2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/kvm.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "exec/gdbstub.h"
40 #include "exec/address-spaces.h"
42 #include "qapi-event.h"
43 #include "hw/s390x/s390-pci-inst.h"
44 #include "hw/s390x/s390-pci-bus.h"
45 #include "hw/s390x/ipl.h"
46 #include "hw/s390x/ebcdic.h"
47 #include "exec/memattrs.h"
48 #include "hw/s390x/s390-virtio-ccw.h"
50 /* #define DEBUG_KVM */
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
112 #define ICPT_OPEREXC 0x2c
115 #define NR_LOCAL_IRQS 32
117 * Needs to be big enough to contain max_cpus emergency signals
118 * and in addition NR_LOCAL_IRQS interrupts
120 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
121 (max_cpus + NR_LOCAL_IRQS))
123 static CPUWatchpoint hw_watchpoint
;
125 * We don't use a list because this structure is also used to transmit the
126 * hardware breakpoints to the kernel.
128 static struct kvm_hw_breakpoint
*hw_breakpoints
;
129 static int nb_hw_breakpoints
;
131 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
135 static int cap_sync_regs
;
136 static int cap_async_pf
;
137 static int cap_mem_op
;
138 static int cap_s390_irq
;
141 static void *legacy_s390_alloc(size_t size
, uint64_t *align
);
143 static int kvm_s390_query_mem_limit(KVMState
*s
, uint64_t *memory_limit
)
145 struct kvm_device_attr attr
= {
146 .group
= KVM_S390_VM_MEM_CTRL
,
147 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
148 .addr
= (uint64_t) memory_limit
,
151 return kvm_vm_ioctl(s
, KVM_GET_DEVICE_ATTR
, &attr
);
154 int kvm_s390_set_mem_limit(KVMState
*s
, uint64_t new_limit
, uint64_t *hw_limit
)
158 struct kvm_device_attr attr
= {
159 .group
= KVM_S390_VM_MEM_CTRL
,
160 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
161 .addr
= (uint64_t) &new_limit
,
164 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_LIMIT_SIZE
)) {
168 rc
= kvm_s390_query_mem_limit(s
, hw_limit
);
171 } else if (*hw_limit
< new_limit
) {
175 return kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
178 void kvm_s390_cmma_reset(void)
181 struct kvm_device_attr attr
= {
182 .group
= KVM_S390_VM_MEM_CTRL
,
183 .attr
= KVM_S390_VM_MEM_CLR_CMMA
,
186 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
187 trace_kvm_clear_cmma(rc
);
190 static void kvm_s390_enable_cmma(KVMState
*s
)
193 struct kvm_device_attr attr
= {
194 .group
= KVM_S390_VM_MEM_CTRL
,
195 .attr
= KVM_S390_VM_MEM_ENABLE_CMMA
,
198 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_ENABLE_CMMA
) ||
199 !kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_CLR_CMMA
)) {
203 rc
= kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
204 trace_kvm_enable_cmma(rc
);
207 static void kvm_s390_set_attr(uint64_t attr
)
209 struct kvm_device_attr attribute
= {
210 .group
= KVM_S390_VM_CRYPTO
,
214 int ret
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attribute
);
217 error_report("Failed to set crypto device attribute %lu: %s",
218 attr
, strerror(-ret
));
222 static void kvm_s390_init_aes_kw(void)
224 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_AES_KW
;
226 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
228 attr
= KVM_S390_VM_CRYPTO_ENABLE_AES_KW
;
231 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
232 kvm_s390_set_attr(attr
);
236 static void kvm_s390_init_dea_kw(void)
238 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_DEA_KW
;
240 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
242 attr
= KVM_S390_VM_CRYPTO_ENABLE_DEA_KW
;
245 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
246 kvm_s390_set_attr(attr
);
250 void kvm_s390_crypto_reset(void)
252 kvm_s390_init_aes_kw();
253 kvm_s390_init_dea_kw();
256 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
258 cap_sync_regs
= kvm_check_extension(s
, KVM_CAP_SYNC_REGS
);
259 cap_async_pf
= kvm_check_extension(s
, KVM_CAP_ASYNC_PF
);
260 cap_mem_op
= kvm_check_extension(s
, KVM_CAP_S390_MEM_OP
);
261 cap_s390_irq
= kvm_check_extension(s
, KVM_CAP_S390_INJECT_IRQ
);
264 kvm_s390_enable_cmma(s
);
267 if (!kvm_check_extension(s
, KVM_CAP_S390_GMAP
)
268 || !kvm_check_extension(s
, KVM_CAP_S390_COW
)) {
269 phys_mem_set_alloc(legacy_s390_alloc
);
272 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_SIGP
, 0);
273 kvm_vm_enable_cap(s
, KVM_CAP_S390_VECTOR_REGISTERS
, 0);
274 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_STSI
, 0);
276 if (kvm_vm_enable_cap(s
, KVM_CAP_S390_RI
, 0) == 0) {
284 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
286 return cpu
->cpu_index
;
289 int kvm_arch_init_vcpu(CPUState
*cs
)
291 S390CPU
*cpu
= S390_CPU(cs
);
292 kvm_s390_set_cpu_state(cpu
, cpu
->env
.cpu_state
);
293 cpu
->irqstate
= g_malloc0(VCPU_IRQ_BUF_SIZE
);
297 void kvm_s390_reset_vcpu(S390CPU
*cpu
)
299 CPUState
*cs
= CPU(cpu
);
301 /* The initial reset call is needed here to reset in-kernel
302 * vcpu data that we can't access directly from QEMU
303 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
304 * Before this ioctl cpu_synchronize_state() is called in common kvm
306 if (kvm_vcpu_ioctl(cs
, KVM_S390_INITIAL_RESET
, NULL
)) {
307 error_report("Initial CPU reset failed on CPU %i", cs
->cpu_index
);
311 static int can_sync_regs(CPUState
*cs
, int regs
)
313 return cap_sync_regs
&& (cs
->kvm_run
->kvm_valid_regs
& regs
) == regs
;
316 int kvm_arch_put_registers(CPUState
*cs
, int level
)
318 S390CPU
*cpu
= S390_CPU(cs
);
319 CPUS390XState
*env
= &cpu
->env
;
320 struct kvm_sregs sregs
;
321 struct kvm_regs regs
;
322 struct kvm_fpu fpu
= {};
326 /* always save the PSW and the GPRS*/
327 cs
->kvm_run
->psw_addr
= env
->psw
.addr
;
328 cs
->kvm_run
->psw_mask
= env
->psw
.mask
;
330 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
331 for (i
= 0; i
< 16; i
++) {
332 cs
->kvm_run
->s
.regs
.gprs
[i
] = env
->regs
[i
];
333 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GPRS
;
336 for (i
= 0; i
< 16; i
++) {
337 regs
.gprs
[i
] = env
->regs
[i
];
339 r
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
345 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
346 for (i
= 0; i
< 32; i
++) {
347 cs
->kvm_run
->s
.regs
.vrs
[i
][0] = env
->vregs
[i
][0].ll
;
348 cs
->kvm_run
->s
.regs
.vrs
[i
][1] = env
->vregs
[i
][1].ll
;
350 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
351 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_VRS
;
352 } else if (can_sync_regs(cs
, KVM_SYNC_FPRS
)) {
353 for (i
= 0; i
< 16; i
++) {
354 cs
->kvm_run
->s
.regs
.fprs
[i
] = get_freg(env
, i
)->ll
;
356 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
357 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_FPRS
;
360 for (i
= 0; i
< 16; i
++) {
361 fpu
.fprs
[i
] = get_freg(env
, i
)->ll
;
365 r
= kvm_vcpu_ioctl(cs
, KVM_SET_FPU
, &fpu
);
371 /* Do we need to save more than that? */
372 if (level
== KVM_PUT_RUNTIME_STATE
) {
376 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
377 cs
->kvm_run
->s
.regs
.cputm
= env
->cputm
;
378 cs
->kvm_run
->s
.regs
.ckc
= env
->ckc
;
379 cs
->kvm_run
->s
.regs
.todpr
= env
->todpr
;
380 cs
->kvm_run
->s
.regs
.gbea
= env
->gbea
;
381 cs
->kvm_run
->s
.regs
.pp
= env
->pp
;
382 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ARCH0
;
385 * These ONE_REGS are not protected by a capability. As they are only
386 * necessary for migration we just trace a possible error, but don't
387 * return with an error return code.
389 kvm_set_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
390 kvm_set_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
391 kvm_set_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
392 kvm_set_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
393 kvm_set_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
396 if (can_sync_regs(cs
, KVM_SYNC_RICCB
)) {
397 memcpy(cs
->kvm_run
->s
.regs
.riccb
, env
->riccb
, 64);
398 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_RICCB
;
401 /* pfault parameters */
402 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
403 cs
->kvm_run
->s
.regs
.pft
= env
->pfault_token
;
404 cs
->kvm_run
->s
.regs
.pfs
= env
->pfault_select
;
405 cs
->kvm_run
->s
.regs
.pfc
= env
->pfault_compare
;
406 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PFAULT
;
407 } else if (cap_async_pf
) {
408 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
412 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
416 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
422 /* access registers and control registers*/
423 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
424 for (i
= 0; i
< 16; i
++) {
425 cs
->kvm_run
->s
.regs
.acrs
[i
] = env
->aregs
[i
];
426 cs
->kvm_run
->s
.regs
.crs
[i
] = env
->cregs
[i
];
428 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ACRS
;
429 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_CRS
;
431 for (i
= 0; i
< 16; i
++) {
432 sregs
.acrs
[i
] = env
->aregs
[i
];
433 sregs
.crs
[i
] = env
->cregs
[i
];
435 r
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
441 /* Finally the prefix */
442 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
443 cs
->kvm_run
->s
.regs
.prefix
= env
->psa
;
444 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PREFIX
;
446 /* prefix is only supported via sync regs */
451 int kvm_arch_get_registers(CPUState
*cs
)
453 S390CPU
*cpu
= S390_CPU(cs
);
454 CPUS390XState
*env
= &cpu
->env
;
455 struct kvm_sregs sregs
;
456 struct kvm_regs regs
;
461 env
->psw
.addr
= cs
->kvm_run
->psw_addr
;
462 env
->psw
.mask
= cs
->kvm_run
->psw_mask
;
465 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
466 for (i
= 0; i
< 16; i
++) {
467 env
->regs
[i
] = cs
->kvm_run
->s
.regs
.gprs
[i
];
470 r
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
474 for (i
= 0; i
< 16; i
++) {
475 env
->regs
[i
] = regs
.gprs
[i
];
479 /* The ACRS and CRS */
480 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
481 for (i
= 0; i
< 16; i
++) {
482 env
->aregs
[i
] = cs
->kvm_run
->s
.regs
.acrs
[i
];
483 env
->cregs
[i
] = cs
->kvm_run
->s
.regs
.crs
[i
];
486 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
490 for (i
= 0; i
< 16; i
++) {
491 env
->aregs
[i
] = sregs
.acrs
[i
];
492 env
->cregs
[i
] = sregs
.crs
[i
];
496 /* Floating point and vector registers */
497 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
498 for (i
= 0; i
< 32; i
++) {
499 env
->vregs
[i
][0].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][0];
500 env
->vregs
[i
][1].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][1];
502 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
503 } else if (can_sync_regs(cs
, KVM_SYNC_FPRS
)) {
504 for (i
= 0; i
< 16; i
++) {
505 get_freg(env
, i
)->ll
= cs
->kvm_run
->s
.regs
.fprs
[i
];
507 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
509 r
= kvm_vcpu_ioctl(cs
, KVM_GET_FPU
, &fpu
);
513 for (i
= 0; i
< 16; i
++) {
514 get_freg(env
, i
)->ll
= fpu
.fprs
[i
];
520 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
521 env
->psa
= cs
->kvm_run
->s
.regs
.prefix
;
524 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
525 env
->cputm
= cs
->kvm_run
->s
.regs
.cputm
;
526 env
->ckc
= cs
->kvm_run
->s
.regs
.ckc
;
527 env
->todpr
= cs
->kvm_run
->s
.regs
.todpr
;
528 env
->gbea
= cs
->kvm_run
->s
.regs
.gbea
;
529 env
->pp
= cs
->kvm_run
->s
.regs
.pp
;
532 * These ONE_REGS are not protected by a capability. As they are only
533 * necessary for migration we just trace a possible error, but don't
534 * return with an error return code.
536 kvm_get_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
537 kvm_get_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
538 kvm_get_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
539 kvm_get_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
540 kvm_get_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
543 if (can_sync_regs(cs
, KVM_SYNC_RICCB
)) {
544 memcpy(env
->riccb
, cs
->kvm_run
->s
.regs
.riccb
, 64);
547 /* pfault parameters */
548 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
549 env
->pfault_token
= cs
->kvm_run
->s
.regs
.pft
;
550 env
->pfault_select
= cs
->kvm_run
->s
.regs
.pfs
;
551 env
->pfault_compare
= cs
->kvm_run
->s
.regs
.pfc
;
552 } else if (cap_async_pf
) {
553 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
557 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
561 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
570 int kvm_s390_get_clock(uint8_t *tod_high
, uint64_t *tod_low
)
573 struct kvm_device_attr attr
= {
574 .group
= KVM_S390_VM_TOD
,
575 .attr
= KVM_S390_VM_TOD_LOW
,
576 .addr
= (uint64_t)tod_low
,
579 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
584 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
585 attr
.addr
= (uint64_t)tod_high
;
586 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
589 int kvm_s390_set_clock(uint8_t *tod_high
, uint64_t *tod_low
)
593 struct kvm_device_attr attr
= {
594 .group
= KVM_S390_VM_TOD
,
595 .attr
= KVM_S390_VM_TOD_LOW
,
596 .addr
= (uint64_t)tod_low
,
599 r
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
604 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
605 attr
.addr
= (uint64_t)tod_high
;
606 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
611 * @addr: the logical start address in guest memory
612 * @ar: the access register number
613 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
614 * @len: length that should be transferred
615 * @is_write: true = write, false = read
616 * Returns: 0 on success, non-zero if an exception or error occurred
618 * Use KVM ioctl to read/write from/to guest memory. An access exception
619 * is injected into the vCPU in case of translation errors.
621 int kvm_s390_mem_op(S390CPU
*cpu
, vaddr addr
, uint8_t ar
, void *hostbuf
,
622 int len
, bool is_write
)
624 struct kvm_s390_mem_op mem_op
= {
626 .flags
= KVM_S390_MEMOP_F_INJECT_EXCEPTION
,
628 .op
= is_write
? KVM_S390_MEMOP_LOGICAL_WRITE
629 : KVM_S390_MEMOP_LOGICAL_READ
,
630 .buf
= (uint64_t)hostbuf
,
639 mem_op
.flags
|= KVM_S390_MEMOP_F_CHECK_ONLY
;
642 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_S390_MEM_OP
, &mem_op
);
644 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret
));
650 * Legacy layout for s390:
651 * Older S390 KVM requires the topmost vma of the RAM to be
652 * smaller than an system defined value, which is at least 256GB.
653 * Larger systems have larger values. We put the guest between
654 * the end of data segment (system break) and this value. We
655 * use 32GB as a base to have enough room for the system break
656 * to grow. We also have to use MAP parameters that avoid
657 * read-only mapping of guest pages.
659 static void *legacy_s390_alloc(size_t size
, uint64_t *align
)
663 mem
= mmap((void *) 0x800000000ULL
, size
,
664 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
665 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
666 return mem
== MAP_FAILED
? NULL
: mem
;
669 static uint8_t const *sw_bp_inst
;
670 static uint8_t sw_bp_ilen
;
672 static void determine_sw_breakpoint_instr(void)
674 /* DIAG 501 is used for sw breakpoints with old kernels */
675 static const uint8_t diag_501
[] = {0x83, 0x24, 0x05, 0x01};
676 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
677 static const uint8_t instr_0x0000
[] = {0x00, 0x00};
682 if (kvm_vm_enable_cap(kvm_state
, KVM_CAP_S390_USER_INSTR0
, 0)) {
683 sw_bp_inst
= diag_501
;
684 sw_bp_ilen
= sizeof(diag_501
);
685 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
687 sw_bp_inst
= instr_0x0000
;
688 sw_bp_ilen
= sizeof(instr_0x0000
);
689 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
693 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
695 determine_sw_breakpoint_instr();
697 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
699 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)sw_bp_inst
, sw_bp_ilen
, 1)) {
705 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
709 if (cpu_memory_rw_debug(cs
, bp
->pc
, t
, sw_bp_ilen
, 0)) {
711 } else if (memcmp(t
, sw_bp_inst
, sw_bp_ilen
)) {
713 } else if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
721 static struct kvm_hw_breakpoint
*find_hw_breakpoint(target_ulong addr
,
726 for (n
= 0; n
< nb_hw_breakpoints
; n
++) {
727 if (hw_breakpoints
[n
].addr
== addr
&& hw_breakpoints
[n
].type
== type
&&
728 (hw_breakpoints
[n
].len
== len
|| len
== -1)) {
729 return &hw_breakpoints
[n
];
736 static int insert_hw_breakpoint(target_ulong addr
, int len
, int type
)
740 if (find_hw_breakpoint(addr
, len
, type
)) {
744 size
= (nb_hw_breakpoints
+ 1) * sizeof(struct kvm_hw_breakpoint
);
746 if (!hw_breakpoints
) {
747 nb_hw_breakpoints
= 0;
748 hw_breakpoints
= (struct kvm_hw_breakpoint
*)g_try_malloc(size
);
751 (struct kvm_hw_breakpoint
*)g_try_realloc(hw_breakpoints
, size
);
754 if (!hw_breakpoints
) {
755 nb_hw_breakpoints
= 0;
759 hw_breakpoints
[nb_hw_breakpoints
].addr
= addr
;
760 hw_breakpoints
[nb_hw_breakpoints
].len
= len
;
761 hw_breakpoints
[nb_hw_breakpoints
].type
= type
;
768 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
769 target_ulong len
, int type
)
772 case GDB_BREAKPOINT_HW
:
775 case GDB_WATCHPOINT_WRITE
:
779 type
= KVM_HW_WP_WRITE
;
784 return insert_hw_breakpoint(addr
, len
, type
);
787 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
788 target_ulong len
, int type
)
791 struct kvm_hw_breakpoint
*bp
= find_hw_breakpoint(addr
, len
, type
);
798 if (nb_hw_breakpoints
> 0) {
800 * In order to trim the array, move the last element to the position to
801 * be removed - if necessary.
803 if (bp
!= &hw_breakpoints
[nb_hw_breakpoints
]) {
804 *bp
= hw_breakpoints
[nb_hw_breakpoints
];
806 size
= nb_hw_breakpoints
* sizeof(struct kvm_hw_breakpoint
);
808 (struct kvm_hw_breakpoint
*)g_realloc(hw_breakpoints
, size
);
810 g_free(hw_breakpoints
);
811 hw_breakpoints
= NULL
;
817 void kvm_arch_remove_all_hw_breakpoints(void)
819 nb_hw_breakpoints
= 0;
820 g_free(hw_breakpoints
);
821 hw_breakpoints
= NULL
;
824 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
828 if (nb_hw_breakpoints
> 0) {
829 dbg
->arch
.nr_hw_bp
= nb_hw_breakpoints
;
830 dbg
->arch
.hw_bp
= hw_breakpoints
;
832 for (i
= 0; i
< nb_hw_breakpoints
; ++i
) {
833 hw_breakpoints
[i
].phys_addr
= s390_cpu_get_phys_addr_debug(cpu
,
834 hw_breakpoints
[i
].addr
);
836 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
838 dbg
->arch
.nr_hw_bp
= 0;
839 dbg
->arch
.hw_bp
= NULL
;
843 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
847 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
849 return MEMTXATTRS_UNSPECIFIED
;
852 int kvm_arch_process_async_events(CPUState
*cs
)
857 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq
*irq
,
858 struct kvm_s390_interrupt
*interrupt
)
862 interrupt
->type
= irq
->type
;
864 case KVM_S390_INT_VIRTIO
:
865 interrupt
->parm
= irq
->u
.ext
.ext_params
;
867 case KVM_S390_INT_PFAULT_INIT
:
868 case KVM_S390_INT_PFAULT_DONE
:
869 interrupt
->parm64
= irq
->u
.ext
.ext_params2
;
871 case KVM_S390_PROGRAM_INT
:
872 interrupt
->parm
= irq
->u
.pgm
.code
;
874 case KVM_S390_SIGP_SET_PREFIX
:
875 interrupt
->parm
= irq
->u
.prefix
.address
;
877 case KVM_S390_INT_SERVICE
:
878 interrupt
->parm
= irq
->u
.ext
.ext_params
;
881 interrupt
->parm
= irq
->u
.mchk
.cr14
;
882 interrupt
->parm64
= irq
->u
.mchk
.mcic
;
884 case KVM_S390_INT_EXTERNAL_CALL
:
885 interrupt
->parm
= irq
->u
.extcall
.code
;
887 case KVM_S390_INT_EMERGENCY
:
888 interrupt
->parm
= irq
->u
.emerg
.code
;
890 case KVM_S390_SIGP_STOP
:
891 case KVM_S390_RESTART
:
892 break; /* These types have no parameters */
893 case KVM_S390_INT_IO_MIN
...KVM_S390_INT_IO_MAX
:
894 interrupt
->parm
= irq
->u
.io
.subchannel_id
<< 16;
895 interrupt
->parm
|= irq
->u
.io
.subchannel_nr
;
896 interrupt
->parm64
= (uint64_t)irq
->u
.io
.io_int_parm
<< 32;
897 interrupt
->parm64
|= irq
->u
.io
.io_int_word
;
906 static void inject_vcpu_irq_legacy(CPUState
*cs
, struct kvm_s390_irq
*irq
)
908 struct kvm_s390_interrupt kvmint
= {};
911 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
913 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
917 r
= kvm_vcpu_ioctl(cs
, KVM_S390_INTERRUPT
, &kvmint
);
919 fprintf(stderr
, "KVM failed to inject interrupt\n");
924 void kvm_s390_vcpu_interrupt(S390CPU
*cpu
, struct kvm_s390_irq
*irq
)
926 CPUState
*cs
= CPU(cpu
);
930 r
= kvm_vcpu_ioctl(cs
, KVM_S390_IRQ
, irq
);
934 error_report("KVM failed to inject interrupt %llx", irq
->type
);
938 inject_vcpu_irq_legacy(cs
, irq
);
941 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
943 struct kvm_s390_interrupt kvmint
= {};
946 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
948 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
952 r
= kvm_vm_ioctl(kvm_state
, KVM_S390_INTERRUPT
, &kvmint
);
954 fprintf(stderr
, "KVM failed to inject interrupt\n");
959 void kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
961 static bool use_flic
= true;
965 r
= kvm_s390_inject_flic(irq
);
973 __kvm_s390_floating_interrupt(irq
);
976 void kvm_s390_service_interrupt(uint32_t parm
)
978 struct kvm_s390_irq irq
= {
979 .type
= KVM_S390_INT_SERVICE
,
980 .u
.ext
.ext_params
= parm
,
983 kvm_s390_floating_interrupt(&irq
);
986 static void enter_pgmcheck(S390CPU
*cpu
, uint16_t code
)
988 struct kvm_s390_irq irq
= {
989 .type
= KVM_S390_PROGRAM_INT
,
993 kvm_s390_vcpu_interrupt(cpu
, &irq
);
996 void kvm_s390_access_exception(S390CPU
*cpu
, uint16_t code
, uint64_t te_code
)
998 struct kvm_s390_irq irq
= {
999 .type
= KVM_S390_PROGRAM_INT
,
1001 .u
.pgm
.trans_exc_code
= te_code
,
1002 .u
.pgm
.exc_access_id
= te_code
& 3,
1005 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1008 static int kvm_sclp_service_call(S390CPU
*cpu
, struct kvm_run
*run
,
1011 CPUS390XState
*env
= &cpu
->env
;
1016 cpu_synchronize_state(CPU(cpu
));
1017 sccb
= env
->regs
[ipbh0
& 0xf];
1018 code
= env
->regs
[(ipbh0
& 0xf0) >> 4];
1020 r
= sclp_service_call(env
, sccb
, code
);
1022 enter_pgmcheck(cpu
, -r
);
1030 static int handle_b2(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1032 CPUS390XState
*env
= &cpu
->env
;
1034 uint16_t ipbh0
= (run
->s390_sieic
.ipb
& 0xffff0000) >> 16;
1036 cpu_synchronize_state(CPU(cpu
));
1040 ioinst_handle_xsch(cpu
, env
->regs
[1]);
1043 ioinst_handle_csch(cpu
, env
->regs
[1]);
1046 ioinst_handle_hsch(cpu
, env
->regs
[1]);
1049 ioinst_handle_msch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1052 ioinst_handle_ssch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1055 ioinst_handle_stcrw(cpu
, run
->s390_sieic
.ipb
);
1058 ioinst_handle_stsch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1061 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1062 fprintf(stderr
, "Spurious tsch intercept\n");
1065 ioinst_handle_chsc(cpu
, run
->s390_sieic
.ipb
);
1068 /* This should have been handled by kvm already. */
1069 fprintf(stderr
, "Spurious tpi intercept\n");
1072 ioinst_handle_schm(cpu
, env
->regs
[1], env
->regs
[2],
1073 run
->s390_sieic
.ipb
);
1076 ioinst_handle_rsch(cpu
, env
->regs
[1]);
1079 ioinst_handle_rchp(cpu
, env
->regs
[1]);
1082 /* We do not provide this instruction, it is suppressed. */
1085 ioinst_handle_sal(cpu
, env
->regs
[1]);
1088 /* Not provided, set CC = 3 for subchannel not operational */
1091 case PRIV_B2_SCLP_CALL
:
1092 rc
= kvm_sclp_service_call(cpu
, run
, ipbh0
);
1096 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1
);
1103 static uint64_t get_base_disp_rxy(S390CPU
*cpu
, struct kvm_run
*run
,
1106 CPUS390XState
*env
= &cpu
->env
;
1107 uint32_t x2
= (run
->s390_sieic
.ipa
& 0x000f);
1108 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1109 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1110 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1112 if (disp2
& 0x80000) {
1113 disp2
+= 0xfff00000;
1119 return (base2
? env
->regs
[base2
] : 0) +
1120 (x2
? env
->regs
[x2
] : 0) + (long)(int)disp2
;
1123 static uint64_t get_base_disp_rsy(S390CPU
*cpu
, struct kvm_run
*run
,
1126 CPUS390XState
*env
= &cpu
->env
;
1127 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1128 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1129 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1131 if (disp2
& 0x80000) {
1132 disp2
+= 0xfff00000;
1138 return (base2
? env
->regs
[base2
] : 0) + (long)(int)disp2
;
1141 static int kvm_clp_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1143 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1145 return clp_service_call(cpu
, r2
);
1148 static int kvm_pcilg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1150 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1151 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1153 return pcilg_service_call(cpu
, r1
, r2
);
1156 static int kvm_pcistg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1158 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1159 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1161 return pcistg_service_call(cpu
, r1
, r2
);
1164 static int kvm_stpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1166 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1170 cpu_synchronize_state(CPU(cpu
));
1171 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1173 return stpcifc_service_call(cpu
, r1
, fiba
, ar
);
1176 static int kvm_sic_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1182 static int kvm_rpcit_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1184 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1185 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1187 return rpcit_service_call(cpu
, r1
, r2
);
1190 static int kvm_pcistb_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1192 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1193 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1197 cpu_synchronize_state(CPU(cpu
));
1198 gaddr
= get_base_disp_rsy(cpu
, run
, &ar
);
1200 return pcistb_service_call(cpu
, r1
, r3
, gaddr
, ar
);
1203 static int kvm_mpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1205 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1209 cpu_synchronize_state(CPU(cpu
));
1210 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1212 return mpcifc_service_call(cpu
, r1
, fiba
, ar
);
1215 static int handle_b9(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1221 r
= kvm_clp_service_call(cpu
, run
);
1223 case PRIV_B9_PCISTG
:
1224 r
= kvm_pcistg_service_call(cpu
, run
);
1227 r
= kvm_pcilg_service_call(cpu
, run
);
1230 r
= kvm_rpcit_service_call(cpu
, run
);
1233 /* just inject exception */
1238 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1
);
1245 static int handle_eb(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1250 case PRIV_EB_PCISTB
:
1251 r
= kvm_pcistb_service_call(cpu
, run
);
1254 r
= kvm_sic_service_call(cpu
, run
);
1257 /* just inject exception */
1262 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl
);
1269 static int handle_e3(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1274 case PRIV_E3_MPCIFC
:
1275 r
= kvm_mpcifc_service_call(cpu
, run
);
1277 case PRIV_E3_STPCIFC
:
1278 r
= kvm_stpcifc_service_call(cpu
, run
);
1282 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl
);
1289 static int handle_hypercall(S390CPU
*cpu
, struct kvm_run
*run
)
1291 CPUS390XState
*env
= &cpu
->env
;
1294 cpu_synchronize_state(CPU(cpu
));
1295 ret
= s390_virtio_hypercall(env
);
1296 if (ret
== -EINVAL
) {
1297 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1304 static void kvm_handle_diag_288(S390CPU
*cpu
, struct kvm_run
*run
)
1309 cpu_synchronize_state(CPU(cpu
));
1310 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1311 r3
= run
->s390_sieic
.ipa
& 0x000f;
1312 rc
= handle_diag_288(&cpu
->env
, r1
, r3
);
1314 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1318 static void kvm_handle_diag_308(S390CPU
*cpu
, struct kvm_run
*run
)
1322 cpu_synchronize_state(CPU(cpu
));
1323 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1324 r3
= run
->s390_sieic
.ipa
& 0x000f;
1325 handle_diag_308(&cpu
->env
, r1
, r3
);
1328 static int handle_sw_breakpoint(S390CPU
*cpu
, struct kvm_run
*run
)
1330 CPUS390XState
*env
= &cpu
->env
;
1333 cpu_synchronize_state(CPU(cpu
));
1335 pc
= env
->psw
.addr
- sw_bp_ilen
;
1336 if (kvm_find_sw_breakpoint(CPU(cpu
), pc
)) {
1344 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1346 static int handle_diag(S390CPU
*cpu
, struct kvm_run
*run
, uint32_t ipb
)
1352 * For any diagnose call we support, bits 48-63 of the resulting
1353 * address specify the function code; the remainder is ignored.
1355 func_code
= decode_basedisp_rs(&cpu
->env
, ipb
, NULL
) & DIAG_KVM_CODE_MASK
;
1356 switch (func_code
) {
1357 case DIAG_TIMEREVENT
:
1358 kvm_handle_diag_288(cpu
, run
);
1361 kvm_handle_diag_308(cpu
, run
);
1363 case DIAG_KVM_HYPERCALL
:
1364 r
= handle_hypercall(cpu
, run
);
1366 case DIAG_KVM_BREAKPOINT
:
1367 r
= handle_sw_breakpoint(cpu
, run
);
1370 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code
);
1371 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1378 typedef struct SigpInfo
{
1382 uint64_t *status_reg
;
1385 static void set_sigp_status(SigpInfo
*si
, uint64_t status
)
1387 *si
->status_reg
&= 0xffffffff00000000ULL
;
1388 *si
->status_reg
|= status
;
1389 si
->cc
= SIGP_CC_STATUS_STORED
;
1392 static void sigp_start(void *arg
)
1396 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1397 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1401 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1402 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1405 static void sigp_stop(void *arg
)
1408 struct kvm_s390_irq irq
= {
1409 .type
= KVM_S390_SIGP_STOP
,
1412 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_OPERATING
) {
1413 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1417 /* disabled wait - sleeping in user space */
1418 if (CPU(si
->cpu
)->halted
) {
1419 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1421 /* execute the stop function */
1422 si
->cpu
->env
.sigp_order
= SIGP_STOP
;
1423 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1425 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1428 #define ADTL_SAVE_AREA_SIZE 1024
1429 static int kvm_s390_store_adtl_status(S390CPU
*cpu
, hwaddr addr
)
1432 hwaddr len
= ADTL_SAVE_AREA_SIZE
;
1434 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1438 if (len
!= ADTL_SAVE_AREA_SIZE
) {
1439 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1443 memcpy(mem
, &cpu
->env
.vregs
, 512);
1445 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1450 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1451 #define SAVE_AREA_SIZE 512
1452 static int kvm_s390_store_status(S390CPU
*cpu
, hwaddr addr
, bool store_arch
)
1454 static const uint8_t ar_id
= 1;
1455 uint64_t ckc
= cpu
->env
.ckc
>> 8;
1458 hwaddr len
= SAVE_AREA_SIZE
;
1460 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1464 if (len
!= SAVE_AREA_SIZE
) {
1465 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1470 cpu_physical_memory_write(offsetof(LowCore
, ar_access_id
), &ar_id
, 1);
1472 for (i
= 0; i
< 16; ++i
) {
1473 *((uint64_t *)mem
+ i
) = get_freg(&cpu
->env
, i
)->ll
;
1475 memcpy(mem
+ 128, &cpu
->env
.regs
, 128);
1476 memcpy(mem
+ 256, &cpu
->env
.psw
, 16);
1477 memcpy(mem
+ 280, &cpu
->env
.psa
, 4);
1478 memcpy(mem
+ 284, &cpu
->env
.fpc
, 4);
1479 memcpy(mem
+ 292, &cpu
->env
.todpr
, 4);
1480 memcpy(mem
+ 296, &cpu
->env
.cputm
, 8);
1481 memcpy(mem
+ 304, &ckc
, 8);
1482 memcpy(mem
+ 320, &cpu
->env
.aregs
, 64);
1483 memcpy(mem
+ 384, &cpu
->env
.cregs
, 128);
1485 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1490 static void sigp_stop_and_store_status(void *arg
)
1493 struct kvm_s390_irq irq
= {
1494 .type
= KVM_S390_SIGP_STOP
,
1497 /* disabled wait - sleeping in user space */
1498 if (s390_cpu_get_state(si
->cpu
) == CPU_STATE_OPERATING
&&
1499 CPU(si
->cpu
)->halted
) {
1500 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1503 switch (s390_cpu_get_state(si
->cpu
)) {
1504 case CPU_STATE_OPERATING
:
1505 si
->cpu
->env
.sigp_order
= SIGP_STOP_STORE_STATUS
;
1506 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1507 /* store will be performed when handling the stop intercept */
1509 case CPU_STATE_STOPPED
:
1510 /* already stopped, just store the status */
1511 cpu_synchronize_state(CPU(si
->cpu
));
1512 kvm_s390_store_status(si
->cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
, true);
1515 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1518 static void sigp_store_status_at_address(void *arg
)
1521 uint32_t address
= si
->param
& 0x7ffffe00u
;
1523 /* cpu has to be stopped */
1524 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1525 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1529 cpu_synchronize_state(CPU(si
->cpu
));
1531 if (kvm_s390_store_status(si
->cpu
, address
, false)) {
1532 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1535 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1538 static void sigp_store_adtl_status(void *arg
)
1542 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_VECTOR_REGISTERS
)) {
1543 set_sigp_status(si
, SIGP_STAT_INVALID_ORDER
);
1547 /* cpu has to be stopped */
1548 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1549 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1553 /* parameter must be aligned to 1024-byte boundary */
1554 if (si
->param
& 0x3ff) {
1555 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1559 cpu_synchronize_state(CPU(si
->cpu
));
1561 if (kvm_s390_store_adtl_status(si
->cpu
, si
->param
)) {
1562 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1565 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1568 static void sigp_restart(void *arg
)
1571 struct kvm_s390_irq irq
= {
1572 .type
= KVM_S390_RESTART
,
1575 switch (s390_cpu_get_state(si
->cpu
)) {
1576 case CPU_STATE_STOPPED
:
1577 /* the restart irq has to be delivered prior to any other pending irq */
1578 cpu_synchronize_state(CPU(si
->cpu
));
1579 do_restart_interrupt(&si
->cpu
->env
);
1580 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1582 case CPU_STATE_OPERATING
:
1583 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1586 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1589 int kvm_s390_cpu_restart(S390CPU
*cpu
)
1595 run_on_cpu(CPU(cpu
), sigp_restart
, &si
);
1596 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu
->env
);
1600 static void sigp_initial_cpu_reset(void *arg
)
1603 CPUState
*cs
= CPU(si
->cpu
);
1604 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1606 cpu_synchronize_state(cs
);
1607 scc
->initial_cpu_reset(cs
);
1608 cpu_synchronize_post_reset(cs
);
1609 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1612 static void sigp_cpu_reset(void *arg
)
1615 CPUState
*cs
= CPU(si
->cpu
);
1616 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1618 cpu_synchronize_state(cs
);
1620 cpu_synchronize_post_reset(cs
);
1621 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1624 static void sigp_set_prefix(void *arg
)
1627 uint32_t addr
= si
->param
& 0x7fffe000u
;
1629 cpu_synchronize_state(CPU(si
->cpu
));
1631 if (!address_space_access_valid(&address_space_memory
, addr
,
1632 sizeof(struct LowCore
), false)) {
1633 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1637 /* cpu has to be stopped */
1638 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1639 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1643 si
->cpu
->env
.psa
= addr
;
1644 cpu_synchronize_post_init(CPU(si
->cpu
));
1645 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1648 static int handle_sigp_single_dst(S390CPU
*dst_cpu
, uint8_t order
,
1649 uint64_t param
, uint64_t *status_reg
)
1654 .status_reg
= status_reg
,
1657 /* cpu available? */
1658 if (dst_cpu
== NULL
) {
1659 return SIGP_CC_NOT_OPERATIONAL
;
1662 /* only resets can break pending orders */
1663 if (dst_cpu
->env
.sigp_order
!= 0 &&
1664 order
!= SIGP_CPU_RESET
&&
1665 order
!= SIGP_INITIAL_CPU_RESET
) {
1666 return SIGP_CC_BUSY
;
1671 run_on_cpu(CPU(dst_cpu
), sigp_start
, &si
);
1674 run_on_cpu(CPU(dst_cpu
), sigp_stop
, &si
);
1677 run_on_cpu(CPU(dst_cpu
), sigp_restart
, &si
);
1679 case SIGP_STOP_STORE_STATUS
:
1680 run_on_cpu(CPU(dst_cpu
), sigp_stop_and_store_status
, &si
);
1682 case SIGP_STORE_STATUS_ADDR
:
1683 run_on_cpu(CPU(dst_cpu
), sigp_store_status_at_address
, &si
);
1685 case SIGP_STORE_ADTL_STATUS
:
1686 run_on_cpu(CPU(dst_cpu
), sigp_store_adtl_status
, &si
);
1688 case SIGP_SET_PREFIX
:
1689 run_on_cpu(CPU(dst_cpu
), sigp_set_prefix
, &si
);
1691 case SIGP_INITIAL_CPU_RESET
:
1692 run_on_cpu(CPU(dst_cpu
), sigp_initial_cpu_reset
, &si
);
1694 case SIGP_CPU_RESET
:
1695 run_on_cpu(CPU(dst_cpu
), sigp_cpu_reset
, &si
);
1698 DPRINTF("KVM: unknown SIGP: 0x%x\n", order
);
1699 set_sigp_status(&si
, SIGP_STAT_INVALID_ORDER
);
1705 static int sigp_set_architecture(S390CPU
*cpu
, uint32_t param
,
1706 uint64_t *status_reg
)
1711 /* due to the BQL, we are the only active cpu */
1712 CPU_FOREACH(cur_cs
) {
1713 cur_cpu
= S390_CPU(cur_cs
);
1714 if (cur_cpu
->env
.sigp_order
!= 0) {
1715 return SIGP_CC_BUSY
;
1717 cpu_synchronize_state(cur_cs
);
1718 /* all but the current one have to be stopped */
1719 if (cur_cpu
!= cpu
&&
1720 s390_cpu_get_state(cur_cpu
) != CPU_STATE_STOPPED
) {
1721 *status_reg
&= 0xffffffff00000000ULL
;
1722 *status_reg
|= SIGP_STAT_INCORRECT_STATE
;
1723 return SIGP_CC_STATUS_STORED
;
1727 switch (param
& 0xff) {
1728 case SIGP_MODE_ESA_S390
:
1730 return SIGP_CC_NOT_OPERATIONAL
;
1731 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW
:
1732 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW
:
1733 CPU_FOREACH(cur_cs
) {
1734 cur_cpu
= S390_CPU(cur_cs
);
1735 cur_cpu
->env
.pfault_token
= -1UL;
1739 *status_reg
&= 0xffffffff00000000ULL
;
1740 *status_reg
|= SIGP_STAT_INVALID_PARAMETER
;
1741 return SIGP_CC_STATUS_STORED
;
1744 return SIGP_CC_ORDER_CODE_ACCEPTED
;
1747 #define SIGP_ORDER_MASK 0x000000ff
1749 static int handle_sigp(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1751 CPUS390XState
*env
= &cpu
->env
;
1752 const uint8_t r1
= ipa1
>> 4;
1753 const uint8_t r3
= ipa1
& 0x0f;
1756 uint64_t *status_reg
;
1758 S390CPU
*dst_cpu
= NULL
;
1760 cpu_synchronize_state(CPU(cpu
));
1762 /* get order code */
1763 order
= decode_basedisp_rs(env
, run
->s390_sieic
.ipb
, NULL
)
1765 status_reg
= &env
->regs
[r1
];
1766 param
= (r1
% 2) ? env
->regs
[r1
] : env
->regs
[r1
+ 1];
1770 ret
= sigp_set_architecture(cpu
, param
, status_reg
);
1773 /* all other sigp orders target a single vcpu */
1774 dst_cpu
= s390_cpu_addr2state(env
->regs
[r3
]);
1775 ret
= handle_sigp_single_dst(dst_cpu
, order
, param
, status_reg
);
1778 trace_kvm_sigp_finished(order
, CPU(cpu
)->cpu_index
,
1779 dst_cpu
? CPU(dst_cpu
)->cpu_index
: -1, ret
);
1789 static int handle_instruction(S390CPU
*cpu
, struct kvm_run
*run
)
1791 unsigned int ipa0
= (run
->s390_sieic
.ipa
& 0xff00);
1792 uint8_t ipa1
= run
->s390_sieic
.ipa
& 0x00ff;
1795 DPRINTF("handle_instruction 0x%x 0x%x\n",
1796 run
->s390_sieic
.ipa
, run
->s390_sieic
.ipb
);
1799 r
= handle_b2(cpu
, run
, ipa1
);
1802 r
= handle_b9(cpu
, run
, ipa1
);
1805 r
= handle_eb(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1808 r
= handle_e3(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1811 r
= handle_diag(cpu
, run
, run
->s390_sieic
.ipb
);
1814 r
= handle_sigp(cpu
, run
, ipa1
);
1820 enter_pgmcheck(cpu
, 0x0001);
1826 static bool is_special_wait_psw(CPUState
*cs
)
1828 /* signal quiesce */
1829 return cs
->kvm_run
->psw_addr
== 0xfffUL
;
1832 static void unmanageable_intercept(S390CPU
*cpu
, const char *str
, int pswoffset
)
1834 CPUState
*cs
= CPU(cpu
);
1836 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1837 str
, cs
->cpu_index
, ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
),
1838 ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
+ 8));
1840 qemu_system_guest_panicked();
1843 static int handle_intercept(S390CPU
*cpu
)
1845 CPUState
*cs
= CPU(cpu
);
1846 struct kvm_run
*run
= cs
->kvm_run
;
1847 int icpt_code
= run
->s390_sieic
.icptcode
;
1850 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code
,
1851 (long)cs
->kvm_run
->psw_addr
);
1852 switch (icpt_code
) {
1853 case ICPT_INSTRUCTION
:
1854 r
= handle_instruction(cpu
, run
);
1857 unmanageable_intercept(cpu
, "program interrupt",
1858 offsetof(LowCore
, program_new_psw
));
1862 unmanageable_intercept(cpu
, "external interrupt",
1863 offsetof(LowCore
, external_new_psw
));
1867 /* disabled wait, since enabled wait is handled in kernel */
1868 cpu_synchronize_state(cs
);
1869 if (s390_cpu_halt(cpu
) == 0) {
1870 if (is_special_wait_psw(cs
)) {
1871 qemu_system_shutdown_request();
1873 qemu_system_guest_panicked();
1879 if (s390_cpu_set_state(CPU_STATE_STOPPED
, cpu
) == 0) {
1880 qemu_system_shutdown_request();
1882 if (cpu
->env
.sigp_order
== SIGP_STOP_STORE_STATUS
) {
1883 kvm_s390_store_status(cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
,
1886 cpu
->env
.sigp_order
= 0;
1890 /* currently only instr 0x0000 after enabled via capability */
1891 r
= handle_sw_breakpoint(cpu
, run
);
1893 enter_pgmcheck(cpu
, PGM_OPERATION
);
1897 case ICPT_SOFT_INTERCEPT
:
1898 fprintf(stderr
, "KVM unimplemented icpt SOFT\n");
1902 fprintf(stderr
, "KVM unimplemented icpt IO\n");
1906 fprintf(stderr
, "Unknown intercept code: %d\n", icpt_code
);
1914 static int handle_tsch(S390CPU
*cpu
)
1916 CPUState
*cs
= CPU(cpu
);
1917 struct kvm_run
*run
= cs
->kvm_run
;
1920 cpu_synchronize_state(cs
);
1922 ret
= ioinst_handle_tsch(cpu
, cpu
->env
.regs
[1], run
->s390_tsch
.ipb
);
1926 * If an I/O interrupt had been dequeued, we have to reinject it.
1928 if (run
->s390_tsch
.dequeued
) {
1929 kvm_s390_io_interrupt(run
->s390_tsch
.subchannel_id
,
1930 run
->s390_tsch
.subchannel_nr
,
1931 run
->s390_tsch
.io_int_parm
,
1932 run
->s390_tsch
.io_int_word
);
1939 static void insert_stsi_3_2_2(S390CPU
*cpu
, __u64 addr
, uint8_t ar
)
1941 struct sysib_322 sysib
;
1944 if (s390_cpu_virt_mem_read(cpu
, addr
, ar
, &sysib
, sizeof(sysib
))) {
1947 /* Shift the stack of Extended Names to prepare for our own data */
1948 memmove(&sysib
.ext_names
[1], &sysib
.ext_names
[0],
1949 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- 1));
1950 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1951 * assumed it's not capable of managing Extended Names for lower levels.
1953 for (del
= 1; del
< sysib
.count
; del
++) {
1954 if (!sysib
.vm
[del
].ext_name_encoding
|| !sysib
.ext_names
[del
][0]) {
1958 if (del
< sysib
.count
) {
1959 memset(sysib
.ext_names
[del
], 0,
1960 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- del
));
1962 /* Insert short machine name in EBCDIC, padded with blanks */
1964 memset(sysib
.vm
[0].name
, 0x40, sizeof(sysib
.vm
[0].name
));
1965 ebcdic_put(sysib
.vm
[0].name
, qemu_name
, MIN(sizeof(sysib
.vm
[0].name
),
1966 strlen(qemu_name
)));
1968 sysib
.vm
[0].ext_name_encoding
= 2; /* 2 = UTF-8 */
1969 memset(sysib
.ext_names
[0], 0, sizeof(sysib
.ext_names
[0]));
1970 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1971 * considered by s390 as not capable of providing any Extended Name.
1972 * Therefore if no name was specified on qemu invocation, we go with the
1973 * same "KVMguest" default, which KVM has filled into short name field.
1976 strncpy((char *)sysib
.ext_names
[0], qemu_name
,
1977 sizeof(sysib
.ext_names
[0]));
1979 strcpy((char *)sysib
.ext_names
[0], "KVMguest");
1982 memcpy(sysib
.vm
[0].uuid
, qemu_uuid
, sizeof(sysib
.vm
[0].uuid
));
1984 s390_cpu_virt_mem_write(cpu
, addr
, ar
, &sysib
, sizeof(sysib
));
1987 static int handle_stsi(S390CPU
*cpu
)
1989 CPUState
*cs
= CPU(cpu
);
1990 struct kvm_run
*run
= cs
->kvm_run
;
1992 switch (run
->s390_stsi
.fc
) {
1994 if (run
->s390_stsi
.sel1
!= 2 || run
->s390_stsi
.sel2
!= 2) {
1997 /* Only sysib 3.2.2 needs post-handling for now. */
1998 insert_stsi_3_2_2(cpu
, run
->s390_stsi
.addr
, run
->s390_stsi
.ar
);
2005 static int kvm_arch_handle_debug_exit(S390CPU
*cpu
)
2007 CPUState
*cs
= CPU(cpu
);
2008 struct kvm_run
*run
= cs
->kvm_run
;
2011 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
2013 switch (arch_info
->type
) {
2014 case KVM_HW_WP_WRITE
:
2015 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
2016 cs
->watchpoint_hit
= &hw_watchpoint
;
2017 hw_watchpoint
.vaddr
= arch_info
->addr
;
2018 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2023 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
2027 case KVM_SINGLESTEP
:
2028 if (cs
->singlestep_enabled
) {
2039 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
2041 S390CPU
*cpu
= S390_CPU(cs
);
2044 qemu_mutex_lock_iothread();
2046 switch (run
->exit_reason
) {
2047 case KVM_EXIT_S390_SIEIC
:
2048 ret
= handle_intercept(cpu
);
2050 case KVM_EXIT_S390_RESET
:
2051 s390_reipl_request();
2053 case KVM_EXIT_S390_TSCH
:
2054 ret
= handle_tsch(cpu
);
2056 case KVM_EXIT_S390_STSI
:
2057 ret
= handle_stsi(cpu
);
2059 case KVM_EXIT_DEBUG
:
2060 ret
= kvm_arch_handle_debug_exit(cpu
);
2063 fprintf(stderr
, "Unknown KVM exit: %d\n", run
->exit_reason
);
2066 qemu_mutex_unlock_iothread();
2069 ret
= EXCP_INTERRUPT
;
2074 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
2079 int kvm_arch_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2084 int kvm_arch_on_sigbus(int code
, void *addr
)
2089 void kvm_s390_io_interrupt(uint16_t subchannel_id
,
2090 uint16_t subchannel_nr
, uint32_t io_int_parm
,
2091 uint32_t io_int_word
)
2093 struct kvm_s390_irq irq
= {
2094 .u
.io
.subchannel_id
= subchannel_id
,
2095 .u
.io
.subchannel_nr
= subchannel_nr
,
2096 .u
.io
.io_int_parm
= io_int_parm
,
2097 .u
.io
.io_int_word
= io_int_word
,
2100 if (io_int_word
& IO_INT_WORD_AI
) {
2101 irq
.type
= KVM_S390_INT_IO(1, 0, 0, 0);
2103 irq
.type
= KVM_S390_INT_IO(0, (subchannel_id
& 0xff00) >> 8,
2104 (subchannel_id
& 0x0006),
2107 kvm_s390_floating_interrupt(&irq
);
2110 static uint64_t build_channel_report_mcic(void)
2114 /* subclass: indicate channel report pending */
2116 /* subclass modifiers: none */
2117 /* storage errors: none */
2118 /* validity bits: no damage */
2119 MCIC_VB_WP
| MCIC_VB_MS
| MCIC_VB_PM
| MCIC_VB_IA
| MCIC_VB_FP
|
2120 MCIC_VB_GR
| MCIC_VB_CR
| MCIC_VB_ST
| MCIC_VB_AR
| MCIC_VB_PR
|
2121 MCIC_VB_FC
| MCIC_VB_CT
| MCIC_VB_CC
;
2122 if (kvm_check_extension(kvm_state
, KVM_CAP_S390_VECTOR_REGISTERS
)) {
2128 void kvm_s390_crw_mchk(void)
2130 struct kvm_s390_irq irq
= {
2131 .type
= KVM_S390_MCHK
,
2132 .u
.mchk
.cr14
= 1 << 28,
2133 .u
.mchk
.mcic
= build_channel_report_mcic(),
2135 kvm_s390_floating_interrupt(&irq
);
2138 void kvm_s390_enable_css_support(S390CPU
*cpu
)
2142 /* Activate host kernel channel subsystem support. */
2143 r
= kvm_vcpu_enable_cap(CPU(cpu
), KVM_CAP_S390_CSS_SUPPORT
, 0);
2147 void kvm_arch_init_irq_routing(KVMState
*s
)
2150 * Note that while irqchip capabilities generally imply that cpustates
2151 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2152 * have to override the common code kvm_halt_in_kernel_allowed setting.
2154 if (kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2155 kvm_gsi_routing_allowed
= true;
2156 kvm_halt_in_kernel_allowed
= false;
2160 int kvm_s390_assign_subch_ioeventfd(EventNotifier
*notifier
, uint32_t sch
,
2161 int vq
, bool assign
)
2163 struct kvm_ioeventfd kick
= {
2164 .flags
= KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY
|
2165 KVM_IOEVENTFD_FLAG_DATAMATCH
,
2166 .fd
= event_notifier_get_fd(notifier
),
2171 if (!kvm_check_extension(kvm_state
, KVM_CAP_IOEVENTFD
)) {
2175 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
2177 return kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
2180 int kvm_s390_get_memslot_count(KVMState
*s
)
2182 return kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2185 int kvm_s390_get_ri(void)
2190 int kvm_s390_set_cpu_state(S390CPU
*cpu
, uint8_t cpu_state
)
2192 struct kvm_mp_state mp_state
= {};
2195 /* the kvm part might not have been initialized yet */
2196 if (CPU(cpu
)->kvm_state
== NULL
) {
2200 switch (cpu_state
) {
2201 case CPU_STATE_STOPPED
:
2202 mp_state
.mp_state
= KVM_MP_STATE_STOPPED
;
2204 case CPU_STATE_CHECK_STOP
:
2205 mp_state
.mp_state
= KVM_MP_STATE_CHECK_STOP
;
2207 case CPU_STATE_OPERATING
:
2208 mp_state
.mp_state
= KVM_MP_STATE_OPERATING
;
2210 case CPU_STATE_LOAD
:
2211 mp_state
.mp_state
= KVM_MP_STATE_LOAD
;
2214 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2219 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2221 trace_kvm_failed_cpu_state_set(CPU(cpu
)->cpu_index
, cpu_state
,
2228 void kvm_s390_vcpu_interrupt_pre_save(S390CPU
*cpu
)
2230 struct kvm_s390_irq_state irq_state
;
2231 CPUState
*cs
= CPU(cpu
);
2234 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2238 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2239 irq_state
.len
= VCPU_IRQ_BUF_SIZE
;
2241 bytes
= kvm_vcpu_ioctl(cs
, KVM_S390_GET_IRQ_STATE
, &irq_state
);
2243 cpu
->irqstate_saved_size
= 0;
2244 error_report("Migration of interrupt state failed");
2248 cpu
->irqstate_saved_size
= bytes
;
2251 int kvm_s390_vcpu_interrupt_post_load(S390CPU
*cpu
)
2253 CPUState
*cs
= CPU(cpu
);
2254 struct kvm_s390_irq_state irq_state
;
2257 if (cpu
->irqstate_saved_size
== 0) {
2261 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2265 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2266 irq_state
.len
= cpu
->irqstate_saved_size
;
2268 r
= kvm_vcpu_ioctl(cs
, KVM_S390_SET_IRQ_STATE
, &irq_state
);
2270 error_report("Setting interrupt state failed %d", r
);
2275 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2276 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
2278 S390PCIBusDevice
*pbdev
;
2279 uint32_t idx
= data
>> ZPCI_MSI_VEC_BITS
;
2280 uint32_t vec
= data
& ZPCI_MSI_VEC_MASK
;
2282 pbdev
= s390_pci_find_dev_by_idx(idx
);
2284 DPRINTF("add_msi_route no dev\n");
2288 pbdev
->routes
.adapter
.ind_offset
= vec
;
2290 route
->type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2292 route
->u
.adapter
.summary_addr
= pbdev
->routes
.adapter
.summary_addr
;
2293 route
->u
.adapter
.ind_addr
= pbdev
->routes
.adapter
.ind_addr
;
2294 route
->u
.adapter
.summary_offset
= pbdev
->routes
.adapter
.summary_offset
;
2295 route
->u
.adapter
.ind_offset
= pbdev
->routes
.adapter
.ind_offset
;
2296 route
->u
.adapter
.adapter_id
= pbdev
->routes
.adapter
.adapter_id
;
2300 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
2301 int vector
, PCIDevice
*dev
)
2306 int kvm_arch_release_virq_post(int virq
)
2311 int kvm_arch_msi_data_to_gsi(uint32_t data
)