1634 int timeridx,
1635 uint64_t value)
1637 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1639 trace_arm_gt_tval_write(timeridx, value);
1640 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1641 sextract64(value, 0, 32);
1642 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1645 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1646 int timeridx,
1647 uint64_t value)
1649 ARMCPU *cpu = arm_env_get_cpu(env);
1650 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1652 trace_arm_gt_ctl_write(timeridx, value);
1653 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1654 if ((oldval ^ value) & 1) {
1655 /* Enable toggled */
1656 gt_recalc_timer(cpu, timeridx);
1657 } else if ((oldval ^ value) & 2) {
1658 /* IMASK toggled: don't need to recalculate,
1659 * just set the interrupt line based on ISTATUS
1661 int irqstate = (oldval & 4) && !(value & 2);
1663 trace_arm_gt_imask_toggle(timeridx, irqstate);
1664 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1668 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1670 gt_timer_reset(env, ri, GTIMER_PHYS);
1673 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1674 uint64_t value)
1676 gt_cval_write(env, ri, GTIMER_PHYS, value);
1679 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1681 return gt_tval_read(env, ri, GTIMER_PHYS);
1684 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1685 uint64_t value)
1687 gt_tval_write(env, ri, GTIMER_PHYS, value);
1690 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1691 uint64_t value)
1693 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1696 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1698 gt_timer_reset(env, ri, GTIMER_VIRT);
1701 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1702 uint64_t value)
1704 gt_cval_write(env, ri, GTIMER_VIRT, value);
1707 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1709 return gt_tval_read(env, ri, GTIMER_VIRT);
1712 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1713 uint64_t value)
1715 gt_tval_write(env, ri, GTIMER_VIRT, value);
1718 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1721 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1724 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725 uint64_t value)
1727 ARMCPU *cpu = arm_env_get_cpu(env);
1729 trace_arm_gt_cntvoff_write(value);
1730 raw_write(env, ri, value);
1731 gt_recalc_timer(cpu, GTIMER_VIRT);
1734 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1736 gt_timer_reset(env, ri, GTIMER_HYP);
1739 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 gt_cval_write(env, ri, GTIMER_HYP, value);
1745 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1747 return gt_tval_read(env, ri, GTIMER_HYP);
1750 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value)
1753 gt_tval_write(env, ri, GTIMER_HYP, value);
1756 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1757 uint64_t value)
1759 gt_ctl_write(env, ri, GTIMER_HYP, value);
1762 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1764 gt_timer_reset(env, ri, GTIMER_SEC);
1767 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1768 uint64_t value)
1770 gt_cval_write(env, ri, GTIMER_SEC, value);
1773 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1775 return gt_tval_read(env, ri, GTIMER_SEC);
1778 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1779 uint64_t value)
1781 gt_tval_write(env, ri, GTIMER_SEC, value);
1784 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785 uint64_t value)
1787 gt_ctl_write(env, ri, GTIMER_SEC, value);
1790 void arm_gt_ptimer_cb(void *opaque)
1792 ARMCPU *cpu = opaque;
1794 gt_recalc_timer(cpu, GTIMER_PHYS);
1797 void arm_gt_vtimer_cb(void *opaque)
1799 ARMCPU *cpu = opaque;
1801 gt_recalc_timer(cpu, GTIMER_VIRT);
1804 void arm_gt_htimer_cb(void *opaque)
1806 ARMCPU *cpu = opaque;
1808 gt_recalc_timer(cpu, GTIMER_HYP);
1811 void arm_gt_stimer_cb(void *opaque)
1813 ARMCPU *cpu = opaque;
1815 gt_recalc_timer(cpu, GTIMER_SEC);
1818 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1819 /* Note that CNTFRQ is purely reads-as-written for the benefit
1820 * of software; writing it doesn't actually change the timer frequency.
1821 * Our reset value matches the fixed frequency we implement the timer at.
1823 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1824 .type = ARM_CP_ALIAS,
1825 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1826 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1828 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1829 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1830 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1831 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1832 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1834 /* overall control: mostly access permissions */
1835 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1836 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1837 .access = PL1_RW,
1838 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1839 .resetvalue = 0,
1841 /* per-timer control */
1842 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1843 .secure = ARM_CP_SECSTATE_NS,
1844 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1845 .accessfn = gt_ptimer_access,
1846 .fieldoffset = offsetoflow32(CPUARMState,
1847 cp15.c14_timer[GTIMER_PHYS].ctl),
1848 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1850 { .name = "CNTP_CTL(S)",
1851 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1852 .secure = ARM_CP_SECSTATE_S,
1853 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1854 .accessfn = gt_ptimer_access,
1855 .fieldoffset = offsetoflow32(CPUARMState,
1856 cp15.c14_timer[GTIMER_SEC].ctl),
1857 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1859 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1860 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1861 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1862 .accessfn = gt_ptimer_access,
1863 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1864 .resetvalue = 0,
1865 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1867 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1868 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1869 .accessfn = gt_vtimer_access,
1870 .fieldoffset = offsetoflow32(CPUARMState,
1871 cp15.c14_timer[GTIMER_VIRT].ctl),
1872 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1874 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1875 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1876 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1877 .accessfn = gt_vtimer_access,
1878 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1879 .resetvalue = 0,
1880 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1882 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1883 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1884 .secure = ARM_CP_SECSTATE_NS,
1885 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1886 .accessfn = gt_ptimer_access,
1887 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1889 { .name = "CNTP_TVAL(S)",
1890 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1891 .secure = ARM_CP_SECSTATE_S,
1892 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1893 .accessfn = gt_ptimer_access,
1894 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1896 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1897 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1898 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1899 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1900 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1902 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1903 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1904 .accessfn = gt_vtimer_access,
1905 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1907 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1908 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1909 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1910 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1911 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1913 /* The counter itself */
1914 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1915 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1916 .accessfn = gt_pct_access,
1917 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1919 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1920 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1921 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1922 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1924 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1925 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1926 .accessfn = gt_vct_access,
1927 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1929 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1930 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1931 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1932 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1934 /* Comparison value, indicating when the timer goes off */
1935 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1936 .secure = ARM_CP_SECSTATE_NS,
1937 .access = PL1_RW | PL0_R,
1938 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1939 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1940 .accessfn = gt_ptimer_access,
1941 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1943 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1944 .secure = ARM_CP_SECSTATE_S,
1945 .access = PL1_RW | PL0_R,
1946 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1947 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1948 .accessfn = gt_ptimer_access,
1949 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1951 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1952 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1953 .access = PL1_RW | PL0_R,
1954 .type = ARM_CP_IO,
1955 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1956 .resetvalue = 0, .accessfn = gt_ptimer_access,
1957 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1959 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1960 .access = PL1_RW | PL0_R,
1961 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1962 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1963 .accessfn = gt_vtimer_access,
1964 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1966 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1967 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1968 .access = PL1_RW | PL0_R,
1969 .type = ARM_CP_IO,
1970 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1971 .resetvalue = 0, .accessfn = gt_vtimer_access,
1972 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1974 /* Secure timer -- this is actually restricted to only EL3
1975 * and configurably Secure-EL1 via the accessfn.
1977 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1978 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1979 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1980 .accessfn = gt_stimer_access,
1981 .readfn = gt_sec_tval_read,
1982 .writefn = gt_sec_tval_write,
1983 .resetfn = gt_sec_timer_reset,
1985 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1986 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1987 .type = ARM_CP_IO, .access = PL1_RW,
1988 .accessfn = gt_stimer_access,
1989 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1990 .resetvalue = 0,
1991 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1993 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1994 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1995 .type = ARM_CP_IO, .access = PL1_RW,
1996 .accessfn = gt_stimer_access,
1997 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1998 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2000 REGINFO_SENTINEL
2003 #else
2004 /* In user-mode none of the generic timer registers are accessible,
2005 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2006 * so instead just don't register any of them.
2008 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2009 REGINFO_SENTINEL
2012 #endif
2014 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2016 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2017 raw_write(env, ri, value);
2018 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2019 raw_write(env, ri, value & 0xfffff6ff);
2020 } else {
2021 raw_write(env, ri, value & 0xfffff1ff);
2025 #ifndef CONFIG_USER_ONLY
2026 /* get_phys_addr() isn't present for user-mode-only targets */
2028 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2029 bool isread)
2031 if (ri->opc2 & 4) {
2032 /* The ATS12NSO* operations must trap to EL3 if executed in
2033 * Secure EL1 (which can only happen if EL3 is AArch64).
2034 * They are simply UNDEF if executed from NS EL1.
2035 * They function normally from EL2 or EL3.
2037 if (arm_current_el(env) == 1) {
2038 if (arm_is_secure_below_el3(env)) {
2039 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2041 return CP_ACCESS_TRAP_UNCATEGORIZED;
2044 return CP_ACCESS_OK;
2047 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2048 int access_type, ARMMMUIdx mmu_idx)
2050 hwaddr phys_addr;
2051 target_ulong page_size;
2052 int prot;
2053 uint32_t fsr;
2054 bool ret;
2055 uint64_t par64;
2056 MemTxAttrs attrs = {};
2057 ARMMMUFaultInfo fi = {};
2059 ret = get_phys_addr(env, value, access_type, mmu_idx,
2060 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2061 if (extended_addresses_enabled(env)) {
2062 /* fsr is a DFSR/IFSR value for the long descriptor
2063 * translation table format, but with WnR always clear.
2064 * Convert it to a 64-bit PAR.
2066 par64 = (1 << 11); /* LPAE bit always set */
2067 if (!ret) {
2068 par64 |= phys_addr & ~0xfffULL;
2069 if (!attrs.secure) {
2070 par64 |= (1 << 9); /* NS */
2072 /* We don't set the ATTR or SH fields in the PAR. */
2073 } else {
2074 par64 |= 1; /* F */
2075 par64 |= (fsr & 0x3f) << 1; /* FS */
2076 /* Note that S2WLK and FSTAGE are always zero, because we don't
2077 * implement virtualization and therefore there can't be a stage 2
2078 * fault.
2081 } else {
2082 /* fsr is a DFSR/IFSR value for the short descriptor
2083 * translation table format (with WnR always clear).
2084 * Convert it to a 32-bit PAR.
2086 if (!ret) {
2087 /* We do not set any attribute bits in the PAR */
2088 if (page_size == (1 << 24)
2089 && arm_feature(env, ARM_FEATURE_V7)) {
2090 par64 = (phys_addr & 0xff000000) | (1 << 1);
2091 } else {
2092 par64 = phys_addr & 0xfffff000;
2094 if (!attrs.secure) {
2095 par64 |= (1 << 9); /* NS */
2097 } else {
2098 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2099 ((fsr & 0xf) << 1) | 1;
2102 return par64;
2105 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2107 int access_type = ri->opc2 & 1;
2108 uint64_t par64;
2109 ARMMMUIdx mmu_idx;
2110 int el = arm_current_el(env);
2111 bool secure = arm_is_secure_below_el3(env);
2113 switch (ri->opc2 & 6) {
2114 case 0:
2115 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2116 switch (el) {
2117 case 3:
2118 mmu_idx = ARMMMUIdx_S1E3;
2119 break;
2120 case 2:
2121 mmu_idx = ARMMMUIdx_S1NSE1;
2122 break;
2123 case 1:
2124 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2125 break;
2126 default:
2127 g_assert_not_reached();
2129 break;
2130 case 2:
2131 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2132 switch (el) {
2133 case 3:
2134 mmu_idx = ARMMMUIdx_S1SE0;
2135 break;
2136 case 2:
2137 mmu_idx = ARMMMUIdx_S1NSE0;
2138 break;
2139 case 1:
2140 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2141 break;
2142 default:
2143 g_assert_not_reached();
2145 break;
2146 case 4:
2147 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2148 mmu_idx = ARMMMUIdx_S12NSE1;
2149 break;
2150 case 6:
2151 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2152 mmu_idx = ARMMMUIdx_S12NSE0;
2153 break;
2154 default:
2155 g_assert_not_reached();
2158 par64 = do_ats_write(env, value, access_type, mmu_idx);
2160 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2163 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2164 uint64_t value)
2166 int access_type = ri->opc2 & 1;
2167 uint64_t par64;
2169 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2171 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2174 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2175 bool isread)
2177 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2178 return CP_ACCESS_TRAP;
2180 return CP_ACCESS_OK;
2183 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2184 uint64_t value)
2186 int access_type = ri->opc2 & 1;
2187 ARMMMUIdx mmu_idx;
2188 int secure = arm_is_secure_below_el3(env);
2190 switch (ri->opc2 & 6) {
2191 case 0:
2192 switch (ri->opc1) {
2193 case 0: /* AT S1E1R, AT S1E1W */
2194 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2195 break;
2196 case 4: /* AT S1E2R, AT S1E2W */
2197 mmu_idx = ARMMMUIdx_S1E2;
2198 break;
2199 case 6: /* AT S1E3R, AT S1E3W */
2200 mmu_idx = ARMMMUIdx_S1E3;
2201 break;
2202 default:
2203 g_assert_not_reached();
2205 break;
2206 case 2: /* AT S1E0R, AT S1E0W */
2207 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2208 break;
2209 case 4: /* AT S12E1R, AT S12E1W */
2210 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2211 break;
2212 case 6: /* AT S12E0R, AT S12E0W */
2213 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2214 break;
2215 default:
2216 g_assert_not_reached();
2219 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2221 #endif
2223 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2224 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2225 .access = PL1_RW, .resetvalue = 0,
2226 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2227 offsetoflow32(CPUARMState, cp15.par_ns) },
2228 .writefn = par_write },
2229 #ifndef CONFIG_USER_ONLY
2230 /* This underdecoding is safe because the reginfo is NO_RAW. */
2231 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2232 .access = PL1_W, .accessfn = ats_access,
2233 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2234 #endif
2235 REGINFO_SENTINEL
2238 /* Return basic MPU access permission bits. */
2239 static uint32_t simple_mpu_ap_bits(uint32_t val)
2241 uint32_t ret;
2242 uint32_t mask;
2243 int i;
2244 ret = 0;
2245 mask = 3;
2246 for (i = 0; i < 16; i += 2) {
2247 ret |= (val >> i) & mask;
2248 mask <<= 2;
2250 return ret;
2253 /* Pad basic MPU access permission bits to extended format. */
2254 static uint32_t extended_mpu_ap_bits(uint32_t val)
2256 uint32_t ret;
2257 uint32_t mask;
2258 int i;
2259 ret = 0;
2260 mask = 3;
2261 for (i = 0; i < 16; i += 2) {
2262 ret |= (val & mask) << i;
2263 mask <<= 2;
2265 return ret;
2268 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2269 uint64_t value)
2271 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2274 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2276 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2279 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2280 uint64_t value)
2282 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2285 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2287 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2290 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2292 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2294 if (!u32p) {
2295 return 0;
2298 u32p += env->cp15.c6_rgnr;
2299 return *u32p;
2302 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2303 uint64_t value)
2305 ARMCPU *cpu = arm_env_get_cpu(env);
2306 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2308 if (!u32p) {
2309 return;
2312 u32p += env->cp15.c6_rgnr;
2313 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2314 *u32p = value;
2317 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2319 ARMCPU *cpu = arm_env_get_cpu(env);
2320 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2322 if (!u32p) {
2323 return;
2326 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2329 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2330 uint64_t value)
2332 ARMCPU *cpu = arm_env_get_cpu(env);
2333 uint32_t nrgs = cpu->pmsav7_dregion;
2335 if (value >= nrgs) {
2336 qemu_log_mask(LOG_GUEST_ERROR,
2337 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2338 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2339 return;
2342 raw_write(env, ri, value);
2345 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2346 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2347 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2348 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2349 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2350 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2351 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2352 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2353 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2354 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2355 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2356 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2357 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2358 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2359 .access = PL1_RW,
2360 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2361 .writefn = pmsav7_rgnr_write },
2362 REGINFO_SENTINEL
2365 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2366 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2367 .access = PL1_RW, .type = ARM_CP_ALIAS,
2368 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2369 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2370 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2371 .access = PL1_RW, .type = ARM_CP_ALIAS,
2372 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2373 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2374 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2375 .access = PL1_RW,
2376 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2377 .resetvalue = 0, },
2378 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2379 .access = PL1_RW,
2380 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2381 .resetvalue = 0, },
2382 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2383 .access = PL1_RW,
2384 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2385 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2386 .access = PL1_RW,
2387 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2388 /* Protection region base and size registers */
2389 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2390 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2391 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2392 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2393 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2394 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2395 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2396 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2397 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2398 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2399 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2400 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2401 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2402 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2403 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2404 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2405 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2406 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2407 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2408 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2409 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2410 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2411 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2412 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2413 REGINFO_SENTINEL
2416 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2417 uint64_t value)
2419 TCR *tcr = raw_ptr(env, ri);
2420 int maskshift = extract32(value, 0, 3);
2422 if (!arm_feature(env, ARM_FEATURE_V8)) {
2423 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2424 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2425 * using Long-desciptor translation table format */
2426 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2427 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2428 /* In an implementation that includes the Security Extensions
2429 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2430 * Short-descriptor translation table format.
2432 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2433 } else {
2434 value &= TTBCR_N;
2438 /* Update the masks corresponding to the TCR bank being written
2439 * Note that we always calculate mask and base_mask, but
2440 * they are only used for short-descriptor tables (ie if EAE is 0);
2441 * for long-descriptor tables the TCR fields are used differently
2442 * and the mask and base_mask values are meaningless.
2444 tcr->raw_tcr = value;
2445 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2446 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2449 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2450 uint64_t value)
2452 ARMCPU *cpu = arm_env_get_cpu(env);
2454 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2455 /* With LPAE the TTBCR could result in a change of ASID
2456 * via the TTBCR.A1 bit, so do a TLB flush.
2458 tlb_flush(CPU(cpu), 1);
2460 vmsa_ttbcr_raw_write(env, ri, value);
2463 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2465 TCR *tcr = raw_ptr(env, ri);
2467 /* Reset both the TCR as well as the masks corresponding to the bank of
2468 * the TCR being reset.
2470 tcr->raw_tcr = 0;
2471 tcr->mask = 0;
2472 tcr->base_mask = 0xffffc000u;
2475 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2476 uint64_t value)
2478 ARMCPU *cpu = arm_env_get_cpu(env);
2479 TCR *tcr = raw_ptr(env, ri);
2481 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2482 tlb_flush(CPU(cpu), 1);
2483 tcr->raw_tcr = value;
2486 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2487 uint64_t value)
2489 /* 64 bit accesses to the TTBRs can change the ASID and so we
2490 * must flush the TLB.
2492 if (cpreg_field_is_64bit(ri)) {
2493 ARMCPU *cpu = arm_env_get_cpu(env);
2495 tlb_flush(CPU(cpu), 1);
2497 raw_write(env, ri, value);
2500 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2501 uint64_t value)
2503 ARMCPU *cpu = arm_env_get_cpu(env);
2504 CPUState *cs = CPU(cpu);
2506 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2507 if (raw_read(env, ri) != value) {
2508 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2509 ARMMMUIdx_S2NS, -1);
2510 raw_write(env, ri, value);
2514 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2515 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2516 .access = PL1_RW, .type = ARM_CP_ALIAS,
2517 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2518 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2519 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2520 .access = PL1_RW, .resetvalue = 0,
2521 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2522 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2523 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2524 .access = PL1_RW, .resetvalue = 0,
2525 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2526 offsetof(CPUARMState, cp15.dfar_ns) } },
2527 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2528 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2529 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2530 .resetvalue = 0, },
2531 REGINFO_SENTINEL
2534 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2535 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2536 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2537 .access = PL1_RW,
2538 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2539 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2540 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2541 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2542 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2543 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2544 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2545 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2546 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2547 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2548 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2549 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2550 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2551 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2552 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2553 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2554 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2555 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2556 .raw_writefn = vmsa_ttbcr_raw_write,
2557 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2558 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2559 REGINFO_SENTINEL
2562 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2563 uint64_t value)
2565 env->cp15.c15_ticonfig = value & 0xe7;
2566 /* The OS_TYPE bit in this register changes the reported CPUID! */
2567 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2568 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2571 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2572 uint64_t value)
2574 env->cp15.c15_threadid = value & 0xffff;
2577 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2578 uint64_t value)
2580 /* Wait-for-interrupt (deprecated) */
2581 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2584 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2585 uint64_t value)
2587 /* On OMAP there are registers indicating the max/min index of dcache lines
2588 * containing a dirty line; cache flush operations have to reset these.
2590 env->cp15.c15_i_max = 0x000;
2591 env->cp15.c15_i_min = 0xff0;
2594 static const ARMCPRegInfo omap_cp_reginfo[] = {
2595 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2596 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2597 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2598 .resetvalue = 0, },
2599 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2600 .access = PL1_RW, .type = ARM_CP_NOP },
2601 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2602 .access = PL1_RW,
2603 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2604 .writefn = omap_ticonfig_write },
2605 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2606 .access = PL1_RW,
2607 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2608 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2609 .access = PL1_RW, .resetvalue = 0xff0,
2610 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2611 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2612 .access = PL1_RW,
2613 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2614 .writefn = omap_threadid_write },
2615 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2616 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2617 .type = ARM_CP_NO_RAW,
2618 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2619 /* TODO: Peripheral port remap register:
2620 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2621 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2622 * when MMU is off.
2624 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2625 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2626 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2627 .writefn = omap_cachemaint_write },
2628 { .name = "C9", .cp = 15, .crn = 9,
2629 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2630 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2631 REGINFO_SENTINEL
2634 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2635 uint64_t value)
2637 env->cp15.c15_cpar = value & 0x3fff;
2640 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2641 { .name = "XSCALE_CPAR",
2642 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2643 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2644 .writefn = xscale_cpar_write, },
2645 { .name = "XSCALE_AUXCR",
2646 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2647 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2648 .resetvalue = 0, },
2649 /* XScale specific cache-lockdown: since we have no cache we NOP these
2650 * and hope the guest does not really rely on cache behaviour.
2652 { .name = "XSCALE_LOCK_ICACHE_LINE",
2653 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2654 .access = PL1_W, .type = ARM_CP_NOP },
2655 { .name = "XSCALE_UNLOCK_ICACHE",
2656 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2657 .access = PL1_W, .type = ARM_CP_NOP },
2658 { .name = "XSCALE_DCACHE_LOCK",
2659 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2660 .access = PL1_RW, .type = ARM_CP_NOP },
2661 { .name = "XSCALE_UNLOCK_DCACHE",
2662 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2663 .access = PL1_W, .type = ARM_CP_NOP },
2664 REGINFO_SENTINEL
2667 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2668 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2669 * implementation of this implementation-defined space.
2670 * Ideally this should eventually disappear in favour of actually
2671 * implementing the correct behaviour for all cores.
2673 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2674 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2675 .access = PL1_RW,
2676 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2677 .resetvalue = 0 },
2678 REGINFO_SENTINEL
2681 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2682 /* Cache status: RAZ because we have no cache so it's always clean */
2683 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2684 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2685 .resetvalue = 0 },
2686 REGINFO_SENTINEL
2689 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2690 /* We never have a a block transfer operation in progress */
2691 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2692 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2693 .resetvalue = 0 },
2694 /* The cache ops themselves: these all NOP for QEMU */
2695 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2696 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2697 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2698 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2699 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2700 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2701 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2702 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2703 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2704 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2705 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2706 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2707 REGINFO_SENTINEL
2710 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2711 /* The cache test-and-clean instructions always return (1 << 30)
2712 * to indicate that there are no dirty cache lines.
2714 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2715 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2716 .resetvalue = (1 << 30) },
2717 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2718 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2719 .resetvalue = (1 << 30) },
2720 REGINFO_SENTINEL
2723 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2724 /* Ignore ReadBuffer accesses */
2725 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2726 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2727 .access = PL1_RW, .resetvalue = 0,
2728 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2729 REGINFO_SENTINEL
2732 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2734 ARMCPU *cpu = arm_env_get_cpu(env);
2735 unsigned int cur_el = arm_current_el(env);
2736 bool secure = arm_is_secure(env);
2738 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2739 return env->cp15.vpidr_el2;
2741 return raw_read(env, ri);
2744 static uint64_t mpidr_read_val(CPUARMState *env)
2746 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2747 uint64_t mpidr = cpu->mp_affinity;
2749 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2750 mpidr |= (1U << 31);
2751 /* Cores which are uniprocessor (non-coherent)
2752 * but still implement the MP extensions set
2753 * bit 30. (For instance, Cortex-R5).
2755 if (cpu->mp_is_up) {
2756 mpidr |= (1u << 30);
2759 return mpidr;
2762 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2764 unsigned int cur_el = arm_current_el(env);
2765 bool secure = arm_is_secure(env);
2767 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2768 return env->cp15.vmpidr_el2;
2770 return mpidr_read_val(env);
2773 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2774 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2775 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2776 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2777 REGINFO_SENTINEL
2780 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2781 /* NOP AMAIR0/1 */
2782 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2783 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2784 .access = PL1_RW, .type = ARM_CP_CONST,
2785 .resetvalue = 0 },
2786 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2787 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2788 .access = PL1_RW, .type = ARM_CP_CONST,
2789 .resetvalue = 0 },
2790 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2791 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2792 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2793 offsetof(CPUARMState, cp15.par_ns)} },
2794 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2795 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2796 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2797 offsetof(CPUARMState, cp15.ttbr0_ns) },
2798 .writefn = vmsa_ttbr_write, },
2799 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2800 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2801 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2802 offsetof(CPUARMState, cp15.ttbr1_ns) },
2803 .writefn = vmsa_ttbr_write, },
2804 REGINFO_SENTINEL
2807 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2809 return vfp_get_fpcr(env);
2812 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2813 uint64_t value)
2815 vfp_set_fpcr(env, value);
2818 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2820 return vfp_get_fpsr(env);
2823 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2824 uint64_t value)
2826 vfp_set_fpsr(env, value);
2829 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2830 bool isread)
2832 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2833 return CP_ACCESS_TRAP;
2835 return CP_ACCESS_OK;
2838 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2839 uint64_t value)
2841 env->daif = value & PSTATE_DAIF;
2844 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2845 const ARMCPRegInfo *ri,
2846 bool isread)
2848 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2849 * SCTLR_EL1.UCI is set.
2851 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2852 return CP_ACCESS_TRAP;
2854 return CP_ACCESS_OK;
2857 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2858 * Page D4-1736 (DDI0487A.b)
2861 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2862 uint64_t value)
2864 ARMCPU *cpu = arm_env_get_cpu(env);
2865 CPUState *cs = CPU(cpu);
2867 if (arm_is_secure_below_el3(env)) {
2868 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2869 } else {
2870 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2874 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2875 uint64_t value)
2877 bool sec = arm_is_secure_below_el3(env);
2878 CPUState *other_cs;
2880 CPU_FOREACH(other_cs) {
2881 if (sec) {
2882 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2883 } else {
2884 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2885 ARMMMUIdx_S12NSE0, -1);
2890 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2891 uint64_t value)
2893 /* Note that the 'ALL' scope must invalidate both stage 1 and
2894 * stage 2 translations, whereas most other scopes only invalidate
2895 * stage 1 translations.
2897 ARMCPU *cpu = arm_env_get_cpu(env);
2898 CPUState *cs = CPU(cpu);
2900 if (arm_is_secure_below_el3(env)) {
2901 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2902 } else {
2903 if (arm_feature(env, ARM_FEATURE_EL2)) {
2904 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2905 ARMMMUIdx_S2NS, -1);
2906 } else {
2907 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2912 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2913 uint64_t value)
2915 ARMCPU *cpu = arm_env_get_cpu(env);
2916 CPUState *cs = CPU(cpu);
2918 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2921 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2922 uint64_t value)
2924 ARMCPU *cpu = arm_env_get_cpu(env);
2925 CPUState *cs = CPU(cpu);
2927 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2930 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931 uint64_t value)
2933 /* Note that the 'ALL' scope must invalidate both stage 1 and
2934 * stage 2 translations, whereas most other scopes only invalidate
2935 * stage 1 translations.
2937 bool sec = arm_is_secure_below_el3(env);
2938 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2939 CPUState *other_cs;
2941 CPU_FOREACH(other_cs) {
2942 if (sec) {
2943 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2944 } else if (has_el2) {
2945 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2946 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2947 } else {
2948 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2949 ARMMMUIdx_S12NSE0, -1);
2954 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955 uint64_t value)
2957 CPUState *other_cs;
2959 CPU_FOREACH(other_cs) {
2960 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2964 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2965 uint64_t value)
2967 CPUState *other_cs;
2969 CPU_FOREACH(other_cs) {
2970 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2974 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2975 uint64_t value)
2977 /* Invalidate by VA, EL1&0 (AArch64 version).
2978 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2979 * since we don't support flush-for-specific-ASID-only or
2980 * flush-last-level-only.
2982 ARMCPU *cpu = arm_env_get_cpu(env);
2983 CPUState *cs = CPU(cpu);
2984 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2986 if (arm_is_secure_below_el3(env)) {
2987 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2988 ARMMMUIdx_S1SE0, -1);
2989 } else {
2990 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2991 ARMMMUIdx_S12NSE0, -1);
2995 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996 uint64_t value)
2998 /* Invalidate by VA, EL2
2999 * Currently handles both VAE2 and VALE2, since we don't support
3000 * flush-last-level-only.
3002 ARMCPU *cpu = arm_env_get_cpu(env);
3003 CPUState *cs = CPU(cpu);
3004 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3006 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
3009 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3012 /* Invalidate by VA, EL3
3013 * Currently handles both VAE3 and VALE3, since we don't support
3014 * flush-last-level-only.
3016 ARMCPU *cpu = arm_env_get_cpu(env);
3017 CPUState *cs = CPU(cpu);
3018 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3020 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
3023 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 bool sec = arm_is_secure_below_el3(env);
3027 CPUState *other_cs;
3028 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3030 CPU_FOREACH(other_cs) {
3031 if (sec) {
3032 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
3033 ARMMMUIdx_S1SE0, -1);
3034 } else {
3035 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
3036 ARMMMUIdx_S12NSE0, -1);
3041 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3042 uint64_t value)
3044 CPUState *other_cs;
3045 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3047 CPU_FOREACH(other_cs) {
3048 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
3052 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053 uint64_t value)
3055 CPUState *other_cs;
3056 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3058 CPU_FOREACH(other_cs) {
3059 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
3063 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3066 /* Invalidate by IPA. This has to invalidate any structures that
3067 * contain only stage 2 translation information, but does not need
3068 * to apply to structures that contain combined stage 1 and stage 2
3069 * translation information.
3070 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3072 ARMCPU *cpu = arm_env_get_cpu(env);
3073 CPUState *cs = CPU(cpu);
3074 uint64_t pageaddr;
3076 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3077 return;
3080 pageaddr = sextract64(value << 12, 0, 48);
3082 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
3085 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086 uint64_t value)
3088 CPUState *other_cs;
3089 uint64_t pageaddr;
3091 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3092 return;
3095 pageaddr = sextract64(value << 12, 0, 48);
3097 CPU_FOREACH(other_cs) {
3098 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
3102 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3103 bool isread)
3105 /* We don't implement EL2, so the only control on DC ZVA is the
3106 * bit in the SCTLR which can prohibit access for EL0.
3108 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3109 return CP_ACCESS_TRAP;
3111 return CP_ACCESS_OK;
3114 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3116 ARMCPU *cpu = arm_env_get_cpu(env);
3117 int dzp_bit = 1 << 4;
3119 /* DZP indicates whether DC ZVA access is allowed */
3120 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3121 dzp_bit = 0;
3123 return cpu->dcz_blocksize | dzp_bit;
3126 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3127 bool isread)
3129 if (!(env->pstate & PSTATE_SP)) {
3130 /* Access to SP_EL0 is undefined if it's being used as
3131 * the stack pointer.
3133 return CP_ACCESS_TRAP_UNCATEGORIZED;
3135 return CP_ACCESS_OK;
3138 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3140 return env->pstate & PSTATE_SP;
3143 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3145 update_spsel(env, val);
3148 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3149 uint64_t value)
3151 ARMCPU *cpu = arm_env_get_cpu(env);
3153 if (raw_read(env, ri) == value) {
3154 /* Skip the TLB flush if nothing actually changed; Linux likes
3155 * to do a lot of pointless SCTLR writes.
3157 return;
3160 raw_write(env, ri, value);
3161 /* ??? Lots of these bits are not implemented. */
3162 /* This may enable/disable the MMU, so do a TLB flush. */
3163 tlb_flush(CPU(cpu), 1);
3166 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3167 bool isread)
3169 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3170 return CP_ACCESS_TRAP_FP_EL2;
3172 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3173 return CP_ACCESS_TRAP_FP_EL3;
3175 return CP_ACCESS_OK;
3178 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3179 uint64_t value)
3181 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3184 static const ARMCPRegInfo v8_cp_reginfo[] = {
3185 /* Minimal set of EL0-visible registers. This will need to be expanded
3186 * significantly for system emulation of AArch64 CPUs.
3188 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3189 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3190 .access = PL0_RW, .type = ARM_CP_NZCV },
3191 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3192 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3193 .type = ARM_CP_NO_RAW,
3194 .access = PL0_RW, .accessfn = aa64_daif_access,
3195 .fieldoffset = offsetof(CPUARMState, daif),
3196 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3197 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3198 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3199 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3200 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3201 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3202 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3203 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3204 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3205 .access = PL0_R, .type = ARM_CP_NO_RAW,
3206 .readfn = aa64_dczid_read },
3207 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3208 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3209 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3210 #ifndef CONFIG_USER_ONLY
3211 /* Avoid overhead of an access check that always passes in user-mode */
3212 .accessfn = aa64_zva_access,
3213 #endif
3215 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3216 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3217 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3218 /* Cache ops: all NOPs since we don't emulate caches */
3219 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3220 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3221 .access = PL1_W, .type = ARM_CP_NOP },
3222 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3223 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3224 .access = PL1_W, .type = ARM_CP_NOP },
3225 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3226 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3227 .access = PL0_W, .type = ARM_CP_NOP,
3228 .accessfn = aa64_cacheop_access },
3229 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3230 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3231 .access = PL1_W, .type = ARM_CP_NOP },
3232 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3233 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3234 .access = PL1_W, .type = ARM_CP_NOP },
3235 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3236 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3237 .access = PL0_W, .type = ARM_CP_NOP,
3238 .accessfn = aa64_cacheop_access },
3239 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3240 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3241 .access = PL1_W, .type = ARM_CP_NOP },
3242 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3243 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3244 .access = PL0_W, .type = ARM_CP_NOP,
3245 .accessfn = aa64_cacheop_access },
3246 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3248 .access = PL0_W, .type = ARM_CP_NOP,
3249 .accessfn = aa64_cacheop_access },
3250 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3252 .access = PL1_W, .type = ARM_CP_NOP },
3253 /* TLBI operations */
3254 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3255 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3256 .access = PL1_W, .type = ARM_CP_NO_RAW,
3257 .writefn = tlbi_aa64_vmalle1is_write },
3258 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3259 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3260 .access = PL1_W, .type = ARM_CP_NO_RAW,
3261 .writefn = tlbi_aa64_vae1is_write },
3262 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3263 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3264 .access = PL1_W, .type = ARM_CP_NO_RAW,
3265 .writefn = tlbi_aa64_vmalle1is_write },
3266 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3267 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3268 .access = PL1_W, .type = ARM_CP_NO_RAW,
3269 .writefn = tlbi_aa64_vae1is_write },
3270 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3271 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3272 .access = PL1_W, .type = ARM_CP_NO_RAW,
3273 .writefn = tlbi_aa64_vae1is_write },
3274 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3275 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3276 .access = PL1_W, .type = ARM_CP_NO_RAW,
3277 .writefn = tlbi_aa64_vae1is_write },
3278 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3279 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3280 .access = PL1_W, .type = ARM_CP_NO_RAW,
3281 .writefn = tlbi_aa64_vmalle1_write },
3282 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3283 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3284 .access = PL1_W, .type = ARM_CP_NO_RAW,
3285 .writefn = tlbi_aa64_vae1_write },
3286 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3287 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3288 .access = PL1_W, .type = ARM_CP_NO_RAW,
3289 .writefn = tlbi_aa64_vmalle1_write },
3290 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3292 .access = PL1_W, .type = ARM_CP_NO_RAW,
3293 .writefn = tlbi_aa64_vae1_write },
3294 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3295 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3296 .access = PL1_W, .type = ARM_CP_NO_RAW,
3297 .writefn = tlbi_aa64_vae1_write },
3298 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3299 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3300 .access = PL1_W, .type = ARM_CP_NO_RAW,
3301 .writefn = tlbi_aa64_vae1_write },
3302 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3304 .access = PL2_W, .type = ARM_CP_NO_RAW,
3305 .writefn = tlbi_aa64_ipas2e1is_write },
3306 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3307 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3308 .access = PL2_W, .type = ARM_CP_NO_RAW,
3309 .writefn = tlbi_aa64_ipas2e1is_write },
3310 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3311 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3312 .access = PL2_W, .type = ARM_CP_NO_RAW,
3313 .writefn = tlbi_aa64_alle1is_write },
3314 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3315 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3316 .access = PL2_W, .type = ARM_CP_NO_RAW,
3317 .writefn = tlbi_aa64_alle1is_write },
3318 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3319 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3320 .access = PL2_W, .type = ARM_CP_NO_RAW,
3321 .writefn = tlbi_aa64_ipas2e1_write },
3322 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3323 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3324 .access = PL2_W, .type = ARM_CP_NO_RAW,
3325 .writefn = tlbi_aa64_ipas2e1_write },
3326 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3327 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3328 .access = PL2_W, .type = ARM_CP_NO_RAW,
3329 .writefn = tlbi_aa64_alle1_write },
3330 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3331 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3332 .access = PL2_W, .type = ARM_CP_NO_RAW,
3333 .writefn = tlbi_aa64_alle1is_write },
3334 #ifndef CONFIG_USER_ONLY
3335 /* 64 bit address translation operations */
3336 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3338 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3339 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3341 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3342 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3343 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3344 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3345 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3347 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3348 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3350 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3351 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3353 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3354 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3355 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3356 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3357 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3358 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3359 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3360 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3361 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3362 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3363 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3364 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3365 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3366 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3367 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3368 .type = ARM_CP_ALIAS,
3369 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3370 .access = PL1_RW, .resetvalue = 0,
3371 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3372 .writefn = par_write },
3373 #endif
3374 /* TLB invalidate last level of translation table walk */
3375 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3376 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3377 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3378 .type = ARM_CP_NO_RAW, .access = PL1_W,
3379 .writefn = tlbimvaa_is_write },
3380 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3381 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3382 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3383 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3384 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3385 .type = ARM_CP_NO_RAW, .access = PL2_W,
3386 .writefn = tlbimva_hyp_write },
3387 { .name = "TLBIMVALHIS",
3388 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3389 .type = ARM_CP_NO_RAW, .access = PL2_W,
3390 .writefn = tlbimva_hyp_is_write },
3391 { .name = "TLBIIPAS2",
3392 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3393 .type = ARM_CP_NO_RAW, .access = PL2_W,
3394 .writefn = tlbiipas2_write },
3395 { .name = "TLBIIPAS2IS",
3396 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3397 .type = ARM_CP_NO_RAW, .access = PL2_W,
3398 .writefn = tlbiipas2_is_write },
3399 { .name = "TLBIIPAS2L",
3400 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3401 .type = ARM_CP_NO_RAW, .access = PL2_W,
3402 .writefn = tlbiipas2_write },
3403 { .name = "TLBIIPAS2LIS",
3404 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3405 .type = ARM_CP_NO_RAW, .access = PL2_W,
3406 .writefn = tlbiipas2_is_write },
3407 /* 32 bit cache operations */
3408 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3409 .type = ARM_CP_NOP, .access = PL1_W },
3410 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3411 .type = ARM_CP_NOP, .access = PL1_W },
3412 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3413 .type = ARM_CP_NOP, .access = PL1_W },
3414 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3415 .type = ARM_CP_NOP, .access = PL1_W },
3416 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3417 .type = ARM_CP_NOP, .access = PL1_W },
3418 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3419 .type = ARM_CP_NOP, .access = PL1_W },
3420 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3421 .type = ARM_CP_NOP, .access = PL1_W },
3422 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3423 .type = ARM_CP_NOP, .access = PL1_W },
3424 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3425 .type = ARM_CP_NOP, .access = PL1_W },
3426 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3427 .type = ARM_CP_NOP, .access = PL1_W },
3428 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3429 .type = ARM_CP_NOP, .access = PL1_W },
3430 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3431 .type = ARM_CP_NOP, .access = PL1_W },
3432 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3433 .type = ARM_CP_NOP, .access = PL1_W },
3434 /* MMU Domain access control / MPU write buffer control */
3435 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3436 .access = PL1_RW, .resetvalue = 0,
3437 .writefn = dacr_write, .raw_writefn = raw_write,
3438 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3439 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3440 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3441 .type = ARM_CP_ALIAS,
3442 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3443 .access = PL1_RW,
3444 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3445 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3446 .type = ARM_CP_ALIAS,
3447 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3448 .access = PL1_RW,
3449 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3450 /* We rely on the access checks not allowing the guest to write to the
3451 * state field when SPSel indicates that it's being used as the stack
3452 * pointer.
3454 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3456 .access = PL1_RW, .accessfn = sp_el0_access,
3457 .type = ARM_CP_ALIAS,
3458 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3459 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3460 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3461 .access = PL2_RW, .type = ARM_CP_ALIAS,
3462 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3463 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3465 .type = ARM_CP_NO_RAW,
3466 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3467 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3468 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3469 .type = ARM_CP_ALIAS,
3470 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3471 .access = PL2_RW, .accessfn = fpexc32_access },
3472 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3473 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3474 .access = PL2_RW, .resetvalue = 0,
3475 .writefn = dacr_write, .raw_writefn = raw_write,
3476 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3477 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3478 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3479 .access = PL2_RW, .resetvalue = 0,
3480 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3481 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3482 .type = ARM_CP_ALIAS,
3483 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3484 .access = PL2_RW,
3485 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3486 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3487 .type = ARM_CP_ALIAS,
3488 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3489 .access = PL2_RW,
3490 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3491 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3492 .type = ARM_CP_ALIAS,
3493 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3494 .access = PL2_RW,
3495 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3496 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3497 .type = ARM_CP_ALIAS,
3498 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3499 .access = PL2_RW,
3500 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3501 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3502 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3503 .resetvalue = 0,
3504 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3505 { .name = "SDCR", .type = ARM_CP_ALIAS,
3506 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3507 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3508 .writefn = sdcr_write,
3509 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3510 REGINFO_SENTINEL
3513 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3514 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3515 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3516 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3517 .access = PL2_RW,
3518 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3519 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3520 .type = ARM_CP_NO_RAW,
3521 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3522 .access = PL2_RW,
3523 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3524 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3525 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3526 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3527 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3528 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3529 .access = PL2_RW, .type = ARM_CP_CONST,
3530 .resetvalue = 0 },
3531 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3532 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3533 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3534 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3535 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3536 .access = PL2_RW, .type = ARM_CP_CONST,
3537 .resetvalue = 0 },
3538 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3539 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3540 .access = PL2_RW, .type = ARM_CP_CONST,
3541 .resetvalue = 0 },
3542 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3543 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3544 .access = PL2_RW, .type = ARM_CP_CONST,
3545 .resetvalue = 0 },
3546 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3547 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3548 .access = PL2_RW, .type = ARM_CP_CONST,
3549 .resetvalue = 0 },
3550 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3551 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3552 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3553 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3554 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3555 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3556 .type = ARM_CP_CONST, .resetvalue = 0 },
3557 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3558 .cp = 15, .opc1 = 6, .crm = 2,
3559 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3560 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3561 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3562 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3564 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3565 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3566 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3567 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3568 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3569 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3570 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3571 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3572 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3573 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3574 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3575 .resetvalue = 0 },
3576 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3577 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3578 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3579 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3580 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3581 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3582 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3583 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3584 .resetvalue = 0 },
3585 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3586 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3587 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3588 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3589 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3590 .resetvalue = 0 },
3591 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3592 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3593 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3594 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3595 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3596 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3597 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3598 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3599 .access = PL2_RW, .accessfn = access_tda,
3600 .type = ARM_CP_CONST, .resetvalue = 0 },
3601 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3602 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3603 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3604 .type = ARM_CP_CONST, .resetvalue = 0 },
3605 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3606 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3607 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3608 REGINFO_SENTINEL
3611 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3613 ARMCPU *cpu = arm_env_get_cpu(env);
3614 uint64_t valid_mask = HCR_MASK;
3616 if (arm_feature(env, ARM_FEATURE_EL3)) {
3617 valid_mask &= ~HCR_HCD;
3618 } else {
3619 valid_mask &= ~HCR_TSC;
3622 /* Clear RES0 bits. */
3623 value &= valid_mask;
3625 /* These bits change the MMU setup:
3626 * HCR_VM enables stage 2 translation
3627 * HCR_PTW forbids certain page-table setups
3628 * HCR_DC Disables stage1 and enables stage2 translation
3630 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3631 tlb_flush(CPU(cpu), 1);
3633 raw_write(env, ri, value);
3636 static const ARMCPRegInfo el2_cp_reginfo[] = {
3637 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3638 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3639 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3640 .writefn = hcr_write },
3641 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3642 .type = ARM_CP_ALIAS,
3643 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3644 .access = PL2_RW,
3645 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3646 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3647 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3648 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3649 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3650 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3651 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3652 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3653 .type = ARM_CP_ALIAS,
3654 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3655 .access = PL2_RW,
3656 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3657 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3658 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3659 .access = PL2_RW, .writefn = vbar_write,
3660 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3661 .resetvalue = 0 },
3662 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3663 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3664 .access = PL3_RW, .type = ARM_CP_ALIAS,
3665 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3666 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3668 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3669 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3670 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3671 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3672 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3673 .resetvalue = 0 },
3674 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3675 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3676 .access = PL2_RW, .type = ARM_CP_ALIAS,
3677 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3678 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3679 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3680 .access = PL2_RW, .type = ARM_CP_CONST,
3681 .resetvalue = 0 },
3682 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3683 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3684 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3685 .access = PL2_RW, .type = ARM_CP_CONST,
3686 .resetvalue = 0 },
3687 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3688 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3689 .access = PL2_RW, .type = ARM_CP_CONST,
3690 .resetvalue = 0 },
3691 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3692 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3693 .access = PL2_RW, .type = ARM_CP_CONST,
3694 .resetvalue = 0 },
3695 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3696 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3697 .access = PL2_RW,
3698 /* no .writefn needed as this can't cause an ASID change;
3699 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3701 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3702 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3703 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3704 .type = ARM_CP_ALIAS,
3705 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3706 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3707 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3708 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3709 .access = PL2_RW,
3710 /* no .writefn needed as this can't cause an ASID change;
3711 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3713 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3714 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3715 .cp = 15, .opc1 = 6, .crm = 2,
3716 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3717 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3718 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3719 .writefn = vttbr_write },
3720 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3721 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3722 .access = PL2_RW, .writefn = vttbr_write,
3723 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3724 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3725 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3726 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3727 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3728 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3729 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3730 .access = PL2_RW, .resetvalue = 0,
3731 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3732 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3733 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3734 .access = PL2_RW, .resetvalue = 0,
3735 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3736 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3737 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3738 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3739 { .name = "TLBIALLNSNH",
3740 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3741 .type = ARM_CP_NO_RAW, .access = PL2_W,
3742 .writefn = tlbiall_nsnh_write },
3743 { .name = "TLBIALLNSNHIS",
3744 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3745 .type = ARM_CP_NO_RAW, .access = PL2_W,
3746 .writefn = tlbiall_nsnh_is_write },
3747 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3748 .type = ARM_CP_NO_RAW, .access = PL2_W,
3749 .writefn = tlbiall_hyp_write },
3750 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3751 .type = ARM_CP_NO_RAW, .access = PL2_W,
3752 .writefn = tlbiall_hyp_is_write },
3753 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3754 .type = ARM_CP_NO_RAW, .access = PL2_W,
3755 .writefn = tlbimva_hyp_write },
3756 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3757 .type = ARM_CP_NO_RAW, .access = PL2_W,
3758 .writefn = tlbimva_hyp_is_write },
3759 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3760 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3761 .type = ARM_CP_NO_RAW, .access = PL2_W,
3762 .writefn = tlbi_aa64_alle2_write },
3763 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3765 .type = ARM_CP_NO_RAW, .access = PL2_W,
3766 .writefn = tlbi_aa64_vae2_write },
3767 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3768 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3769 .access = PL2_W, .type = ARM_CP_NO_RAW,
3770 .writefn = tlbi_aa64_vae2_write },
3771 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3773 .access = PL2_W, .type = ARM_CP_NO_RAW,
3774 .writefn = tlbi_aa64_alle2is_write },
3775 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3776 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3777 .type = ARM_CP_NO_RAW, .access = PL2_W,
3778 .writefn = tlbi_aa64_vae2is_write },
3779 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3780 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3781 .access = PL2_W, .type = ARM_CP_NO_RAW,
3782 .writefn = tlbi_aa64_vae2is_write },
3783 #ifndef CONFIG_USER_ONLY
3784 /* Unlike the other EL2-related AT operations, these must
3785 * UNDEF from EL3 if EL2 is not implemented, which is why we
3786 * define them here rather than with the rest of the AT ops.
3788 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3789 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3790 .access = PL2_W, .accessfn = at_s1e2_access,
3791 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3792 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3793 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3794 .access = PL2_W, .accessfn = at_s1e2_access,
3795 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3796 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3797 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3798 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3799 * to behave as if SCR.NS was 1.
3801 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3802 .access = PL2_W,
3803 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3804 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3805 .access = PL2_W,
3806 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3807 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3808 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3809 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3810 * reset values as IMPDEF. We choose to reset to 3 to comply with
3811 * both ARMv7 and ARMv8.
3813 .access = PL2_RW, .resetvalue = 3,
3814 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3815 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3816 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3817 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3818 .writefn = gt_cntvoff_write,
3819 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3820 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3821 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3822 .writefn = gt_cntvoff_write,
3823 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3824 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3825 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3826 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3827 .type = ARM_CP_IO, .access = PL2_RW,
3828 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3829 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3830 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3831 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3832 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3833 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3834 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3835 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3836 .resetfn = gt_hyp_timer_reset,
3837 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3838 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3839 .type = ARM_CP_IO,
3840 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3841 .access = PL2_RW,
3842 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3843 .resetvalue = 0,
3844 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3845 #endif
3846 /* The only field of MDCR_EL2 that has a defined architectural reset value
3847 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3848 * don't impelment any PMU event counters, so using zero as a reset
3849 * value for MDCR_EL2 is okay
3851 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3852 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3853 .access = PL2_RW, .resetvalue = 0,
3854 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3855 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3856 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3857 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3858 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3859 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3860 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3861 .access = PL2_RW,
3862 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3863 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3864 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3865 .access = PL2_RW,
3866 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3867 REGINFO_SENTINEL
3870 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3871 bool isread)
3873 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3874 * At Secure EL1 it traps to EL3.
3876 if (arm_current_el(env) == 3) {
3877 return CP_ACCESS_OK;
3879 if (arm_is_secure_below_el3(env)) {
3880 return CP_ACCESS_TRAP_EL3;
3882 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3883 if (isread) {
3884 return CP_ACCESS_OK;
3886 return CP_ACCESS_TRAP_UNCATEGORIZED;
3889 static const ARMCPRegInfo el3_cp_reginfo[] = {
3890 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3891 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3892 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3893 .resetvalue = 0, .writefn = scr_write },
3894 { .name = "SCR", .type = ARM_CP_ALIAS,
3895 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3896 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3897 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3898 .writefn = scr_write },
3899 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3900 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3901 .access = PL3_RW, .resetvalue = 0,
3902 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3903 { .name = "SDER",
3904 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3905 .access = PL3_RW, .resetvalue = 0,
3906 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3907 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3908 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3909 .writefn = vbar_write, .resetvalue = 0,
3910 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3911 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3912 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3913 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3914 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3915 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3916 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3917 .access = PL3_RW,
3918 /* no .writefn needed as this can't cause an ASID change;
3919 * we must provide a .raw_writefn and .resetfn because we handle
3920 * reset and migration for the AArch32 TTBCR(S), which might be
3921 * using mask and base_mask.
3923 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
3924 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3925 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3926 .type = ARM_CP_ALIAS,
3927 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3928 .access = PL3_RW,
3929 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3930 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3931 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3932 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3933 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3934 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3935 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3936 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3937 .type = ARM_CP_ALIAS,
3938 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3939 .access = PL3_RW,
3940 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3941 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3942 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3943 .access = PL3_RW, .writefn = vbar_write,
3944 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3945 .resetvalue = 0 },
3946 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3947 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3948 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3949 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3950 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3951 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3952 .access = PL3_RW, .resetvalue = 0,
3953 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3954 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3955 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3956 .access = PL3_RW, .type = ARM_CP_CONST,
3957 .resetvalue = 0 },
3958 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3959 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3960 .access = PL3_RW, .type = ARM_CP_CONST,
3961 .resetvalue = 0 },
3962 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3963 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3964 .access = PL3_RW, .type = ARM_CP_CONST,
3965 .resetvalue = 0 },
3966 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3967 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3968 .access = PL3_W, .type = ARM_CP_NO_RAW,
3969 .writefn = tlbi_aa64_alle3is_write },
3970 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3971 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3972 .access = PL3_W, .type = ARM_CP_NO_RAW,
3973 .writefn = tlbi_aa64_vae3is_write },
3974 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3975 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3976 .access = PL3_W, .type = ARM_CP_NO_RAW,
3977 .writefn = tlbi_aa64_vae3is_write },
3978 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3979 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3980 .access = PL3_W, .type = ARM_CP_NO_RAW,
3981 .writefn = tlbi_aa64_alle3_write },
3982 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3983 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3984 .access = PL3_W, .type = ARM_CP_NO_RAW,
3985 .writefn = tlbi_aa64_vae3_write },
3986 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3987 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3988 .access = PL3_W, .type = ARM_CP_NO_RAW,
3989 .writefn = tlbi_aa64_vae3_write },
3990 REGINFO_SENTINEL
3993 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3994 bool isread)
3996 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3997 * but the AArch32 CTR has its own reginfo struct)
3999 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4000 return CP_ACCESS_TRAP;
4002 return CP_ACCESS_OK;
4005 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4006 uint64_t value)
4008 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4009 * read via a bit in OSLSR_EL1.
4011 int oslock;
4013 if (ri->state == ARM_CP_STATE_AA32) {
4014 oslock = (value == 0xC5ACCE55);
4015 } else {
4016 oslock = value & 1;
4019 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4022 static const ARMCPRegInfo debug_cp_reginfo[] = {
4023 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4024 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4025 * unlike DBGDRAR it is never accessible from EL0.
4026 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4027 * accessor.
4029 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4030 .access = PL0_R, .accessfn = access_tdra,
4031 .type = ARM_CP_CONST, .resetvalue = 0 },
4032 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4033 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4034 .access = PL1_R, .accessfn = access_tdra,
4035 .type = ARM_CP_CONST, .resetvalue = 0 },
4036 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4037 .access = PL0_R, .accessfn = access_tdra,
4038 .type = ARM_CP_CONST, .resetvalue = 0 },
4039 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4040 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4041 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4042 .access = PL1_RW, .accessfn = access_tda,
4043 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4044 .resetvalue = 0 },
4045 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4046 * We don't implement the configurable EL0 access.
4048 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4049 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4050 .type = ARM_CP_ALIAS,
4051 .access = PL1_R, .accessfn = access_tda,
4052 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4053 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4054 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4055 .access = PL1_W, .type = ARM_CP_NO_RAW,
4056 .accessfn = access_tdosa,
4057 .writefn = oslar_write },
4058 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4060 .access = PL1_R, .resetvalue = 10,
4061 .accessfn = access_tdosa,
4062 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4063 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4064 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4065 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4066 .access = PL1_RW, .accessfn = access_tdosa,
4067 .type = ARM_CP_NOP },
4068 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4069 * implement vector catch debug events yet.
4071 { .name = "DBGVCR",
4072 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4073 .access = PL1_RW, .accessfn = access_tda,
4074 .type = ARM_CP_NOP },
4075 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4076 * Channel but Linux may try to access this register. The 32-bit
4077 * alias is DBGDCCINT.
4079 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4080 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4081 .access = PL1_RW, .accessfn = access_tda,
4082 .type = ARM_CP_NOP },
4083 REGINFO_SENTINEL
4086 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4087 /* 64 bit access versions of the (dummy) debug registers */
4088 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4089 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4090 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4091 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4092 REGINFO_SENTINEL
4095 void hw_watchpoint_update(ARMCPU *cpu, int n)
4097 CPUARMState *env = &cpu->env;
4098 vaddr len = 0;
4099 vaddr wvr = env->cp15.dbgwvr[n];
4100 uint64_t wcr = env->cp15.dbgwcr[n];
4101 int mask;
4102 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4104 if (env->cpu_watchpoint[n]) {
4105 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4106 env->cpu_watchpoint[n] = NULL;
4109 if (!extract64(wcr, 0, 1)) {
4110 /* E bit clear : watchpoint disabled */
4111 return;
4114 switch (extract64(wcr, 3, 2)) {
4115 case 0:
4116 /* LSC 00 is reserved and must behave as if the wp is disabled */
4117 return;
4118 case 1:
4119 flags |= BP_MEM_READ;
4120 break;
4121 case 2:
4122 flags |= BP_MEM_WRITE;
4123 break;
4124 case 3:
4125 flags |= BP_MEM_ACCESS;
4126 break;
4129 /* Attempts to use both MASK and BAS fields simultaneously are
4130 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4131 * thus generating a watchpoint for every byte in the masked region.
4133 mask = extract64(wcr, 24, 4);
4134 if (mask == 1 || mask == 2) {
4135 /* Reserved values of MASK; we must act as if the mask value was
4136 * some non-reserved value, or as if the watchpoint were disabled.
4137 * We choose the latter.
4139 return;
4140 } else if (mask) {
4141 /* Watchpoint covers an aligned area up to 2GB in size */
4142 len = 1ULL << mask;
4143 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4144 * whether the watchpoint fires when the unmasked bits match; we opt
4145 * to generate the exceptions.
4147 wvr &= ~(len - 1);
4148 } else {
4149 /* Watchpoint covers bytes defined by the byte address select bits */
4150 int bas = extract64(wcr, 5, 8);
4151 int basstart;
4153 if (bas == 0) {
4154 /* This must act as if the watchpoint is disabled */
4155 return;
4158 if (extract64(wvr, 2, 1)) {
4159 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4160 * ignored, and BAS[3:0] define which bytes to watch.
4162 bas &= 0xf;
4164 /* The BAS bits are supposed to be programmed to indicate a contiguous
4165 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4166 * we fire for each byte in the word/doubleword addressed by the WVR.
4167 * We choose to ignore any non-zero bits after the first range of 1s.
4169 basstart = ctz32(bas);
4170 len = cto32(bas >> basstart);
4171 wvr += basstart;
4174 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4175 &env->cpu_watchpoint[n]);
4178 void hw_watchpoint_update_all(ARMCPU *cpu)
4180 int i;
4181 CPUARMState *env = &cpu->env;
4183 /* Completely clear out existing QEMU watchpoints and our array, to
4184 * avoid possible stale entries following migration load.
4186 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4187 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4189 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4190 hw_watchpoint_update(cpu, i);
4194 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4195 uint64_t value)
4197 ARMCPU *cpu = arm_env_get_cpu(env);
4198 int i = ri->crm;
4200 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4201 * register reads and behaves as if values written are sign extended.
4202 * Bits [1:0] are RES0.
4204 value = sextract64(value, 0, 49) & ~3ULL;
4206 raw_write(env, ri, value);
4207 hw_watchpoint_update(cpu, i);
4210 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4211 uint64_t value)
4213 ARMCPU *cpu = arm_env_get_cpu(env);
4214 int i = ri->crm;
4216 raw_write(env, ri, value);
4217 hw_watchpoint_update(cpu, i);
4220 void hw_breakpoint_update(ARMCPU *cpu, int n)
4222 CPUARMState *env = &cpu->env;
4223 uint64_t bvr = env->cp15.dbgbvr[n];
4224 uint64_t bcr = env->cp15.dbgbcr[n];
4225 vaddr addr;
4226 int bt;
4227 int flags = BP_CPU;
4229 if (env->cpu_breakpoint[n]) {
4230 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4231 env->cpu_breakpoint[n] = NULL;
4234 if (!extract64(bcr, 0, 1)) {
4235 /* E bit clear : watchpoint disabled */
4236 return;
4239 bt = extract64(bcr, 20, 4);
4241 switch (bt) {
4242 case 4: /* unlinked address mismatch (reserved if AArch64) */
4243 case 5: /* linked address mismatch (reserved if AArch64) */
4244 qemu_log_mask(LOG_UNIMP,
4245 "arm: address mismatch breakpoint types not implemented");
4246 return;
4247 case 0: /* unlinked address match */
4248 case 1: /* linked address match */
4250 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4251 * we behave as if the register was sign extended. Bits [1:0] are
4252 * RES0. The BAS field is used to allow setting breakpoints on 16
4253 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4254 * a bp will fire if the addresses covered by the bp and the addresses
4255 * covered by the insn overlap but the insn doesn't start at the
4256 * start of the bp address range. We choose to require the insn and
4257 * the bp to have the same address. The constraints on writing to
4258 * BAS enforced in dbgbcr_write mean we have only four cases:
4259 * 0b0000 => no breakpoint
4260 * 0b0011 => breakpoint on addr
4261 * 0b1100 => breakpoint on addr + 2
4262 * 0b1111 => breakpoint on addr
4263 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4265 int bas = extract64(bcr, 5, 4);
4266 addr = sextract64(bvr, 0, 49) & ~3ULL;
4267 if (bas == 0) {
4268 return;
4270 if (bas == 0xc) {
4271 addr += 2;
4273 break;
4275 case 2: /* unlinked context ID match */
4276 case 8: /* unlinked VMID match (reserved if no EL2) */
4277 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4278 qemu_log_mask(LOG_UNIMP,
4279 "arm: unlinked context breakpoint types not implemented");
4280 return;
4281 case 9: /* linked VMID match (reserved if no EL2) */
4282 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4283 case 3: /* linked context ID match */
4284 default:
4285 /* We must generate no events for Linked context matches (unless
4286 * they are linked to by some other bp/wp, which is handled in
4287 * updates for the linking bp/wp). We choose to also generate no events
4288 * for reserved values.
4290 return;
4293 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4296 void hw_breakpoint_update_all(ARMCPU *cpu)
4298 int i;
4299 CPUARMState *env = &cpu->env;
4301 /* Completely clear out existing QEMU breakpoints and our array, to
4302 * avoid possible stale entries following migration load.
4304 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4305 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4307 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4308 hw_breakpoint_update(cpu, i);
4312 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4313 uint64_t value)
4315 ARMCPU *cpu = arm_env_get_cpu(env);
4316 int i = ri->crm;
4318 raw_write(env, ri, value);
4319 hw_breakpoint_update(cpu, i);
4322 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4323 uint64_t value)
4325 ARMCPU *cpu = arm_env_get_cpu(env);
4326 int i = ri->crm;
4328 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4329 * copy of BAS[0].
4331 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4332 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4334 raw_write(env, ri, value);
4335 hw_breakpoint_update(cpu, i);
4338 static void define_debug_regs(ARMCPU *cpu)
4340 /* Define v7 and v8 architectural debug registers.
4341 * These are just dummy implementations for now.
4343 int i;
4344 int wrps, brps, ctx_cmps;
4345 ARMCPRegInfo dbgdidr = {
4346 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4347 .access = PL0_R, .accessfn = access_tda,
4348 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4351 /* Note that all these register fields hold "number of Xs minus 1". */
4352 brps = extract32(cpu->dbgdidr, 24, 4);
4353 wrps = extract32(cpu->dbgdidr, 28, 4);
4354 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4356 assert(ctx_cmps <= brps);
4358 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4359 * of the debug registers such as number of breakpoints;
4360 * check that if they both exist then they agree.
4362 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4363 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4364 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4365 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4368 define_one_arm_cp_reg(cpu, &dbgdidr);
4369 define_arm_cp_regs(cpu, debug_cp_reginfo);
4371 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4372 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4375 for (i = 0; i < brps + 1; i++) {
4376 ARMCPRegInfo dbgregs[] = {
4377 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4378 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4379 .access = PL1_RW, .accessfn = access_tda,
4380 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4381 .writefn = dbgbvr_write, .raw_writefn = raw_write
4383 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4384 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4385 .access = PL1_RW, .accessfn = access_tda,
4386 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4387 .writefn = dbgbcr_write, .raw_writefn = raw_write
4389 REGINFO_SENTINEL
4391 define_arm_cp_regs(cpu, dbgregs);
4394 for (i = 0; i < wrps + 1; i++) {
4395 ARMCPRegInfo dbgregs[] = {
4396 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4397 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4398 .access = PL1_RW, .accessfn = access_tda,
4399 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4400 .writefn = dbgwvr_write, .raw_writefn = raw_write
4402 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4403 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4404 .access = PL1_RW, .accessfn = access_tda,
4405 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4406 .writefn = dbgwcr_write, .raw_writefn = raw_write
4408 REGINFO_SENTINEL
4410 define_arm_cp_regs(cpu, dbgregs);
4414 void register_cp_regs_for_features(ARMCPU *cpu)
4416 /* Register all the coprocessor registers based on feature bits */
4417 CPUARMState *env = &cpu->env;
4418 if (arm_feature(env, ARM_FEATURE_M)) {
4419 /* M profile has no coprocessor registers */
4420 return;
4423 define_arm_cp_regs(cpu, cp_reginfo);
4424 if (!arm_feature(env, ARM_FEATURE_V8)) {
4425 /* Must go early as it is full of wildcards that may be
4426 * overridden by later definitions.
4428 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4431 if (arm_feature(env, ARM_FEATURE_V6)) {
4432 /* The ID registers all have impdef reset values */
4433 ARMCPRegInfo v6_idregs[] = {
4434 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4436 .access = PL1_R, .type = ARM_CP_CONST,
4437 .resetvalue = cpu->id_pfr0 },
4438 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4440 .access = PL1_R, .type = ARM_CP_CONST,
4441 .resetvalue = cpu->id_pfr1 },
4442 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4444 .access = PL1_R, .type = ARM_CP_CONST,
4445 .resetvalue = cpu->id_dfr0 },
4446 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4448 .access = PL1_R, .type = ARM_CP_CONST,
4449 .resetvalue = cpu->id_afr0 },
4450 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4452 .access = PL1_R, .type = ARM_CP_CONST,
4453 .resetvalue = cpu->id_mmfr0 },
4454 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4456 .access = PL1_R, .type = ARM_CP_CONST,
4457 .resetvalue = cpu->id_mmfr1 },
4458 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4460 .access = PL1_R, .type = ARM_CP_CONST,
4461 .resetvalue = cpu->id_mmfr2 },
4462 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4464 .access = PL1_R, .type = ARM_CP_CONST,
4465 .resetvalue = cpu->id_mmfr3 },
4466 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4468 .access = PL1_R, .type = ARM_CP_CONST,
4469 .resetvalue = cpu->id_isar0 },
4470 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4472 .access = PL1_R, .type = ARM_CP_CONST,
4473 .resetvalue = cpu->id_isar1 },
4474 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4476 .access = PL1_R, .type = ARM_CP_CONST,
4477 .resetvalue = cpu->id_isar2 },
4478 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4480 .access = PL1_R, .type = ARM_CP_CONST,
4481 .resetvalue = cpu->id_isar3 },
4482 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4484 .access = PL1_R, .type = ARM_CP_CONST,
4485 .resetvalue = cpu->id_isar4 },
4486 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4488 .access = PL1_R, .type = ARM_CP_CONST,
4489 .resetvalue = cpu->id_isar5 },
4490 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4492 .access = PL1_R, .type = ARM_CP_CONST,
4493 .resetvalue = cpu->id_mmfr4 },
4494 /* 7 is as yet unallocated and must RAZ */
4495 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4497 .access = PL1_R, .type = ARM_CP_CONST,
4498 .resetvalue = 0 },
4499 REGINFO_SENTINEL
4501 define_arm_cp_regs(cpu, v6_idregs);
4502 define_arm_cp_regs(cpu, v6_cp_reginfo);
4503 } else {
4504 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4506 if (arm_feature(env, ARM_FEATURE_V6K)) {
4507 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4509 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4510 !arm_feature(env, ARM_FEATURE_MPU)) {
4511 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4513 if (arm_feature(env, ARM_FEATURE_V7)) {
4514 /* v7 performance monitor control register: same implementor
4515 * field as main ID register, and we implement only the cycle
4516 * count register.
4518 #ifndef CONFIG_USER_ONLY
4519 ARMCPRegInfo pmcr = {
4520 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4521 .access = PL0_RW,
4522 .type = ARM_CP_IO | ARM_CP_ALIAS,
4523 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4524 .accessfn = pmreg_access, .writefn = pmcr_write,
4525 .raw_writefn = raw_write,
4527 ARMCPRegInfo pmcr64 = {
4528 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4529 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4530 .access = PL0_RW, .accessfn = pmreg_access,
4531 .type = ARM_CP_IO,
4532 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4533 .resetvalue = cpu->midr & 0xff000000,
4534 .writefn = pmcr_write, .raw_writefn = raw_write,
4536 define_one_arm_cp_reg(cpu, &pmcr);
4537 define_one_arm_cp_reg(cpu, &pmcr64);
4538 #endif
4539 ARMCPRegInfo clidr = {
4540 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4541 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4542 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4544 define_one_arm_cp_reg(cpu, &clidr);
4545 define_arm_cp_regs(cpu, v7_cp_reginfo);
4546 define_debug_regs(cpu);
4547 } else {
4548 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4550 if (arm_feature(env, ARM_FEATURE_V8)) {
4551 /* AArch64 ID registers, which all have impdef reset values.
4552 * Note that within the ID register ranges the unused slots
4553 * must all RAZ, not UNDEF; future architecture versions may
4554 * define new registers here.
4556 ARMCPRegInfo v8_idregs[] = {
4557 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4559 .access = PL1_R, .type = ARM_CP_CONST,
4560 .resetvalue = cpu->id_aa64pfr0 },
4561 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4562 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4563 .access = PL1_R, .type = ARM_CP_CONST,
4564 .resetvalue = cpu->id_aa64pfr1},
4565 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4567 .access = PL1_R, .type = ARM_CP_CONST,
4568 .resetvalue = 0 },
4569 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4571 .access = PL1_R, .type = ARM_CP_CONST,
4572 .resetvalue = 0 },
4573 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4575 .access = PL1_R, .type = ARM_CP_CONST,
4576 .resetvalue = 0 },
4577 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4579 .access = PL1_R, .type = ARM_CP_CONST,
4580 .resetvalue = 0 },
4581 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4583 .access = PL1_R, .type = ARM_CP_CONST,
4584 .resetvalue = 0 },
4585 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4587 .access = PL1_R, .type = ARM_CP_CONST,
4588 .resetvalue = 0 },
4589 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4591 .access = PL1_R, .type = ARM_CP_CONST,
4592 /* We mask out the PMUVer field, because we don't currently
4593 * implement the PMU. Not advertising it prevents the guest
4594 * from trying to use it and getting UNDEFs on registers we
4595 * don't implement.
4597 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4598 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4600 .access = PL1_R, .type = ARM_CP_CONST,
4601 .resetvalue = cpu->id_aa64dfr1 },
4602 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4604 .access = PL1_R, .type = ARM_CP_CONST,
4605 .resetvalue = 0 },
4606 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4608 .access = PL1_R, .type = ARM_CP_CONST,
4609 .resetvalue = 0 },
4610 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4612 .access = PL1_R, .type = ARM_CP_CONST,
4613 .resetvalue = cpu->id_aa64afr0 },
4614 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4616 .access = PL1_R, .type = ARM_CP_CONST,
4617 .resetvalue = cpu->id_aa64afr1 },
4618 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4620 .access = PL1_R, .type = ARM_CP_CONST,
4621 .resetvalue = 0 },
4622 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4624 .access = PL1_R, .type = ARM_CP_CONST,
4625 .resetvalue = 0 },
4626 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4628 .access = PL1_R, .type = ARM_CP_CONST,
4629 .resetvalue = cpu->id_aa64isar0 },
4630 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4632 .access = PL1_R, .type = ARM_CP_CONST,
4633 .resetvalue = cpu->id_aa64isar1 },
4634 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4636 .access = PL1_R, .type = ARM_CP_CONST,
4637 .resetvalue = 0 },
4638 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4640 .access = PL1_R, .type = ARM_CP_CONST,
4641 .resetvalue = 0 },
4642 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4644 .access = PL1_R, .type = ARM_CP_CONST,
4645 .resetvalue = 0 },
4646 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4648 .access = PL1_R, .type = ARM_CP_CONST,
4649 .resetvalue = 0 },
4650 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4652 .access = PL1_R, .type = ARM_CP_CONST,
4653 .resetvalue = 0 },
4654 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4656 .access = PL1_R, .type = ARM_CP_CONST,
4657 .resetvalue = 0 },
4658 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4660 .access = PL1_R, .type = ARM_CP_CONST,
4661 .resetvalue = cpu->id_aa64mmfr0 },
4662 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4663 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4664 .access = PL1_R, .type = ARM_CP_CONST,
4665 .resetvalue = cpu->id_aa64mmfr1 },
4666 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4668 .access = PL1_R, .type = ARM_CP_CONST,
4669 .resetvalue = 0 },
4670 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4672 .access = PL1_R, .type = ARM_CP_CONST,
4673 .resetvalue = 0 },
4674 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4676 .access = PL1_R, .type = ARM_CP_CONST,
4677 .resetvalue = 0 },
4678 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4680 .access = PL1_R, .type = ARM_CP_CONST,
4681 .resetvalue = 0 },
4682 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4684 .access = PL1_R, .type = ARM_CP_CONST,
4685 .resetvalue = 0 },
4686 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4688 .access = PL1_R, .type = ARM_CP_CONST,
4689 .resetvalue = 0 },
4690 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4692 .access = PL1_R, .type = ARM_CP_CONST,
4693 .resetvalue = cpu->mvfr0 },
4694 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4696 .access = PL1_R, .type = ARM_CP_CONST,
4697 .resetvalue = cpu->mvfr1 },
4698 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4700 .access = PL1_R, .type = ARM_CP_CONST,
4701 .resetvalue = cpu->mvfr2 },
4702 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4704 .access = PL1_R, .type = ARM_CP_CONST,
4705 .resetvalue = 0 },
4706 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4708 .access = PL1_R, .type = ARM_CP_CONST,
4709 .resetvalue = 0 },
4710 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4712 .access = PL1_R, .type = ARM_CP_CONST,
4713 .resetvalue = 0 },
4714 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4716 .access = PL1_R, .type = ARM_CP_CONST,
4717 .resetvalue = 0 },
4718 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4720 .access = PL1_R, .type = ARM_CP_CONST,
4721 .resetvalue = 0 },
4722 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4723 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4724 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4725 .resetvalue = cpu->pmceid0 },
4726 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4728 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4729 .resetvalue = cpu->pmceid0 },
4730 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4731 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4732 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4733 .resetvalue = cpu->pmceid1 },
4734 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4735 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4736 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4737 .resetvalue = cpu->pmceid1 },
4738 REGINFO_SENTINEL
4740 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4741 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4742 !arm_feature(env, ARM_FEATURE_EL2)) {
4743 ARMCPRegInfo rvbar = {
4744 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4745 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4746 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4748 define_one_arm_cp_reg(cpu, &rvbar);
4750 define_arm_cp_regs(cpu, v8_idregs);
4751 define_arm_cp_regs(cpu, v8_cp_reginfo);
4753 if (arm_feature(env, ARM_FEATURE_EL2)) {
4754 uint64_t vmpidr_def = mpidr_read_val(env);
4755 ARMCPRegInfo vpidr_regs[] = {
4756 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4757 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4758 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4759 .resetvalue = cpu->midr,
4760 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4761 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4762 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4763 .access = PL2_RW, .resetvalue = cpu->midr,
4764 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4765 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4766 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4767 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4768 .resetvalue = vmpidr_def,
4769 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4770 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4772 .access = PL2_RW,
4773 .resetvalue = vmpidr_def,
4774 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4775 REGINFO_SENTINEL
4777 define_arm_cp_regs(cpu, vpidr_regs);
4778 define_arm_cp_regs(cpu, el2_cp_reginfo);
4779 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4780 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4781 ARMCPRegInfo rvbar = {
4782 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4783 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4784 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4786 define_one_arm_cp_reg(cpu, &rvbar);
4788 } else {
4789 /* If EL2 is missing but higher ELs are enabled, we need to
4790 * register the no_el2 reginfos.
4792 if (arm_feature(env, ARM_FEATURE_EL3)) {
4793 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4794 * of MIDR_EL1 and MPIDR_EL1.
4796 ARMCPRegInfo vpidr_regs[] = {
4797 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4798 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4799 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4800 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4801 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4802 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4803 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4804 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4805 .type = ARM_CP_NO_RAW,
4806 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4807 REGINFO_SENTINEL
4809 define_arm_cp_regs(cpu, vpidr_regs);
4810 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4813 if (arm_feature(env, ARM_FEATURE_EL3)) {
4814 define_arm_cp_regs(cpu, el3_cp_reginfo);
4815 ARMCPRegInfo el3_regs[] = {
4816 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4817 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4818 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4819 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4821 .access = PL3_RW,
4822 .raw_writefn = raw_write, .writefn = sctlr_write,
4823 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4824 .resetvalue = cpu->reset_sctlr },
4825 REGINFO_SENTINEL
4828 define_arm_cp_regs(cpu, el3_regs);
4830 /* The behaviour of NSACR is sufficiently various that we don't
4831 * try to describe it in a single reginfo:
4832 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4833 * reads as constant 0xc00 from NS EL1 and NS EL2
4834 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4835 * if v7 without EL3, register doesn't exist
4836 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4838 if (arm_feature(env, ARM_FEATURE_EL3)) {
4839 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4840 ARMCPRegInfo nsacr = {
4841 .name = "NSACR", .type = ARM_CP_CONST,
4842 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4843 .access = PL1_RW, .accessfn = nsacr_access,
4844 .resetvalue = 0xc00
4846 define_one_arm_cp_reg(cpu, &nsacr);
4847 } else {
4848 ARMCPRegInfo nsacr = {
4849 .name = "NSACR",
4850 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4851 .access = PL3_RW | PL1_R,
4852 .resetvalue = 0,
4853 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4855 define_one_arm_cp_reg(cpu, &nsacr);
4857 } else {
4858 if (arm_feature(env, ARM_FEATURE_V8)) {
4859 ARMCPRegInfo nsacr = {
4860 .name = "NSACR", .type = ARM_CP_CONST,
4861 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4862 .access = PL1_R,
4863 .resetvalue = 0xc00
4865 define_one_arm_cp_reg(cpu, &nsacr);
4869 if (arm_feature(env, ARM_FEATURE_MPU)) {
4870 if (arm_feature(env, ARM_FEATURE_V6)) {
4871 /* PMSAv6 not implemented */
4872 assert(arm_feature(env, ARM_FEATURE_V7));
4873 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4874 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4875 } else {
4876 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4878 } else {
4879 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4880 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4882 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4883 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4885 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4886 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4888 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4889 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4891 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4892 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4894 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4895 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4897 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4898 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4900 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4901 define_arm_cp_regs(cpu, omap_cp_reginfo);
4903 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4904 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4906 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4907 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4909 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4910 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4912 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4913 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4915 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4916 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4917 * be read-only (ie write causes UNDEF exception).
4920 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4921 /* Pre-v8 MIDR space.
4922 * Note that the MIDR isn't a simple constant register because
4923 * of the TI925 behaviour where writes to another register can
4924 * cause the MIDR value to change.
4926 * Unimplemented registers in the c15 0 0 0 space default to
4927 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4928 * and friends override accordingly.
4930 { .name = "MIDR",
4931 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4932 .access = PL1_R, .resetvalue = cpu->midr,
4933 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4934 .readfn = midr_read,
4935 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4936 .type = ARM_CP_OVERRIDE },
4937 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4938 { .name = "DUMMY",
4939 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4940 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4941 { .name = "DUMMY",
4942 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4943 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4944 { .name = "DUMMY",
4945 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4946 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4947 { .name = "DUMMY",
4948 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4949 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4950 { .name = "DUMMY",
4951 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4952 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4953 REGINFO_SENTINEL
4955 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4956 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4958 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4959 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4960 .readfn = midr_read },
4961 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4962 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4963 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4964 .access = PL1_R, .resetvalue = cpu->midr },
4965 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4966 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4967 .access = PL1_R, .resetvalue = cpu->midr },
4968 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4970 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4971 REGINFO_SENTINEL
4973 ARMCPRegInfo id_cp_reginfo[] = {
4974 /* These are common to v8 and pre-v8 */
4975 { .name = "CTR",
4976 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4977 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4978 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4979 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4980 .access = PL0_R, .accessfn = ctr_el0_access,
4981 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4982 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4983 { .name = "TCMTR",
4984 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4985 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4986 REGINFO_SENTINEL
4988 /* TLBTR is specific to VMSA */
4989 ARMCPRegInfo id_tlbtr_reginfo = {
4990 .name = "TLBTR",
4991 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4992 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4994 /* MPUIR is specific to PMSA V6+ */
4995 ARMCPRegInfo id_mpuir_reginfo = {
4996 .name = "MPUIR",
4997 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4998 .access = PL1_R, .type = ARM_CP_CONST,
4999 .resetvalue = cpu->pmsav7_dregion << 8
5001 ARMCPRegInfo crn0_wi_reginfo = {
5002 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5003 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5004 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5006 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5007 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5008 ARMCPRegInfo *r;
5009 /* Register the blanket "writes ignored" value first to cover the
5010 * whole space. Then update the specific ID registers to allow write
5011 * access, so that they ignore writes rather than causing them to
5012 * UNDEF.
5014 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5015 for (r = id_pre_v8_midr_cp_reginfo;
5016 r->type != ARM_CP_SENTINEL; r++) {
5017 r->access = PL1_RW;
5019 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5020 r->access = PL1_RW;
5022 id_tlbtr_reginfo.access = PL1_RW;
5023 id_tlbtr_reginfo.access = PL1_RW;
5025 if (arm_feature(env, ARM_FEATURE_V8)) {
5026 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5027 } else {
5028 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5030 define_arm_cp_regs(cpu, id_cp_reginfo);
5031 if (!arm_feature(env, ARM_FEATURE_MPU)) {
5032 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5033 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5034 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5038 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5039 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5042 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5043 ARMCPRegInfo auxcr_reginfo[] = {
5044 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5045 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5046 .access = PL1_RW, .type = ARM_CP_CONST,
5047 .resetvalue = cpu->reset_auxcr },
5048 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5049 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5050 .access = PL2_RW, .type = ARM_CP_CONST,
5051 .resetvalue = 0 },
5052 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5053 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5054 .access = PL3_RW, .type = ARM_CP_CONST,
5055 .resetvalue = 0 },
5056 REGINFO_SENTINEL
5058 define_arm_cp_regs(cpu, auxcr_reginfo);
5061 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5062 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5063 /* 32 bit view is [31:18] 0...0 [43:32]. */
5064 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5065 | extract64(cpu->reset_cbar, 32, 12);
5066 ARMCPRegInfo cbar_reginfo[] = {
5067 { .name = "CBAR",
5068 .type = ARM_CP_CONST,
5069 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5070 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5071 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5072 .type = ARM_CP_CONST,
5073 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5074 .access = PL1_R, .resetvalue = cbar32 },
5075 REGINFO_SENTINEL
5077 /* We don't implement a r/w 64 bit CBAR currently */
5078 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5079 define_arm_cp_regs(cpu, cbar_reginfo);
5080 } else {
5081 ARMCPRegInfo cbar = {
5082 .name = "CBAR",
5083 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5084 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5085 .fieldoffset = offsetof(CPUARMState,
5086 cp15.c15_config_base_address)
5088 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5089 cbar.access = PL1_R;
5090 cbar.fieldoffset = 0;
5091 cbar.type = ARM_CP_CONST;
5093 define_one_arm_cp_reg(cpu, &cbar);
5097 /* Generic registers whose values depend on the implementation */
5099 ARMCPRegInfo sctlr = {
5100 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5101 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5102 .access = PL1_RW,
5103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5104 offsetof(CPUARMState, cp15.sctlr_ns) },
5105 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5106 .raw_writefn = raw_write,
5108 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5109 /* Normally we would always end the TB on an SCTLR write, but Linux
5110 * arch/arm/mach-pxa/sleep.S expects two instructions following
5111 * an MMU enable to execute from cache. Imitate this behaviour.
5113 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5115 define_one_arm_cp_reg(cpu, &sctlr);
5119 ARMCPU *cpu_arm_init(const char *cpu_model)
5121 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5124 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5126 CPUState *cs = CPU(cpu);
5127 CPUARMState *env = &cpu->env;
5129 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5130 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5131 aarch64_fpu_gdb_set_reg,
5132 34, "aarch64-fpu.xml", 0);
5133 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5134 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5135 51, "arm-neon.xml", 0);
5136 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5137 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5138 35, "arm-vfp3.xml", 0);
5139 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5140 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5141 19, "arm-vfp.xml", 0);
5145 /* Sort alphabetically by type name, except for "any". */
5146 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5148 ObjectClass *class_a = (ObjectClass *)a;
5149 ObjectClass *class_b = (ObjectClass *)b;
5150 const char *name_a, *name_b;
5152 name_a = object_class_get_name(class_a);
5153 name_b = object_class_get_name(class_b);
5154 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5155 return 1;
5156 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5157 return -1;
5158 } else {
5159 return strcmp(name_a, name_b);
5163 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5165 ObjectClass *oc = data;
5166 CPUListState *s = user_data;
5167 const char *typename;
5168 char *name;
5170 typename = object_class_get_name(oc);
5171 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5172 (*s->cpu_fprintf)(s->file, " %s\n",
5173 name);
5174 g_free(name);
5177 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5179 CPUListState s = {
5180 .file = f,
5181 .cpu_fprintf = cpu_fprintf,
5183 GSList *list;
5185 list = object_class_get_list(TYPE_ARM_CPU, false);
5186 list = g_slist_sort(list, arm_cpu_list_compare);
5187 (*cpu_fprintf)(f, "Available CPUs:\n");
5188 g_slist_foreach(list, arm_cpu_list_entry, &s);
5189 g_slist_free(list);
5190 #ifdef CONFIG_KVM
5191 /* The 'host' CPU type is dynamically registered only if KVM is
5192 * enabled, so we have to special-case it here:
5194 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5195 #endif
5198 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5200 ObjectClass *oc = data;
5201 CpuDefinitionInfoList **cpu_list = user_data;
5202 CpuDefinitionInfoList *entry;
5203 CpuDefinitionInfo *info;
5204 const char *typename;
5206 typename = object_class_get_name(oc);
5207 info = g_malloc0(sizeof(*info));
5208 info->name = g_strndup(typename,
5209 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5211 entry = g_malloc0(sizeof(*entry));
5212 entry->value = info;
5213 entry->next = *cpu_list;
5214 *cpu_list = entry;
5217 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5219 CpuDefinitionInfoList *cpu_list = NULL;
5220 GSList *list;
5222 list = object_class_get_list(TYPE_ARM_CPU, false);
5223 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5224 g_slist_free(list);
5226 return cpu_list;
5229 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5230 void *opaque, int state, int secstate,
5231 int crm, int opc1, int opc2)
5233 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5234 * add a single reginfo struct to the hash table.
5236 uint32_t *key = g_new(uint32_t, 1);
5237 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5238 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5239 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5241 /* Reset the secure state to the specific incoming state. This is
5242 * necessary as the register may have been defined with both states.
5244 r2->secure = secstate;
5246 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5247 /* Register is banked (using both entries in array).
5248 * Overwriting fieldoffset as the array is only used to define
5249 * banked registers but later only fieldoffset is used.
5251 r2->fieldoffset = r->bank_fieldoffsets[ns];
5254 if (state == ARM_CP_STATE_AA32) {
5255 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5256 /* If the register is banked then we don't need to migrate or
5257 * reset the 32-bit instance in certain cases:
5259 * 1) If the register has both 32-bit and 64-bit instances then we
5260 * can count on the 64-bit instance taking care of the
5261 * non-secure bank.
5262 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5263 * taking care of the secure bank. This requires that separate
5264 * 32 and 64-bit definitions are provided.
5266 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5267 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5268 r2->type |= ARM_CP_ALIAS;
5270 } else if ((secstate != r->secure) && !ns) {
5271 /* The register is not banked so we only want to allow migration of
5272 * the non-secure instance.
5274 r2->type |= ARM_CP_ALIAS;
5277 if (r->state == ARM_CP_STATE_BOTH) {
5278 /* We assume it is a cp15 register if the .cp field is left unset.
5280 if (r2->cp == 0) {
5281 r2->cp = 15;
5284 #ifdef HOST_WORDS_BIGENDIAN
5285 if (r2->fieldoffset) {
5286 r2->fieldoffset += sizeof(uint32_t);
5288 #endif
5291 if (state == ARM_CP_STATE_AA64) {
5292 /* To allow abbreviation of ARMCPRegInfo
5293 * definitions, we treat cp == 0 as equivalent to
5294 * the value for "standard guest-visible sysreg".
5295 * STATE_BOTH definitions are also always "standard
5296 * sysreg" in their AArch64 view (the .cp value may
5297 * be non-zero for the benefit of the AArch32 view).
5299 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5300 r2->cp = CP_REG_ARM64_SYSREG_CP;
5302 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5303 r2->opc0, opc1, opc2);
5304 } else {
5305 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5307 if (opaque) {
5308 r2->opaque = opaque;
5310 /* reginfo passed to helpers is correct for the actual access,
5311 * and is never ARM_CP_STATE_BOTH:
5313 r2->state = state;
5314 /* Make sure reginfo passed to helpers for wildcarded regs
5315 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5317 r2->crm = crm;
5318 r2->opc1 = opc1;
5319 r2->opc2 = opc2;
5320 /* By convention, for wildcarded registers only the first
5321 * entry is used for migration; the others are marked as
5322 * ALIAS so we don't try to transfer the register
5323 * multiple times. Special registers (ie NOP/WFI) are
5324 * never migratable and not even raw-accessible.
5326 if ((r->type & ARM_CP_SPECIAL)) {
5327 r2->type |= ARM_CP_NO_RAW;
5329 if (((r->crm == CP_ANY) && crm != 0) ||
5330 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5331 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5332 r2->type |= ARM_CP_ALIAS;
5335 /* Check that raw accesses are either forbidden or handled. Note that
5336 * we can't assert this earlier because the setup of fieldoffset for
5337 * banked registers has to be done first.
5339 if (!(r2->type & ARM_CP_NO_RAW)) {
5340 assert(!raw_accessors_invalid(r2));
5343 /* Overriding of an existing definition must be explicitly
5344 * requested.
5346 if (!(r->type & ARM_CP_OVERRIDE)) {
5347 ARMCPRegInfo *oldreg;
5348 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5349 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5350 fprintf(stderr, "Register redefined: cp=%d %d bit "
5351 "crn=%d crm=%d opc1=%d opc2=%d, "
5352 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5353 r2->crn, r2->crm, r2->opc1, r2->opc2,
5354 oldreg->name, r2->name);
5355 g_assert_not_reached();
5358 g_hash_table_insert(cpu->cp_regs, key, r2);
5362 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5363 const ARMCPRegInfo *r, void *opaque)
5365 /* Define implementations of coprocessor registers.
5366 * We store these in a hashtable because typically
5367 * there are less than 150 registers in a space which
5368 * is 16*16*16*8*8 = 262144 in size.
5369 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5370 * If a register is defined twice then the second definition is
5371 * used, so this can be used to define some generic registers and
5372 * then override them with implementation specific variations.
5373 * At least one of the original and the second definition should
5374 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5375 * against accidental use.
5377 * The state field defines whether the register is to be
5378 * visible in the AArch32 or AArch64 execution state. If the
5379 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5380 * reginfo structure for the AArch32 view, which sees the lower
5381 * 32 bits of the 64 bit register.
5383 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5384 * be wildcarded. AArch64 registers are always considered to be 64
5385 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5386 * the register, if any.
5388 int crm, opc1, opc2, state;
5389 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5390 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5391 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5392 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5393 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5394 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5395 /* 64 bit registers have only CRm and Opc1 fields */
5396 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5397 /* op0 only exists in the AArch64 encodings */
5398 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5399 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5400 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5401 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5402 * encodes a minimum access level for the register. We roll this
5403 * runtime check into our general permission check code, so check
5404 * here that the reginfo's specified permissions are strict enough
5405 * to encompass the generic architectural permission check.
5407 if (r->state != ARM_CP_STATE_AA32) {
5408 int mask = 0;
5409 switch (r->opc1) {
5410 case 0: case 1: case 2:
5411 /* min_EL EL1 */
5412 mask = PL1_RW;
5413 break;
5414 case 3:
5415 /* min_EL EL0 */
5416 mask = PL0_RW;
5417 break;
5418 case 4:
5419 /* min_EL EL2 */
5420 mask = PL2_RW;
5421 break;
5422 case 5:
5423 /* unallocated encoding, so not possible */
5424 assert(false);
5425 break;
5426 case 6:
5427 /* min_EL EL3 */
5428 mask = PL3_RW;
5429 break;
5430 case 7:
5431 /* min_EL EL1, secure mode only (we don't check the latter) */
5432 mask = PL1_RW;
5433 break;
5434 default:
5435 /* broken reginfo with out-of-range opc1 */
5436 assert(false);
5437 break;
5439 /* assert our permissions are not too lax (stricter is fine) */
5440 assert((r->access & ~mask) == 0);
5443 /* Check that the register definition has enough info to handle
5444 * reads and writes if they are permitted.
5446 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5447 if (r->access & PL3_R) {
5448 assert((r->fieldoffset ||
5449 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5450 r->readfn);
5452 if (r->access & PL3_W) {
5453 assert((r->fieldoffset ||
5454 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5455 r->writefn);
5458 /* Bad type field probably means missing sentinel at end of reg list */
5459 assert(cptype_valid(r->type));
5460 for (crm = crmmin; crm <= crmmax; crm++) {
5461 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5462 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5463 for (state = ARM_CP_STATE_AA32;
5464 state <= ARM_CP_STATE_AA64; state++) {
5465 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5466 continue;
5468 if (state == ARM_CP_STATE_AA32) {
5469 /* Under AArch32 CP registers can be common
5470 * (same for secure and non-secure world) or banked.
5472 switch (r->secure) {
5473 case ARM_CP_SECSTATE_S:
5474 case ARM_CP_SECSTATE_NS:
5475 add_cpreg_to_hashtable(cpu, r, opaque, state,
5476 r->secure, crm, opc1, opc2);
5477 break;
5478 default:
5479 add_cpreg_to_hashtable(cpu, r, opaque, state,
5480 ARM_CP_SECSTATE_S,
5481 crm, opc1, opc2);
5482 add_cpreg_to_hashtable(cpu, r, opaque, state,
5483 ARM_CP_SECSTATE_NS,
5484 crm, opc1, opc2);
5485 break;
5487 } else {
5488 /* AArch64 registers get mapped to non-secure instance
5489 * of AArch32 */
5490 add_cpreg_to_hashtable(cpu, r, opaque, state,
5491 ARM_CP_SECSTATE_NS,
5492 crm, opc1, opc2);
5500 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5501 const ARMCPRegInfo *regs, void *opaque)
5503 /* Define a whole list of registers */
5504 const ARMCPRegInfo *r;
5505 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5506 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5510 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5512 return g_hash_table_lookup(cpregs, &encoded_cp);
5515 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5516 uint64_t value)
5518 /* Helper coprocessor write function for write-ignore registers */
5521 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5523 /* Helper coprocessor write function for read-as-zero registers */
5524 return 0;
5527 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5529 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5532 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5534 /* Return true if it is not valid for us to switch to
5535 * this CPU mode (ie all the UNPREDICTABLE cases in
5536 * the ARM ARM CPSRWriteByInstr pseudocode).
5539 /* Changes to or from Hyp via MSR and CPS are illegal. */
5540 if (write_type == CPSRWriteByInstr &&
5541 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5542 mode == ARM_CPU_MODE_HYP)) {
5543 return 1;
5546 switch (mode) {
5547 case ARM_CPU_MODE_USR:
5548 return 0;
5549 case ARM_CPU_MODE_SYS:
5550 case ARM_CPU_MODE_SVC:
5551 case ARM_CPU_MODE_ABT:
5552 case ARM_CPU_MODE_UND:
5553 case ARM_CPU_MODE_IRQ:
5554 case ARM_CPU_MODE_FIQ:
5555 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5556 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5558 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5559 * and CPS are treated as illegal mode changes.
5561 if (write_type == CPSRWriteByInstr &&
5562 (env->cp15.hcr_el2 & HCR_TGE) &&
5563 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5564 !arm_is_secure_below_el3(env)) {
5565 return 1;
5567 return 0;
5568 case ARM_CPU_MODE_HYP:
5569 return !arm_feature(env, ARM_FEATURE_EL2)
5570 || arm_current_el(env) < 2 || arm_is_secure(env);
5571 case ARM_CPU_MODE_MON:
5572 return arm_current_el(env) < 3;
5573 default:
5574 return 1;
5578 uint32_t cpsr_read(CPUARMState *env)
5580 int ZF;
5581 ZF = (env->ZF == 0);
5582 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5583 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5584 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5585 | ((env->condexec_bits & 0xfc) << 8)
5586 | (env->GE << 16) | (env->daif & CPSR_AIF);
5589 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5590 CPSRWriteType write_type)
5592 uint32_t changed_daif;
5594 if (mask & CPSR_NZCV) {
5595 env->ZF = (~val) & CPSR_Z;
5596 env->NF = val;
5597 env->CF = (val >> 29) & 1;
5598 env->VF = (val << 3) & 0x80000000;
5600 if (mask & CPSR_Q)
5601 env->QF = ((val & CPSR_Q) != 0);
5602 if (mask & CPSR_T)
5603 env->thumb = ((val & CPSR_T) != 0);
5604 if (mask & CPSR_IT_0_1) {
5605 env->condexec_bits &= ~3;
5606 env->condexec_bits |= (val >> 25) & 3;
5608 if (mask & CPSR_IT_2_7) {
5609 env->condexec_bits &= 3;
5610 env->condexec_bits |= (val >> 8) & 0xfc;
5612 if (mask & CPSR_GE) {
5613 env->GE = (val >> 16) & 0xf;
5616 /* In a V7 implementation that includes the security extensions but does
5617 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5618 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5619 * bits respectively.
5621 * In a V8 implementation, it is permitted for privileged software to
5622 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5624 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5625 arm_feature(env, ARM_FEATURE_EL3) &&
5626 !arm_feature(env, ARM_FEATURE_EL2) &&
5627 !arm_is_secure(env)) {
5629 changed_daif = (env->daif ^ val) & mask;
5631 if (changed_daif & CPSR_A) {
5632 /* Check to see if we are allowed to change the masking of async
5633 * abort exceptions from a non-secure state.
5635 if (!(env->cp15.scr_el3 & SCR_AW)) {
5636 qemu_log_mask(LOG_GUEST_ERROR,
5637 "Ignoring attempt to switch CPSR_A flag from "
5638 "non-secure world with SCR.AW bit clear\n");
5639 mask &= ~CPSR_A;
5643 if (changed_daif & CPSR_F) {
5644 /* Check to see if we are allowed to change the masking of FIQ
5645 * exceptions from a non-secure state.
5647 if (!(env->cp15.scr_el3 & SCR_FW)) {
5648 qemu_log_mask(LOG_GUEST_ERROR,
5649 "Ignoring attempt to switch CPSR_F flag from "
5650 "non-secure world with SCR.FW bit clear\n");
5651 mask &= ~CPSR_F;
5654 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5655 * If this bit is set software is not allowed to mask
5656 * FIQs, but is allowed to set CPSR_F to 0.
5658 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5659 (val & CPSR_F)) {
5660 qemu_log_mask(LOG_GUEST_ERROR,
5661 "Ignoring attempt to enable CPSR_F flag "
5662 "(non-maskable FIQ [NMFI] support enabled)\n");
5663 mask &= ~CPSR_F;
5668 env->daif &= ~(CPSR_AIF & mask);
5669 env->daif |= val & CPSR_AIF & mask;
5671 if (write_type != CPSRWriteRaw &&
5672 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5673 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5674 /* Note that we can only get here in USR mode if this is a
5675 * gdb stub write; for this case we follow the architectural
5676 * behaviour for guest writes in USR mode of ignoring an attempt
5677 * to switch mode. (Those are caught by translate.c for writes
5678 * triggered by guest instructions.)
5680 mask &= ~CPSR_M;
5681 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5682 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5683 * v7, and has defined behaviour in v8:
5684 * + leave CPSR.M untouched
5685 * + allow changes to the other CPSR fields
5686 * + set PSTATE.IL
5687 * For user changes via the GDB stub, we don't set PSTATE.IL,
5688 * as this would be unnecessarily harsh for a user error.
5690 mask &= ~CPSR_M;
5691 if (write_type != CPSRWriteByGDBStub &&
5692 arm_feature(env, ARM_FEATURE_V8)) {
5693 mask |= CPSR_IL;
5694 val |= CPSR_IL;
5696 } else {
5697 switch_mode(env, val & CPSR_M);
5700 mask &= ~CACHED_CPSR_BITS;
5701 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5704 /* Sign/zero extend */
5705 uint32_t HELPER(sxtb16)(uint32_t x)
5707 uint32_t res;
5708 res = (uint16_t)(int8_t)x;
5709 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5710 return res;
5713 uint32_t HELPER(uxtb16)(uint32_t x)
5715 uint32_t res;
5716 res = (uint16_t)(uint8_t)x;
5717 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5718 return res;
5721 uint32_t HELPER(clz)(uint32_t x)
5723 return clz32(x);
5726 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5728 if (den == 0)
5729 return 0;
5730 if (num == INT_MIN && den == -1)
5731 return INT_MIN;
5732 return num / den;
5735 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5737 if (den == 0)
5738 return 0;
5739 return num / den;
5742 uint32_t HELPER(rbit)(uint32_t x)
5744 return revbit32(x);
5747 #if defined(CONFIG_USER_ONLY)
5749 /* These should probably raise undefined insn exceptions. */
5750 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5752 ARMCPU *cpu = arm_env_get_cpu(env);
5754 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5757 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5759 ARMCPU *cpu = arm_env_get_cpu(env);
5761 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5762 return 0;
5765 void switch_mode(CPUARMState *env, int mode)
5767 ARMCPU *cpu = arm_env_get_cpu(env);
5769 if (mode != ARM_CPU_MODE_USR) {
5770 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5774 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5775 uint32_t cur_el, bool secure)
5777 return 1;
5780 void aarch64_sync_64_to_32(CPUARMState *env)
5782 g_assert_not_reached();
5785 #else
5787 void switch_mode(CPUARMState *env, int mode)
5789 int old_mode;
5790 int i;
5792 old_mode = env->uncached_cpsr & CPSR_M;
5793 if (mode == old_mode)
5794 return;
5796 if (old_mode == ARM_CPU_MODE_FIQ) {
5797 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5798 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5799 } else if (mode == ARM_CPU_MODE_FIQ) {
5800 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5801 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5804 i = bank_number(old_mode);
5805 env->banked_r13[i] = env->regs[13];
5806 env->banked_r14[i] = env->regs[14];
5807 env->banked_spsr[i] = env->spsr;
5809 i = bank_number(mode);
5810 env->regs[13] = env->banked_r13[i];
5811 env->regs[14] = env->banked_r14[i];
5812 env->spsr = env->banked_spsr[i];
5815 /* Physical Interrupt Target EL Lookup Table
5817 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5819 * The below multi-dimensional table is used for looking up the target
5820 * exception level given numerous condition criteria. Specifically, the
5821 * target EL is based on SCR and HCR routing controls as well as the
5822 * currently executing EL and secure state.
5824 * Dimensions:
5825 * target_el_table[2][2][2][2][2][4]
5826 * | | | | | +--- Current EL
5827 * | | | | +------ Non-secure(0)/Secure(1)
5828 * | | | +--------- HCR mask override
5829 * | | +------------ SCR exec state control
5830 * | +--------------- SCR mask override
5831 * +------------------ 32-bit(0)/64-bit(1) EL3
5833 * The table values are as such:
5834 * 0-3 = EL0-EL3
5835 * -1 = Cannot occur
5837 * The ARM ARM target EL table includes entries indicating that an "exception
5838 * is not taken". The two cases where this is applicable are:
5839 * 1) An exception is taken from EL3 but the SCR does not have the exception
5840 * routed to EL3.
5841 * 2) An exception is taken from EL2 but the HCR does not have the exception
5842 * routed to EL2.
5843 * In these two cases, the below table contain a target of EL1. This value is
5844 * returned as it is expected that the consumer of the table data will check
5845 * for "target EL >= current EL" to ensure the exception is not taken.
5847 * SCR HCR
5848 * 64 EA AMO From
5849 * BIT IRQ IMO Non-secure Secure
5850 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5852 static const int8_t target_el_table[2][2][2][2][2][4] = {
5853 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5854 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5855 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5856 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5857 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5858 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5859 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5860 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5861 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5862 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5863 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5864 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5865 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5866 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5867 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5868 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5872 * Determine the target EL for physical exceptions
5874 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5875 uint32_t cur_el, bool secure)
5877 CPUARMState *env = cs->env_ptr;
5878 int rw;
5879 int scr;
5880 int hcr;
5881 int target_el;
5882 /* Is the highest EL AArch64? */
5883 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5885 if (arm_feature(env, ARM_FEATURE_EL3)) {
5886 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5887 } else {
5888 /* Either EL2 is the highest EL (and so the EL2 register width
5889 * is given by is64); or there is no EL2 or EL3, in which case
5890 * the value of 'rw' does not affect the table lookup anyway.
5892 rw = is64;
5895 switch (excp_idx) {
5896 case EXCP_IRQ:
5897 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5898 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5899 break;
5900 case EXCP_FIQ:
5901 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5902 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5903 break;
5904 default:
5905 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5906 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5907 break;
5910 /* If HCR.TGE is set then HCR is treated as being 1 */
5911 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5913 /* Perform a table-lookup for the target EL given the current state */
5914 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5916 assert(target_el > 0);
5918 return target_el;
5921 static void v7m_push(CPUARMState *env, uint32_t val)
5923 CPUState *cs = CPU(arm_env_get_cpu(env));
5925 env->regs[13] -= 4;
5926 stl_phys(cs->as, env->regs[13], val);
5929 static uint32_t v7m_pop(CPUARMState *env)
5931 CPUState *cs = CPU(arm_env_get_cpu(env));
5932 uint32_t val;
5934 val = ldl_phys(cs->as, env->regs[13]);
5935 env->regs[13] += 4;
5936 return val;
5939 /* Switch to V7M main or process stack pointer. */
5940 static void switch_v7m_sp(CPUARMState *env, int process)
5942 uint32_t tmp;
5943 if (env->v7m.current_sp != process) {
5944 tmp = env->v7m.other_sp;
5945 env->v7m.other_sp = env->regs[13];
5946 env->regs[13] = tmp;
5947 env->v7m.current_sp = process;
5951 static void do_v7m_exception_exit(CPUARMState *env)
5953 uint32_t type;
5954 uint32_t xpsr;
5956 type = env->regs[15];
5957 if (env->v7m.exception != 0)
5958 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5960 /* Switch to the target stack. */
5961 switch_v7m_sp(env, (type & 4) != 0);
5962 /* Pop registers. */
5963 env->regs[0] = v7m_pop(env);
5964 env->regs[1] = v7m_pop(env);
5965 env->regs[2] = v7m_pop(env);
5966 env->regs[3] = v7m_pop(env);
5967 env->regs[12] = v7m_pop(env);
5968 env->regs[14] = v7m_pop(env);
5969 env->regs[15] = v7m_pop(env);
5970 if (env->regs[15] & 1) {
5971 qemu_log_mask(LOG_GUEST_ERROR,
5972 "M profile return from interrupt with misaligned "
5973 "PC is UNPREDICTABLE\n");
5974 /* Actual hardware seems to ignore the lsbit, and there are several
5975 * RTOSes out there which incorrectly assume the r15 in the stack
5976 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5978 env->regs[15] &= ~1U;
5980 xpsr = v7m_pop(env);
5981 xpsr_write(env, xpsr, 0xfffffdff);
5982 /* Undo stack alignment. */
5983 if (xpsr & 0x200)
5984 env->regs[13] |= 4;
5985 /* ??? The exception return type specifies Thread/Handler mode. However
5986 this is also implied by the xPSR value. Not sure what to do
5987 if there is a mismatch. */
5988 /* ??? Likewise for mismatches between the CONTROL register and the stack
5989 pointer. */
5992 static void arm_log_exception(int idx)
5994 if (qemu_loglevel_mask(CPU_LOG_INT)) {
5995 const char *exc = NULL;
5997 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
5998 exc = excnames[idx];
6000 if (!exc) {
6001 exc = "unknown";
6003 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6007 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6009 ARMCPU *cpu = ARM_CPU(cs);
6010 CPUARMState *env = &cpu->env;
6011 uint32_t xpsr = xpsr_read(env);
6012 uint32_t lr;
6013 uint32_t addr;
6015 arm_log_exception(cs->exception_index);
6017 lr = 0xfffffff1;
6018 if (env->v7m.current_sp)
6019 lr |= 4;
6020 if (env->v7m.exception == 0)
6021 lr |= 8;
6023 /* For exceptions we just mark as pending on the NVIC, and let that
6024 handle it. */
6025 /* TODO: Need to escalate if the current priority is higher than the
6026 one we're raising. */
6027 switch (cs->exception_index) {
6028 case EXCP_UDEF:
6029 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6030 return;
6031 case EXCP_SWI:
6032 /* The PC already points to the next instruction. */
6033 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6034 return;
6035 case EXCP_PREFETCH_ABORT:
6036 case EXCP_DATA_ABORT:
6037 /* TODO: if we implemented the MPU registers, this is where we
6038 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6040 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6041 return;
6042 case EXCP_BKPT:
6043 if (semihosting_enabled()) {
6044 int nr;
6045 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6046 if (nr == 0xab) {
6047 env->regs[15] += 2;
6048 qemu_log_mask(CPU_LOG_INT,
6049 "...handling as semihosting call 0x%x\n",
6050 env->regs[0]);
6051 env->regs[0] = do_arm_semihosting(env);
6052 return;
6055 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6056 return;
6057 case EXCP_IRQ:
6058 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
6059 break;
6060 case EXCP_EXCEPTION_EXIT:
6061 do_v7m_exception_exit(env);
6062 return;
6063 default:
6064 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6065 return; /* Never happens. Keep compiler happy. */
6068 /* Align stack pointer. */
6069 /* ??? Should only do this if Configuration Control Register
6070 STACKALIGN bit is set. */
6071 if (env->regs[13] & 4) {
6072 env->regs[13] -= 4;
6073 xpsr |= 0x200;
6075 /* Switch to the handler mode. */
6076 v7m_push(env, xpsr);
6077 v7m_push(env, env->regs[15]);
6078 v7m_push(env, env->regs[14]);
6079 v7m_push(env, env->regs[12]);
6080 v7m_push(env, env->regs[3]);
6081 v7m_push(env, env->regs[2]);
6082 v7m_push(env, env->regs[1]);
6083 v7m_push(env, env->regs[0]);
6084 switch_v7m_sp(env, 0);
6085 /* Clear IT bits */
6086 env->condexec_bits = 0;
6087 env->regs[14] = lr;
6088 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
6089 env->regs[15] = addr & 0xfffffffe;
6090 env->thumb = addr & 1;
6093 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6094 * register set. This is necessary when switching between AArch32 and AArch64
6095 * execution state.
6097 void aarch64_sync_32_to_64(CPUARMState *env)
6099 int i;
6100 uint32_t mode = env->uncached_cpsr & CPSR_M;
6102 /* We can blanket copy R[0:7] to X[0:7] */
6103 for (i = 0; i < 8; i++) {
6104 env->xregs[i] = env->regs[i];
6107 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6108 * Otherwise, they come from the banked user regs.
6110 if (mode == ARM_CPU_MODE_FIQ) {
6111 for (i = 8; i < 13; i++) {
6112 env->xregs[i] = env->usr_regs[i - 8];
6114 } else {
6115 for (i = 8; i < 13; i++) {
6116 env->xregs[i] = env->regs[i];
6120 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6121 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6122 * from the mode banked register.
6124 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6125 env->xregs[13] = env->regs[13];
6126 env->xregs[14] = env->regs[14];
6127 } else {
6128 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6129 /* HYP is an exception in that it is copied from r14 */
6130 if (mode == ARM_CPU_MODE_HYP) {
6131 env->xregs[14] = env->regs[14];
6132 } else {
6133 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6137 if (mode == ARM_CPU_MODE_HYP) {
6138 env->xregs[15] = env->regs[13];
6139 } else {
6140 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6143 if (mode == ARM_CPU_MODE_IRQ) {
6144 env->xregs[16] = env->regs[14];
6145 env->xregs[17] = env->regs[13];
6146 } else {
6147 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6148 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6151 if (mode == ARM_CPU_MODE_SVC) {
6152 env->xregs[18] = env->regs[14];
6153 env->xregs[19] = env->regs[13];
6154 } else {
6155 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6156 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6159 if (mode == ARM_CPU_MODE_ABT) {
6160 env->xregs[20] = env->regs[14];
6161 env->xregs[21] = env->regs[13];
6162 } else {
6163 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6164 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6167 if (mode == ARM_CPU_MODE_UND) {
6168 env->xregs[22] = env->regs[14];
6169 env->xregs[23] = env->regs[13];
6170 } else {
6171 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6172 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6175 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6176 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6177 * FIQ bank for r8-r14.
6179 if (mode == ARM_CPU_MODE_FIQ) {
6180 for (i = 24; i < 31; i++) {
6181 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6183 } else {
6184 for (i = 24; i < 29; i++) {
6185 env->xregs[i] = env->fiq_regs[i - 24];
6187 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6188 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6191 env->pc = env->regs[15];
6194 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6195 * register set. This is necessary when switching between AArch32 and AArch64
6196 * execution state.
6198 void aarch64_sync_64_to_32(CPUARMState *env)
6200 int i;
6201 uint32_t mode = env->uncached_cpsr & CPSR_M;
6203 /* We can blanket copy X[0:7] to R[0:7] */
6204 for (i = 0; i < 8; i++) {
6205 env->regs[i] = env->xregs[i];
6208 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6209 * Otherwise, we copy x8-x12 into the banked user regs.
6211 if (mode == ARM_CPU_MODE_FIQ) {
6212 for (i = 8; i < 13; i++) {
6213 env->usr_regs[i - 8] = env->xregs[i];
6215 } else {
6216 for (i = 8; i < 13; i++) {
6217 env->regs[i] = env->xregs[i];
6221 /* Registers r13 & r14 depend on the current mode.
6222 * If we are in a given mode, we copy the corresponding x registers to r13
6223 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6224 * for the mode.
6226 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6227 env->regs[13] = env->xregs[13];
6228 env->regs[14] = env->xregs[14];
6229 } else {
6230 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6232 /* HYP is an exception in that it does not have its own banked r14 but
6233 * shares the USR r14
6235 if (mode == ARM_CPU_MODE_HYP) {
6236 env->regs[14] = env->xregs[14];
6237 } else {
6238 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6242 if (mode == ARM_CPU_MODE_HYP) {
6243 env->regs[13] = env->xregs[15];
6244 } else {
6245 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6248 if (mode == ARM_CPU_MODE_IRQ) {
6249 env->regs[14] = env->xregs[16];
6250 env->regs[13] = env->xregs[17];
6251 } else {
6252 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6253 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6256 if (mode == ARM_CPU_MODE_SVC) {
6257 env->regs[14] = env->xregs[18];
6258 env->regs[13] = env->xregs[19];
6259 } else {
6260 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6261 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6264 if (mode == ARM_CPU_MODE_ABT) {
6265 env->regs[14] = env->xregs[20];
6266 env->regs[13] = env->xregs[21];
6267 } else {
6268 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6269 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6272 if (mode == ARM_CPU_MODE_UND) {
6273 env->regs[14] = env->xregs[22];
6274 env->regs[13] = env->xregs[23];
6275 } else {
6276 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6277 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6280 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6281 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6282 * FIQ bank for r8-r14.
6284 if (mode == ARM_CPU_MODE_FIQ) {
6285 for (i = 24; i < 31; i++) {
6286 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6288 } else {
6289 for (i = 24; i < 29; i++) {
6290 env->fiq_regs[i - 24] = env->xregs[i];
6292 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6293 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6296 env->regs[15] = env->pc;
6299 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6301 ARMCPU *cpu = ARM_CPU(cs);
6302 CPUARMState *env = &cpu->env;
6303 uint32_t addr;
6304 uint32_t mask;
6305 int new_mode;
6306 uint32_t offset;
6307 uint32_t moe;
6309 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6310 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6311 case EC_BREAKPOINT:
6312 case EC_BREAKPOINT_SAME_EL:
6313 moe = 1;
6314 break;
6315 case EC_WATCHPOINT:
6316 case EC_WATCHPOINT_SAME_EL:
6317 moe = 10;
6318 break;
6319 case EC_AA32_BKPT:
6320 moe = 3;
6321 break;
6322 case EC_VECTORCATCH:
6323 moe = 5;
6324 break;
6325 default:
6326 moe = 0;
6327 break;
6330 if (moe) {
6331 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6334 /* TODO: Vectored interrupt controller. */
6335 switch (cs->exception_index) {
6336 case EXCP_UDEF:
6337 new_mode = ARM_CPU_MODE_UND;
6338 addr = 0x04;
6339 mask = CPSR_I;
6340 if (env->thumb)
6341 offset = 2;
6342 else
6343 offset = 4;
6344 break;
6345 case EXCP_SWI:
6346 new_mode = ARM_CPU_MODE_SVC;
6347 addr = 0x08;
6348 mask = CPSR_I;
6349 /* The PC already points to the next instruction. */
6350 offset = 0;
6351 break;
6352 case EXCP_BKPT:
6353 env->exception.fsr = 2;
6354 /* Fall through to prefetch abort. */
6355 case EXCP_PREFETCH_ABORT:
6356 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6357 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6358 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6359 env->exception.fsr, (uint32_t)env->exception.vaddress);
6360 new_mode = ARM_CPU_MODE_ABT;
6361 addr = 0x0c;
6362 mask = CPSR_A | CPSR_I;
6363 offset = 4;
6364 break;
6365 case EXCP_DATA_ABORT:
6366 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6367 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6368 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6369 env->exception.fsr,
6370 (uint32_t)env->exception.vaddress);
6371 new_mode = ARM_CPU_MODE_ABT;
6372 addr = 0x10;
6373 mask = CPSR_A | CPSR_I;
6374 offset = 8;
6375 break;
6376 case EXCP_IRQ:
6377 new_mode = ARM_CPU_MODE_IRQ;
6378 addr = 0x18;
6379 /* Disable IRQ and imprecise data aborts. */
6380 mask = CPSR_A | CPSR_I;
6381 offset = 4;
6382 if (env->cp15.scr_el3 & SCR_IRQ) {
6383 /* IRQ routed to monitor mode */
6384 new_mode = ARM_CPU_MODE_MON;
6385 mask |= CPSR_F;
6387 break;
6388 case EXCP_FIQ:
6389 new_mode = ARM_CPU_MODE_FIQ;
6390 addr = 0x1c;
6391 /* Disable FIQ, IRQ and imprecise data aborts. */
6392 mask = CPSR_A | CPSR_I | CPSR_F;
6393 if (env->cp15.scr_el3 & SCR_FIQ) {
6394 /* FIQ routed to monitor mode */
6395 new_mode = ARM_CPU_MODE_MON;
6397 offset = 4;
6398 break;
6399 case EXCP_SMC:
6400 new_mode = ARM_CPU_MODE_MON;
6401 addr = 0x08;
6402 mask = CPSR_A | CPSR_I | CPSR_F;
6403 offset = 0;
6404 break;
6405 default:
6406 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6407 return; /* Never happens. Keep compiler happy. */
6410 if (new_mode == ARM_CPU_MODE_MON) {
6411 addr += env->cp15.mvbar;
6412 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6413 /* High vectors. When enabled, base address cannot be remapped. */
6414 addr += 0xffff0000;
6415 } else {
6416 /* ARM v7 architectures provide a vector base address register to remap
6417 * the interrupt vector table.
6418 * This register is only followed in non-monitor mode, and is banked.
6419 * Note: only bits 31:5 are valid.
6421 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6424 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6425 env->cp15.scr_el3 &= ~SCR_NS;
6428 switch_mode (env, new_mode);
6429 /* For exceptions taken to AArch32 we must clear the SS bit in both
6430 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6432 env->uncached_cpsr &= ~PSTATE_SS;
6433 env->spsr = cpsr_read(env);
6434 /* Clear IT bits. */
6435 env->condexec_bits = 0;
6436 /* Switch to the new mode, and to the correct instruction set. */
6437 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6438 /* Set new mode endianness */
6439 env->uncached_cpsr &= ~CPSR_E;
6440 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6441 env->uncached_cpsr |= ~CPSR_E;
6443 env->daif |= mask;
6444 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6445 * and we should just guard the thumb mode on V4 */
6446 if (arm_feature(env, ARM_FEATURE_V4T)) {
6447 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6449 env->regs[14] = env->regs[15] + offset;
6450 env->regs[15] = addr;
6453 /* Handle exception entry to a target EL which is using AArch64 */
6454 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6456 ARMCPU *cpu = ARM_CPU(cs);
6457 CPUARMState *env = &cpu->env;
6458 unsigned int new_el = env->exception.target_el;
6459 target_ulong addr = env->cp15.vbar_el[new_el];
6460 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6462 if (arm_current_el(env) < new_el) {
6463 /* Entry vector offset depends on whether the implemented EL
6464 * immediately lower than the target level is using AArch32 or AArch64
6466 bool is_aa64;
6468 switch (new_el) {
6469 case 3:
6470 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6471 break;
6472 case 2:
6473 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6474 break;
6475 case 1:
6476 is_aa64 = is_a64(env);
6477 break;
6478 default:
6479 g_assert_not_reached();
6482 if (is_aa64) {
6483 addr += 0x400;
6484 } else {
6485 addr += 0x600;
6487 } else if (pstate_read(env) & PSTATE_SP) {
6488 addr += 0x200;
6491 switch (cs->exception_index) {
6492 case EXCP_PREFETCH_ABORT:
6493 case EXCP_DATA_ABORT:
6494 env->cp15.far_el[new_el] = env->exception.vaddress;
6495 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6496 env->cp15.far_el[new_el]);
6497 /* fall through */
6498 case EXCP_BKPT:
6499 case EXCP_UDEF:
6500 case EXCP_SWI:
6501 case EXCP_HVC:
6502 case EXCP_HYP_TRAP:
6503 case EXCP_SMC:
6504 env->cp15.esr_el[new_el] = env->exception.syndrome;
6505 break;
6506 case EXCP_IRQ:
6507 case EXCP_VIRQ:
6508 addr += 0x80;
6509 break;
6510 case EXCP_FIQ:
6511 case EXCP_VFIQ:
6512 addr += 0x100;
6513 break;
6514 case EXCP_SEMIHOST:
6515 qemu_log_mask(CPU_LOG_INT,
6516 "...handling as semihosting call 0x%" PRIx64 "\n",
6517 env->xregs[0]);
6518 env->xregs[0] = do_arm_semihosting(env);
6519 return;
6520 default:
6521 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6524 if (is_a64(env)) {
6525 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6526 aarch64_save_sp(env, arm_current_el(env));
6527 env->elr_el[new_el] = env->pc;
6528 } else {
6529 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6530 env->elr_el[new_el] = env->regs[15];
6532 aarch64_sync_32_to_64(env);
6534 env->condexec_bits = 0;
6536 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6537 env->elr_el[new_el]);
6539 pstate_write(env, PSTATE_DAIF | new_mode);
6540 env->aarch64 = 1;
6541 aarch64_restore_sp(env, new_el);
6543 env->pc = addr;
6545 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6546 new_el, env->pc, pstate_read(env));
6549 static inline bool check_for_semihosting(CPUState *cs)
6551 /* Check whether this exception is a semihosting call; if so
6552 * then handle it and return true; otherwise return false.
6554 ARMCPU *cpu = ARM_CPU(cs);
6555 CPUARMState *env = &cpu->env;
6557 if (is_a64(env)) {
6558 if (cs->exception_index == EXCP_SEMIHOST) {
6559 /* This is always the 64-bit semihosting exception.
6560 * The "is this usermode" and "is semihosting enabled"
6561 * checks have been done at translate time.
6563 qemu_log_mask(CPU_LOG_INT,
6564 "...handling as semihosting call 0x%" PRIx64 "\n",
6565 env->xregs[0]);
6566 env->xregs[0] = do_arm_semihosting(env);
6567 return true;
6569 return false;
6570 } else {
6571 uint32_t imm;
6573 /* Only intercept calls from privileged modes, to provide some
6574 * semblance of security.
6576 if (cs->exception_index != EXCP_SEMIHOST &&
6577 (!semihosting_enabled() ||
6578 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6579 return false;
6582 switch (cs->exception_index) {
6583 case EXCP_SEMIHOST:
6584 /* This is always a semihosting call; the "is this usermode"
6585 * and "is semihosting enabled" checks have been done at
6586 * translate time.
6588 break;
6589 case EXCP_SWI:
6590 /* Check for semihosting interrupt. */
6591 if (env->thumb) {
6592 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6593 & 0xff;
6594 if (imm == 0xab) {
6595 break;
6597 } else {
6598 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6599 & 0xffffff;
6600 if (imm == 0x123456) {
6601 break;
6604 return false;
6605 case EXCP_BKPT:
6606 /* See if this is a semihosting syscall. */
6607 if (env->thumb) {
6608 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6609 & 0xff;
6610 if (imm == 0xab) {
6611 env->regs[15] += 2;
6612 break;
6615 return false;
6616 default:
6617 return false;
6620 qemu_log_mask(CPU_LOG_INT,
6621 "...handling as semihosting call 0x%x\n",
6622 env->regs[0]);
6623 env->regs[0] = do_arm_semihosting(env);
6624 return true;
6628 /* Handle a CPU exception for A and R profile CPUs.
6629 * Do any appropriate logging, handle PSCI calls, and then hand off
6630 * to the AArch64-entry or AArch32-entry function depending on the
6631 * target exception level's register width.
6633 void arm_cpu_do_interrupt(CPUState *cs)
6635 ARMCPU *cpu = ARM_CPU(cs);
6636 CPUARMState *env = &cpu->env;
6637 unsigned int new_el = env->exception.target_el;
6639 assert(!IS_M(env));
6641 arm_log_exception(cs->exception_index);
6642 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6643 new_el);
6644 if (qemu_loglevel_mask(CPU_LOG_INT)
6645 && !excp_is_internal(cs->exception_index)) {
6646 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6647 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6648 env->exception.syndrome);
6651 if (arm_is_psci_call(cpu, cs->exception_index)) {
6652 arm_handle_psci_call(cpu);
6653 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6654 return;
6657 /* Semihosting semantics depend on the register width of the
6658 * code that caused the exception, not the target exception level,
6659 * so must be handled here.
6661 if (check_for_semihosting(cs)) {
6662 return;
6665 assert(!excp_is_internal(cs->exception_index));
6666 if (arm_el_is_aa64(env, new_el)) {
6667 arm_cpu_do_interrupt_aarch64(cs);
6668 } else {
6669 arm_cpu_do_interrupt_aarch32(cs);
6672 arm_call_el_change_hook(cpu);
6674 if (!kvm_enabled()) {
6675 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6679 /* Return the exception level which controls this address translation regime */
6680 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6682 switch (mmu_idx) {
6683 case ARMMMUIdx_S2NS:
6684 case ARMMMUIdx_S1E2:
6685 return 2;
6686 case ARMMMUIdx_S1E3:
6687 return 3;
6688 case ARMMMUIdx_S1SE0:
6689 return arm_el_is_aa64(env, 3) ? 1 : 3;
6690 case ARMMMUIdx_S1SE1:
6691 case ARMMMUIdx_S1NSE0:
6692 case ARMMMUIdx_S1NSE1:
6693 return 1;
6694 default:
6695 g_assert_not_reached();
6699 /* Return true if this address translation regime is secure */
6700 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6702 switch (mmu_idx) {
6703 case ARMMMUIdx_S12NSE0:
6704 case ARMMMUIdx_S12NSE1:
6705 case ARMMMUIdx_S1NSE0:
6706 case ARMMMUIdx_S1NSE1:
6707 case ARMMMUIdx_S1E2:
6708 case ARMMMUIdx_S2NS:
6709 return false;
6710 case ARMMMUIdx_S1E3:
6711 case ARMMMUIdx_S1SE0:
6712 case ARMMMUIdx_S1SE1:
6713 return true;
6714 default:
6715 g_assert_not_reached();
6719 /* Return the SCTLR value which controls this address translation regime */
6720 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6722 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6725 /* Return true if the specified stage of address translation is disabled */
6726 static inline bool regime_translation_disabled(CPUARMState *env,
6727 ARMMMUIdx mmu_idx)
6729 if (mmu_idx == ARMMMUIdx_S2NS) {
6730 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6732 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6735 static inline bool regime_translation_big_endian(CPUARMState *env,
6736 ARMMMUIdx mmu_idx)
6738 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6741 /* Return the TCR controlling this translation regime */
6742 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6744 if (mmu_idx == ARMMMUIdx_S2NS) {
6745 return &env->cp15.vtcr_el2;
6747 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6750 /* Returns TBI0 value for current regime el */
6751 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
6753 TCR *tcr;
6754 uint32_t el;
6756 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6757 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6759 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6760 mmu_idx += ARMMMUIdx_S1NSE0;
6763 tcr = regime_tcr(env, mmu_idx);
6764 el = regime_el(env, mmu_idx);
6766 if (el > 1) {
6767 return extract64(tcr->raw_tcr, 20, 1);
6768 } else {
6769 return extract64(tcr->raw_tcr, 37, 1);
6773 /* Returns TBI1 value for current regime el */
6774 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
6776 TCR *tcr;
6777 uint32_t el;
6779 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6780 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6782 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6783 mmu_idx += ARMMMUIdx_S1NSE0;
6786 tcr = regime_tcr(env, mmu_idx);
6787 el = regime_el(env, mmu_idx);
6789 if (el > 1) {
6790 return 0;
6791 } else {
6792 return extract64(tcr->raw_tcr, 38, 1);
6796 /* Return the TTBR associated with this translation regime */
6797 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6798 int ttbrn)
6800 if (mmu_idx == ARMMMUIdx_S2NS) {
6801 return env->cp15.vttbr_el2;
6803 if (ttbrn == 0) {
6804 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6805 } else {
6806 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6810 /* Return true if the translation regime is using LPAE format page tables */
6811 static inline bool regime_using_lpae_format(CPUARMState *env,
6812 ARMMMUIdx mmu_idx)
6814 int el = regime_el(env, mmu_idx);
6815 if (el == 2 || arm_el_is_aa64(env, el)) {
6816 return true;
6818 if (arm_feature(env, ARM_FEATURE_LPAE)
6819 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6820 return true;
6822 return false;
6825 /* Returns true if the stage 1 translation regime is using LPAE format page
6826 * tables. Used when raising alignment exceptions, whose FSR changes depending
6827 * on whether the long or short descriptor format is in use. */
6828 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6830 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6831 mmu_idx += ARMMMUIdx_S1NSE0;
6834 return regime_using_lpae_format(env, mmu_idx);
6837 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6839 switch (mmu_idx) {
6840 case ARMMMUIdx_S1SE0:
6841 case ARMMMUIdx_S1NSE0:
6842 return true;
6843 default:
6844 return false;
6845 case ARMMMUIdx_S12NSE0:
6846 case ARMMMUIdx_S12NSE1:
6847 g_assert_not_reached();
6851 /* Translate section/page access permissions to page
6852 * R/W protection flags
6854 * @env: CPUARMState
6855 * @mmu_idx: MMU index indicating required translation regime
6856 * @ap: The 3-bit access permissions (AP[2:0])
6857 * @domain_prot: The 2-bit domain access permissions
6859 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6860 int ap, int domain_prot)
6862 bool is_user = regime_is_user(env, mmu_idx);
6864 if (domain_prot == 3) {
6865 return PAGE_READ | PAGE_WRITE;
6868 switch (ap) {
6869 case 0:
6870 if (arm_feature(env, ARM_FEATURE_V7)) {
6871 return 0;
6873 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6874 case SCTLR_S:
6875 return is_user ? 0 : PAGE_READ;
6876 case SCTLR_R:
6877 return PAGE_READ;
6878 default:
6879 return 0;
6881 case 1:
6882 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6883 case 2:
6884 if (is_user) {
6885 return PAGE_READ;
6886 } else {
6887 return PAGE_READ | PAGE_WRITE;
6889 case 3:
6890 return PAGE_READ | PAGE_WRITE;
6891 case 4: /* Reserved. */
6892 return 0;
6893 case 5:
6894 return is_user ? 0 : PAGE_READ;
6895 case 6:
6896 return PAGE_READ;
6897 case 7:
6898 if (!arm_feature(env, ARM_FEATURE_V6K)) {
6899 return 0;
6901 return PAGE_READ;
6902 default:
6903 g_assert_not_reached();
6907 /* Translate section/page access permissions to page
6908 * R/W protection flags.
6910 * @ap: The 2-bit simple AP (AP[2:1])
6911 * @is_user: TRUE if accessing from PL0
6913 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6915 switch (ap) {
6916 case 0:
6917 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6918 case 1:
6919 return PAGE_READ | PAGE_WRITE;
6920 case 2:
6921 return is_user ? 0 : PAGE_READ;
6922 case 3:
6923 return PAGE_READ;
6924 default:
6925 g_assert_not_reached();
6929 static inline int
6930 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6932 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6935 /* Translate S2 section/page access permissions to protection flags
6937 * @env: CPUARMState
6938 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6939 * @xn: XN (execute-never) bit
6941 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6943 int prot = 0;
6945 if (s2ap & 1) {
6946 prot |= PAGE_READ;
6948 if (s2ap & 2) {
6949 prot |= PAGE_WRITE;
6951 if (!xn) {
6952 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
6953 prot |= PAGE_EXEC;
6956 return prot;
6959 /* Translate section/page access permissions to protection flags
6961 * @env: CPUARMState
6962 * @mmu_idx: MMU index indicating required translation regime
6963 * @is_aa64: TRUE if AArch64
6964 * @ap: The 2-bit simple AP (AP[2:1])
6965 * @ns: NS (non-secure) bit
6966 * @xn: XN (execute-never) bit
6967 * @pxn: PXN (privileged execute-never) bit
6969 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6970 int ap, int ns, int xn, int pxn)
6972 bool is_user = regime_is_user(env, mmu_idx);
6973 int prot_rw, user_rw;
6974 bool have_wxn;
6975 int wxn = 0;
6977 assert(mmu_idx != ARMMMUIdx_S2NS);
6979 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6980 if (is_user) {
6981 prot_rw = user_rw;
6982 } else {
6983 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6986 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6987 return prot_rw;
6990 /* TODO have_wxn should be replaced with
6991 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6992 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6993 * compatible processors have EL2, which is required for [U]WXN.
6995 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6997 if (have_wxn) {
6998 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7001 if (is_aa64) {
7002 switch (regime_el(env, mmu_idx)) {
7003 case 1:
7004 if (!is_user) {
7005 xn = pxn || (user_rw & PAGE_WRITE);
7007 break;
7008 case 2:
7009 case 3:
7010 break;
7012 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7013 switch (regime_el(env, mmu_idx)) {
7014 case 1:
7015 case 3:
7016 if (is_user) {
7017 xn = xn || !(user_rw & PAGE_READ);
7018 } else {
7019 int uwxn = 0;
7020 if (have_wxn) {
7021 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7023 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7024 (uwxn && (user_rw & PAGE_WRITE));
7026 break;
7027 case 2:
7028 break;
7030 } else {
7031 xn = wxn = 0;
7034 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7035 return prot_rw;
7037 return prot_rw | PAGE_EXEC;
7040 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7041 uint32_t *table, uint32_t address)
7043 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7044 TCR *tcr = regime_tcr(env, mmu_idx);
7046 if (address & tcr->mask) {
7047 if (tcr->raw_tcr & TTBCR_PD1) {
7048 /* Translation table walk disabled for TTBR1 */
7049 return false;
7051 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7052 } else {
7053 if (tcr->raw_tcr & TTBCR_PD0) {
7054 /* Translation table walk disabled for TTBR0 */
7055 return false;
7057 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7059 *table |= (address >> 18) & 0x3ffc;
7060 return true;
7063 /* Translate a S1 pagetable walk through S2 if needed. */
7064 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7065 hwaddr addr, MemTxAttrs txattrs,
7066 uint32_t *fsr,
7067 ARMMMUFaultInfo *fi)
7069 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7070 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7071 target_ulong s2size;
7072 hwaddr s2pa;
7073 int s2prot;
7074 int ret;
7076 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7077 &txattrs, &s2prot, &s2size, fsr, fi);
7078 if (ret) {
7079 fi->s2addr = addr;
7080 fi->stage2 = true;
7081 fi->s1ptw = true;
7082 return ~0;
7084 addr = s2pa;
7086 return addr;
7089 /* All loads done in the course of a page table walk go through here.
7090 * TODO: rather than ignoring errors from physical memory reads (which
7091 * are external aborts in ARM terminology) we should propagate this
7092 * error out so that we can turn it into a Data Abort if this walk
7093 * was being done for a CPU load/store or an address translation instruction
7094 * (but not if it was for a debug access).
7096 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7097 ARMMMUIdx mmu_idx, uint32_t *fsr,
7098 ARMMMUFaultInfo *fi)
7100 ARMCPU *cpu = ARM_CPU(cs);
7101 CPUARMState *env = &cpu->env;
7102 MemTxAttrs attrs = {};
7103 AddressSpace *as;
7105 attrs.secure = is_secure;
7106 as = arm_addressspace(cs, attrs);
7107 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7108 if (fi->s1ptw) {
7109 return 0;
7111 if (regime_translation_big_endian(env, mmu_idx)) {
7112 return address_space_ldl_be(as, addr, attrs, NULL);
7113 } else {
7114 return address_space_ldl_le(as, addr, attrs, NULL);
7118 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7119 ARMMMUIdx mmu_idx, uint32_t *fsr,
7120 ARMMMUFaultInfo *fi)
7122 ARMCPU *cpu = ARM_CPU(cs);
7123 CPUARMState *env = &cpu->env;
7124 MemTxAttrs attrs = {};
7125 AddressSpace *as;
7127 attrs.secure = is_secure;
7128 as = arm_addressspace(cs, attrs);
7129 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7130 if (fi->s1ptw) {
7131 return 0;
7133 if (regime_translation_big_endian(env, mmu_idx)) {
7134 return address_space_ldq_be(as, addr, attrs, NULL);
7135 } else {
7136 return address_space_ldq_le(as, addr, attrs, NULL);
7140 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7141 int access_type, ARMMMUIdx mmu_idx,
7142 hwaddr *phys_ptr, int *prot,
7143 target_ulong *page_size, uint32_t *fsr,
7144 ARMMMUFaultInfo *fi)
7146 CPUState *cs = CPU(arm_env_get_cpu(env));
7147 int code;
7148 uint32_t table;
7149 uint32_t desc;
7150 int type;
7151 int ap;
7152 int domain = 0;
7153 int domain_prot;
7154 hwaddr phys_addr;
7155 uint32_t dacr;
7157 /* Pagetable walk. */
7158 /* Lookup l1 descriptor. */
7159 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7160 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7161 code = 5;
7162 goto do_fault;
7164 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7165 mmu_idx, fsr, fi);
7166 type = (desc & 3);
7167 domain = (desc >> 5) & 0x0f;
7168 if (regime_el(env, mmu_idx) == 1) {
7169 dacr = env->cp15.dacr_ns;
7170 } else {
7171 dacr = env->cp15.dacr_s;
7173 domain_prot = (dacr >> (domain * 2)) & 3;
7174 if (type == 0) {
7175 /* Section translation fault. */
7176 code = 5;
7177 goto do_fault;
7179 if (domain_prot == 0 || domain_prot == 2) {
7180 if (type == 2)
7181 code = 9; /* Section domain fault. */
7182 else
7183 code = 11; /* Page domain fault. */
7184 goto do_fault;
7186 if (type == 2) {
7187 /* 1Mb section. */
7188 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7189 ap = (desc >> 10) & 3;
7190 code = 13;
7191 *page_size = 1024 * 1024;
7192 } else {
7193 /* Lookup l2 entry. */
7194 if (type == 1) {
7195 /* Coarse pagetable. */
7196 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7197 } else {
7198 /* Fine pagetable. */
7199 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7201 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7202 mmu_idx, fsr, fi);
7203 switch (desc & 3) {
7204 case 0: /* Page translation fault. */
7205 code = 7;
7206 goto do_fault;
7207 case 1: /* 64k page. */
7208 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7209 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7210 *page_size = 0x10000;
7211 break;
7212 case 2: /* 4k page. */
7213 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7214 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7215 *page_size = 0x1000;
7216 break;
7217 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7218 if (type == 1) {
7219 /* ARMv6/XScale extended small page format */
7220 if (arm_feature(env, ARM_FEATURE_XSCALE)
7221 || arm_feature(env, ARM_FEATURE_V6)) {
7222 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7223 *page_size = 0x1000;
7224 } else {
7225 /* UNPREDICTABLE in ARMv5; we choose to take a
7226 * page translation fault.
7228 code = 7;
7229 goto do_fault;
7231 } else {
7232 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7233 *page_size = 0x400;
7235 ap = (desc >> 4) & 3;
7236 break;
7237 default:
7238 /* Never happens, but compiler isn't smart enough to tell. */
7239 abort();
7241 code = 15;
7243 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7244 *prot |= *prot ? PAGE_EXEC : 0;
7245 if (!(*prot & (1 << access_type))) {
7246 /* Access permission fault. */
7247 goto do_fault;
7249 *phys_ptr = phys_addr;
7250 return false;
7251 do_fault:
7252 *fsr = code | (domain << 4);
7253 return true;
7256 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7257 int access_type, ARMMMUIdx mmu_idx,
7258 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7259 target_ulong *page_size, uint32_t *fsr,
7260 ARMMMUFaultInfo *fi)
7262 CPUState *cs = CPU(arm_env_get_cpu(env));
7263 int code;
7264 uint32_t table;
7265 uint32_t desc;
7266 uint32_t xn;
7267 uint32_t pxn = 0;
7268 int type;
7269 int ap;
7270 int domain = 0;
7271 int domain_prot;
7272 hwaddr phys_addr;
7273 uint32_t dacr;
7274 bool ns;
7276 /* Pagetable walk. */
7277 /* Lookup l1 descriptor. */
7278 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7279 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7280 code = 5;
7281 goto do_fault;
7283 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7284 mmu_idx, fsr, fi);
7285 type = (desc & 3);
7286 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7287 /* Section translation fault, or attempt to use the encoding
7288 * which is Reserved on implementations without PXN.
7290 code = 5;
7291 goto do_fault;
7293 if ((type == 1) || !(desc & (1 << 18))) {
7294 /* Page or Section. */
7295 domain = (desc >> 5) & 0x0f;
7297 if (regime_el(env, mmu_idx) == 1) {
7298 dacr = env->cp15.dacr_ns;
7299 } else {
7300 dacr = env->cp15.dacr_s;
7302 domain_prot = (dacr >> (domain * 2)) & 3;
7303 if (domain_prot == 0 || domain_prot == 2) {
7304 if (type != 1) {
7305 code = 9; /* Section domain fault. */
7306 } else {
7307 code = 11; /* Page domain fault. */
7309 goto do_fault;
7311 if (type != 1) {
7312 if (desc & (1 << 18)) {
7313 /* Supersection. */
7314 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7315 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7316 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7317 *page_size = 0x1000000;
7318 } else {
7319 /* Section. */
7320 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7321 *page_size = 0x100000;
7323 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7324 xn = desc & (1 << 4);
7325 pxn = desc & 1;
7326 code = 13;
7327 ns = extract32(desc, 19, 1);
7328 } else {
7329 if (arm_feature(env, ARM_FEATURE_PXN)) {
7330 pxn = (desc >> 2) & 1;
7332 ns = extract32(desc, 3, 1);
7333 /* Lookup l2 entry. */
7334 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7335 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7336 mmu_idx, fsr, fi);
7337 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7338 switch (desc & 3) {
7339 case 0: /* Page translation fault. */
7340 code = 7;
7341 goto do_fault;
7342 case 1: /* 64k page. */
7343 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7344 xn = desc & (1 << 15);
7345 *page_size = 0x10000;
7346 break;
7347 case 2: case 3: /* 4k page. */
7348 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7349 xn = desc & 1;
7350 *page_size = 0x1000;
7351 break;
7352 default:
7353 /* Never happens, but compiler isn't smart enough to tell. */
7354 abort();
7356 code = 15;
7358 if (domain_prot == 3) {
7359 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7360 } else {
7361 if (pxn && !regime_is_user(env, mmu_idx)) {
7362 xn = 1;
7364 if (xn && access_type == 2)
7365 goto do_fault;
7367 if (arm_feature(env, ARM_FEATURE_V6K) &&
7368 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7369 /* The simplified model uses AP[0] as an access control bit. */
7370 if ((ap & 1) == 0) {
7371 /* Access flag fault. */
7372 code = (code == 15) ? 6 : 3;
7373 goto do_fault;
7375 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7376 } else {
7377 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7379 if (*prot && !xn) {
7380 *prot |= PAGE_EXEC;
7382 if (!(*prot & (1 << access_type))) {
7383 /* Access permission fault. */
7384 goto do_fault;
7387 if (ns) {
7388 /* The NS bit will (as required by the architecture) have no effect if
7389 * the CPU doesn't support TZ or this is a non-secure translation
7390 * regime, because the attribute will already be non-secure.
7392 attrs->secure = false;
7394 *phys_ptr = phys_addr;
7395 return false;
7396 do_fault:
7397 *fsr = code | (domain << 4);
7398 return true;
7401 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7402 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7404 typedef enum {
7405 translation_fault = 1,
7406 access_fault = 2,
7407 permission_fault = 3,
7408 } MMUFaultType;
7411 * check_s2_mmu_setup
7412 * @cpu: ARMCPU
7413 * @is_aa64: True if the translation regime is in AArch64 state
7414 * @startlevel: Suggested starting level
7415 * @inputsize: Bitsize of IPAs
7416 * @stride: Page-table stride (See the ARM ARM)
7418 * Returns true if the suggested S2 translation parameters are OK and
7419 * false otherwise.
7421 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7422 int inputsize, int stride)
7424 const int grainsize = stride + 3;
7425 int startsizecheck;
7427 /* Negative levels are never allowed. */
7428 if (level < 0) {
7429 return false;
7432 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7433 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7434 return false;
7437 if (is_aa64) {
7438 CPUARMState *env = &cpu->env;
7439 unsigned int pamax = arm_pamax(cpu);
7441 switch (stride) {
7442 case 13: /* 64KB Pages. */
7443 if (level == 0 || (level == 1 && pamax <= 42)) {
7444 return false;
7446 break;
7447 case 11: /* 16KB Pages. */
7448 if (level == 0 || (level == 1 && pamax <= 40)) {
7449 return false;
7451 break;
7452 case 9: /* 4KB Pages. */
7453 if (level == 0 && pamax <= 42) {
7454 return false;
7456 break;
7457 default:
7458 g_assert_not_reached();
7461 /* Inputsize checks. */
7462 if (inputsize > pamax &&
7463 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7464 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7465 return false;
7467 } else {
7468 /* AArch32 only supports 4KB pages. Assert on that. */
7469 assert(stride == 9);
7471 if (level == 0) {
7472 return false;
7475 return true;
7478 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7479 int access_type, ARMMMUIdx mmu_idx,
7480 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7481 target_ulong *page_size_ptr, uint32_t *fsr,
7482 ARMMMUFaultInfo *fi)
7484 ARMCPU *cpu = arm_env_get_cpu(env);
7485 CPUState *cs = CPU(cpu);
7486 /* Read an LPAE long-descriptor translation table. */
7487 MMUFaultType fault_type = translation_fault;
7488 uint32_t level;
7489 uint32_t epd = 0;
7490 int32_t t0sz, t1sz;
7491 uint32_t tg;
7492 uint64_t ttbr;
7493 int ttbr_select;
7494 hwaddr descaddr, indexmask, indexmask_grainsize;
7495 uint32_t tableattrs;
7496 target_ulong page_size;
7497 uint32_t attrs;
7498 int32_t stride = 9;
7499 int32_t addrsize;
7500 int inputsize;
7501 int32_t tbi = 0;
7502 TCR *tcr = regime_tcr(env, mmu_idx);
7503 int ap, ns, xn, pxn;
7504 uint32_t el = regime_el(env, mmu_idx);
7505 bool ttbr1_valid = true;
7506 uint64_t descaddrmask;
7507 bool aarch64 = arm_el_is_aa64(env, el);
7509 /* TODO:
7510 * This code does not handle the different format TCR for VTCR_EL2.
7511 * This code also does not support shareability levels.
7512 * Attribute and permission bit handling should also be checked when adding
7513 * support for those page table walks.
7515 if (aarch64) {
7516 level = 0;
7517 addrsize = 64;
7518 if (el > 1) {
7519 if (mmu_idx != ARMMMUIdx_S2NS) {
7520 tbi = extract64(tcr->raw_tcr, 20, 1);
7522 } else {
7523 if (extract64(address, 55, 1)) {
7524 tbi = extract64(tcr->raw_tcr, 38, 1);
7525 } else {
7526 tbi = extract64(tcr->raw_tcr, 37, 1);
7529 tbi *= 8;
7531 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7532 * invalid.
7534 if (el > 1) {
7535 ttbr1_valid = false;
7537 } else {
7538 level = 1;
7539 addrsize = 32;
7540 /* There is no TTBR1 for EL2 */
7541 if (el == 2) {
7542 ttbr1_valid = false;
7546 /* Determine whether this address is in the region controlled by
7547 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7548 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7549 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7551 if (aarch64) {
7552 /* AArch64 translation. */
7553 t0sz = extract32(tcr->raw_tcr, 0, 6);
7554 t0sz = MIN(t0sz, 39);
7555 t0sz = MAX(t0sz, 16);
7556 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7557 /* AArch32 stage 1 translation. */
7558 t0sz = extract32(tcr->raw_tcr, 0, 3);
7559 } else {
7560 /* AArch32 stage 2 translation. */
7561 bool sext = extract32(tcr->raw_tcr, 4, 1);
7562 bool sign = extract32(tcr->raw_tcr, 3, 1);
7563 /* Address size is 40-bit for a stage 2 translation,
7564 * and t0sz can be negative (from -8 to 7),
7565 * so we need to adjust it to use the TTBR selecting logic below.
7567 addrsize = 40;
7568 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7570 /* If the sign-extend bit is not the same as t0sz[3], the result
7571 * is unpredictable. Flag this as a guest error. */
7572 if (sign != sext) {
7573 qemu_log_mask(LOG_GUEST_ERROR,
7574 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7577 t1sz = extract32(tcr->raw_tcr, 16, 6);
7578 if (aarch64) {
7579 t1sz = MIN(t1sz, 39);
7580 t1sz = MAX(t1sz, 16);
7582 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7583 /* there is a ttbr0 region and we are in it (high bits all zero) */
7584 ttbr_select = 0;
7585 } else if (ttbr1_valid && t1sz &&
7586 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7587 /* there is a ttbr1 region and we are in it (high bits all one) */
7588 ttbr_select = 1;
7589 } else if (!t0sz) {
7590 /* ttbr0 region is "everything not in the ttbr1 region" */
7591 ttbr_select = 0;
7592 } else if (!t1sz && ttbr1_valid) {
7593 /* ttbr1 region is "everything not in the ttbr0 region" */
7594 ttbr_select = 1;
7595 } else {
7596 /* in the gap between the two regions, this is a Translation fault */
7597 fault_type = translation_fault;
7598 goto do_fault;
7601 /* Note that QEMU ignores shareability and cacheability attributes,
7602 * so we don't need to do anything with the SH, ORGN, IRGN fields
7603 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7604 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7605 * implement any ASID-like capability so we can ignore it (instead
7606 * we will always flush the TLB any time the ASID is changed).
7608 if (ttbr_select == 0) {
7609 ttbr = regime_ttbr(env, mmu_idx, 0);
7610 if (el < 2) {
7611 epd = extract32(tcr->raw_tcr, 7, 1);
7613 inputsize = addrsize - t0sz;
7615 tg = extract32(tcr->raw_tcr, 14, 2);
7616 if (tg == 1) { /* 64KB pages */
7617 stride = 13;
7619 if (tg == 2) { /* 16KB pages */
7620 stride = 11;
7622 } else {
7623 /* We should only be here if TTBR1 is valid */
7624 assert(ttbr1_valid);
7626 ttbr = regime_ttbr(env, mmu_idx, 1);
7627 epd = extract32(tcr->raw_tcr, 23, 1);
7628 inputsize = addrsize - t1sz;
7630 tg = extract32(tcr->raw_tcr, 30, 2);
7631 if (tg == 3) { /* 64KB pages */
7632 stride = 13;
7634 if (tg == 1) { /* 16KB pages */
7635 stride = 11;
7639 /* Here we should have set up all the parameters for the translation:
7640 * inputsize, ttbr, epd, stride, tbi
7643 if (epd) {
7644 /* Translation table walk disabled => Translation fault on TLB miss
7645 * Note: This is always 0 on 64-bit EL2 and EL3.
7647 goto do_fault;
7650 if (mmu_idx != ARMMMUIdx_S2NS) {
7651 /* The starting level depends on the virtual address size (which can
7652 * be up to 48 bits) and the translation granule size. It indicates
7653 * the number of strides (stride bits at a time) needed to
7654 * consume the bits of the input address. In the pseudocode this is:
7655 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7656 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7657 * our 'stride + 3' and 'stride' is our 'stride'.
7658 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7659 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7660 * = 4 - (inputsize - 4) / stride;
7662 level = 4 - (inputsize - 4) / stride;
7663 } else {
7664 /* For stage 2 translations the starting level is specified by the
7665 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7667 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7668 uint32_t startlevel;
7669 bool ok;
7671 if (!aarch64 || stride == 9) {
7672 /* AArch32 or 4KB pages */
7673 startlevel = 2 - sl0;
7674 } else {
7675 /* 16KB or 64KB pages */
7676 startlevel = 3 - sl0;
7679 /* Check that the starting level is valid. */
7680 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7681 inputsize, stride);
7682 if (!ok) {
7683 fault_type = translation_fault;
7684 goto do_fault;
7686 level = startlevel;
7689 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7690 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7692 /* Now we can extract the actual base address from the TTBR */
7693 descaddr = extract64(ttbr, 0, 48);
7694 descaddr &= ~indexmask;
7696 /* The address field in the descriptor goes up to bit 39 for ARMv7
7697 * but up to bit 47 for ARMv8, but we use the descaddrmask
7698 * up to bit 39 for AArch32, because we don't need other bits in that case
7699 * to construct next descriptor address (anyway they should be all zeroes).
7701 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7702 ~indexmask_grainsize;
7704 /* Secure accesses start with the page table in secure memory and
7705 * can be downgraded to non-secure at any step. Non-secure accesses
7706 * remain non-secure. We implement this by just ORing in the NSTable/NS
7707 * bits at each step.
7709 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7710 for (;;) {
7711 uint64_t descriptor;
7712 bool nstable;
7714 descaddr |= (address >> (stride * (4 - level))) & indexmask;
7715 descaddr &= ~7ULL;
7716 nstable = extract32(tableattrs, 4, 1);
7717 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7718 if (fi->s1ptw) {
7719 goto do_fault;
7722 if (!(descriptor & 1) ||
7723 (!(descriptor & 2) && (level == 3))) {
7724 /* Invalid, or the Reserved level 3 encoding */
7725 goto do_fault;
7727 descaddr = descriptor & descaddrmask;
7729 if ((descriptor & 2) && (level < 3)) {
7730 /* Table entry. The top five bits are attributes which may
7731 * propagate down through lower levels of the table (and
7732 * which are all arranged so that 0 means "no effect", so
7733 * we can gather them up by ORing in the bits at each level).
7735 tableattrs |= extract64(descriptor, 59, 5);
7736 level++;
7737 indexmask = indexmask_grainsize;
7738 continue;
7740 /* Block entry at level 1 or 2, or page entry at level 3.
7741 * These are basically the same thing, although the number
7742 * of bits we pull in from the vaddr varies.
7744 page_size = (1ULL << ((stride * (4 - level)) + 3));
7745 descaddr |= (address & (page_size - 1));
7746 /* Extract attributes from the descriptor */
7747 attrs = extract64(descriptor, 2, 10)
7748 | (extract64(descriptor, 52, 12) << 10);
7750 if (mmu_idx == ARMMMUIdx_S2NS) {
7751 /* Stage 2 table descriptors do not include any attribute fields */
7752 break;
7754 /* Merge in attributes from table descriptors */
7755 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7756 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7757 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7758 * means "force PL1 access only", which means forcing AP[1] to 0.
7760 if (extract32(tableattrs, 2, 1)) {
7761 attrs &= ~(1 << 4);
7763 attrs |= nstable << 3; /* NS */
7764 break;
7766 /* Here descaddr is the final physical address, and attributes
7767 * are all in attrs.
7769 fault_type = access_fault;
7770 if ((attrs & (1 << 8)) == 0) {
7771 /* Access flag */
7772 goto do_fault;
7775 ap = extract32(attrs, 4, 2);
7776 xn = extract32(attrs, 12, 1);
7778 if (mmu_idx == ARMMMUIdx_S2NS) {
7779 ns = true;
7780 *prot = get_S2prot(env, ap, xn);
7781 } else {
7782 ns = extract32(attrs, 3, 1);
7783 pxn = extract32(attrs, 11, 1);
7784 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
7787 fault_type = permission_fault;
7788 if (!(*prot & (1 << access_type))) {
7789 goto do_fault;
7792 if (ns) {
7793 /* The NS bit will (as required by the architecture) have no effect if
7794 * the CPU doesn't support TZ or this is a non-secure translation
7795 * regime, because the attribute will already be non-secure.
7797 txattrs->secure = false;
7799 *phys_ptr = descaddr;
7800 *page_size_ptr = page_size;
7801 return false;
7803 do_fault:
7804 /* Long-descriptor format IFSR/DFSR value */
7805 *fsr = (1 << 9) | (fault_type << 2) | level;
7806 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7807 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7808 return true;
7811 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7812 ARMMMUIdx mmu_idx,
7813 int32_t address, int *prot)
7815 *prot = PAGE_READ | PAGE_WRITE;
7816 switch (address) {
7817 case 0xF0000000 ... 0xFFFFFFFF:
7818 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7819 *prot |= PAGE_EXEC;
7821 break;
7822 case 0x00000000 ... 0x7FFFFFFF:
7823 *prot |= PAGE_EXEC;
7824 break;
7829 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7830 int access_type, ARMMMUIdx mmu_idx,
7831 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7833 ARMCPU *cpu = arm_env_get_cpu(env);
7834 int n;
7835 bool is_user = regime_is_user(env, mmu_idx);
7837 *phys_ptr = address;
7838 *prot = 0;
7840 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7841 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7842 } else { /* MPU enabled */
7843 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7844 /* region search */
7845 uint32_t base = env->pmsav7.drbar[n];
7846 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7847 uint32_t rmask;
7848 bool srdis = false;
7850 if (!(env->pmsav7.drsr[n] & 0x1)) {
7851 continue;
7854 if (!rsize) {
7855 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7856 continue;
7858 rsize++;
7859 rmask = (1ull << rsize) - 1;
7861 if (base & rmask) {
7862 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7863 "to DRSR region size, mask = %" PRIx32,
7864 base, rmask);
7865 continue;
7868 if (address < base || address > base + rmask) {
7869 continue;
7872 /* Region matched */
7874 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7875 int i, snd;
7876 uint32_t srdis_mask;
7878 rsize -= 3; /* sub region size (power of 2) */
7879 snd = ((address - base) >> rsize) & 0x7;
7880 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7882 srdis_mask = srdis ? 0x3 : 0x0;
7883 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7884 /* This will check in groups of 2, 4 and then 8, whether
7885 * the subregion bits are consistent. rsize is incremented
7886 * back up to give the region size, considering consistent
7887 * adjacent subregions as one region. Stop testing if rsize
7888 * is already big enough for an entire QEMU page.
7890 int snd_rounded = snd & ~(i - 1);
7891 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7892 snd_rounded + 8, i);
7893 if (srdis_mask ^ srdis_multi) {
7894 break;
7896 srdis_mask = (srdis_mask << i) | srdis_mask;
7897 rsize++;
7900 if (rsize < TARGET_PAGE_BITS) {
7901 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7902 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7903 rsize, TARGET_PAGE_BITS);
7904 continue;
7906 if (srdis) {
7907 continue;
7909 break;
7912 if (n == -1) { /* no hits */
7913 if (cpu->pmsav7_dregion &&
7914 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7915 /* background fault */
7916 *fsr = 0;
7917 return true;
7919 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7920 } else { /* a MPU hit! */
7921 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7923 if (is_user) { /* User mode AP bit decoding */
7924 switch (ap) {
7925 case 0:
7926 case 1:
7927 case 5:
7928 break; /* no access */
7929 case 3:
7930 *prot |= PAGE_WRITE;
7931 /* fall through */
7932 case 2:
7933 case 6:
7934 *prot |= PAGE_READ | PAGE_EXEC;
7935 break;
7936 default:
7937 qemu_log_mask(LOG_GUEST_ERROR,
7938 "Bad value for AP bits in DRACR %"
7939 PRIx32 "\n", ap);
7941 } else { /* Priv. mode AP bits decoding */
7942 switch (ap) {
7943 case 0:
7944 break; /* no access */
7945 case 1:
7946 case 2:
7947 case 3:
7948 *prot |= PAGE_WRITE;
7949 /* fall through */
7950 case 5:
7951 case 6:
7952 *prot |= PAGE_READ | PAGE_EXEC;
7953 break;
7954 default:
7955 qemu_log_mask(LOG_GUEST_ERROR,
7956 "Bad value for AP bits in DRACR %"
7957 PRIx32 "\n", ap);
7961 /* execute never */
7962 if (env->pmsav7.dracr[n] & (1 << 12)) {
7963 *prot &= ~PAGE_EXEC;
7968 *fsr = 0x00d; /* Permission fault */
7969 return !(*prot & (1 << access_type));
7972 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7973 int access_type, ARMMMUIdx mmu_idx,
7974 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7976 int n;
7977 uint32_t mask;
7978 uint32_t base;
7979 bool is_user = regime_is_user(env, mmu_idx);
7981 *phys_ptr = address;
7982 for (n = 7; n >= 0; n--) {
7983 base = env->cp15.c6_region[n];
7984 if ((base & 1) == 0) {
7985 continue;
7987 mask = 1 << ((base >> 1) & 0x1f);
7988 /* Keep this shift separate from the above to avoid an
7989 (undefined) << 32. */
7990 mask = (mask << 1) - 1;
7991 if (((base ^ address) & ~mask) == 0) {
7992 break;
7995 if (n < 0) {
7996 *fsr = 2;
7997 return true;
8000 if (access_type == 2) {
8001 mask = env->cp15.pmsav5_insn_ap;
8002 } else {
8003 mask = env->cp15.pmsav5_data_ap;
8005 mask = (mask >> (n * 4)) & 0xf;
8006 switch (mask) {
8007 case 0:
8008 *fsr = 1;
8009 return true;
8010 case 1:
8011 if (is_user) {
8012 *fsr = 1;
8013 return true;
8015 *prot = PAGE_READ | PAGE_WRITE;
8016 break;
8017 case 2:
8018 *prot = PAGE_READ;
8019 if (!is_user) {
8020 *prot |= PAGE_WRITE;
8022 break;
8023 case 3:
8024 *prot = PAGE_READ | PAGE_WRITE;
8025 break;
8026 case 5:
8027 if (is_user) {
8028 *fsr = 1;
8029 return true;
8031 *prot = PAGE_READ;
8032 break;
8033 case 6:
8034 *prot = PAGE_READ;
8035 break;
8036 default:
8037 /* Bad permission. */
8038 *fsr = 1;
8039 return true;
8041 *prot |= PAGE_EXEC;
8042 return false;
8045 /* get_phys_addr - get the physical address for this virtual address
8047 * Find the physical address corresponding to the given virtual address,
8048 * by doing a translation table walk on MMU based systems or using the
8049 * MPU state on MPU based systems.
8051 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8052 * prot and page_size may not be filled in, and the populated fsr value provides
8053 * information on why the translation aborted, in the format of a
8054 * DFSR/IFSR fault register, with the following caveats:
8055 * * we honour the short vs long DFSR format differences.
8056 * * the WnR bit is never set (the caller must do this).
8057 * * for PSMAv5 based systems we don't bother to return a full FSR format
8058 * value.
8060 * @env: CPUARMState
8061 * @address: virtual address to get physical address for
8062 * @access_type: 0 for read, 1 for write, 2 for execute
8063 * @mmu_idx: MMU index indicating required translation regime
8064 * @phys_ptr: set to the physical address corresponding to the virtual address
8065 * @attrs: set to the memory transaction attributes to use
8066 * @prot: set to the permissions for the page containing phys_ptr
8067 * @page_size: set to the size of the page containing phys_ptr
8068 * @fsr: set to the DFSR/IFSR value on failure
8070 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8071 int access_type, ARMMMUIdx mmu_idx,
8072 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8073 target_ulong *page_size, uint32_t *fsr,
8074 ARMMMUFaultInfo *fi)
8076 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8077 /* Call ourselves recursively to do the stage 1 and then stage 2
8078 * translations.
8080 if (arm_feature(env, ARM_FEATURE_EL2)) {
8081 hwaddr ipa;
8082 int s2_prot;
8083 int ret;
8085 ret = get_phys_addr(env, address, access_type,
8086 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
8087 prot, page_size, fsr, fi);
8089 /* If S1 fails or S2 is disabled, return early. */
8090 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8091 *phys_ptr = ipa;
8092 return ret;
8095 /* S1 is done. Now do S2 translation. */
8096 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8097 phys_ptr, attrs, &s2_prot,
8098 page_size, fsr, fi);
8099 fi->s2addr = ipa;
8100 /* Combine the S1 and S2 perms. */
8101 *prot &= s2_prot;
8102 return ret;
8103 } else {
8105 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8107 mmu_idx += ARMMMUIdx_S1NSE0;
8111 /* The page table entries may downgrade secure to non-secure, but
8112 * cannot upgrade an non-secure translation regime's attributes
8113 * to secure.
8115 attrs->secure = regime_is_secure(env, mmu_idx);
8116 attrs->user = regime_is_user(env, mmu_idx);
8118 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8119 * In v7 and earlier it affects all stage 1 translations.
8121 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8122 && !arm_feature(env, ARM_FEATURE_V8)) {
8123 if (regime_el(env, mmu_idx) == 3) {
8124 address += env->cp15.fcseidr_s;
8125 } else {
8126 address += env->cp15.fcseidr_ns;
8130 /* pmsav7 has special handling for when MPU is disabled so call it before
8131 * the common MMU/MPU disabled check below.
8133 if (arm_feature(env, ARM_FEATURE_MPU) &&
8134 arm_feature(env, ARM_FEATURE_V7)) {
8135 *page_size = TARGET_PAGE_SIZE;
8136 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8137 phys_ptr, prot, fsr);
8140 if (regime_translation_disabled(env, mmu_idx)) {
8141 /* MMU/MPU disabled. */
8142 *phys_ptr = address;
8143 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8144 *page_size = TARGET_PAGE_SIZE;
8145 return 0;
8148 if (arm_feature(env, ARM_FEATURE_MPU)) {
8149 /* Pre-v7 MPU */
8150 *page_size = TARGET_PAGE_SIZE;
8151 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8152 phys_ptr, prot, fsr);
8155 if (regime_using_lpae_format(env, mmu_idx)) {
8156 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8157 attrs, prot, page_size, fsr, fi);
8158 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8159 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8160 attrs, prot, page_size, fsr, fi);
8161 } else {
8162 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8163 prot, page_size, fsr, fi);
8167 /* Walk the page table and (if the mapping exists) add the page
8168 * to the TLB. Return false on success, or true on failure. Populate
8169 * fsr with ARM DFSR/IFSR fault register format value on failure.
8171 bool arm_tlb_fill(CPUState *cs, vaddr address,
8172 int access_type, int mmu_idx, uint32_t *fsr,
8173 ARMMMUFaultInfo *fi)
8175 ARMCPU *cpu = ARM_CPU(cs);
8176 CPUARMState *env = &cpu->env;
8177 hwaddr phys_addr;
8178 target_ulong page_size;
8179 int prot;
8180 int ret;
8181 MemTxAttrs attrs = {};
8183 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8184 &attrs, &prot, &page_size, fsr, fi);
8185 if (!ret) {
8186 /* Map a single [sub]page. */
8187 phys_addr &= TARGET_PAGE_MASK;
8188 address &= TARGET_PAGE_MASK;
8189 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8190 prot, mmu_idx, page_size);
8191 return 0;
8194 return ret;
8197 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8198 MemTxAttrs *attrs)
8200 ARMCPU *cpu = ARM_CPU(cs);
8201 CPUARMState *env = &cpu->env;
8202 hwaddr phys_addr;
8203 target_ulong page_size;
8204 int prot;
8205 bool ret;
8206 uint32_t fsr;
8207 ARMMMUFaultInfo fi = {};
8209 *attrs = (MemTxAttrs) {};
8211 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8212 attrs, &prot, &page_size, &fsr, &fi);
8214 if (ret) {
8215 return -1;
8217 return phys_addr;
8220 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8222 ARMCPU *cpu = arm_env_get_cpu(env);
8224 switch (reg) {
8225 case 0: /* APSR */
8226 return xpsr_read(env) & 0xf8000000;
8227 case 1: /* IAPSR */
8228 return xpsr_read(env) & 0xf80001ff;
8229 case 2: /* EAPSR */
8230 return xpsr_read(env) & 0xff00fc00;
8231 case 3: /* xPSR */
8232 return xpsr_read(env) & 0xff00fdff;
8233 case 5: /* IPSR */
8234 return xpsr_read(env) & 0x000001ff;
8235 case 6: /* EPSR */
8236 return xpsr_read(env) & 0x0700fc00;
8237 case 7: /* IEPSR */
8238 return xpsr_read(env) & 0x0700edff;
8239 case 8: /* MSP */
8240 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
8241 case 9: /* PSP */
8242 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
8243 case 16: /* PRIMASK */
8244 return (env->daif & PSTATE_I) != 0;
8245 case 17: /* BASEPRI */
8246 case 18: /* BASEPRI_MAX */
8247 return env->v7m.basepri;
8248 case 19: /* FAULTMASK */
8249 return (env->daif & PSTATE_F) != 0;
8250 case 20: /* CONTROL */
8251 return env->v7m.control;
8252 default:
8253 /* ??? For debugging only. */
8254 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
8255 return 0;
8259 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
8261 ARMCPU *cpu = arm_env_get_cpu(env);
8263 switch (reg) {
8264 case 0: /* APSR */
8265 xpsr_write(env, val, 0xf8000000);
8266 break;
8267 case 1: /* IAPSR */
8268 xpsr_write(env, val, 0xf8000000);
8269 break;
8270 case 2: /* EAPSR */
8271 xpsr_write(env, val, 0xfe00fc00);
8272 break;
8273 case 3: /* xPSR */
8274 xpsr_write(env, val, 0xfe00fc00);
8275 break;
8276 case 5: /* IPSR */
8277 /* IPSR bits are readonly. */
8278 break;
8279 case 6: /* EPSR */
8280 xpsr_write(env, val, 0x0600fc00);
8281 break;
8282 case 7: /* IEPSR */
8283 xpsr_write(env, val, 0x0600fc00);
8284 break;
8285 case 8: /* MSP */
8286 if (env->v7m.current_sp)
8287 env->v7m.other_sp = val;
8288 else
8289 env->regs[13] = val;
8290 break;
8291 case 9: /* PSP */
8292 if (env->v7m.current_sp)
8293 env->regs[13] = val;
8294 else
8295 env->v7m.other_sp = val;
8296 break;
8297 case 16: /* PRIMASK */
8298 if (val & 1) {
8299 env->daif |= PSTATE_I;
8300 } else {
8301 env->daif &= ~PSTATE_I;
8303 break;
8304 case 17: /* BASEPRI */
8305 env->v7m.basepri = val & 0xff;
8306 break;
8307 case 18: /* BASEPRI_MAX */
8308 val &= 0xff;
8309 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8310 env->v7m.basepri = val;
8311 break;
8312 case 19: /* FAULTMASK */
8313 if (val & 1) {
8314 env->daif |= PSTATE_F;
8315 } else {
8316 env->daif &= ~PSTATE_F;
8318 break;
8319 case 20: /* CONTROL */
8320 env->v7m.control = val & 3;
8321 switch_v7m_sp(env, (val & 2) != 0);
8322 break;
8323 default:
8324 /* ??? For debugging only. */
8325 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
8326 return;
8330 #endif
8332 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8334 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8335 * Note that we do not implement the (architecturally mandated)
8336 * alignment fault for attempts to use this on Device memory
8337 * (which matches the usual QEMU behaviour of not implementing either
8338 * alignment faults or any memory attribute handling).
8341 ARMCPU *cpu = arm_env_get_cpu(env);
8342 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8343 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8345 #ifndef CONFIG_USER_ONLY
8347 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8348 * the block size so we might have to do more than one TLB lookup.
8349 * We know that in fact for any v8 CPU the page size is at least 4K
8350 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8351 * 1K as an artefact of legacy v5 subpage support being present in the
8352 * same QEMU executable.
8354 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8355 void *hostaddr[maxidx];
8356 int try, i;
8357 unsigned mmu_idx = cpu_mmu_index(env, false);
8358 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8360 for (try = 0; try < 2; try++) {
8362 for (i = 0; i < maxidx; i++) {
8363 hostaddr[i] = tlb_vaddr_to_host(env,
8364 vaddr + TARGET_PAGE_SIZE * i,
8365 1, mmu_idx);
8366 if (!hostaddr[i]) {
8367 break;
8370 if (i == maxidx) {
8371 /* If it's all in the TLB it's fair game for just writing to;
8372 * we know we don't need to update dirty status, etc.
8374 for (i = 0; i < maxidx - 1; i++) {
8375 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8377 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8378 return;
8380 /* OK, try a store and see if we can populate the tlb. This
8381 * might cause an exception if the memory isn't writable,
8382 * in which case we will longjmp out of here. We must for
8383 * this purpose use the actual register value passed to us
8384 * so that we get the fault address right.
8386 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8387 /* Now we can populate the other TLB entries, if any */
8388 for (i = 0; i < maxidx; i++) {
8389 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8390 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8391 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8396 /* Slow path (probably attempt to do this to an I/O device or
8397 * similar, or clearing of a block of code we have translations
8398 * cached for). Just do a series of byte writes as the architecture
8399 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8400 * memset(), unmap() sequence here because:
8401 * + we'd need to account for the blocksize being larger than a page
8402 * + the direct-RAM access case is almost always going to be dealt
8403 * with in the fastpath code above, so there's no speed benefit
8404 * + we would have to deal with the map returning NULL because the
8405 * bounce buffer was in use
8407 for (i = 0; i < blocklen; i++) {
8408 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8411 #else
8412 memset(g2h(vaddr), 0, blocklen);
8413 #endif
8416 /* Note that signed overflow is undefined in C. The following routines are
8417 careful to use unsigned types where modulo arithmetic is required.
8418 Failure to do so _will_ break on newer gcc. */
8420 /* Signed saturating arithmetic. */
8422 /* Perform 16-bit signed saturating addition. */
8423 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8425 uint16_t res;
8427 res = a + b;
8428 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8429 if (a & 0x8000)
8430 res = 0x8000;
8431 else
8432 res = 0x7fff;
8434 return res;
8437 /* Perform 8-bit signed saturating addition. */
8438 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8440 uint8_t res;
8442 res = a + b;
8443 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8444 if (a & 0x80)
8445 res = 0x80;
8446 else
8447 res = 0x7f;
8449 return res;
8452 /* Perform 16-bit signed saturating subtraction. */
8453 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8455 uint16_t res;
8457 res = a - b;
8458 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8459 if (a & 0x8000)
8460 res = 0x8000;
8461 else
8462 res = 0x7fff;
8464 return res;
8467 /* Perform 8-bit signed saturating subtraction. */
8468 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8470 uint8_t res;
8472 res = a - b;
8473 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8474 if (a & 0x80)
8475 res = 0x80;
8476 else
8477 res = 0x7f;
8479 return res;
8482 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8483 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8484 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8485 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8486 #define PFX q
8488 #include "op_addsub.h"
8490 /* Unsigned saturating arithmetic. */
8491 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8493 uint16_t res;
8494 res = a + b;
8495 if (res < a)
8496 res = 0xffff;
8497 return res;
8500 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8502 if (a > b)
8503 return a - b;
8504 else
8505 return 0;
8508 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8510 uint8_t res;
8511 res = a + b;
8512 if (res < a)
8513 res = 0xff;
8514 return res;
8517 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8519 if (a > b)
8520 return a - b;
8521 else
8522 return 0;
8525 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8526 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8527 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8528 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8529 #define PFX uq
8531 #include "op_addsub.h"
8533 /* Signed modulo arithmetic. */
8534 #define SARITH16(a, b, n, op) do { \
8535 int32_t sum; \
8536 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8537 RESULT(sum, n, 16); \
8538 if (sum >= 0) \
8539 ge |= 3 << (n * 2); \
8540 } while(0)
8542 #define SARITH8(a, b, n, op) do { \
8543 int32_t sum; \
8544 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8545 RESULT(sum, n, 8); \
8546 if (sum >= 0) \
8547 ge |= 1 << n; \
8548 } while(0)
8551 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8552 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8553 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8554 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8555 #define PFX s
8556 #define ARITH_GE
8558 #include "op_addsub.h"
8560 /* Unsigned modulo arithmetic. */
8561 #define ADD16(a, b, n) do { \
8562 uint32_t sum; \
8563 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8564 RESULT(sum, n, 16); \
8565 if ((sum >> 16) == 1) \
8566 ge |= 3 << (n * 2); \
8567 } while(0)
8569 #define ADD8(a, b, n) do { \
8570 uint32_t sum; \
8571 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8572 RESULT(sum, n, 8); \
8573 if ((sum >> 8) == 1) \
8574 ge |= 1 << n; \
8575 } while(0)
8577 #define SUB16(a, b, n) do { \
8578 uint32_t sum; \
8579 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8580 RESULT(sum, n, 16); \
8581 if ((sum >> 16) == 0) \
8582 ge |= 3 << (n * 2); \
8583 } while(0)
8585 #define SUB8(a, b, n) do { \
8586 uint32_t sum; \
8587 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8588 RESULT(sum, n, 8); \
8589 if ((sum >> 8) == 0) \
8590 ge |= 1 << n; \
8591 } while(0)
8593 #define PFX u
8594 #define ARITH_GE
8596 #include "op_addsub.h"
8598 /* Halved signed arithmetic. */
8599 #define ADD16(a, b, n) \
8600 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8601 #define SUB16(a, b, n) \
8602 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8603 #define ADD8(a, b, n) \
8604 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8605 #define SUB8(a, b, n) \
8606 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8607 #define PFX sh
8609 #include "op_addsub.h"
8611 /* Halved unsigned arithmetic. */
8612 #define ADD16(a, b, n) \
8613 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8614 #define SUB16(a, b, n) \
8615 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8616 #define ADD8(a, b, n) \
8617 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8618 #define SUB8(a, b, n) \
8619 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8620 #define PFX uh
8622 #include "op_addsub.h"
8624 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8626 if (a > b)
8627 return a - b;
8628 else
8629 return b - a;
8632 /* Unsigned sum of absolute byte differences. */
8633 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8635 uint32_t sum;
8636 sum = do_usad(a, b);
8637 sum += do_usad(a >> 8, b >> 8);
8638 sum += do_usad(a >> 16, b >>16);
8639 sum += do_usad(a >> 24, b >> 24);
8640 return sum;
8643 /* For ARMv6 SEL instruction. */
8644 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8646 uint32_t mask;
8648 mask = 0;
8649 if (flags & 1)
8650 mask |= 0xff;
8651 if (flags & 2)
8652 mask |= 0xff00;
8653 if (flags & 4)
8654 mask |= 0xff0000;
8655 if (flags & 8)
8656 mask |= 0xff000000;
8657 return (a & mask) | (b & ~mask);
8660 /* VFP support. We follow the convention used for VFP instructions:
8661 Single precision routines have a "s" suffix, double precision a
8662 "d" suffix. */
8664 /* Convert host exception flags to vfp form. */
8665 static inline int vfp_exceptbits_from_host(int host_bits)
8667 int target_bits = 0;
8669 if (host_bits & float_flag_invalid)
8670 target_bits |= 1;
8671 if (host_bits & float_flag_divbyzero)
8672 target_bits |= 2;
8673 if (host_bits & float_flag_overflow)
8674 target_bits |= 4;
8675 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8676 target_bits |= 8;
8677 if (host_bits & float_flag_inexact)
8678 target_bits |= 0x10;
8679 if (host_bits & float_flag_input_denormal)
8680 target_bits |= 0x80;
8681 return target_bits;
8684 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8686 int i;
8687 uint32_t fpscr;
8689 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8690 | (env->vfp.vec_len << 16)
8691 | (env->vfp.vec_stride << 20);
8692 i = get_float_exception_flags(&env->vfp.fp_status);
8693 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8694 fpscr |= vfp_exceptbits_from_host(i);
8695 return fpscr;
8698 uint32_t vfp_get_fpscr(CPUARMState *env)
8700 return HELPER(vfp_get_fpscr)(env);
8703 /* Convert vfp exception flags to target form. */
8704 static inline int vfp_exceptbits_to_host(int target_bits)
8706 int host_bits = 0;
8708 if (target_bits & 1)
8709 host_bits |= float_flag_invalid;
8710 if (target_bits & 2)
8711 host_bits |= float_flag_divbyzero;
8712 if (target_bits & 4)
8713 host_bits |= float_flag_overflow;
8714 if (target_bits & 8)
8715 host_bits |= float_flag_underflow;
8716 if (target_bits & 0x10)
8717 host_bits |= float_flag_inexact;
8718 if (target_bits & 0x80)
8719 host_bits |= float_flag_input_denormal;
8720 return host_bits;
8723 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8725 int i;
8726 uint32_t changed;
8728 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8729 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8730 env->vfp.vec_len = (val >> 16) & 7;
8731 env->vfp.vec_stride = (val >> 20) & 3;
8733 changed ^= val;
8734 if (changed & (3 << 22)) {
8735 i = (val >> 22) & 3;
8736 switch (i) {
8737 case FPROUNDING_TIEEVEN:
8738 i = float_round_nearest_even;
8739 break;
8740 case FPROUNDING_POSINF:
8741 i = float_round_up;
8742 break;
8743 case FPROUNDING_NEGINF:
8744 i = float_round_down;
8745 break;
8746 case FPROUNDING_ZERO:
8747 i = float_round_to_zero;
8748 break;
8750 set_float_rounding_mode(i, &env->vfp.fp_status);
8752 if (changed & (1 << 24)) {
8753 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8754 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8756 if (changed & (1 << 25))
8757 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8759 i = vfp_exceptbits_to_host(val);
8760 set_float_exception_flags(i, &env->vfp.fp_status);
8761 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8764 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8766 HELPER(vfp_set_fpscr)(env, val);
8769 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8771 #define VFP_BINOP(name) \
8772 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8774 float_status *fpst = fpstp; \
8775 return float32_ ## name(a, b, fpst); \
8777 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8779 float_status *fpst = fpstp; \
8780 return float64_ ## name(a, b, fpst); \
8782 VFP_BINOP(add)
8783 VFP_BINOP(sub)
8784 VFP_BINOP(mul)
8785 VFP_BINOP(div)
8786 VFP_BINOP(min)
8787 VFP_BINOP(max)
8788 VFP_BINOP(minnum)
8789 VFP_BINOP(maxnum)
8790 #undef VFP_BINOP
8792 float32 VFP_HELPER(neg, s)(float32 a)
8794 return float32_chs(a);
8797 float64 VFP_HELPER(neg, d)(float64 a)
8799 return float64_chs(a);
8802 float32 VFP_HELPER(abs, s)(float32 a)
8804 return float32_abs(a);
8807 float64 VFP_HELPER(abs, d)(float64 a)
8809 return float64_abs(a);
8812 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8814 return float32_sqrt(a, &env->vfp.fp_status);
8817 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8819 return float64_sqrt(a, &env->vfp.fp_status);
8822 /* XXX: check quiet/signaling case */
8823 #define DO_VFP_cmp(p, type) \
8824 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8826 uint32_t flags; \
8827 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8828 case 0: flags = 0x6; break; \
8829 case -1: flags = 0x8; break; \
8830 case 1: flags = 0x2; break; \
8831 default: case 2: flags = 0x3; break; \
8833 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8834 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8836 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8838 uint32_t flags; \
8839 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8840 case 0: flags = 0x6; break; \
8841 case -1: flags = 0x8; break; \
8842 case 1: flags = 0x2; break; \
8843 default: case 2: flags = 0x3; break; \
8845 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8846 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8848 DO_VFP_cmp(s, float32)
8849 DO_VFP_cmp(d, float64)
8850 #undef DO_VFP_cmp
8852 /* Integer to float and float to integer conversions */
8854 #define CONV_ITOF(name, fsz, sign) \
8855 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8857 float_status *fpst = fpstp; \
8858 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8861 #define CONV_FTOI(name, fsz, sign, round) \
8862 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8864 float_status *fpst = fpstp; \
8865 if (float##fsz##_is_any_nan(x)) { \
8866 float_raise(float_flag_invalid, fpst); \
8867 return 0; \
8869 return float##fsz##_to_##sign##int32##round(x, fpst); \
8872 #define FLOAT_CONVS(name, p, fsz, sign) \
8873 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8874 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8875 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8877 FLOAT_CONVS(si, s, 32, )
8878 FLOAT_CONVS(si, d, 64, )
8879 FLOAT_CONVS(ui, s, 32, u)
8880 FLOAT_CONVS(ui, d, 64, u)
8882 #undef CONV_ITOF
8883 #undef CONV_FTOI
8884 #undef FLOAT_CONVS
8886 /* floating point conversion */
8887 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8889 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8890 /* ARM requires that S<->D conversion of any kind of NaN generates
8891 * a quiet NaN by forcing the most significant frac bit to 1.
8893 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8896 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8898 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8899 /* ARM requires that S<->D conversion of any kind of NaN generates
8900 * a quiet NaN by forcing the most significant frac bit to 1.
8902 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
8905 /* VFP3 fixed point conversion. */
8906 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8907 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8908 void *fpstp) \
8910 float_status *fpst = fpstp; \
8911 float##fsz tmp; \
8912 tmp = itype##_to_##float##fsz(x, fpst); \
8913 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8916 /* Notice that we want only input-denormal exception flags from the
8917 * scalbn operation: the other possible flags (overflow+inexact if
8918 * we overflow to infinity, output-denormal) aren't correct for the
8919 * complete scale-and-convert operation.
8921 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8922 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8923 uint32_t shift, \
8924 void *fpstp) \
8926 float_status *fpst = fpstp; \
8927 int old_exc_flags = get_float_exception_flags(fpst); \
8928 float##fsz tmp; \
8929 if (float##fsz##_is_any_nan(x)) { \
8930 float_raise(float_flag_invalid, fpst); \
8931 return 0; \
8933 tmp = float##fsz##_scalbn(x, shift, fpst); \
8934 old_exc_flags |= get_float_exception_flags(fpst) \
8935 & float_flag_input_denormal; \
8936 set_float_exception_flags(old_exc_flags, fpst); \
8937 return float##fsz##_to_##itype##round(tmp, fpst); \
8940 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8941 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8942 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8943 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8945 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8946 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8947 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8949 VFP_CONV_FIX(sh, d, 64, 64, int16)
8950 VFP_CONV_FIX(sl, d, 64, 64, int32)
8951 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8952 VFP_CONV_FIX(uh, d, 64, 64, uint16)
8953 VFP_CONV_FIX(ul, d, 64, 64, uint32)
8954 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8955 VFP_CONV_FIX(sh, s, 32, 32, int16)
8956 VFP_CONV_FIX(sl, s, 32, 32, int32)
8957 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8958 VFP_CONV_FIX(uh, s, 32, 32, uint16)
8959 VFP_CONV_FIX(ul, s, 32, 32, uint32)
8960 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
8961 #undef VFP_CONV_FIX
8962 #undef VFP_CONV_FIX_FLOAT
8963 #undef VFP_CONV_FLOAT_FIX_ROUND
8965 /* Set the current fp rounding mode and return the old one.
8966 * The argument is a softfloat float_round_ value.
8968 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8970 float_status *fp_status = &env->vfp.fp_status;
8972 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8973 set_float_rounding_mode(rmode, fp_status);
8975 return prev_rmode;
8978 /* Set the current fp rounding mode in the standard fp status and return
8979 * the old one. This is for NEON instructions that need to change the
8980 * rounding mode but wish to use the standard FPSCR values for everything
8981 * else. Always set the rounding mode back to the correct value after
8982 * modifying it.
8983 * The argument is a softfloat float_round_ value.
8985 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8987 float_status *fp_status = &env->vfp.standard_fp_status;
8989 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8990 set_float_rounding_mode(rmode, fp_status);
8992 return prev_rmode;
8995 /* Half precision conversions. */
8996 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
8998 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8999 float32 r = float16_to_float32(make_float16(a), ieee, s);
9000 if (ieee) {
9001 return float32_maybe_silence_nan(r, s);
9003 return r;
9006 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9008 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9009 float16 r = float32_to_float16(a, ieee, s);
9010 if (ieee) {
9011 r = float16_maybe_silence_nan(r, s);
9013 return float16_val(r);
9016 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9018 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9021 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9023 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9026 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9028 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9031 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9033 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9036 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9038 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9039 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9040 if (ieee) {
9041 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9043 return r;
9046 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9048 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9049 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9050 if (ieee) {
9051 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9053 return float16_val(r);
9056 #define float32_two make_float32(0x40000000)
9057 #define float32_three make_float32(0x40400000)
9058 #define float32_one_point_five make_float32(0x3fc00000)
9060 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9062 float_status *s = &env->vfp.standard_fp_status;
9063 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9064 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9065 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9066 float_raise(float_flag_input_denormal, s);
9068 return float32_two;
9070 return float32_sub(float32_two, float32_mul(a, b, s), s);
9073 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9075 float_status *s = &env->vfp.standard_fp_status;
9076 float32 product;
9077 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9078 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9079 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9080 float_raise(float_flag_input_denormal, s);
9082 return float32_one_point_five;
9084 product = float32_mul(a, b, s);
9085 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9088 /* NEON helpers. */
9090 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9091 * int->float conversions at run-time. */
9092 #define float64_256 make_float64(0x4070000000000000LL)
9093 #define float64_512 make_float64(0x4080000000000000LL)
9094 #define float32_maxnorm make_float32(0x7f7fffff)
9095 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9097 /* Reciprocal functions
9099 * The algorithm that must be used to calculate the estimate
9100 * is specified by the ARM ARM, see FPRecipEstimate()
9103 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9105 /* These calculations mustn't set any fp exception flags,
9106 * so we use a local copy of the fp_status.
9108 float_status dummy_status = *real_fp_status;
9109 float_status *s = &dummy_status;
9110 /* q = (int)(a * 512.0) */
9111 float64 q = float64_mul(float64_512, a, s);
9112 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9114 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9115 q = int64_to_float64(q_int, s);
9116 q = float64_add(q, float64_half, s);
9117 q = float64_div(q, float64_512, s);
9118 q = float64_div(float64_one, q, s);
9120 /* s = (int)(256.0 * r + 0.5) */
9121 q = float64_mul(q, float64_256, s);
9122 q = float64_add(q, float64_half, s);
9123 q_int = float64_to_int64_round_to_zero(q, s);
9125 /* return (double)s / 256.0 */
9126 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9129 /* Common wrapper to call recip_estimate */
9130 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9132 uint64_t val64 = float64_val(num);
9133 uint64_t frac = extract64(val64, 0, 52);
9134 int64_t exp = extract64(val64, 52, 11);
9135 uint64_t sbit;
9136 float64 scaled, estimate;
9138 /* Generate the scaled number for the estimate function */
9139 if (exp == 0) {
9140 if (extract64(frac, 51, 1) == 0) {
9141 exp = -1;
9142 frac = extract64(frac, 0, 50) << 2;
9143 } else {
9144 frac = extract64(frac, 0, 51) << 1;
9148 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9149 scaled = make_float64((0x3feULL << 52)
9150 | extract64(frac, 44, 8) << 44);
9152 estimate = recip_estimate(scaled, fpst);
9154 /* Build new result */
9155 val64 = float64_val(estimate);
9156 sbit = 0x8000000000000000ULL & val64;
9157 exp = off - exp;
9158 frac = extract64(val64, 0, 52);
9160 if (exp == 0) {
9161 frac = 1ULL << 51 | extract64(frac, 1, 51);
9162 } else if (exp == -1) {
9163 frac = 1ULL << 50 | extract64(frac, 2, 50);
9164 exp = 0;
9167 return make_float64(sbit | (exp << 52) | frac);
9170 static bool round_to_inf(float_status *fpst, bool sign_bit)
9172 switch (fpst->float_rounding_mode) {
9173 case float_round_nearest_even: /* Round to Nearest */
9174 return true;
9175 case float_round_up: /* Round to +Inf */
9176 return !sign_bit;
9177 case float_round_down: /* Round to -Inf */
9178 return sign_bit;
9179 case float_round_to_zero: /* Round to Zero */
9180 return false;
9183 g_assert_not_reached();
9186 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9188 float_status *fpst = fpstp;
9189 float32 f32 = float32_squash_input_denormal(input, fpst);
9190 uint32_t f32_val = float32_val(f32);
9191 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9192 int32_t f32_exp = extract32(f32_val, 23, 8);
9193 uint32_t f32_frac = extract32(f32_val, 0, 23);
9194 float64 f64, r64;
9195 uint64_t r64_val;
9196 int64_t r64_exp;
9197 uint64_t r64_frac;
9199 if (float32_is_any_nan(f32)) {
9200 float32 nan = f32;
9201 if (float32_is_signaling_nan(f32, fpst)) {
9202 float_raise(float_flag_invalid, fpst);
9203 nan = float32_maybe_silence_nan(f32, fpst);
9205 if (fpst->default_nan_mode) {
9206 nan = float32_default_nan(fpst);
9208 return nan;
9209 } else if (float32_is_infinity(f32)) {
9210 return float32_set_sign(float32_zero, float32_is_neg(f32));
9211 } else if (float32_is_zero(f32)) {
9212 float_raise(float_flag_divbyzero, fpst);
9213 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9214 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9215 /* Abs(value) < 2.0^-128 */
9216 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9217 if (round_to_inf(fpst, f32_sbit)) {
9218 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9219 } else {
9220 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9222 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9223 float_raise(float_flag_underflow, fpst);
9224 return float32_set_sign(float32_zero, float32_is_neg(f32));
9228 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9229 r64 = call_recip_estimate(f64, 253, fpst);
9230 r64_val = float64_val(r64);
9231 r64_exp = extract64(r64_val, 52, 11);
9232 r64_frac = extract64(r64_val, 0, 52);
9234 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9235 return make_float32(f32_sbit |
9236 (r64_exp & 0xff) << 23 |
9237 extract64(r64_frac, 29, 24));
9240 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9242 float_status *fpst = fpstp;
9243 float64 f64 = float64_squash_input_denormal(input, fpst);
9244 uint64_t f64_val = float64_val(f64);
9245 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9246 int64_t f64_exp = extract64(f64_val, 52, 11);
9247 float64 r64;
9248 uint64_t r64_val;
9249 int64_t r64_exp;
9250 uint64_t r64_frac;
9252 /* Deal with any special cases */
9253 if (float64_is_any_nan(f64)) {
9254 float64 nan = f64;
9255 if (float64_is_signaling_nan(f64, fpst)) {
9256 float_raise(float_flag_invalid, fpst);
9257 nan = float64_maybe_silence_nan(f64, fpst);
9259 if (fpst->default_nan_mode) {
9260 nan = float64_default_nan(fpst);
9262 return nan;
9263 } else if (float64_is_infinity(f64)) {
9264 return float64_set_sign(float64_zero, float64_is_neg(f64));
9265 } else if (float64_is_zero(f64)) {
9266 float_raise(float_flag_divbyzero, fpst);
9267 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9268 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9269 /* Abs(value) < 2.0^-1024 */
9270 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9271 if (round_to_inf(fpst, f64_sbit)) {
9272 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9273 } else {
9274 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9276 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9277 float_raise(float_flag_underflow, fpst);
9278 return float64_set_sign(float64_zero, float64_is_neg(f64));
9281 r64 = call_recip_estimate(f64, 2045, fpst);
9282 r64_val = float64_val(r64);
9283 r64_exp = extract64(r64_val, 52, 11);
9284 r64_frac = extract64(r64_val, 0, 52);
9286 /* result = sign : result_exp<10:0> : fraction<51:0> */
9287 return make_float64(f64_sbit |
9288 ((r64_exp & 0x7ff) << 52) |
9289 r64_frac);
9292 /* The algorithm that must be used to calculate the estimate
9293 * is specified by the ARM ARM.
9295 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9297 /* These calculations mustn't set any fp exception flags,
9298 * so we use a local copy of the fp_status.
9300 float_status dummy_status = *real_fp_status;
9301 float_status *s = &dummy_status;
9302 float64 q;
9303 int64_t q_int;
9305 if (float64_lt(a, float64_half, s)) {
9306 /* range 0.25 <= a < 0.5 */
9308 /* a in units of 1/512 rounded down */
9309 /* q0 = (int)(a * 512.0); */
9310 q = float64_mul(float64_512, a, s);
9311 q_int = float64_to_int64_round_to_zero(q, s);
9313 /* reciprocal root r */
9314 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9315 q = int64_to_float64(q_int, s);
9316 q = float64_add(q, float64_half, s);
9317 q = float64_div(q, float64_512, s);
9318 q = float64_sqrt(q, s);
9319 q = float64_div(float64_one, q, s);
9320 } else {
9321 /* range 0.5 <= a < 1.0 */
9323 /* a in units of 1/256 rounded down */
9324 /* q1 = (int)(a * 256.0); */
9325 q = float64_mul(float64_256, a, s);
9326 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9328 /* reciprocal root r */
9329 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9330 q = int64_to_float64(q_int, s);
9331 q = float64_add(q, float64_half, s);
9332 q = float64_div(q, float64_256, s);
9333 q = float64_sqrt(q, s);
9334 q = float64_div(float64_one, q, s);
9336 /* r in units of 1/256 rounded to nearest */
9337 /* s = (int)(256.0 * r + 0.5); */
9339 q = float64_mul(q, float64_256,s );
9340 q = float64_add(q, float64_half, s);
9341 q_int = float64_to_int64_round_to_zero(q, s);
9343 /* return (double)s / 256.0;*/
9344 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9347 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9349 float_status *s = fpstp;
9350 float32 f32 = float32_squash_input_denormal(input, s);
9351 uint32_t val = float32_val(f32);
9352 uint32_t f32_sbit = 0x80000000 & val;
9353 int32_t f32_exp = extract32(val, 23, 8);
9354 uint32_t f32_frac = extract32(val, 0, 23);
9355 uint64_t f64_frac;
9356 uint64_t val64;
9357 int result_exp;
9358 float64 f64;
9360 if (float32_is_any_nan(f32)) {
9361 float32 nan = f32;
9362 if (float32_is_signaling_nan(f32, s)) {
9363 float_raise(float_flag_invalid, s);
9364 nan = float32_maybe_silence_nan(f32, s);
9366 if (s->default_nan_mode) {
9367 nan = float32_default_nan(s);
9369 return nan;
9370 } else if (float32_is_zero(f32)) {
9371 float_raise(float_flag_divbyzero, s);
9372 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9373 } else if (float32_is_neg(f32)) {
9374 float_raise(float_flag_invalid, s);
9375 return float32_default_nan(s);
9376 } else if (float32_is_infinity(f32)) {
9377 return float32_zero;
9380 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9381 * preserving the parity of the exponent. */
9383 f64_frac = ((uint64_t) f32_frac) << 29;
9384 if (f32_exp == 0) {
9385 while (extract64(f64_frac, 51, 1) == 0) {
9386 f64_frac = f64_frac << 1;
9387 f32_exp = f32_exp-1;
9389 f64_frac = extract64(f64_frac, 0, 51) << 1;
9392 if (extract64(f32_exp, 0, 1) == 0) {
9393 f64 = make_float64(((uint64_t) f32_sbit) << 32
9394 | (0x3feULL << 52)
9395 | f64_frac);
9396 } else {
9397 f64 = make_float64(((uint64_t) f32_sbit) << 32
9398 | (0x3fdULL << 52)
9399 | f64_frac);
9402 result_exp = (380 - f32_exp) / 2;
9404 f64 = recip_sqrt_estimate(f64, s);
9406 val64 = float64_val(f64);
9408 val = ((result_exp & 0xff) << 23)
9409 | ((val64 >> 29) & 0x7fffff);
9410 return make_float32(val);
9413 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9415 float_status *s = fpstp;
9416 float64 f64 = float64_squash_input_denormal(input, s);
9417 uint64_t val = float64_val(f64);
9418 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9419 int64_t f64_exp = extract64(val, 52, 11);
9420 uint64_t f64_frac = extract64(val, 0, 52);
9421 int64_t result_exp;
9422 uint64_t result_frac;
9424 if (float64_is_any_nan(f64)) {
9425 float64 nan = f64;
9426 if (float64_is_signaling_nan(f64, s)) {
9427 float_raise(float_flag_invalid, s);
9428 nan = float64_maybe_silence_nan(f64, s);
9430 if (s->default_nan_mode) {
9431 nan = float64_default_nan(s);
9433 return nan;
9434 } else if (float64_is_zero(f64)) {
9435 float_raise(float_flag_divbyzero, s);
9436 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9437 } else if (float64_is_neg(f64)) {
9438 float_raise(float_flag_invalid, s);
9439 return float64_default_nan(s);
9440 } else if (float64_is_infinity(f64)) {
9441 return float64_zero;
9444 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9445 * preserving the parity of the exponent. */
9447 if (f64_exp == 0) {
9448 while (extract64(f64_frac, 51, 1) == 0) {
9449 f64_frac = f64_frac << 1;
9450 f64_exp = f64_exp - 1;
9452 f64_frac = extract64(f64_frac, 0, 51) << 1;
9455 if (extract64(f64_exp, 0, 1) == 0) {
9456 f64 = make_float64(f64_sbit
9457 | (0x3feULL << 52)
9458 | f64_frac);
9459 } else {
9460 f64 = make_float64(f64_sbit
9461 | (0x3fdULL << 52)
9462 | f64_frac);
9465 result_exp = (3068 - f64_exp) / 2;
9467 f64 = recip_sqrt_estimate(f64, s);
9469 result_frac = extract64(float64_val(f64), 0, 52);
9471 return make_float64(f64_sbit |
9472 ((result_exp & 0x7ff) << 52) |
9473 result_frac);
9476 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9478 float_status *s = fpstp;
9479 float64 f64;
9481 if ((a & 0x80000000) == 0) {
9482 return 0xffffffff;
9485 f64 = make_float64((0x3feULL << 52)
9486 | ((int64_t)(a & 0x7fffffff) << 21));
9488 f64 = recip_estimate(f64, s);
9490 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9493 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9495 float_status *fpst = fpstp;
9496 float64 f64;
9498 if ((a & 0xc0000000) == 0) {
9499 return 0xffffffff;
9502 if (a & 0x80000000) {
9503 f64 = make_float64((0x3feULL << 52)
9504 | ((uint64_t)(a & 0x7fffffff) << 21));
9505 } else { /* bits 31-30 == '01' */
9506 f64 = make_float64((0x3fdULL << 52)
9507 | ((uint64_t)(a & 0x3fffffff) << 22));
9510 f64 = recip_sqrt_estimate(f64, fpst);
9512 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9515 /* VFPv4 fused multiply-accumulate */
9516 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9518 float_status *fpst = fpstp;
9519 return float32_muladd(a, b, c, 0, fpst);
9522 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9524 float_status *fpst = fpstp;
9525 return float64_muladd(a, b, c, 0, fpst);
9528 /* ARMv8 round to integral */
9529 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9531 return float32_round_to_int(x, fp_status);
9534 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9536 return float64_round_to_int(x, fp_status);
9539 float32 HELPER(rints)(float32 x, void *fp_status)
9541 int old_flags = get_float_exception_flags(fp_status), new_flags;
9542 float32 ret;
9544 ret = float32_round_to_int(x, fp_status);
9546 /* Suppress any inexact exceptions the conversion produced */
9547 if (!(old_flags & float_flag_inexact)) {
9548 new_flags = get_float_exception_flags(fp_status);
9549 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9552 return ret;
9555 float64 HELPER(rintd)(float64 x, void *fp_status)
9557 int old_flags = get_float_exception_flags(fp_status), new_flags;
9558 float64 ret;
9560 ret = float64_round_to_int(x, fp_status);
9562 new_flags = get_float_exception_flags(fp_status);
9564 /* Suppress any inexact exceptions the conversion produced */
9565 if (!(old_flags & float_flag_inexact)) {
9566 new_flags = get_float_exception_flags(fp_status);
9567 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9570 return ret;
9573 /* Convert ARM rounding mode to softfloat */
9574 int arm_rmode_to_sf(int rmode)
9576 switch (rmode) {
9577 case FPROUNDING_TIEAWAY:
9578 rmode = float_round_ties_away;
9579 break;
9580 case FPROUNDING_ODD:
9581 /* FIXME: add support for TIEAWAY and ODD */
9582 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9583 rmode);
9584 case FPROUNDING_TIEEVEN:
9585 default:
9586 rmode = float_round_nearest_even;
9587 break;
9588 case FPROUNDING_POSINF:
9589 rmode = float_round_up;
9590 break;
9591 case FPROUNDING_NEGINF:
9592 rmode = float_round_down;
9593 break;
9594 case FPROUNDING_ZERO:
9595 rmode = float_round_to_zero;
9596 break;
9598 return rmode;
9601 /* CRC helpers.
9602 * The upper bytes of val (above the number specified by 'bytes') must have
9603 * been zeroed out by the caller.
9605 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9607 uint8_t buf[4];
9609 stl_le_p(buf, val);
9611 /* zlib crc32 converts the accumulator and output to one's complement. */
9612 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9615 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9617 uint8_t buf[4];
9619 stl_le_p(buf, val);
9621 /* Linux crc32c converts the output to one's complement. */
9622 return crc32c(acc, buf, bytes) ^ 0xffffffff;