target-i386: print EFER in cpu_dump_state
[qemu.git] / kvm-all.c
blobd05011547d68b390d040eae4eb1c28c89ff5bc78
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
52 typedef struct kvm_dirty_log KVMDirtyLog;
54 struct KVMState
56 KVMSlot slots[32];
57 int fd;
58 int vmfd;
59 int coalesced_mmio;
60 #ifdef KVM_CAP_COALESCED_MMIO
61 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
62 #endif
63 int broken_set_mem_region;
64 int migration_log;
65 int vcpu_events;
66 int robust_singlestep;
67 int debugregs;
68 #ifdef KVM_CAP_SET_GUEST_DEBUG
69 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
70 #endif
71 int irqchip_in_kernel;
72 int pit_in_kernel;
75 static KVMState *kvm_state;
77 static KVMSlot *kvm_alloc_slot(KVMState *s)
79 int i;
81 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
82 /* KVM private memory slots */
83 if (i >= 8 && i < 12)
84 continue;
85 if (s->slots[i].memory_size == 0)
86 return &s->slots[i];
89 fprintf(stderr, "%s: no free slot available\n", __func__);
90 abort();
93 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
94 target_phys_addr_t start_addr,
95 target_phys_addr_t end_addr)
97 int i;
99 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
100 KVMSlot *mem = &s->slots[i];
102 if (start_addr == mem->start_addr &&
103 end_addr == mem->start_addr + mem->memory_size) {
104 return mem;
108 return NULL;
112 * Find overlapping slot with lowest start address
114 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
115 target_phys_addr_t start_addr,
116 target_phys_addr_t end_addr)
118 KVMSlot *found = NULL;
119 int i;
121 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
122 KVMSlot *mem = &s->slots[i];
124 if (mem->memory_size == 0 ||
125 (found && found->start_addr < mem->start_addr)) {
126 continue;
129 if (end_addr > mem->start_addr &&
130 start_addr < mem->start_addr + mem->memory_size) {
131 found = mem;
135 return found;
138 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
140 struct kvm_userspace_memory_region mem;
142 mem.slot = slot->slot;
143 mem.guest_phys_addr = slot->start_addr;
144 mem.memory_size = slot->memory_size;
145 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
146 mem.flags = slot->flags;
147 if (s->migration_log) {
148 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
150 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
153 static void kvm_reset_vcpu(void *opaque)
155 CPUState *env = opaque;
157 kvm_arch_reset_vcpu(env);
160 int kvm_irqchip_in_kernel(void)
162 return kvm_state->irqchip_in_kernel;
165 int kvm_pit_in_kernel(void)
167 return kvm_state->pit_in_kernel;
171 int kvm_init_vcpu(CPUState *env)
173 KVMState *s = kvm_state;
174 long mmap_size;
175 int ret;
177 DPRINTF("kvm_init_vcpu\n");
179 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
180 if (ret < 0) {
181 DPRINTF("kvm_create_vcpu failed\n");
182 goto err;
185 env->kvm_fd = ret;
186 env->kvm_state = s;
188 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
189 if (mmap_size < 0) {
190 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
191 goto err;
194 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
195 env->kvm_fd, 0);
196 if (env->kvm_run == MAP_FAILED) {
197 ret = -errno;
198 DPRINTF("mmap'ing vcpu state failed\n");
199 goto err;
202 #ifdef KVM_CAP_COALESCED_MMIO
203 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
204 s->coalesced_mmio_ring = (void *) env->kvm_run +
205 s->coalesced_mmio * PAGE_SIZE;
206 #endif
208 ret = kvm_arch_init_vcpu(env);
209 if (ret == 0) {
210 qemu_register_reset(kvm_reset_vcpu, env);
211 kvm_arch_reset_vcpu(env);
213 err:
214 return ret;
218 * dirty pages logging control
220 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
221 ram_addr_t size, int flags, int mask)
223 KVMState *s = kvm_state;
224 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
225 int old_flags;
227 if (mem == NULL) {
228 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
229 TARGET_FMT_plx "\n", __func__, phys_addr,
230 (target_phys_addr_t)(phys_addr + size - 1));
231 return -EINVAL;
234 old_flags = mem->flags;
236 flags = (mem->flags & ~mask) | flags;
237 mem->flags = flags;
239 /* If nothing changed effectively, no need to issue ioctl */
240 if (s->migration_log) {
241 flags |= KVM_MEM_LOG_DIRTY_PAGES;
243 if (flags == old_flags) {
244 return 0;
247 return kvm_set_user_memory_region(s, mem);
250 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
252 return kvm_dirty_pages_log_change(phys_addr, size,
253 KVM_MEM_LOG_DIRTY_PAGES,
254 KVM_MEM_LOG_DIRTY_PAGES);
257 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
259 return kvm_dirty_pages_log_change(phys_addr, size,
261 KVM_MEM_LOG_DIRTY_PAGES);
264 static int kvm_set_migration_log(int enable)
266 KVMState *s = kvm_state;
267 KVMSlot *mem;
268 int i, err;
270 s->migration_log = enable;
272 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
273 mem = &s->slots[i];
275 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
276 continue;
278 err = kvm_set_user_memory_region(s, mem);
279 if (err) {
280 return err;
283 return 0;
286 static int test_le_bit(unsigned long nr, unsigned char *addr)
288 return (addr[nr >> 3] >> (nr & 7)) & 1;
292 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
293 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
294 * This means all bits are set to dirty.
296 * @start_add: start of logged region.
297 * @end_addr: end of logged region.
299 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
300 target_phys_addr_t end_addr)
302 KVMState *s = kvm_state;
303 unsigned long size, allocated_size = 0;
304 target_phys_addr_t phys_addr;
305 ram_addr_t addr;
306 KVMDirtyLog d;
307 KVMSlot *mem;
308 int ret = 0;
310 d.dirty_bitmap = NULL;
311 while (start_addr < end_addr) {
312 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
313 if (mem == NULL) {
314 break;
317 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
318 if (!d.dirty_bitmap) {
319 d.dirty_bitmap = qemu_malloc(size);
320 } else if (size > allocated_size) {
321 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
323 allocated_size = size;
324 memset(d.dirty_bitmap, 0, allocated_size);
326 d.slot = mem->slot;
328 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
329 DPRINTF("ioctl failed %d\n", errno);
330 ret = -1;
331 break;
334 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
335 phys_addr < mem->start_addr + mem->memory_size;
336 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
337 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
338 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
340 if (test_le_bit(nr, bitmap)) {
341 cpu_physical_memory_set_dirty(addr);
344 start_addr = phys_addr;
346 qemu_free(d.dirty_bitmap);
348 return ret;
351 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
353 int ret = -ENOSYS;
354 #ifdef KVM_CAP_COALESCED_MMIO
355 KVMState *s = kvm_state;
357 if (s->coalesced_mmio) {
358 struct kvm_coalesced_mmio_zone zone;
360 zone.addr = start;
361 zone.size = size;
363 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
365 #endif
367 return ret;
370 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
372 int ret = -ENOSYS;
373 #ifdef KVM_CAP_COALESCED_MMIO
374 KVMState *s = kvm_state;
376 if (s->coalesced_mmio) {
377 struct kvm_coalesced_mmio_zone zone;
379 zone.addr = start;
380 zone.size = size;
382 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
384 #endif
386 return ret;
389 int kvm_check_extension(KVMState *s, unsigned int extension)
391 int ret;
393 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
394 if (ret < 0) {
395 ret = 0;
398 return ret;
401 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
402 ram_addr_t size,
403 ram_addr_t phys_offset)
405 KVMState *s = kvm_state;
406 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
407 KVMSlot *mem, old;
408 int err;
410 if (start_addr & ~TARGET_PAGE_MASK) {
411 if (flags >= IO_MEM_UNASSIGNED) {
412 if (!kvm_lookup_overlapping_slot(s, start_addr,
413 start_addr + size)) {
414 return;
416 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
417 } else {
418 fprintf(stderr, "Only page-aligned memory slots supported\n");
420 abort();
423 /* KVM does not support read-only slots */
424 phys_offset &= ~IO_MEM_ROM;
426 while (1) {
427 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
428 if (!mem) {
429 break;
432 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
433 (start_addr + size <= mem->start_addr + mem->memory_size) &&
434 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
435 /* The new slot fits into the existing one and comes with
436 * identical parameters - nothing to be done. */
437 return;
440 old = *mem;
442 /* unregister the overlapping slot */
443 mem->memory_size = 0;
444 err = kvm_set_user_memory_region(s, mem);
445 if (err) {
446 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
447 __func__, strerror(-err));
448 abort();
451 /* Workaround for older KVM versions: we can't join slots, even not by
452 * unregistering the previous ones and then registering the larger
453 * slot. We have to maintain the existing fragmentation. Sigh.
455 * This workaround assumes that the new slot starts at the same
456 * address as the first existing one. If not or if some overlapping
457 * slot comes around later, we will fail (not seen in practice so far)
458 * - and actually require a recent KVM version. */
459 if (s->broken_set_mem_region &&
460 old.start_addr == start_addr && old.memory_size < size &&
461 flags < IO_MEM_UNASSIGNED) {
462 mem = kvm_alloc_slot(s);
463 mem->memory_size = old.memory_size;
464 mem->start_addr = old.start_addr;
465 mem->phys_offset = old.phys_offset;
466 mem->flags = 0;
468 err = kvm_set_user_memory_region(s, mem);
469 if (err) {
470 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
471 strerror(-err));
472 abort();
475 start_addr += old.memory_size;
476 phys_offset += old.memory_size;
477 size -= old.memory_size;
478 continue;
481 /* register prefix slot */
482 if (old.start_addr < start_addr) {
483 mem = kvm_alloc_slot(s);
484 mem->memory_size = start_addr - old.start_addr;
485 mem->start_addr = old.start_addr;
486 mem->phys_offset = old.phys_offset;
487 mem->flags = 0;
489 err = kvm_set_user_memory_region(s, mem);
490 if (err) {
491 fprintf(stderr, "%s: error registering prefix slot: %s\n",
492 __func__, strerror(-err));
493 abort();
497 /* register suffix slot */
498 if (old.start_addr + old.memory_size > start_addr + size) {
499 ram_addr_t size_delta;
501 mem = kvm_alloc_slot(s);
502 mem->start_addr = start_addr + size;
503 size_delta = mem->start_addr - old.start_addr;
504 mem->memory_size = old.memory_size - size_delta;
505 mem->phys_offset = old.phys_offset + size_delta;
506 mem->flags = 0;
508 err = kvm_set_user_memory_region(s, mem);
509 if (err) {
510 fprintf(stderr, "%s: error registering suffix slot: %s\n",
511 __func__, strerror(-err));
512 abort();
517 /* in case the KVM bug workaround already "consumed" the new slot */
518 if (!size)
519 return;
521 /* KVM does not need to know about this memory */
522 if (flags >= IO_MEM_UNASSIGNED)
523 return;
525 mem = kvm_alloc_slot(s);
526 mem->memory_size = size;
527 mem->start_addr = start_addr;
528 mem->phys_offset = phys_offset;
529 mem->flags = 0;
531 err = kvm_set_user_memory_region(s, mem);
532 if (err) {
533 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
534 strerror(-err));
535 abort();
539 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
540 target_phys_addr_t start_addr,
541 ram_addr_t size,
542 ram_addr_t phys_offset)
544 kvm_set_phys_mem(start_addr, size, phys_offset);
547 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
548 target_phys_addr_t start_addr,
549 target_phys_addr_t end_addr)
551 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
554 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
555 int enable)
557 return kvm_set_migration_log(enable);
560 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
561 .set_memory = kvm_client_set_memory,
562 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
563 .migration_log = kvm_client_migration_log,
566 int kvm_init(int smp_cpus)
568 static const char upgrade_note[] =
569 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
570 "(see http://sourceforge.net/projects/kvm).\n";
571 KVMState *s;
572 int ret;
573 int i;
575 if (smp_cpus > 1) {
576 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
577 return -EINVAL;
580 s = qemu_mallocz(sizeof(KVMState));
582 #ifdef KVM_CAP_SET_GUEST_DEBUG
583 QTAILQ_INIT(&s->kvm_sw_breakpoints);
584 #endif
585 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
586 s->slots[i].slot = i;
588 s->vmfd = -1;
589 s->fd = qemu_open("/dev/kvm", O_RDWR);
590 if (s->fd == -1) {
591 fprintf(stderr, "Could not access KVM kernel module: %m\n");
592 ret = -errno;
593 goto err;
596 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
597 if (ret < KVM_API_VERSION) {
598 if (ret > 0)
599 ret = -EINVAL;
600 fprintf(stderr, "kvm version too old\n");
601 goto err;
604 if (ret > KVM_API_VERSION) {
605 ret = -EINVAL;
606 fprintf(stderr, "kvm version not supported\n");
607 goto err;
610 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
611 if (s->vmfd < 0) {
612 #ifdef TARGET_S390X
613 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
614 "your host kernel command line\n");
615 #endif
616 goto err;
619 /* initially, KVM allocated its own memory and we had to jump through
620 * hooks to make phys_ram_base point to this. Modern versions of KVM
621 * just use a user allocated buffer so we can use regular pages
622 * unmodified. Make sure we have a sufficiently modern version of KVM.
624 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
625 ret = -EINVAL;
626 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
627 upgrade_note);
628 goto err;
631 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
632 * destroyed properly. Since we rely on this capability, refuse to work
633 * with any kernel without this capability. */
634 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
635 ret = -EINVAL;
637 fprintf(stderr,
638 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
639 upgrade_note);
640 goto err;
643 s->coalesced_mmio = 0;
644 #ifdef KVM_CAP_COALESCED_MMIO
645 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
646 s->coalesced_mmio_ring = NULL;
647 #endif
649 s->broken_set_mem_region = 1;
650 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
651 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
652 if (ret > 0) {
653 s->broken_set_mem_region = 0;
655 #endif
657 s->vcpu_events = 0;
658 #ifdef KVM_CAP_VCPU_EVENTS
659 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
660 #endif
662 s->robust_singlestep = 0;
663 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
664 s->robust_singlestep =
665 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
666 #endif
668 s->debugregs = 0;
669 #ifdef KVM_CAP_DEBUGREGS
670 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
671 #endif
673 ret = kvm_arch_init(s, smp_cpus);
674 if (ret < 0)
675 goto err;
677 kvm_state = s;
678 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
680 return 0;
682 err:
683 if (s) {
684 if (s->vmfd != -1)
685 close(s->vmfd);
686 if (s->fd != -1)
687 close(s->fd);
689 qemu_free(s);
691 return ret;
694 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
695 uint32_t count)
697 int i;
698 uint8_t *ptr = data;
700 for (i = 0; i < count; i++) {
701 if (direction == KVM_EXIT_IO_IN) {
702 switch (size) {
703 case 1:
704 stb_p(ptr, cpu_inb(port));
705 break;
706 case 2:
707 stw_p(ptr, cpu_inw(port));
708 break;
709 case 4:
710 stl_p(ptr, cpu_inl(port));
711 break;
713 } else {
714 switch (size) {
715 case 1:
716 cpu_outb(port, ldub_p(ptr));
717 break;
718 case 2:
719 cpu_outw(port, lduw_p(ptr));
720 break;
721 case 4:
722 cpu_outl(port, ldl_p(ptr));
723 break;
727 ptr += size;
730 return 1;
733 void kvm_flush_coalesced_mmio_buffer(void)
735 #ifdef KVM_CAP_COALESCED_MMIO
736 KVMState *s = kvm_state;
737 if (s->coalesced_mmio_ring) {
738 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
739 while (ring->first != ring->last) {
740 struct kvm_coalesced_mmio *ent;
742 ent = &ring->coalesced_mmio[ring->first];
744 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
745 smp_wmb();
746 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
749 #endif
752 void kvm_cpu_synchronize_state(CPUState *env)
754 if (!env->kvm_vcpu_dirty) {
755 kvm_arch_get_registers(env);
756 env->kvm_vcpu_dirty = 1;
760 void kvm_cpu_synchronize_post_reset(CPUState *env)
762 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
763 env->kvm_vcpu_dirty = 0;
766 void kvm_cpu_synchronize_post_init(CPUState *env)
768 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
769 env->kvm_vcpu_dirty = 0;
772 int kvm_cpu_exec(CPUState *env)
774 struct kvm_run *run = env->kvm_run;
775 int ret;
777 DPRINTF("kvm_cpu_exec()\n");
779 do {
780 #ifndef CONFIG_IOTHREAD
781 if (env->exit_request) {
782 DPRINTF("interrupt exit requested\n");
783 ret = 0;
784 break;
786 #endif
788 if (env->kvm_vcpu_dirty) {
789 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
790 env->kvm_vcpu_dirty = 0;
793 kvm_arch_pre_run(env, run);
794 qemu_mutex_unlock_iothread();
795 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
796 qemu_mutex_lock_iothread();
797 kvm_arch_post_run(env, run);
799 if (ret == -EINTR || ret == -EAGAIN) {
800 cpu_exit(env);
801 DPRINTF("io window exit\n");
802 ret = 0;
803 break;
806 if (ret < 0) {
807 DPRINTF("kvm run failed %s\n", strerror(-ret));
808 abort();
811 kvm_flush_coalesced_mmio_buffer();
813 ret = 0; /* exit loop */
814 switch (run->exit_reason) {
815 case KVM_EXIT_IO:
816 DPRINTF("handle_io\n");
817 ret = kvm_handle_io(run->io.port,
818 (uint8_t *)run + run->io.data_offset,
819 run->io.direction,
820 run->io.size,
821 run->io.count);
822 break;
823 case KVM_EXIT_MMIO:
824 DPRINTF("handle_mmio\n");
825 cpu_physical_memory_rw(run->mmio.phys_addr,
826 run->mmio.data,
827 run->mmio.len,
828 run->mmio.is_write);
829 ret = 1;
830 break;
831 case KVM_EXIT_IRQ_WINDOW_OPEN:
832 DPRINTF("irq_window_open\n");
833 break;
834 case KVM_EXIT_SHUTDOWN:
835 DPRINTF("shutdown\n");
836 qemu_system_reset_request();
837 ret = 1;
838 break;
839 case KVM_EXIT_UNKNOWN:
840 DPRINTF("kvm_exit_unknown\n");
841 break;
842 case KVM_EXIT_FAIL_ENTRY:
843 DPRINTF("kvm_exit_fail_entry\n");
844 break;
845 case KVM_EXIT_EXCEPTION:
846 DPRINTF("kvm_exit_exception\n");
847 break;
848 case KVM_EXIT_DEBUG:
849 DPRINTF("kvm_exit_debug\n");
850 #ifdef KVM_CAP_SET_GUEST_DEBUG
851 if (kvm_arch_debug(&run->debug.arch)) {
852 gdb_set_stop_cpu(env);
853 vm_stop(EXCP_DEBUG);
854 env->exception_index = EXCP_DEBUG;
855 return 0;
857 /* re-enter, this exception was guest-internal */
858 ret = 1;
859 #endif /* KVM_CAP_SET_GUEST_DEBUG */
860 break;
861 default:
862 DPRINTF("kvm_arch_handle_exit\n");
863 ret = kvm_arch_handle_exit(env, run);
864 break;
866 } while (ret > 0);
868 if (env->exit_request) {
869 env->exit_request = 0;
870 env->exception_index = EXCP_INTERRUPT;
873 return ret;
876 int kvm_ioctl(KVMState *s, int type, ...)
878 int ret;
879 void *arg;
880 va_list ap;
882 va_start(ap, type);
883 arg = va_arg(ap, void *);
884 va_end(ap);
886 ret = ioctl(s->fd, type, arg);
887 if (ret == -1)
888 ret = -errno;
890 return ret;
893 int kvm_vm_ioctl(KVMState *s, int type, ...)
895 int ret;
896 void *arg;
897 va_list ap;
899 va_start(ap, type);
900 arg = va_arg(ap, void *);
901 va_end(ap);
903 ret = ioctl(s->vmfd, type, arg);
904 if (ret == -1)
905 ret = -errno;
907 return ret;
910 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
912 int ret;
913 void *arg;
914 va_list ap;
916 va_start(ap, type);
917 arg = va_arg(ap, void *);
918 va_end(ap);
920 ret = ioctl(env->kvm_fd, type, arg);
921 if (ret == -1)
922 ret = -errno;
924 return ret;
927 int kvm_has_sync_mmu(void)
929 #ifdef KVM_CAP_SYNC_MMU
930 KVMState *s = kvm_state;
932 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
933 #else
934 return 0;
935 #endif
938 int kvm_has_vcpu_events(void)
940 return kvm_state->vcpu_events;
943 int kvm_has_robust_singlestep(void)
945 return kvm_state->robust_singlestep;
948 int kvm_has_debugregs(void)
950 return kvm_state->debugregs;
953 void kvm_setup_guest_memory(void *start, size_t size)
955 if (!kvm_has_sync_mmu()) {
956 #ifdef MADV_DONTFORK
957 int ret = madvise(start, size, MADV_DONTFORK);
959 if (ret) {
960 perror("madvice");
961 exit(1);
963 #else
964 fprintf(stderr,
965 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
966 exit(1);
967 #endif
971 #ifdef KVM_CAP_SET_GUEST_DEBUG
972 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
974 #ifdef CONFIG_IOTHREAD
975 if (env != cpu_single_env) {
976 abort();
978 #endif
979 func(data);
982 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
983 target_ulong pc)
985 struct kvm_sw_breakpoint *bp;
987 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
988 if (bp->pc == pc)
989 return bp;
991 return NULL;
994 int kvm_sw_breakpoints_active(CPUState *env)
996 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
999 struct kvm_set_guest_debug_data {
1000 struct kvm_guest_debug dbg;
1001 CPUState *env;
1002 int err;
1005 static void kvm_invoke_set_guest_debug(void *data)
1007 struct kvm_set_guest_debug_data *dbg_data = data;
1008 CPUState *env = dbg_data->env;
1010 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1013 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1015 struct kvm_set_guest_debug_data data;
1017 data.dbg.control = reinject_trap;
1019 if (env->singlestep_enabled) {
1020 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1022 kvm_arch_update_guest_debug(env, &data.dbg);
1023 data.env = env;
1025 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1026 return data.err;
1029 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1030 target_ulong len, int type)
1032 struct kvm_sw_breakpoint *bp;
1033 CPUState *env;
1034 int err;
1036 if (type == GDB_BREAKPOINT_SW) {
1037 bp = kvm_find_sw_breakpoint(current_env, addr);
1038 if (bp) {
1039 bp->use_count++;
1040 return 0;
1043 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1044 if (!bp)
1045 return -ENOMEM;
1047 bp->pc = addr;
1048 bp->use_count = 1;
1049 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1050 if (err) {
1051 free(bp);
1052 return err;
1055 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1056 bp, entry);
1057 } else {
1058 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1059 if (err)
1060 return err;
1063 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1064 err = kvm_update_guest_debug(env, 0);
1065 if (err)
1066 return err;
1068 return 0;
1071 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1072 target_ulong len, int type)
1074 struct kvm_sw_breakpoint *bp;
1075 CPUState *env;
1076 int err;
1078 if (type == GDB_BREAKPOINT_SW) {
1079 bp = kvm_find_sw_breakpoint(current_env, addr);
1080 if (!bp)
1081 return -ENOENT;
1083 if (bp->use_count > 1) {
1084 bp->use_count--;
1085 return 0;
1088 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1089 if (err)
1090 return err;
1092 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1093 qemu_free(bp);
1094 } else {
1095 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1096 if (err)
1097 return err;
1100 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1101 err = kvm_update_guest_debug(env, 0);
1102 if (err)
1103 return err;
1105 return 0;
1108 void kvm_remove_all_breakpoints(CPUState *current_env)
1110 struct kvm_sw_breakpoint *bp, *next;
1111 KVMState *s = current_env->kvm_state;
1112 CPUState *env;
1114 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1115 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1116 /* Try harder to find a CPU that currently sees the breakpoint. */
1117 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1118 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1119 break;
1123 kvm_arch_remove_all_hw_breakpoints();
1125 for (env = first_cpu; env != NULL; env = env->next_cpu)
1126 kvm_update_guest_debug(env, 0);
1129 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1131 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1133 return -EINVAL;
1136 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1137 target_ulong len, int type)
1139 return -EINVAL;
1142 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1143 target_ulong len, int type)
1145 return -EINVAL;
1148 void kvm_remove_all_breakpoints(CPUState *current_env)
1151 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1153 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1155 struct kvm_signal_mask *sigmask;
1156 int r;
1158 if (!sigset)
1159 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1161 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1163 sigmask->len = 8;
1164 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1165 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1166 free(sigmask);
1168 return r;
1171 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1173 #ifdef KVM_IOEVENTFD
1174 struct kvm_ioeventfd kick = {
1175 .datamatch = val,
1176 .addr = addr,
1177 .len = 2,
1178 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1179 .fd = fd,
1181 int r;
1182 if (!kvm_enabled())
1183 return -ENOSYS;
1184 if (!assign)
1185 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1186 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1187 if (r < 0)
1188 return r;
1189 return 0;
1190 #else
1191 return -ENOSYS;
1192 #endif