2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/documentation/dai0547/latest/
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
81 typedef enum MPS2TZFPGAType
{
89 * Define the layout of RAM in a board, including which parts are
91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92 * -1 means "use the system RAM".
94 typedef struct RAMInfo
{
98 int mpc
; /* MPC number, -1 for "not behind an MPC" */
105 * IS_ALIAS: this RAM area is an alias to the upstream end of the
106 * MPC specified by its .mpc value
107 * IS_ROM: this RAM area is read-only
112 struct MPS2TZMachineClass
{
114 MPS2TZFPGAType fpga_type
;
116 uint32_t sysclk_frq
; /* Main SYSCLK frequency in Hz */
117 uint32_t apb_periph_frq
; /* APB peripheral frequency in Hz */
119 const uint32_t *oscclk
;
120 uint32_t fpgaio_num_leds
; /* Number of LEDs in FPGAIO LED0 register */
121 bool fpgaio_has_switches
; /* Does FPGAIO have SWITCH register? */
122 bool fpgaio_has_dbgctrl
; /* Does FPGAIO have DBGCTRL register? */
123 int numirq
; /* Number of external interrupts */
124 int uart_overflow_irq
; /* number of the combined UART overflow IRQ */
125 uint32_t init_svtor
; /* init-svtor setting for SSE */
126 uint32_t sram_addr_width
; /* SRAM_ADDR_WIDTH setting for SSE */
127 const RAMInfo
*raminfo
;
128 const char *armsse_type
;
129 uint32_t boot_ram_size
; /* size of ram at address 0; 0 == find in raminfo */
132 struct MPS2TZMachineState
{
136 MemoryRegion ram
[MPS2TZ_RAM_MAX
];
137 MemoryRegion eth_usb_container
;
144 ArmSbconI2CState i2c
[5];
145 UnimplementedDeviceState i2s_audio
;
146 UnimplementedDeviceState gpio
[4];
147 UnimplementedDeviceState gfx
;
148 UnimplementedDeviceState cldc
;
149 UnimplementedDeviceState usb
;
153 CMSDKAPBUART uart
[6];
154 SplitIRQ sec_resp_splitter
;
155 qemu_or_irq uart_irq_orgate
;
156 DeviceState
*lan9118
;
157 SplitIRQ cpu_irq_splitter
[MPS2TZ_NUMIRQ_MAX
];
165 #define TYPE_MPS2TZ_MACHINE "mps2tz"
166 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
167 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
168 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
169 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
171 OBJECT_DECLARE_TYPE(MPS2TZMachineState
, MPS2TZMachineClass
, MPS2TZ_MACHINE
)
173 /* Slow 32Khz S32KCLK frequency in Hz */
174 #define S32KCLK_FRQ (32 * 1000)
177 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
178 * emulation of that much guest RAM, so artificially make it smaller.
180 #if HOST_LONG_BITS == 32
181 #define MPS3_DDR_SIZE (1 * GiB)
183 #define MPS3_DDR_SIZE (2 * GiB)
186 static const uint32_t an505_oscclk
[] = {
192 static const uint32_t an524_oscclk
[] = {
201 static const RAMInfo an505_raminfo
[] = { {
220 .name
= "ssram-0-alias",
227 /* Use the largest bit of contiguous RAM as our "system memory" */
239 * Note that the addresses and MPC numbering here should match up
240 * with those used in remap_memory(), which can swap the BRAM and QSPI.
242 static const RAMInfo an524_raminfo
[] = { {
249 /* We don't model QSPI flash yet; for now expose it as simple ROM */
259 .size
= MPS3_DDR_SIZE
,
267 static const RAMInfo an547_raminfo
[] = { {
280 /* We don't model QSPI flash yet; for now expose it as simple ROM */
290 .size
= MPS3_DDR_SIZE
,
298 static const RAMInfo
*find_raminfo_for_mpc(MPS2TZMachineState
*mms
, int mpc
)
300 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
302 const RAMInfo
*found
= NULL
;
304 for (p
= mmc
->raminfo
; p
->name
; p
++) {
305 if (p
->mpc
== mpc
&& !(p
->flags
& IS_ALIAS
)) {
306 /* There should only be one entry in the array for this MPC */
311 /* if raminfo array doesn't have an entry for each MPC this is a bug */
316 static MemoryRegion
*mr_for_raminfo(MPS2TZMachineState
*mms
,
317 const RAMInfo
*raminfo
)
319 /* Return an initialized MemoryRegion for the RAMInfo. */
322 if (raminfo
->mrindex
< 0) {
323 /* Means this RAMInfo is for QEMU's "system memory" */
324 MachineState
*machine
= MACHINE(mms
);
325 assert(!(raminfo
->flags
& IS_ROM
));
329 assert(raminfo
->mrindex
< MPS2TZ_RAM_MAX
);
330 ram
= &mms
->ram
[raminfo
->mrindex
];
332 memory_region_init_ram(ram
, NULL
, raminfo
->name
,
333 raminfo
->size
, &error_fatal
);
334 if (raminfo
->flags
& IS_ROM
) {
335 memory_region_set_readonly(ram
, true);
340 /* Create an alias of an entire original MemoryRegion @orig
341 * located at @base in the memory map.
343 static void make_ram_alias(MemoryRegion
*mr
, const char *name
,
344 MemoryRegion
*orig
, hwaddr base
)
346 memory_region_init_alias(mr
, NULL
, name
, orig
, 0,
347 memory_region_size(orig
));
348 memory_region_add_subregion(get_system_memory(), base
, mr
);
351 static qemu_irq
get_sse_irq_in(MPS2TZMachineState
*mms
, int irqno
)
354 * Return a qemu_irq which will signal IRQ n to all CPUs in the
355 * SSE. The irqno should be as the CPU sees it, so the first
356 * external-to-the-SSE interrupt is 32.
358 MachineClass
*mc
= MACHINE_GET_CLASS(mms
);
359 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
361 assert(irqno
>= 32 && irqno
< (mmc
->numirq
+ 32));
364 * Convert from "CPU irq number" (as listed in the FPGA image
365 * documentation) to the SSE external-interrupt number.
369 if (mc
->max_cpus
> 1) {
370 return qdev_get_gpio_in(DEVICE(&mms
->cpu_irq_splitter
[irqno
]), 0);
372 return qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
), "EXP_IRQ", irqno
);
376 /* Union describing the device-specific extra data we pass to the devfn. */
377 typedef union PPCExtraData
{
381 /* Most of the devices in the AN505 FPGA image sit behind
382 * Peripheral Protection Controllers. These data structures
383 * define the layout of which devices sit behind which PPCs.
384 * The devfn for each port is a function which creates, configures
385 * and initializes the device, returning the MemoryRegion which
386 * needs to be plugged into the downstream end of the PPC port.
388 typedef MemoryRegion
*MakeDevFn(MPS2TZMachineState
*mms
, void *opaque
,
389 const char *name
, hwaddr size
,
391 const PPCExtraData
*extradata
);
393 typedef struct PPCPortInfo
{
399 int irqs
[3]; /* currently no device needs more IRQ lines than this */
400 PPCExtraData extradata
; /* to pass device-specific info to the devfn */
403 typedef struct PPCInfo
{
405 PPCPortInfo ports
[TZ_NUM_PORTS
];
408 static MemoryRegion
*make_unimp_dev(MPS2TZMachineState
*mms
,
410 const char *name
, hwaddr size
,
412 const PPCExtraData
*extradata
)
414 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
415 * and return a pointer to its MemoryRegion.
417 UnimplementedDeviceState
*uds
= opaque
;
419 object_initialize_child(OBJECT(mms
), name
, uds
, TYPE_UNIMPLEMENTED_DEVICE
);
420 qdev_prop_set_string(DEVICE(uds
), "name", name
);
421 qdev_prop_set_uint64(DEVICE(uds
), "size", size
);
422 sysbus_realize(SYS_BUS_DEVICE(uds
), &error_fatal
);
423 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
426 static MemoryRegion
*make_uart(MPS2TZMachineState
*mms
, void *opaque
,
427 const char *name
, hwaddr size
,
428 const int *irqs
, const PPCExtraData
*extradata
)
430 /* The irq[] array is tx, rx, combined, in that order */
431 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
432 CMSDKAPBUART
*uart
= opaque
;
433 int i
= uart
- &mms
->uart
[0];
435 DeviceState
*orgate_dev
= DEVICE(&mms
->uart_irq_orgate
);
437 object_initialize_child(OBJECT(mms
), name
, uart
, TYPE_CMSDK_APB_UART
);
438 qdev_prop_set_chr(DEVICE(uart
), "chardev", serial_hd(i
));
439 qdev_prop_set_uint32(DEVICE(uart
), "pclk-frq", mmc
->apb_periph_frq
);
440 sysbus_realize(SYS_BUS_DEVICE(uart
), &error_fatal
);
441 s
= SYS_BUS_DEVICE(uart
);
442 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
443 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, irqs
[1]));
444 sysbus_connect_irq(s
, 2, qdev_get_gpio_in(orgate_dev
, i
* 2));
445 sysbus_connect_irq(s
, 3, qdev_get_gpio_in(orgate_dev
, i
* 2 + 1));
446 sysbus_connect_irq(s
, 4, get_sse_irq_in(mms
, irqs
[2]));
447 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart
), 0);
450 static MemoryRegion
*make_scc(MPS2TZMachineState
*mms
, void *opaque
,
451 const char *name
, hwaddr size
,
452 const int *irqs
, const PPCExtraData
*extradata
)
454 MPS2SCC
*scc
= opaque
;
456 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
459 object_initialize_child(OBJECT(mms
), "scc", scc
, TYPE_MPS2_SCC
);
460 sccdev
= DEVICE(scc
);
461 qdev_prop_set_uint32(sccdev
, "scc-cfg0", mms
->remap
? 1 : 0);
462 qdev_prop_set_uint32(sccdev
, "scc-cfg4", 0x2);
463 qdev_prop_set_uint32(sccdev
, "scc-aid", 0x00200008);
464 qdev_prop_set_uint32(sccdev
, "scc-id", mmc
->scc_id
);
465 qdev_prop_set_uint32(sccdev
, "len-oscclk", mmc
->len_oscclk
);
466 for (i
= 0; i
< mmc
->len_oscclk
; i
++) {
467 g_autofree
char *propname
= g_strdup_printf("oscclk[%u]", i
);
468 qdev_prop_set_uint32(sccdev
, propname
, mmc
->oscclk
[i
]);
470 sysbus_realize(SYS_BUS_DEVICE(scc
), &error_fatal
);
471 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev
), 0);
474 static MemoryRegion
*make_fpgaio(MPS2TZMachineState
*mms
, void *opaque
,
475 const char *name
, hwaddr size
,
476 const int *irqs
, const PPCExtraData
*extradata
)
478 MPS2FPGAIO
*fpgaio
= opaque
;
479 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
481 object_initialize_child(OBJECT(mms
), "fpgaio", fpgaio
, TYPE_MPS2_FPGAIO
);
482 qdev_prop_set_uint32(DEVICE(fpgaio
), "num-leds", mmc
->fpgaio_num_leds
);
483 qdev_prop_set_bit(DEVICE(fpgaio
), "has-switches", mmc
->fpgaio_has_switches
);
484 qdev_prop_set_bit(DEVICE(fpgaio
), "has-dbgctrl", mmc
->fpgaio_has_dbgctrl
);
485 sysbus_realize(SYS_BUS_DEVICE(fpgaio
), &error_fatal
);
486 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio
), 0);
489 static MemoryRegion
*make_eth_dev(MPS2TZMachineState
*mms
, void *opaque
,
490 const char *name
, hwaddr size
,
492 const PPCExtraData
*extradata
)
495 NICInfo
*nd
= &nd_table
[0];
497 /* In hardware this is a LAN9220; the LAN9118 is software compatible
498 * except that it doesn't support the checksum-offload feature.
500 qemu_check_nic_model(nd
, "lan9118");
501 mms
->lan9118
= qdev_new(TYPE_LAN9118
);
502 qdev_set_nic_properties(mms
->lan9118
, nd
);
504 s
= SYS_BUS_DEVICE(mms
->lan9118
);
505 sysbus_realize_and_unref(s
, &error_fatal
);
506 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
507 return sysbus_mmio_get_region(s
, 0);
510 static MemoryRegion
*make_eth_usb(MPS2TZMachineState
*mms
, void *opaque
,
511 const char *name
, hwaddr size
,
513 const PPCExtraData
*extradata
)
516 * The AN524 makes the ethernet and USB share a PPC port.
517 * irqs[] is the ethernet IRQ.
520 NICInfo
*nd
= &nd_table
[0];
522 memory_region_init(&mms
->eth_usb_container
, OBJECT(mms
),
523 "mps2-tz-eth-usb-container", 0x200000);
526 * In hardware this is a LAN9220; the LAN9118 is software compatible
527 * except that it doesn't support the checksum-offload feature.
529 qemu_check_nic_model(nd
, "lan9118");
530 mms
->lan9118
= qdev_new(TYPE_LAN9118
);
531 qdev_set_nic_properties(mms
->lan9118
, nd
);
533 s
= SYS_BUS_DEVICE(mms
->lan9118
);
534 sysbus_realize_and_unref(s
, &error_fatal
);
535 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
537 memory_region_add_subregion(&mms
->eth_usb_container
,
538 0, sysbus_mmio_get_region(s
, 0));
540 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
541 object_initialize_child(OBJECT(mms
), "usb-otg",
542 &mms
->usb
, TYPE_UNIMPLEMENTED_DEVICE
);
543 qdev_prop_set_string(DEVICE(&mms
->usb
), "name", "usb-otg");
544 qdev_prop_set_uint64(DEVICE(&mms
->usb
), "size", 0x100000);
545 s
= SYS_BUS_DEVICE(&mms
->usb
);
546 sysbus_realize(s
, &error_fatal
);
548 memory_region_add_subregion(&mms
->eth_usb_container
,
549 0x100000, sysbus_mmio_get_region(s
, 0));
551 return &mms
->eth_usb_container
;
554 static MemoryRegion
*make_mpc(MPS2TZMachineState
*mms
, void *opaque
,
555 const char *name
, hwaddr size
,
556 const int *irqs
, const PPCExtraData
*extradata
)
559 int i
= mpc
- &mms
->mpc
[0];
560 MemoryRegion
*upstream
;
561 const RAMInfo
*raminfo
= find_raminfo_for_mpc(mms
, i
);
562 MemoryRegion
*ram
= mr_for_raminfo(mms
, raminfo
);
564 object_initialize_child(OBJECT(mms
), name
, mpc
, TYPE_TZ_MPC
);
565 object_property_set_link(OBJECT(mpc
), "downstream", OBJECT(ram
),
567 sysbus_realize(SYS_BUS_DEVICE(mpc
), &error_fatal
);
568 /* Map the upstream end of the MPC into system memory */
569 upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
570 memory_region_add_subregion(get_system_memory(), raminfo
->base
, upstream
);
571 /* and connect its interrupt to the IoTKit */
572 qdev_connect_gpio_out_named(DEVICE(mpc
), "irq", 0,
573 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
574 "mpcexp_status", i
));
576 /* Return the register interface MR for our caller to map behind the PPC */
577 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 0);
580 static hwaddr
boot_mem_base(MPS2TZMachineState
*mms
)
583 * Return the canonical address of the block which will be mapped
584 * at address 0x0 (i.e. where the vector table is).
585 * This is usually 0, but if the AN524 alternate memory map is
586 * enabled it will be the base address of the QSPI block.
588 return mms
->remap
? 0x28000000 : 0;
591 static void remap_memory(MPS2TZMachineState
*mms
, int map
)
594 * Remap the memory for the AN524. 'map' is the value of
595 * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
596 * for the "option 1" mapping where QSPI is at address 0.
598 * Effectively we need to swap around the "upstream" ends of
601 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
604 if (mmc
->fpga_type
!= FPGA_AN524
) {
608 memory_region_transaction_begin();
609 for (i
= 0; i
< 2; i
++) {
610 TZMPC
*mpc
= &mms
->mpc
[i
];
611 MemoryRegion
*upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
612 hwaddr addr
= (i
^ map
) ? 0x28000000 : 0;
614 memory_region_set_address(upstream
, addr
);
616 memory_region_transaction_commit();
619 static void remap_irq_fn(void *opaque
, int n
, int level
)
621 MPS2TZMachineState
*mms
= opaque
;
623 remap_memory(mms
, level
);
626 static MemoryRegion
*make_dma(MPS2TZMachineState
*mms
, void *opaque
,
627 const char *name
, hwaddr size
,
628 const int *irqs
, const PPCExtraData
*extradata
)
630 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
631 PL080State
*dma
= opaque
;
632 int i
= dma
- &mms
->dma
[0];
634 char *mscname
= g_strdup_printf("%s-msc", name
);
635 TZMSC
*msc
= &mms
->msc
[i
];
636 DeviceState
*iotkitdev
= DEVICE(&mms
->iotkit
);
637 MemoryRegion
*msc_upstream
;
638 MemoryRegion
*msc_downstream
;
641 * Each DMA device is a PL081 whose transaction master interface
642 * is guarded by a Master Security Controller. The downstream end of
643 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
644 * DMA devices can see all devices and memory that the CPU does.
646 object_initialize_child(OBJECT(mms
), mscname
, msc
, TYPE_TZ_MSC
);
647 msc_downstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms
->iotkit
), 0);
648 object_property_set_link(OBJECT(msc
), "downstream",
649 OBJECT(msc_downstream
), &error_fatal
);
650 object_property_set_link(OBJECT(msc
), "idau", OBJECT(mms
), &error_fatal
);
651 sysbus_realize(SYS_BUS_DEVICE(msc
), &error_fatal
);
653 qdev_connect_gpio_out_named(DEVICE(msc
), "irq", 0,
654 qdev_get_gpio_in_named(iotkitdev
,
655 "mscexp_status", i
));
656 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_clear", i
,
657 qdev_get_gpio_in_named(DEVICE(msc
),
659 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_ns", i
,
660 qdev_get_gpio_in_named(DEVICE(msc
),
662 qdev_connect_gpio_out(DEVICE(&mms
->sec_resp_splitter
),
663 ARRAY_SIZE(mms
->ppc
) + i
,
664 qdev_get_gpio_in_named(DEVICE(msc
),
666 msc_upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(msc
), 0);
668 object_initialize_child(OBJECT(mms
), name
, dma
, TYPE_PL081
);
669 object_property_set_link(OBJECT(dma
), "downstream", OBJECT(msc_upstream
),
671 sysbus_realize(SYS_BUS_DEVICE(dma
), &error_fatal
);
673 s
= SYS_BUS_DEVICE(dma
);
674 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
675 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
676 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, irqs
[1]));
677 sysbus_connect_irq(s
, 2, get_sse_irq_in(mms
, irqs
[2]));
680 return sysbus_mmio_get_region(s
, 0);
683 static MemoryRegion
*make_spi(MPS2TZMachineState
*mms
, void *opaque
,
684 const char *name
, hwaddr size
,
685 const int *irqs
, const PPCExtraData
*extradata
)
688 * The AN505 has five PL022 SPI controllers.
689 * One of these should have the LCD controller behind it; the others
690 * are connected only to the FPGA's "general purpose SPI connector"
691 * or "shield" expansion connectors.
692 * Note that if we do implement devices behind SPI, the chip select
693 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
695 PL022State
*spi
= opaque
;
698 object_initialize_child(OBJECT(mms
), name
, spi
, TYPE_PL022
);
699 sysbus_realize(SYS_BUS_DEVICE(spi
), &error_fatal
);
700 s
= SYS_BUS_DEVICE(spi
);
701 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
702 return sysbus_mmio_get_region(s
, 0);
705 static MemoryRegion
*make_i2c(MPS2TZMachineState
*mms
, void *opaque
,
706 const char *name
, hwaddr size
,
707 const int *irqs
, const PPCExtraData
*extradata
)
709 ArmSbconI2CState
*i2c
= opaque
;
712 object_initialize_child(OBJECT(mms
), name
, i2c
, TYPE_ARM_SBCON_I2C
);
713 s
= SYS_BUS_DEVICE(i2c
);
714 sysbus_realize(s
, &error_fatal
);
717 * If this is an internal-use-only i2c bus, mark it full
718 * so that user-created i2c devices are not plugged into it.
719 * If we implement models of any on-board i2c devices that
720 * plug in to one of the internal-use-only buses, then we will
721 * need to create and plugging those in here before we mark the
724 if (extradata
->i2c_internal
) {
725 BusState
*qbus
= qdev_get_child_bus(DEVICE(i2c
), "i2c");
726 qbus_mark_full(qbus
);
729 return sysbus_mmio_get_region(s
, 0);
732 static MemoryRegion
*make_rtc(MPS2TZMachineState
*mms
, void *opaque
,
733 const char *name
, hwaddr size
,
734 const int *irqs
, const PPCExtraData
*extradata
)
736 PL031State
*pl031
= opaque
;
739 object_initialize_child(OBJECT(mms
), name
, pl031
, TYPE_PL031
);
740 s
= SYS_BUS_DEVICE(pl031
);
741 sysbus_realize(s
, &error_fatal
);
743 * The board docs don't give an IRQ number for the PL031, so
744 * presumably it is not connected.
746 return sysbus_mmio_get_region(s
, 0);
749 static void create_non_mpc_ram(MPS2TZMachineState
*mms
)
752 * Handle the RAMs which are either not behind MPCs or which are
753 * aliases to another MPC.
756 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
758 for (p
= mmc
->raminfo
; p
->name
; p
++) {
759 if (p
->flags
& IS_ALIAS
) {
760 SysBusDevice
*mpc_sbd
= SYS_BUS_DEVICE(&mms
->mpc
[p
->mpc
]);
761 MemoryRegion
*upstream
= sysbus_mmio_get_region(mpc_sbd
, 1);
762 make_ram_alias(&mms
->ram
[p
->mrindex
], p
->name
, upstream
, p
->base
);
763 } else if (p
->mpc
== -1) {
764 /* RAM not behind an MPC */
765 MemoryRegion
*mr
= mr_for_raminfo(mms
, p
);
766 memory_region_add_subregion(get_system_memory(), p
->base
, mr
);
771 static uint32_t boot_ram_size(MPS2TZMachineState
*mms
)
773 /* Return the size of the RAM block at guest address zero */
775 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
778 * Use a per-board specification (for when the boot RAM is in
779 * the SSE and so doesn't have a RAMInfo list entry)
781 if (mmc
->boot_ram_size
) {
782 return mmc
->boot_ram_size
;
785 for (p
= mmc
->raminfo
; p
->name
; p
++) {
786 if (p
->base
== boot_mem_base(mms
)) {
790 g_assert_not_reached();
793 static void mps2tz_common_init(MachineState
*machine
)
795 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
796 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
797 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
798 MemoryRegion
*system_memory
= get_system_memory();
799 DeviceState
*iotkitdev
;
800 DeviceState
*dev_splitter
;
805 if (strcmp(machine
->cpu_type
, mc
->default_cpu_type
) != 0) {
806 error_report("This board can only be used with CPU %s",
807 mc
->default_cpu_type
);
811 if (machine
->ram_size
!= mc
->default_ram_size
) {
812 char *sz
= size_to_str(mc
->default_ram_size
);
813 error_report("Invalid RAM size, should be %s", sz
);
818 /* These clocks don't need migration because they are fixed-frequency */
819 mms
->sysclk
= clock_new(OBJECT(machine
), "SYSCLK");
820 clock_set_hz(mms
->sysclk
, mmc
->sysclk_frq
);
821 mms
->s32kclk
= clock_new(OBJECT(machine
), "S32KCLK");
822 clock_set_hz(mms
->s32kclk
, S32KCLK_FRQ
);
824 object_initialize_child(OBJECT(machine
), TYPE_IOTKIT
, &mms
->iotkit
,
826 iotkitdev
= DEVICE(&mms
->iotkit
);
827 object_property_set_link(OBJECT(&mms
->iotkit
), "memory",
828 OBJECT(system_memory
), &error_abort
);
829 qdev_prop_set_uint32(iotkitdev
, "EXP_NUMIRQ", mmc
->numirq
);
830 qdev_prop_set_uint32(iotkitdev
, "init-svtor", mmc
->init_svtor
);
831 qdev_prop_set_uint32(iotkitdev
, "SRAM_ADDR_WIDTH", mmc
->sram_addr_width
);
832 qdev_connect_clock_in(iotkitdev
, "MAINCLK", mms
->sysclk
);
833 qdev_connect_clock_in(iotkitdev
, "S32KCLK", mms
->s32kclk
);
834 sysbus_realize(SYS_BUS_DEVICE(&mms
->iotkit
), &error_fatal
);
837 * If this board has more than one CPU, then we need to create splitters
838 * to feed the IRQ inputs for each CPU in the SSE from each device in the
839 * board. If there is only one CPU, we can just wire the device IRQ
840 * directly to the SSE's IRQ input.
842 assert(mmc
->numirq
<= MPS2TZ_NUMIRQ_MAX
);
843 if (mc
->max_cpus
> 1) {
844 for (i
= 0; i
< mmc
->numirq
; i
++) {
845 char *name
= g_strdup_printf("mps2-irq-splitter%d", i
);
846 SplitIRQ
*splitter
= &mms
->cpu_irq_splitter
[i
];
848 object_initialize_child_with_props(OBJECT(machine
), name
,
849 splitter
, sizeof(*splitter
),
850 TYPE_SPLIT_IRQ
, &error_fatal
,
854 object_property_set_int(OBJECT(splitter
), "num-lines", 2,
856 qdev_realize(DEVICE(splitter
), NULL
, &error_fatal
);
857 qdev_connect_gpio_out(DEVICE(splitter
), 0,
858 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
860 qdev_connect_gpio_out(DEVICE(splitter
), 1,
861 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
866 /* The sec_resp_cfg output from the IoTKit must be split into multiple
867 * lines, one for each of the PPCs we create here, plus one per MSC.
869 object_initialize_child(OBJECT(machine
), "sec-resp-splitter",
870 &mms
->sec_resp_splitter
, TYPE_SPLIT_IRQ
);
871 object_property_set_int(OBJECT(&mms
->sec_resp_splitter
), "num-lines",
872 ARRAY_SIZE(mms
->ppc
) + ARRAY_SIZE(mms
->msc
),
874 qdev_realize(DEVICE(&mms
->sec_resp_splitter
), NULL
, &error_fatal
);
875 dev_splitter
= DEVICE(&mms
->sec_resp_splitter
);
876 qdev_connect_gpio_out_named(iotkitdev
, "sec_resp_cfg", 0,
877 qdev_get_gpio_in(dev_splitter
, 0));
880 * The IoTKit sets up much of the memory layout, including
881 * the aliases between secure and non-secure regions in the
882 * address space, and also most of the devices in the system.
883 * The FPGA itself contains various RAMs and some additional devices.
884 * The FPGA images have an odd combination of different RAMs,
885 * because in hardware they are different implementations and
886 * connected to different buses, giving varying performance/size
887 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
888 * call the largest lump our "system memory".
892 * The overflow IRQs for all UARTs are ORed together.
893 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
894 * Create the OR gate for this: it has one input for the TX overflow
895 * and one for the RX overflow for each UART we might have.
896 * (If the board has fewer than the maximum possible number of UARTs
897 * those inputs are never wired up and are treated as always-zero.)
899 object_initialize_child(OBJECT(mms
), "uart-irq-orgate",
900 &mms
->uart_irq_orgate
, TYPE_OR_IRQ
);
901 object_property_set_int(OBJECT(&mms
->uart_irq_orgate
), "num-lines",
902 2 * ARRAY_SIZE(mms
->uart
),
904 qdev_realize(DEVICE(&mms
->uart_irq_orgate
), NULL
, &error_fatal
);
905 qdev_connect_gpio_out(DEVICE(&mms
->uart_irq_orgate
), 0,
906 get_sse_irq_in(mms
, mmc
->uart_overflow_irq
));
908 /* Most of the devices in the FPGA are behind Peripheral Protection
909 * Controllers. The required order for initializing things is:
910 * + initialize the PPC
911 * + initialize, configure and realize downstream devices
912 * + connect downstream device MemoryRegions to the PPC
914 * + map the PPC's MemoryRegions to the places in the address map
915 * where the downstream devices should appear
916 * + wire up the PPC's control lines to the IoTKit object
919 const PPCInfo an505_ppcs
[] = { {
920 .name
= "apb_ppcexp0",
922 { "ssram-0-mpc", make_mpc
, &mms
->mpc
[0], 0x58007000, 0x1000 },
923 { "ssram-1-mpc", make_mpc
, &mms
->mpc
[1], 0x58008000, 0x1000 },
924 { "ssram-2-mpc", make_mpc
, &mms
->mpc
[2], 0x58009000, 0x1000 },
927 .name
= "apb_ppcexp1",
929 { "spi0", make_spi
, &mms
->spi
[0], 0x40205000, 0x1000, { 51 } },
930 { "spi1", make_spi
, &mms
->spi
[1], 0x40206000, 0x1000, { 52 } },
931 { "spi2", make_spi
, &mms
->spi
[2], 0x40209000, 0x1000, { 53 } },
932 { "spi3", make_spi
, &mms
->spi
[3], 0x4020a000, 0x1000, { 54 } },
933 { "spi4", make_spi
, &mms
->spi
[4], 0x4020b000, 0x1000, { 55 } },
934 { "uart0", make_uart
, &mms
->uart
[0], 0x40200000, 0x1000, { 32, 33, 42 } },
935 { "uart1", make_uart
, &mms
->uart
[1], 0x40201000, 0x1000, { 34, 35, 43 } },
936 { "uart2", make_uart
, &mms
->uart
[2], 0x40202000, 0x1000, { 36, 37, 44 } },
937 { "uart3", make_uart
, &mms
->uart
[3], 0x40203000, 0x1000, { 38, 39, 45 } },
938 { "uart4", make_uart
, &mms
->uart
[4], 0x40204000, 0x1000, { 40, 41, 46 } },
939 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x40207000, 0x1000, {},
940 { .i2c_internal
= true /* touchscreen */ } },
941 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x40208000, 0x1000, {},
942 { .i2c_internal
= true /* audio conf */ } },
943 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x4020c000, 0x1000, {},
944 { .i2c_internal
= false /* shield 0 */ } },
945 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x4020d000, 0x1000, {},
946 { .i2c_internal
= false /* shield 1 */ } },
949 .name
= "apb_ppcexp2",
951 { "scc", make_scc
, &mms
->scc
, 0x40300000, 0x1000 },
952 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
953 0x40301000, 0x1000 },
954 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x40302000, 0x1000 },
957 .name
= "ahb_ppcexp0",
959 { "gfx", make_unimp_dev
, &mms
->gfx
, 0x41000000, 0x140000 },
960 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x40100000, 0x1000 },
961 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x40101000, 0x1000 },
962 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x40102000, 0x1000 },
963 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x40103000, 0x1000 },
964 { "eth", make_eth_dev
, NULL
, 0x42000000, 0x100000, { 48 } },
967 .name
= "ahb_ppcexp1",
969 { "dma0", make_dma
, &mms
->dma
[0], 0x40110000, 0x1000, { 58, 56, 57 } },
970 { "dma1", make_dma
, &mms
->dma
[1], 0x40111000, 0x1000, { 61, 59, 60 } },
971 { "dma2", make_dma
, &mms
->dma
[2], 0x40112000, 0x1000, { 64, 62, 63 } },
972 { "dma3", make_dma
, &mms
->dma
[3], 0x40113000, 0x1000, { 67, 65, 66 } },
977 const PPCInfo an524_ppcs
[] = { {
978 .name
= "apb_ppcexp0",
980 { "bram-mpc", make_mpc
, &mms
->mpc
[0], 0x58007000, 0x1000 },
981 { "qspi-mpc", make_mpc
, &mms
->mpc
[1], 0x58008000, 0x1000 },
982 { "ddr-mpc", make_mpc
, &mms
->mpc
[2], 0x58009000, 0x1000 },
985 .name
= "apb_ppcexp1",
987 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x41200000, 0x1000, {},
988 { .i2c_internal
= true /* touchscreen */ } },
989 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x41201000, 0x1000, {},
990 { .i2c_internal
= true /* audio conf */ } },
991 { "spi0", make_spi
, &mms
->spi
[0], 0x41202000, 0x1000, { 52 } },
992 { "spi1", make_spi
, &mms
->spi
[1], 0x41203000, 0x1000, { 53 } },
993 { "spi2", make_spi
, &mms
->spi
[2], 0x41204000, 0x1000, { 54 } },
994 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x41205000, 0x1000, {},
995 { .i2c_internal
= false /* shield 0 */ } },
996 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x41206000, 0x1000, {},
997 { .i2c_internal
= false /* shield 1 */ } },
998 { /* port 7 reserved */ },
999 { "i2c4", make_i2c
, &mms
->i2c
[4], 0x41208000, 0x1000, {},
1000 { .i2c_internal
= true /* DDR4 EEPROM */ } },
1003 .name
= "apb_ppcexp2",
1005 { "scc", make_scc
, &mms
->scc
, 0x41300000, 0x1000 },
1006 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
1007 0x41301000, 0x1000 },
1008 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x41302000, 0x1000 },
1009 { "uart0", make_uart
, &mms
->uart
[0], 0x41303000, 0x1000, { 32, 33, 42 } },
1010 { "uart1", make_uart
, &mms
->uart
[1], 0x41304000, 0x1000, { 34, 35, 43 } },
1011 { "uart2", make_uart
, &mms
->uart
[2], 0x41305000, 0x1000, { 36, 37, 44 } },
1012 { "uart3", make_uart
, &mms
->uart
[3], 0x41306000, 0x1000, { 38, 39, 45 } },
1013 { "uart4", make_uart
, &mms
->uart
[4], 0x41307000, 0x1000, { 40, 41, 46 } },
1014 { "uart5", make_uart
, &mms
->uart
[5], 0x41308000, 0x1000, { 124, 125, 126 } },
1016 { /* port 9 reserved */ },
1017 { "clcd", make_unimp_dev
, &mms
->cldc
, 0x4130a000, 0x1000 },
1018 { "rtc", make_rtc
, &mms
->rtc
, 0x4130b000, 0x1000 },
1021 .name
= "ahb_ppcexp0",
1023 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x41100000, 0x1000 },
1024 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x41101000, 0x1000 },
1025 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x41102000, 0x1000 },
1026 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x41103000, 0x1000 },
1027 { "eth-usb", make_eth_usb
, NULL
, 0x41400000, 0x200000, { 48 } },
1032 const PPCInfo an547_ppcs
[] = { {
1033 .name
= "apb_ppcexp0",
1035 { "ssram-mpc", make_mpc
, &mms
->mpc
[0], 0x57000000, 0x1000 },
1036 { "qspi-mpc", make_mpc
, &mms
->mpc
[1], 0x57001000, 0x1000 },
1037 { "ddr-mpc", make_mpc
, &mms
->mpc
[2], 0x57002000, 0x1000 },
1040 .name
= "apb_ppcexp1",
1042 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x49200000, 0x1000, {},
1043 { .i2c_internal
= true /* touchscreen */ } },
1044 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x49201000, 0x1000, {},
1045 { .i2c_internal
= true /* audio conf */ } },
1046 { "spi0", make_spi
, &mms
->spi
[0], 0x49202000, 0x1000, { 53 } },
1047 { "spi1", make_spi
, &mms
->spi
[1], 0x49203000, 0x1000, { 54 } },
1048 { "spi2", make_spi
, &mms
->spi
[2], 0x49204000, 0x1000, { 55 } },
1049 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x49205000, 0x1000, {},
1050 { .i2c_internal
= false /* shield 0 */ } },
1051 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x49206000, 0x1000, {},
1052 { .i2c_internal
= false /* shield 1 */ } },
1053 { /* port 7 reserved */ },
1054 { "i2c4", make_i2c
, &mms
->i2c
[4], 0x49208000, 0x1000, {},
1055 { .i2c_internal
= true /* DDR4 EEPROM */ } },
1058 .name
= "apb_ppcexp2",
1060 { "scc", make_scc
, &mms
->scc
, 0x49300000, 0x1000 },
1061 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
, 0x49301000, 0x1000 },
1062 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x49302000, 0x1000 },
1063 { "uart0", make_uart
, &mms
->uart
[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1064 { "uart1", make_uart
, &mms
->uart
[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1065 { "uart2", make_uart
, &mms
->uart
[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1066 { "uart3", make_uart
, &mms
->uart
[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1067 { "uart4", make_uart
, &mms
->uart
[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1068 { "uart5", make_uart
, &mms
->uart
[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1070 { /* port 9 reserved */ },
1071 { "clcd", make_unimp_dev
, &mms
->cldc
, 0x4930a000, 0x1000 },
1072 { "rtc", make_rtc
, &mms
->rtc
, 0x4930b000, 0x1000 },
1075 .name
= "ahb_ppcexp0",
1077 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x41100000, 0x1000 },
1078 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x41101000, 0x1000 },
1079 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x41102000, 0x1000 },
1080 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x41103000, 0x1000 },
1081 { /* port 4 USER AHB interface 0 */ },
1082 { /* port 5 USER AHB interface 1 */ },
1083 { /* port 6 USER AHB interface 2 */ },
1084 { /* port 7 USER AHB interface 3 */ },
1085 { "eth-usb", make_eth_usb
, NULL
, 0x41400000, 0x200000, { 49 } },
1090 switch (mmc
->fpga_type
) {
1094 num_ppcs
= ARRAY_SIZE(an505_ppcs
);
1098 num_ppcs
= ARRAY_SIZE(an524_ppcs
);
1102 num_ppcs
= ARRAY_SIZE(an547_ppcs
);
1105 g_assert_not_reached();
1108 for (i
= 0; i
< num_ppcs
; i
++) {
1109 const PPCInfo
*ppcinfo
= &ppcs
[i
];
1110 TZPPC
*ppc
= &mms
->ppc
[i
];
1111 DeviceState
*ppcdev
;
1115 object_initialize_child(OBJECT(machine
), ppcinfo
->name
, ppc
,
1117 ppcdev
= DEVICE(ppc
);
1119 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
1120 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
1124 if (!pinfo
->devfn
) {
1128 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
,
1129 pinfo
->irqs
, &pinfo
->extradata
);
1130 portname
= g_strdup_printf("port[%d]", port
);
1131 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
1136 sysbus_realize(SYS_BUS_DEVICE(ppc
), &error_fatal
);
1138 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
1139 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
1141 if (!pinfo
->devfn
) {
1144 sysbus_mmio_map(SYS_BUS_DEVICE(ppc
), port
, pinfo
->addr
);
1146 gpioname
= g_strdup_printf("%s_nonsec", ppcinfo
->name
);
1147 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
1148 qdev_get_gpio_in_named(ppcdev
,
1152 gpioname
= g_strdup_printf("%s_ap", ppcinfo
->name
);
1153 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
1154 qdev_get_gpio_in_named(ppcdev
,
1159 gpioname
= g_strdup_printf("%s_irq_enable", ppcinfo
->name
);
1160 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
1161 qdev_get_gpio_in_named(ppcdev
,
1164 gpioname
= g_strdup_printf("%s_irq_clear", ppcinfo
->name
);
1165 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
1166 qdev_get_gpio_in_named(ppcdev
,
1169 gpioname
= g_strdup_printf("%s_irq_status", ppcinfo
->name
);
1170 qdev_connect_gpio_out_named(ppcdev
, "irq", 0,
1171 qdev_get_gpio_in_named(iotkitdev
,
1175 qdev_connect_gpio_out(dev_splitter
, i
,
1176 qdev_get_gpio_in_named(ppcdev
,
1177 "cfg_sec_resp", 0));
1180 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1182 if (mmc
->fpga_type
== FPGA_AN547
) {
1183 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1184 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1187 create_non_mpc_ram(mms
);
1189 if (mmc
->fpga_type
== FPGA_AN524
) {
1191 * Connect the line from the SCC so that we can remap when the
1192 * guest updates that register.
1194 mms
->remap_irq
= qemu_allocate_irq(remap_irq_fn
, mms
, 0);
1195 qdev_connect_gpio_out_named(DEVICE(&mms
->scc
), "remap", 0,
1199 armv7m_load_kernel(ARM_CPU(first_cpu
), machine
->kernel_filename
,
1200 0, boot_ram_size(mms
));
1203 static void mps2_tz_idau_check(IDAUInterface
*ii
, uint32_t address
,
1204 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1207 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1208 * the Master Security Controllers. Thes have the same logic as
1209 * is used by the IoTKit for the IDAU connected to the CPU, except
1210 * that MSCs don't care about the NSC attribute.
1212 int region
= extract32(address
, 28, 4);
1214 *ns
= !(region
& 1);
1216 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1217 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1221 static char *mps2_get_remap(Object
*obj
, Error
**errp
)
1223 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(obj
);
1224 const char *val
= mms
->remap
? "QSPI" : "BRAM";
1225 return g_strdup(val
);
1228 static void mps2_set_remap(Object
*obj
, const char *value
, Error
**errp
)
1230 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(obj
);
1232 if (!strcmp(value
, "BRAM")) {
1234 } else if (!strcmp(value
, "QSPI")) {
1237 error_setg(errp
, "Invalid remap value");
1238 error_append_hint(errp
, "Valid values are BRAM and QSPI.\n");
1242 static void mps2_machine_reset(MachineState
*machine
)
1244 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
1247 * Set the initial memory mapping before triggering the reset of
1248 * the rest of the system, so that the guest image loader and CPU
1249 * reset see the correct mapping.
1251 remap_memory(mms
, mms
->remap
);
1252 qemu_devices_reset();
1255 static void mps2tz_class_init(ObjectClass
*oc
, void *data
)
1257 MachineClass
*mc
= MACHINE_CLASS(oc
);
1258 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(oc
);
1260 mc
->init
= mps2tz_common_init
;
1261 mc
->reset
= mps2_machine_reset
;
1262 iic
->check
= mps2_tz_idau_check
;
1265 static void mps2tz_set_default_ram_info(MPS2TZMachineClass
*mmc
)
1268 * Set mc->default_ram_size and default_ram_id from the
1269 * information in mmc->raminfo.
1271 MachineClass
*mc
= MACHINE_CLASS(mmc
);
1274 for (p
= mmc
->raminfo
; p
->name
; p
++) {
1275 if (p
->mrindex
< 0) {
1276 /* Found the entry for "system memory" */
1277 mc
->default_ram_size
= p
->size
;
1278 mc
->default_ram_id
= p
->name
;
1282 g_assert_not_reached();
1285 static void mps2tz_an505_class_init(ObjectClass
*oc
, void *data
)
1287 MachineClass
*mc
= MACHINE_CLASS(oc
);
1288 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1290 mc
->desc
= "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1291 mc
->default_cpus
= 1;
1292 mc
->min_cpus
= mc
->default_cpus
;
1293 mc
->max_cpus
= mc
->default_cpus
;
1294 mmc
->fpga_type
= FPGA_AN505
;
1295 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1296 mmc
->scc_id
= 0x41045050;
1297 mmc
->sysclk_frq
= 20 * 1000 * 1000; /* 20MHz */
1298 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1299 mmc
->oscclk
= an505_oscclk
;
1300 mmc
->len_oscclk
= ARRAY_SIZE(an505_oscclk
);
1301 mmc
->fpgaio_num_leds
= 2;
1302 mmc
->fpgaio_has_switches
= false;
1303 mmc
->fpgaio_has_dbgctrl
= false;
1305 mmc
->uart_overflow_irq
= 47;
1306 mmc
->init_svtor
= 0x10000000;
1307 mmc
->sram_addr_width
= 15;
1308 mmc
->raminfo
= an505_raminfo
;
1309 mmc
->armsse_type
= TYPE_IOTKIT
;
1310 mmc
->boot_ram_size
= 0;
1311 mps2tz_set_default_ram_info(mmc
);
1314 static void mps2tz_an521_class_init(ObjectClass
*oc
, void *data
)
1316 MachineClass
*mc
= MACHINE_CLASS(oc
);
1317 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1319 mc
->desc
= "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1320 mc
->default_cpus
= 2;
1321 mc
->min_cpus
= mc
->default_cpus
;
1322 mc
->max_cpus
= mc
->default_cpus
;
1323 mmc
->fpga_type
= FPGA_AN521
;
1324 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1325 mmc
->scc_id
= 0x41045210;
1326 mmc
->sysclk_frq
= 20 * 1000 * 1000; /* 20MHz */
1327 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1328 mmc
->oscclk
= an505_oscclk
; /* AN521 is the same as AN505 here */
1329 mmc
->len_oscclk
= ARRAY_SIZE(an505_oscclk
);
1330 mmc
->fpgaio_num_leds
= 2;
1331 mmc
->fpgaio_has_switches
= false;
1332 mmc
->fpgaio_has_dbgctrl
= false;
1334 mmc
->uart_overflow_irq
= 47;
1335 mmc
->init_svtor
= 0x10000000;
1336 mmc
->sram_addr_width
= 15;
1337 mmc
->raminfo
= an505_raminfo
; /* AN521 is the same as AN505 here */
1338 mmc
->armsse_type
= TYPE_SSE200
;
1339 mmc
->boot_ram_size
= 0;
1340 mps2tz_set_default_ram_info(mmc
);
1343 static void mps3tz_an524_class_init(ObjectClass
*oc
, void *data
)
1345 MachineClass
*mc
= MACHINE_CLASS(oc
);
1346 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1348 mc
->desc
= "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1349 mc
->default_cpus
= 2;
1350 mc
->min_cpus
= mc
->default_cpus
;
1351 mc
->max_cpus
= mc
->default_cpus
;
1352 mmc
->fpga_type
= FPGA_AN524
;
1353 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1354 mmc
->scc_id
= 0x41045240;
1355 mmc
->sysclk_frq
= 32 * 1000 * 1000; /* 32MHz */
1356 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1357 mmc
->oscclk
= an524_oscclk
;
1358 mmc
->len_oscclk
= ARRAY_SIZE(an524_oscclk
);
1359 mmc
->fpgaio_num_leds
= 10;
1360 mmc
->fpgaio_has_switches
= true;
1361 mmc
->fpgaio_has_dbgctrl
= false;
1363 mmc
->uart_overflow_irq
= 47;
1364 mmc
->init_svtor
= 0x10000000;
1365 mmc
->sram_addr_width
= 15;
1366 mmc
->raminfo
= an524_raminfo
;
1367 mmc
->armsse_type
= TYPE_SSE200
;
1368 mmc
->boot_ram_size
= 0;
1369 mps2tz_set_default_ram_info(mmc
);
1371 object_class_property_add_str(oc
, "remap", mps2_get_remap
, mps2_set_remap
);
1372 object_class_property_set_description(oc
, "remap",
1373 "Set memory mapping. Valid values "
1374 "are BRAM (default) and QSPI.");
1377 static void mps3tz_an547_class_init(ObjectClass
*oc
, void *data
)
1379 MachineClass
*mc
= MACHINE_CLASS(oc
);
1380 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1382 mc
->desc
= "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1383 mc
->default_cpus
= 1;
1384 mc
->min_cpus
= mc
->default_cpus
;
1385 mc
->max_cpus
= mc
->default_cpus
;
1386 mmc
->fpga_type
= FPGA_AN547
;
1387 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m55");
1388 mmc
->scc_id
= 0x41055470;
1389 mmc
->sysclk_frq
= 32 * 1000 * 1000; /* 32MHz */
1390 mmc
->apb_periph_frq
= 25 * 1000 * 1000; /* 25MHz */
1391 mmc
->oscclk
= an524_oscclk
; /* same as AN524 */
1392 mmc
->len_oscclk
= ARRAY_SIZE(an524_oscclk
);
1393 mmc
->fpgaio_num_leds
= 10;
1394 mmc
->fpgaio_has_switches
= true;
1395 mmc
->fpgaio_has_dbgctrl
= true;
1397 mmc
->uart_overflow_irq
= 48;
1398 mmc
->init_svtor
= 0x00000000;
1399 mmc
->sram_addr_width
= 21;
1400 mmc
->raminfo
= an547_raminfo
;
1401 mmc
->armsse_type
= TYPE_SSE300
;
1402 mmc
->boot_ram_size
= 512 * KiB
;
1403 mps2tz_set_default_ram_info(mmc
);
1406 static const TypeInfo mps2tz_info
= {
1407 .name
= TYPE_MPS2TZ_MACHINE
,
1408 .parent
= TYPE_MACHINE
,
1410 .instance_size
= sizeof(MPS2TZMachineState
),
1411 .class_size
= sizeof(MPS2TZMachineClass
),
1412 .class_init
= mps2tz_class_init
,
1413 .interfaces
= (InterfaceInfo
[]) {
1414 { TYPE_IDAU_INTERFACE
},
1419 static const TypeInfo mps2tz_an505_info
= {
1420 .name
= TYPE_MPS2TZ_AN505_MACHINE
,
1421 .parent
= TYPE_MPS2TZ_MACHINE
,
1422 .class_init
= mps2tz_an505_class_init
,
1425 static const TypeInfo mps2tz_an521_info
= {
1426 .name
= TYPE_MPS2TZ_AN521_MACHINE
,
1427 .parent
= TYPE_MPS2TZ_MACHINE
,
1428 .class_init
= mps2tz_an521_class_init
,
1431 static const TypeInfo mps3tz_an524_info
= {
1432 .name
= TYPE_MPS3TZ_AN524_MACHINE
,
1433 .parent
= TYPE_MPS2TZ_MACHINE
,
1434 .class_init
= mps3tz_an524_class_init
,
1437 static const TypeInfo mps3tz_an547_info
= {
1438 .name
= TYPE_MPS3TZ_AN547_MACHINE
,
1439 .parent
= TYPE_MPS2TZ_MACHINE
,
1440 .class_init
= mps3tz_an547_class_init
,
1443 static void mps2tz_machine_init(void)
1445 type_register_static(&mps2tz_info
);
1446 type_register_static(&mps2tz_an505_info
);
1447 type_register_static(&mps2tz_an521_info
);
1448 type_register_static(&mps3tz_an524_info
);
1449 type_register_static(&mps3tz_an547_info
);
1452 type_init(mps2tz_machine_init
);