target/arm/hvf: Include missing "cpregs.h"
[qemu.git] / target / arm / hvf / hvf.c
blob1fdc5eef92bc43bb352491416ae4affaf7bd6b5e
1 /*
2 * QEMU Hypervisor.framework support for Apple Silicon
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5 * Copyright 2020 Google LLC
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
22 #include <mach/mach_time.h>
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
34 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
35 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36 #define PL1_WRITE_MASK 0x4
38 #define SYSREG_OP0_SHIFT 20
39 #define SYSREG_OP0_MASK 0x3
40 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
41 #define SYSREG_OP1_SHIFT 14
42 #define SYSREG_OP1_MASK 0x7
43 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
44 #define SYSREG_CRN_SHIFT 10
45 #define SYSREG_CRN_MASK 0xf
46 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
47 #define SYSREG_CRM_SHIFT 1
48 #define SYSREG_CRM_MASK 0xf
49 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
50 #define SYSREG_OP2_SHIFT 17
51 #define SYSREG_OP2_MASK 0x7
52 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
54 #define SYSREG(op0, op1, crn, crm, op2) \
55 ((op0 << SYSREG_OP0_SHIFT) | \
56 (op1 << SYSREG_OP1_SHIFT) | \
57 (crn << SYSREG_CRN_SHIFT) | \
58 (crm << SYSREG_CRM_SHIFT) | \
59 (op2 << SYSREG_OP2_SHIFT))
60 #define SYSREG_MASK \
61 SYSREG(SYSREG_OP0_MASK, \
62 SYSREG_OP1_MASK, \
63 SYSREG_CRN_MASK, \
64 SYSREG_CRM_MASK, \
65 SYSREG_OP2_MASK)
66 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
67 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
68 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
69 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
70 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
71 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
72 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
73 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
74 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
75 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
76 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
77 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
78 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
79 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
80 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
81 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
83 #define WFX_IS_WFE (1 << 0)
85 #define TMR_CTL_ENABLE (1 << 0)
86 #define TMR_CTL_IMASK (1 << 1)
87 #define TMR_CTL_ISTATUS (1 << 2)
89 static void hvf_wfi(CPUState *cpu);
91 typedef struct HVFVTimer {
92 /* Vtimer value during migration and paused state */
93 uint64_t vtimer_val;
94 } HVFVTimer;
96 static HVFVTimer vtimer;
98 typedef struct ARMHostCPUFeatures {
99 ARMISARegisters isar;
100 uint64_t features;
101 uint64_t midr;
102 uint32_t reset_sctlr;
103 const char *dtb_compatible;
104 } ARMHostCPUFeatures;
106 static ARMHostCPUFeatures arm_host_cpu_features;
108 struct hvf_reg_match {
109 int reg;
110 uint64_t offset;
113 static const struct hvf_reg_match hvf_reg_match[] = {
114 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
115 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
116 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
117 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
118 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
119 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
120 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
121 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
122 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
123 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
124 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
125 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
126 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
127 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
128 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
129 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
130 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
131 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
132 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
133 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
134 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
135 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
136 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
137 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
138 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
139 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
140 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
141 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
142 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
143 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
144 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
145 { HV_REG_PC, offsetof(CPUARMState, pc) },
148 static const struct hvf_reg_match hvf_fpreg_match[] = {
149 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
150 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
151 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
152 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
153 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
154 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
155 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
156 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
157 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
158 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
159 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
160 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
161 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
162 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
163 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
164 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
165 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
166 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
167 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
168 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
169 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
170 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
171 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
172 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
173 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
174 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
175 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
176 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
177 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
178 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
179 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
180 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
183 struct hvf_sreg_match {
184 int reg;
185 uint32_t key;
186 uint32_t cp_idx;
189 static struct hvf_sreg_match hvf_sreg_match[] = {
190 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
191 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
192 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
193 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
195 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
196 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
197 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
198 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
200 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
201 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
202 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
203 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
205 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
206 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
207 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
208 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
210 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
211 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
212 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
213 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
215 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
216 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
217 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
218 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
220 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
221 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
222 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
223 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
225 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
226 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
227 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
228 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
230 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
231 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
232 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
233 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
235 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
236 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
237 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
238 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
240 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
241 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
242 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
243 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
245 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
246 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
247 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
248 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
250 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
251 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
252 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
253 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
255 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
256 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
257 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
258 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
260 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
261 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
262 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
263 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
265 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
266 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
267 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
268 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
270 #ifdef SYNC_NO_RAW_REGS
272 * The registers below are manually synced on init because they are
273 * marked as NO_RAW. We still list them to make number space sync easier.
275 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
276 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
277 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
278 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
279 #endif
280 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
281 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
282 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
283 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
284 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
285 #ifdef SYNC_NO_MMFR0
286 /* We keep the hardware MMFR0 around. HW limits are there anyway */
287 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
288 #endif
289 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
290 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
292 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
293 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
294 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
295 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
296 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
297 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
299 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
300 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
301 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
302 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
303 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
304 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
305 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
306 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
307 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
308 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
310 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
311 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
312 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
313 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
314 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
315 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
316 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
317 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
318 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
319 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
320 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
321 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
322 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
323 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
324 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
325 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
326 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
327 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
328 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
329 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
332 int hvf_get_registers(CPUState *cpu)
334 ARMCPU *arm_cpu = ARM_CPU(cpu);
335 CPUARMState *env = &arm_cpu->env;
336 hv_return_t ret;
337 uint64_t val;
338 hv_simd_fp_uchar16_t fpval;
339 int i;
341 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
342 ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
343 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
344 assert_hvf_ok(ret);
347 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
348 ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
349 &fpval);
350 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
351 assert_hvf_ok(ret);
354 val = 0;
355 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
356 assert_hvf_ok(ret);
357 vfp_set_fpcr(env, val);
359 val = 0;
360 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
361 assert_hvf_ok(ret);
362 vfp_set_fpsr(env, val);
364 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
365 assert_hvf_ok(ret);
366 pstate_write(env, val);
368 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
369 if (hvf_sreg_match[i].cp_idx == -1) {
370 continue;
373 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
374 assert_hvf_ok(ret);
376 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
378 assert(write_list_to_cpustate(arm_cpu));
380 aarch64_restore_sp(env, arm_current_el(env));
382 return 0;
385 int hvf_put_registers(CPUState *cpu)
387 ARMCPU *arm_cpu = ARM_CPU(cpu);
388 CPUARMState *env = &arm_cpu->env;
389 hv_return_t ret;
390 uint64_t val;
391 hv_simd_fp_uchar16_t fpval;
392 int i;
394 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
395 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
396 ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
397 assert_hvf_ok(ret);
400 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
401 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
402 ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
403 fpval);
404 assert_hvf_ok(ret);
407 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
408 assert_hvf_ok(ret);
410 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
411 assert_hvf_ok(ret);
413 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
414 assert_hvf_ok(ret);
416 aarch64_save_sp(env, arm_current_el(env));
418 assert(write_cpustate_to_list(arm_cpu, false));
419 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
420 if (hvf_sreg_match[i].cp_idx == -1) {
421 continue;
424 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
425 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
426 assert_hvf_ok(ret);
429 ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
430 assert_hvf_ok(ret);
432 return 0;
435 static void flush_cpu_state(CPUState *cpu)
437 if (cpu->vcpu_dirty) {
438 hvf_put_registers(cpu);
439 cpu->vcpu_dirty = false;
443 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
445 hv_return_t r;
447 flush_cpu_state(cpu);
449 if (rt < 31) {
450 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
451 assert_hvf_ok(r);
455 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
457 uint64_t val = 0;
458 hv_return_t r;
460 flush_cpu_state(cpu);
462 if (rt < 31) {
463 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
464 assert_hvf_ok(r);
467 return val;
470 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
472 ARMISARegisters host_isar = {};
473 const struct isar_regs {
474 int reg;
475 uint64_t *val;
476 } regs[] = {
477 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
478 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
479 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
480 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
481 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
482 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
483 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
484 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
485 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
487 hv_vcpu_t fd;
488 hv_return_t r = HV_SUCCESS;
489 hv_vcpu_exit_t *exit;
490 int i;
492 ahcf->dtb_compatible = "arm,arm-v8";
493 ahcf->features = (1ULL << ARM_FEATURE_V8) |
494 (1ULL << ARM_FEATURE_NEON) |
495 (1ULL << ARM_FEATURE_AARCH64) |
496 (1ULL << ARM_FEATURE_PMU) |
497 (1ULL << ARM_FEATURE_GENERIC_TIMER);
499 /* We set up a small vcpu to extract host registers */
501 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
502 return false;
505 for (i = 0; i < ARRAY_SIZE(regs); i++) {
506 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
508 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
509 r |= hv_vcpu_destroy(fd);
511 ahcf->isar = host_isar;
514 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
515 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
517 ahcf->reset_sctlr = 0x30100180;
519 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
520 * let's disable it on boot and then allow guest software to turn it on by
521 * setting it to 0.
523 ahcf->reset_sctlr |= 0x00800000;
525 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
526 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
527 return false;
530 return r == HV_SUCCESS;
533 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
535 if (!arm_host_cpu_features.dtb_compatible) {
536 if (!hvf_enabled() ||
537 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
539 * We can't report this error yet, so flag that we need to
540 * in arm_cpu_realizefn().
542 cpu->host_cpu_probe_failed = true;
543 return;
547 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
548 cpu->isar = arm_host_cpu_features.isar;
549 cpu->env.features = arm_host_cpu_features.features;
550 cpu->midr = arm_host_cpu_features.midr;
551 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
554 void hvf_arch_vcpu_destroy(CPUState *cpu)
558 int hvf_arch_init_vcpu(CPUState *cpu)
560 ARMCPU *arm_cpu = ARM_CPU(cpu);
561 CPUARMState *env = &arm_cpu->env;
562 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
563 uint32_t sregs_cnt = 0;
564 uint64_t pfr;
565 hv_return_t ret;
566 int i;
568 env->aarch64 = true;
569 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
571 /* Allocate enough space for our sysreg sync */
572 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
573 sregs_match_len);
574 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
575 sregs_match_len);
576 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
577 arm_cpu->cpreg_vmstate_indexes,
578 sregs_match_len);
579 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
580 arm_cpu->cpreg_vmstate_values,
581 sregs_match_len);
583 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
585 /* Populate cp list for all known sysregs */
586 for (i = 0; i < sregs_match_len; i++) {
587 const ARMCPRegInfo *ri;
588 uint32_t key = hvf_sreg_match[i].key;
590 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
591 if (ri) {
592 assert(!(ri->type & ARM_CP_NO_RAW));
593 hvf_sreg_match[i].cp_idx = sregs_cnt;
594 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
595 } else {
596 hvf_sreg_match[i].cp_idx = -1;
599 arm_cpu->cpreg_array_len = sregs_cnt;
600 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
602 assert(write_cpustate_to_list(arm_cpu, false));
604 /* Set CP_NO_RAW system registers on init */
605 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
606 arm_cpu->midr);
607 assert_hvf_ok(ret);
609 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
610 arm_cpu->mp_affinity);
611 assert_hvf_ok(ret);
613 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
614 assert_hvf_ok(ret);
615 pfr |= env->gicv3state ? (1 << 24) : 0;
616 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
617 assert_hvf_ok(ret);
619 /* We're limited to underlying hardware caps, override internal versions */
620 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
621 &arm_cpu->isar.id_aa64mmfr0);
622 assert_hvf_ok(ret);
624 return 0;
627 void hvf_kick_vcpu_thread(CPUState *cpu)
629 cpus_kick_thread(cpu);
630 hv_vcpus_exit(&cpu->hvf->fd, 1);
633 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
634 uint32_t syndrome)
636 ARMCPU *arm_cpu = ARM_CPU(cpu);
637 CPUARMState *env = &arm_cpu->env;
639 cpu->exception_index = excp;
640 env->exception.target_el = 1;
641 env->exception.syndrome = syndrome;
643 arm_cpu_do_interrupt(cpu);
646 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
648 int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
649 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
653 * Handle a PSCI call.
655 * Returns 0 on success
656 * -1 when the PSCI call is unknown,
658 static bool hvf_handle_psci_call(CPUState *cpu)
660 ARMCPU *arm_cpu = ARM_CPU(cpu);
661 CPUARMState *env = &arm_cpu->env;
662 uint64_t param[4] = {
663 env->xregs[0],
664 env->xregs[1],
665 env->xregs[2],
666 env->xregs[3]
668 uint64_t context_id, mpidr;
669 bool target_aarch64 = true;
670 CPUState *target_cpu_state;
671 ARMCPU *target_cpu;
672 target_ulong entry;
673 int target_el = 1;
674 int32_t ret = 0;
676 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
677 arm_cpu->mp_affinity);
679 switch (param[0]) {
680 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
681 ret = QEMU_PSCI_VERSION_1_1;
682 break;
683 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
684 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
685 break;
686 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
687 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
688 mpidr = param[1];
690 switch (param[2]) {
691 case 0:
692 target_cpu_state = arm_get_cpu_by_id(mpidr);
693 if (!target_cpu_state) {
694 ret = QEMU_PSCI_RET_INVALID_PARAMS;
695 break;
697 target_cpu = ARM_CPU(target_cpu_state);
699 ret = target_cpu->power_state;
700 break;
701 default:
702 /* Everything above affinity level 0 is always on. */
703 ret = 0;
705 break;
706 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
707 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
709 * QEMU reset and shutdown are async requests, but PSCI
710 * mandates that we never return from the reset/shutdown
711 * call, so power the CPU off now so it doesn't execute
712 * anything further.
714 hvf_psci_cpu_off(arm_cpu);
715 break;
716 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
717 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
718 hvf_psci_cpu_off(arm_cpu);
719 break;
720 case QEMU_PSCI_0_1_FN_CPU_ON:
721 case QEMU_PSCI_0_2_FN_CPU_ON:
722 case QEMU_PSCI_0_2_FN64_CPU_ON:
723 mpidr = param[1];
724 entry = param[2];
725 context_id = param[3];
726 ret = arm_set_cpu_on(mpidr, entry, context_id,
727 target_el, target_aarch64);
728 break;
729 case QEMU_PSCI_0_1_FN_CPU_OFF:
730 case QEMU_PSCI_0_2_FN_CPU_OFF:
731 hvf_psci_cpu_off(arm_cpu);
732 break;
733 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
734 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
735 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
736 /* Affinity levels are not supported in QEMU */
737 if (param[1] & 0xfffe0000) {
738 ret = QEMU_PSCI_RET_INVALID_PARAMS;
739 break;
741 /* Powerdown is not supported, we always go into WFI */
742 env->xregs[0] = 0;
743 hvf_wfi(cpu);
744 break;
745 case QEMU_PSCI_0_1_FN_MIGRATE:
746 case QEMU_PSCI_0_2_FN_MIGRATE:
747 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
748 break;
749 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
750 switch (param[1]) {
751 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
752 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
753 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
754 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
755 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
756 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
757 case QEMU_PSCI_0_1_FN_CPU_ON:
758 case QEMU_PSCI_0_2_FN_CPU_ON:
759 case QEMU_PSCI_0_2_FN64_CPU_ON:
760 case QEMU_PSCI_0_1_FN_CPU_OFF:
761 case QEMU_PSCI_0_2_FN_CPU_OFF:
762 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
763 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
764 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
765 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
766 ret = 0;
767 break;
768 case QEMU_PSCI_0_1_FN_MIGRATE:
769 case QEMU_PSCI_0_2_FN_MIGRATE:
770 default:
771 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
773 break;
774 default:
775 return false;
778 env->xregs[0] = ret;
779 return true;
782 static bool is_id_sysreg(uint32_t reg)
784 return SYSREG_OP0(reg) == 3 &&
785 SYSREG_OP1(reg) == 0 &&
786 SYSREG_CRN(reg) == 0 &&
787 SYSREG_CRM(reg) >= 1 &&
788 SYSREG_CRM(reg) < 8;
791 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
793 ARMCPU *arm_cpu = ARM_CPU(cpu);
794 CPUARMState *env = &arm_cpu->env;
795 uint64_t val = 0;
797 switch (reg) {
798 case SYSREG_CNTPCT_EL0:
799 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
800 gt_cntfrq_period_ns(arm_cpu);
801 break;
802 case SYSREG_PMCR_EL0:
803 val = env->cp15.c9_pmcr;
804 break;
805 case SYSREG_PMCCNTR_EL0:
806 pmu_op_start(env);
807 val = env->cp15.c15_ccnt;
808 pmu_op_finish(env);
809 break;
810 case SYSREG_PMCNTENCLR_EL0:
811 val = env->cp15.c9_pmcnten;
812 break;
813 case SYSREG_PMOVSCLR_EL0:
814 val = env->cp15.c9_pmovsr;
815 break;
816 case SYSREG_PMSELR_EL0:
817 val = env->cp15.c9_pmselr;
818 break;
819 case SYSREG_PMINTENCLR_EL1:
820 val = env->cp15.c9_pminten;
821 break;
822 case SYSREG_PMCCFILTR_EL0:
823 val = env->cp15.pmccfiltr_el0;
824 break;
825 case SYSREG_PMCNTENSET_EL0:
826 val = env->cp15.c9_pmcnten;
827 break;
828 case SYSREG_PMUSERENR_EL0:
829 val = env->cp15.c9_pmuserenr;
830 break;
831 case SYSREG_PMCEID0_EL0:
832 case SYSREG_PMCEID1_EL0:
833 /* We can't really count anything yet, declare all events invalid */
834 val = 0;
835 break;
836 case SYSREG_OSLSR_EL1:
837 val = env->cp15.oslsr_el1;
838 break;
839 case SYSREG_OSDLR_EL1:
840 /* Dummy register */
841 break;
842 default:
843 if (is_id_sysreg(reg)) {
844 /* ID system registers read as RES0 */
845 val = 0;
846 break;
848 cpu_synchronize_state(cpu);
849 trace_hvf_unhandled_sysreg_read(env->pc, reg,
850 SYSREG_OP0(reg),
851 SYSREG_OP1(reg),
852 SYSREG_CRN(reg),
853 SYSREG_CRM(reg),
854 SYSREG_OP2(reg));
855 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
856 return 1;
859 trace_hvf_sysreg_read(reg,
860 SYSREG_OP0(reg),
861 SYSREG_OP1(reg),
862 SYSREG_CRN(reg),
863 SYSREG_CRM(reg),
864 SYSREG_OP2(reg),
865 val);
866 hvf_set_reg(cpu, rt, val);
868 return 0;
871 static void pmu_update_irq(CPUARMState *env)
873 ARMCPU *cpu = env_archcpu(env);
874 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
875 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
878 static bool pmu_event_supported(uint16_t number)
880 return false;
883 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
884 * the current EL, security state, and register configuration.
886 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
888 uint64_t filter;
889 bool enabled, filtered = true;
890 int el = arm_current_el(env);
892 enabled = (env->cp15.c9_pmcr & PMCRE) &&
893 (env->cp15.c9_pmcnten & (1 << counter));
895 if (counter == 31) {
896 filter = env->cp15.pmccfiltr_el0;
897 } else {
898 filter = env->cp15.c14_pmevtyper[counter];
901 if (el == 0) {
902 filtered = filter & PMXEVTYPER_U;
903 } else if (el == 1) {
904 filtered = filter & PMXEVTYPER_P;
907 if (counter != 31) {
909 * If not checking PMCCNTR, ensure the counter is setup to an event we
910 * support
912 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
913 if (!pmu_event_supported(event)) {
914 return false;
918 return enabled && !filtered;
921 static void pmswinc_write(CPUARMState *env, uint64_t value)
923 unsigned int i;
924 for (i = 0; i < pmu_num_counters(env); i++) {
925 /* Increment a counter's count iff: */
926 if ((value & (1 << i)) && /* counter's bit is set */
927 /* counter is enabled and not filtered */
928 pmu_counter_enabled(env, i) &&
929 /* counter is SW_INCR */
930 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
932 * Detect if this write causes an overflow since we can't predict
933 * PMSWINC overflows like we can for other events
935 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
937 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
938 env->cp15.c9_pmovsr |= (1 << i);
939 pmu_update_irq(env);
942 env->cp15.c14_pmevcntr[i] = new_pmswinc;
947 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
949 ARMCPU *arm_cpu = ARM_CPU(cpu);
950 CPUARMState *env = &arm_cpu->env;
952 trace_hvf_sysreg_write(reg,
953 SYSREG_OP0(reg),
954 SYSREG_OP1(reg),
955 SYSREG_CRN(reg),
956 SYSREG_CRM(reg),
957 SYSREG_OP2(reg),
958 val);
960 switch (reg) {
961 case SYSREG_PMCCNTR_EL0:
962 pmu_op_start(env);
963 env->cp15.c15_ccnt = val;
964 pmu_op_finish(env);
965 break;
966 case SYSREG_PMCR_EL0:
967 pmu_op_start(env);
969 if (val & PMCRC) {
970 /* The counter has been reset */
971 env->cp15.c15_ccnt = 0;
974 if (val & PMCRP) {
975 unsigned int i;
976 for (i = 0; i < pmu_num_counters(env); i++) {
977 env->cp15.c14_pmevcntr[i] = 0;
981 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
982 env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK);
984 pmu_op_finish(env);
985 break;
986 case SYSREG_PMUSERENR_EL0:
987 env->cp15.c9_pmuserenr = val & 0xf;
988 break;
989 case SYSREG_PMCNTENSET_EL0:
990 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
991 break;
992 case SYSREG_PMCNTENCLR_EL0:
993 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
994 break;
995 case SYSREG_PMINTENCLR_EL1:
996 pmu_op_start(env);
997 env->cp15.c9_pminten |= val;
998 pmu_op_finish(env);
999 break;
1000 case SYSREG_PMOVSCLR_EL0:
1001 pmu_op_start(env);
1002 env->cp15.c9_pmovsr &= ~val;
1003 pmu_op_finish(env);
1004 break;
1005 case SYSREG_PMSWINC_EL0:
1006 pmu_op_start(env);
1007 pmswinc_write(env, val);
1008 pmu_op_finish(env);
1009 break;
1010 case SYSREG_PMSELR_EL0:
1011 env->cp15.c9_pmselr = val & 0x1f;
1012 break;
1013 case SYSREG_PMCCFILTR_EL0:
1014 pmu_op_start(env);
1015 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1016 pmu_op_finish(env);
1017 break;
1018 case SYSREG_OSLAR_EL1:
1019 env->cp15.oslsr_el1 = val & 1;
1020 break;
1021 case SYSREG_OSDLR_EL1:
1022 /* Dummy register */
1023 break;
1024 default:
1025 cpu_synchronize_state(cpu);
1026 trace_hvf_unhandled_sysreg_write(env->pc, reg,
1027 SYSREG_OP0(reg),
1028 SYSREG_OP1(reg),
1029 SYSREG_CRN(reg),
1030 SYSREG_CRM(reg),
1031 SYSREG_OP2(reg));
1032 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1033 return 1;
1036 return 0;
1039 static int hvf_inject_interrupts(CPUState *cpu)
1041 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1042 trace_hvf_inject_fiq();
1043 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
1044 true);
1047 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1048 trace_hvf_inject_irq();
1049 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
1050 true);
1053 return 0;
1056 static uint64_t hvf_vtimer_val_raw(void)
1059 * mach_absolute_time() returns the vtimer value without the VM
1060 * offset that we define. Add our own offset on top.
1062 return mach_absolute_time() - hvf_state->vtimer_offset;
1065 static uint64_t hvf_vtimer_val(void)
1067 if (!runstate_is_running()) {
1068 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1069 return vtimer.vtimer_val;
1072 return hvf_vtimer_val_raw();
1075 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1078 * Use pselect to sleep so that other threads can IPI us while we're
1079 * sleeping.
1081 qatomic_mb_set(&cpu->thread_kicked, false);
1082 qemu_mutex_unlock_iothread();
1083 pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1084 qemu_mutex_lock_iothread();
1087 static void hvf_wfi(CPUState *cpu)
1089 ARMCPU *arm_cpu = ARM_CPU(cpu);
1090 struct timespec ts;
1091 hv_return_t r;
1092 uint64_t ctl;
1093 uint64_t cval;
1094 int64_t ticks_to_sleep;
1095 uint64_t seconds;
1096 uint64_t nanos;
1097 uint32_t cntfrq;
1099 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1100 /* Interrupt pending, no need to wait */
1101 return;
1104 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1105 assert_hvf_ok(r);
1107 if (!(ctl & 1) || (ctl & 2)) {
1108 /* Timer disabled or masked, just wait for an IPI. */
1109 hvf_wait_for_ipi(cpu, NULL);
1110 return;
1113 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1114 assert_hvf_ok(r);
1116 ticks_to_sleep = cval - hvf_vtimer_val();
1117 if (ticks_to_sleep < 0) {
1118 return;
1121 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1122 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1123 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1124 nanos = ticks_to_sleep * cntfrq;
1127 * Don't sleep for less than the time a context switch would take,
1128 * so that we can satisfy fast timer requests on the same CPU.
1129 * Measurements on M1 show the sweet spot to be ~2ms.
1131 if (!seconds && nanos < (2 * SCALE_MS)) {
1132 return;
1135 ts = (struct timespec) { seconds, nanos };
1136 hvf_wait_for_ipi(cpu, &ts);
1139 static void hvf_sync_vtimer(CPUState *cpu)
1141 ARMCPU *arm_cpu = ARM_CPU(cpu);
1142 hv_return_t r;
1143 uint64_t ctl;
1144 bool irq_state;
1146 if (!cpu->hvf->vtimer_masked) {
1147 /* We will get notified on vtimer changes by hvf, nothing to do */
1148 return;
1151 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1152 assert_hvf_ok(r);
1154 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1155 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1156 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1158 if (!irq_state) {
1159 /* Timer no longer asserting, we can unmask it */
1160 hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1161 cpu->hvf->vtimer_masked = false;
1165 int hvf_vcpu_exec(CPUState *cpu)
1167 ARMCPU *arm_cpu = ARM_CPU(cpu);
1168 CPUARMState *env = &arm_cpu->env;
1169 hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1170 hv_return_t r;
1171 bool advance_pc = false;
1173 if (hvf_inject_interrupts(cpu)) {
1174 return EXCP_INTERRUPT;
1177 if (cpu->halted) {
1178 return EXCP_HLT;
1181 flush_cpu_state(cpu);
1183 qemu_mutex_unlock_iothread();
1184 assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1186 /* handle VMEXIT */
1187 uint64_t exit_reason = hvf_exit->reason;
1188 uint64_t syndrome = hvf_exit->exception.syndrome;
1189 uint32_t ec = syn_get_ec(syndrome);
1191 qemu_mutex_lock_iothread();
1192 switch (exit_reason) {
1193 case HV_EXIT_REASON_EXCEPTION:
1194 /* This is the main one, handle below. */
1195 break;
1196 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1197 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1198 cpu->hvf->vtimer_masked = true;
1199 return 0;
1200 case HV_EXIT_REASON_CANCELED:
1201 /* we got kicked, no exit to process */
1202 return 0;
1203 default:
1204 g_assert_not_reached();
1207 hvf_sync_vtimer(cpu);
1209 switch (ec) {
1210 case EC_DATAABORT: {
1211 bool isv = syndrome & ARM_EL_ISV;
1212 bool iswrite = (syndrome >> 6) & 1;
1213 bool s1ptw = (syndrome >> 7) & 1;
1214 uint32_t sas = (syndrome >> 22) & 3;
1215 uint32_t len = 1 << sas;
1216 uint32_t srt = (syndrome >> 16) & 0x1f;
1217 uint32_t cm = (syndrome >> 8) & 0x1;
1218 uint64_t val = 0;
1220 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1221 hvf_exit->exception.physical_address, isv,
1222 iswrite, s1ptw, len, srt);
1224 if (cm) {
1225 /* We don't cache MMIO regions */
1226 advance_pc = true;
1227 break;
1230 assert(isv);
1232 if (iswrite) {
1233 val = hvf_get_reg(cpu, srt);
1234 address_space_write(&address_space_memory,
1235 hvf_exit->exception.physical_address,
1236 MEMTXATTRS_UNSPECIFIED, &val, len);
1237 } else {
1238 address_space_read(&address_space_memory,
1239 hvf_exit->exception.physical_address,
1240 MEMTXATTRS_UNSPECIFIED, &val, len);
1241 hvf_set_reg(cpu, srt, val);
1244 advance_pc = true;
1245 break;
1247 case EC_SYSTEMREGISTERTRAP: {
1248 bool isread = (syndrome >> 0) & 1;
1249 uint32_t rt = (syndrome >> 5) & 0x1f;
1250 uint32_t reg = syndrome & SYSREG_MASK;
1251 uint64_t val;
1252 int ret = 0;
1254 if (isread) {
1255 ret = hvf_sysreg_read(cpu, reg, rt);
1256 } else {
1257 val = hvf_get_reg(cpu, rt);
1258 ret = hvf_sysreg_write(cpu, reg, val);
1261 advance_pc = !ret;
1262 break;
1264 case EC_WFX_TRAP:
1265 advance_pc = true;
1266 if (!(syndrome & WFX_IS_WFE)) {
1267 hvf_wfi(cpu);
1269 break;
1270 case EC_AA64_HVC:
1271 cpu_synchronize_state(cpu);
1272 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1273 if (!hvf_handle_psci_call(cpu)) {
1274 trace_hvf_unknown_hvc(env->xregs[0]);
1275 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1276 env->xregs[0] = -1;
1278 } else {
1279 trace_hvf_unknown_hvc(env->xregs[0]);
1280 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1282 break;
1283 case EC_AA64_SMC:
1284 cpu_synchronize_state(cpu);
1285 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1286 advance_pc = true;
1288 if (!hvf_handle_psci_call(cpu)) {
1289 trace_hvf_unknown_smc(env->xregs[0]);
1290 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1291 env->xregs[0] = -1;
1293 } else {
1294 trace_hvf_unknown_smc(env->xregs[0]);
1295 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1297 break;
1298 default:
1299 cpu_synchronize_state(cpu);
1300 trace_hvf_exit(syndrome, ec, env->pc);
1301 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1304 if (advance_pc) {
1305 uint64_t pc;
1307 flush_cpu_state(cpu);
1309 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1310 assert_hvf_ok(r);
1311 pc += 4;
1312 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1313 assert_hvf_ok(r);
1316 return 0;
1319 static const VMStateDescription vmstate_hvf_vtimer = {
1320 .name = "hvf-vtimer",
1321 .version_id = 1,
1322 .minimum_version_id = 1,
1323 .fields = (VMStateField[]) {
1324 VMSTATE_UINT64(vtimer_val, HVFVTimer),
1325 VMSTATE_END_OF_LIST()
1329 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1331 HVFVTimer *s = opaque;
1333 if (running) {
1334 /* Update vtimer offset on all CPUs */
1335 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1336 cpu_synchronize_all_states();
1337 } else {
1338 /* Remember vtimer value on every pause */
1339 s->vtimer_val = hvf_vtimer_val_raw();
1343 int hvf_arch_init(void)
1345 hvf_state->vtimer_offset = mach_absolute_time();
1346 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1347 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1348 return 0;