target-i386: Return runnability information on query-cpu-definitions
[qemu.git] / hw / intc / arm_gicv3_redist.c
blob77e5cfa327b424e9091e954a1f75273c3e075e10
1 /*
2 * ARM GICv3 emulation: Redistributor
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited.
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
19 /* Return a 32-bit mask which should be applied for this set of 32
20 * interrupts; each bit is 1 if access is permitted by the
21 * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22 * not affect config register accesses, unlike GICD_NSACR.)
24 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26 return cs->gicr_igroupr0;
28 return 0xFFFFFFFFU;
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
33 /* Return the 2 bit NSACR.NS_access field for this SGI */
34 assert(irq < 16);
35 return extract32(cs->gicr_nsacr, irq * 2, 2);
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39 uint32_t *reg, uint32_t val)
41 /* Helper routine to implement writing to a "set-bitmap" register */
42 val &= mask_group(cs, attrs);
43 *reg |= val;
44 gicv3_redist_update(cs);
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48 uint32_t *reg, uint32_t val)
50 /* Helper routine to implement writing to a "clear-bitmap" register */
51 val &= mask_group(cs, attrs);
52 *reg &= ~val;
53 gicv3_redist_update(cs);
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57 uint32_t reg)
59 reg &= mask_group(cs, attrs);
60 return reg;
63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
64 int irq)
66 /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
67 * honouring security state (these are RAZ/WI for Group 0 or Secure
68 * Group 1 interrupts).
70 uint32_t prio;
72 prio = cs->gicr_ipriorityr[irq];
74 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
75 if (!(cs->gicr_igroupr0 & (1U << irq))) {
76 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
77 return 0;
79 /* NS view of the interrupt priority */
80 prio = (prio << 1) & 0xff;
82 return prio;
85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
86 uint8_t value)
88 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
89 * honouring security state (these are RAZ/WI for Group 0 or Secure
90 * Group 1 interrupts).
92 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
93 if (!(cs->gicr_igroupr0 & (1U << irq))) {
94 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
95 return;
97 /* NS view of the interrupt priority */
98 value = 0x80 | (value >> 1);
100 cs->gicr_ipriorityr[irq] = value;
103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
104 uint64_t *data, MemTxAttrs attrs)
106 switch (offset) {
107 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
108 *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
109 return MEMTX_OK;
110 default:
111 return MEMTX_ERROR;
115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
116 uint64_t value, MemTxAttrs attrs)
118 switch (offset) {
119 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
120 gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
121 gicv3_redist_update(cs);
122 return MEMTX_OK;
123 default:
124 return MEMTX_ERROR;
128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
129 uint64_t *data, MemTxAttrs attrs)
131 switch (offset) {
132 case GICR_CTLR:
133 *data = cs->gicr_ctlr;
134 return MEMTX_OK;
135 case GICR_IIDR:
136 *data = gicv3_iidr();
137 return MEMTX_OK;
138 case GICR_TYPER:
139 *data = extract64(cs->gicr_typer, 0, 32);
140 return MEMTX_OK;
141 case GICR_TYPER + 4:
142 *data = extract64(cs->gicr_typer, 32, 32);
143 return MEMTX_OK;
144 case GICR_STATUSR:
145 /* RAZ/WI for us (this is an optional register and our implementation
146 * does not track RO/WO/reserved violations to report them to the guest)
148 *data = 0;
149 return MEMTX_OK;
150 case GICR_WAKER:
151 *data = cs->gicr_waker;
152 return MEMTX_OK;
153 case GICR_PROPBASER:
154 *data = extract64(cs->gicr_propbaser, 0, 32);
155 return MEMTX_OK;
156 case GICR_PROPBASER + 4:
157 *data = extract64(cs->gicr_propbaser, 32, 32);
158 return MEMTX_OK;
159 case GICR_PENDBASER:
160 *data = extract64(cs->gicr_pendbaser, 0, 32);
161 return MEMTX_OK;
162 case GICR_PENDBASER + 4:
163 *data = extract64(cs->gicr_pendbaser, 32, 32);
164 return MEMTX_OK;
165 case GICR_IGROUPR0:
166 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
167 *data = 0;
168 return MEMTX_OK;
170 *data = cs->gicr_igroupr0;
171 return MEMTX_OK;
172 case GICR_ISENABLER0:
173 case GICR_ICENABLER0:
174 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
175 return MEMTX_OK;
176 case GICR_ISPENDR0:
177 case GICR_ICPENDR0:
179 /* The pending register reads as the logical OR of the pending
180 * latch and the input line level for level-triggered interrupts.
182 uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
183 *data = gicr_read_bitmap_reg(cs, attrs, val);
184 return MEMTX_OK;
186 case GICR_ISACTIVER0:
187 case GICR_ICACTIVER0:
188 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
189 return MEMTX_OK;
190 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
192 int i, irq = offset - GICR_IPRIORITYR;
193 uint32_t value = 0;
195 for (i = irq + 3; i >= irq; i--, value <<= 8) {
196 value |= gicr_read_ipriorityr(cs, attrs, i);
198 *data = value;
199 return MEMTX_OK;
201 case GICR_ICFGR0:
202 case GICR_ICFGR1:
204 /* Our edge_trigger bitmap is one bit per irq; take the correct
205 * half of it, and spread it out into the odd bits.
207 uint32_t value;
209 value = cs->edge_trigger & mask_group(cs, attrs);
210 value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
211 value = half_shuffle32(value) << 1;
212 *data = value;
213 return MEMTX_OK;
215 case GICR_IGRPMODR0:
216 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
217 /* RAZ/WI if security disabled, or if
218 * security enabled and this is an NS access
220 *data = 0;
221 return MEMTX_OK;
223 *data = cs->gicr_igrpmodr0;
224 return MEMTX_OK;
225 case GICR_NSACR:
226 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
227 /* RAZ/WI if security disabled, or if
228 * security enabled and this is an NS access
230 *data = 0;
231 return MEMTX_OK;
233 *data = cs->gicr_nsacr;
234 return MEMTX_OK;
235 case GICR_IDREGS ... GICR_IDREGS + 0x1f:
236 *data = gicv3_idreg(offset - GICR_IDREGS);
237 return MEMTX_OK;
238 default:
239 return MEMTX_ERROR;
243 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
244 uint64_t value, MemTxAttrs attrs)
246 switch (offset) {
247 case GICR_CTLR:
248 /* For our implementation, GICR_TYPER.DPGS is 0 and so all
249 * the DPG bits are RAZ/WI. We don't do anything asynchronously,
250 * so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't
251 * implement LPIs) so Enable_LPIs is RES0. So there are no writable
252 * bits for us.
254 return MEMTX_OK;
255 case GICR_STATUSR:
256 /* RAZ/WI for our implementation */
257 return MEMTX_OK;
258 case GICR_WAKER:
259 /* Only the ProcessorSleep bit is writeable. When the guest sets
260 * it it requests that we transition the channel between the
261 * redistributor and the cpu interface to quiescent, and that
262 * we set the ChildrenAsleep bit once the inteface has reached the
263 * quiescent state.
264 * Setting the ProcessorSleep to 0 reverses the quiescing, and
265 * ChildrenAsleep is cleared once the transition is complete.
266 * Since our interface is not asynchronous, we complete these
267 * transitions instantaneously, so we set ChildrenAsleep to the
268 * same value as ProcessorSleep here.
270 value &= GICR_WAKER_ProcessorSleep;
271 if (value & GICR_WAKER_ProcessorSleep) {
272 value |= GICR_WAKER_ChildrenAsleep;
274 cs->gicr_waker = value;
275 return MEMTX_OK;
276 case GICR_PROPBASER:
277 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
278 return MEMTX_OK;
279 case GICR_PROPBASER + 4:
280 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
281 return MEMTX_OK;
282 case GICR_PENDBASER:
283 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
284 return MEMTX_OK;
285 case GICR_PENDBASER + 4:
286 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
287 return MEMTX_OK;
288 case GICR_IGROUPR0:
289 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
290 return MEMTX_OK;
292 cs->gicr_igroupr0 = value;
293 gicv3_redist_update(cs);
294 return MEMTX_OK;
295 case GICR_ISENABLER0:
296 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
297 return MEMTX_OK;
298 case GICR_ICENABLER0:
299 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
300 return MEMTX_OK;
301 case GICR_ISPENDR0:
302 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
303 return MEMTX_OK;
304 case GICR_ICPENDR0:
305 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
306 return MEMTX_OK;
307 case GICR_ISACTIVER0:
308 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
309 return MEMTX_OK;
310 case GICR_ICACTIVER0:
311 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
312 return MEMTX_OK;
313 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
315 int i, irq = offset - GICR_IPRIORITYR;
317 for (i = irq; i < irq + 4; i++, value >>= 8) {
318 gicr_write_ipriorityr(cs, attrs, i, value);
320 gicv3_redist_update(cs);
321 return MEMTX_OK;
323 case GICR_ICFGR0:
324 /* Register is all RAZ/WI or RAO/WI bits */
325 return MEMTX_OK;
326 case GICR_ICFGR1:
328 uint32_t mask;
330 /* Since our edge_trigger bitmap is one bit per irq, our input
331 * 32-bits will compress down into 16 bits which we need
332 * to write into the bitmap.
334 value = half_unshuffle32(value >> 1) << 16;
335 mask = mask_group(cs, attrs) & 0xffff0000U;
337 cs->edge_trigger &= ~mask;
338 cs->edge_trigger |= (value & mask);
340 gicv3_redist_update(cs);
341 return MEMTX_OK;
343 case GICR_IGRPMODR0:
344 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
345 /* RAZ/WI if security disabled, or if
346 * security enabled and this is an NS access
348 return MEMTX_OK;
350 cs->gicr_igrpmodr0 = value;
351 gicv3_redist_update(cs);
352 return MEMTX_OK;
353 case GICR_NSACR:
354 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
355 /* RAZ/WI if security disabled, or if
356 * security enabled and this is an NS access
358 return MEMTX_OK;
360 cs->gicr_nsacr = value;
361 /* no update required as this only affects access permission checks */
362 return MEMTX_OK;
363 case GICR_IIDR:
364 case GICR_TYPER:
365 case GICR_IDREGS ... GICR_IDREGS + 0x1f:
366 /* RO registers, ignore the write */
367 qemu_log_mask(LOG_GUEST_ERROR,
368 "%s: invalid guest write to RO register at offset "
369 TARGET_FMT_plx "\n", __func__, offset);
370 return MEMTX_OK;
371 default:
372 return MEMTX_ERROR;
376 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
377 uint64_t *data, MemTxAttrs attrs)
379 switch (offset) {
380 case GICR_TYPER:
381 *data = cs->gicr_typer;
382 return MEMTX_OK;
383 case GICR_PROPBASER:
384 *data = cs->gicr_propbaser;
385 return MEMTX_OK;
386 case GICR_PENDBASER:
387 *data = cs->gicr_pendbaser;
388 return MEMTX_OK;
389 default:
390 return MEMTX_ERROR;
394 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
395 uint64_t value, MemTxAttrs attrs)
397 switch (offset) {
398 case GICR_PROPBASER:
399 cs->gicr_propbaser = value;
400 return MEMTX_OK;
401 case GICR_PENDBASER:
402 cs->gicr_pendbaser = value;
403 return MEMTX_OK;
404 case GICR_TYPER:
405 /* RO register, ignore the write */
406 qemu_log_mask(LOG_GUEST_ERROR,
407 "%s: invalid guest write to RO register at offset "
408 TARGET_FMT_plx "\n", __func__, offset);
409 return MEMTX_OK;
410 default:
411 return MEMTX_ERROR;
415 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
416 unsigned size, MemTxAttrs attrs)
418 GICv3State *s = opaque;
419 GICv3CPUState *cs;
420 MemTxResult r;
421 int cpuidx;
423 assert((offset & (size - 1)) == 0);
425 /* This region covers all the redistributor pages; there are
426 * (for GICv3) two 64K pages per CPU. At the moment they are
427 * all contiguous (ie in this one region), though we might later
428 * want to allow splitting of redistributor pages into several
429 * blocks so we can support more CPUs.
431 cpuidx = offset / 0x20000;
432 offset %= 0x20000;
433 assert(cpuidx < s->num_cpu);
435 cs = &s->cpu[cpuidx];
437 switch (size) {
438 case 1:
439 r = gicr_readb(cs, offset, data, attrs);
440 break;
441 case 4:
442 r = gicr_readl(cs, offset, data, attrs);
443 break;
444 case 8:
445 r = gicr_readll(cs, offset, data, attrs);
446 break;
447 default:
448 r = MEMTX_ERROR;
449 break;
452 if (r == MEMTX_ERROR) {
453 qemu_log_mask(LOG_GUEST_ERROR,
454 "%s: invalid guest read at offset " TARGET_FMT_plx
455 "size %u\n", __func__, offset, size);
456 trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
457 size, attrs.secure);
458 } else {
459 trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
460 size, attrs.secure);
462 return r;
465 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
466 unsigned size, MemTxAttrs attrs)
468 GICv3State *s = opaque;
469 GICv3CPUState *cs;
470 MemTxResult r;
471 int cpuidx;
473 assert((offset & (size - 1)) == 0);
475 /* This region covers all the redistributor pages; there are
476 * (for GICv3) two 64K pages per CPU. At the moment they are
477 * all contiguous (ie in this one region), though we might later
478 * want to allow splitting of redistributor pages into several
479 * blocks so we can support more CPUs.
481 cpuidx = offset / 0x20000;
482 offset %= 0x20000;
483 assert(cpuidx < s->num_cpu);
485 cs = &s->cpu[cpuidx];
487 switch (size) {
488 case 1:
489 r = gicr_writeb(cs, offset, data, attrs);
490 break;
491 case 4:
492 r = gicr_writel(cs, offset, data, attrs);
493 break;
494 case 8:
495 r = gicr_writell(cs, offset, data, attrs);
496 break;
497 default:
498 r = MEMTX_ERROR;
499 break;
502 if (r == MEMTX_ERROR) {
503 qemu_log_mask(LOG_GUEST_ERROR,
504 "%s: invalid guest write at offset " TARGET_FMT_plx
505 "size %u\n", __func__, offset, size);
506 trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
507 size, attrs.secure);
508 } else {
509 trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
510 size, attrs.secure);
512 return r;
515 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
517 /* Update redistributor state for a change in an external PPI input line */
518 if (level == extract32(cs->level, irq, 1)) {
519 return;
522 trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
524 cs->level = deposit32(cs->level, irq, 1, level);
526 if (level) {
527 /* 0->1 edges latch the pending bit for edge-triggered interrupts */
528 if (extract32(cs->edge_trigger, irq, 1)) {
529 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
533 gicv3_redist_update(cs);
536 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
538 /* Update redistributor state for a generated SGI */
539 int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
541 /* If we are asked for a Secure Group 1 SGI and it's actually
542 * configured as Secure Group 0 this is OK (subject to the usual
543 * NSACR checks).
545 if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
546 grp = GICV3_G0;
549 if (grp != irqgrp) {
550 return;
553 if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
554 /* If security is enabled we must test the NSACR bits */
555 int nsaccess = gicr_ns_access(cs, irq);
557 if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
558 (irqgrp == GICV3_G1 && nsaccess < 2)) {
559 return;
563 /* OK, we can accept the SGI */
564 trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
565 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
566 gicv3_redist_update(cs);