2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu-timer.h"
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
38 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
40 # define LOG_IRQ(...) do { } while (0)
45 # define LOG_TB(...) qemu_log(__VA_ARGS__)
47 # define LOG_TB(...) do { } while (0)
50 static void cpu_ppc_tb_stop (CPUState
*env
);
51 static void cpu_ppc_tb_start (CPUState
*env
);
53 void ppc_set_irq(CPUState
*env
, int n_IRQ
, int level
)
55 unsigned int old_pending
= env
->pending_interrupts
;
58 env
->pending_interrupts
|= 1 << n_IRQ
;
59 cpu_interrupt(env
, CPU_INTERRUPT_HARD
);
61 env
->pending_interrupts
&= ~(1 << n_IRQ
);
62 if (env
->pending_interrupts
== 0)
63 cpu_reset_interrupt(env
, CPU_INTERRUPT_HARD
);
66 if (old_pending
!= env
->pending_interrupts
) {
68 kvmppc_set_interrupt(env
, n_IRQ
, level
);
72 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73 "req %08x\n", __func__
, env
, n_IRQ
, level
,
74 env
->pending_interrupts
, env
->interrupt_request
);
77 /* PowerPC 6xx / 7xx internal IRQ controller */
78 static void ppc6xx_set_irq (void *opaque
, int pin
, int level
)
80 CPUState
*env
= opaque
;
83 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
85 cur_level
= (env
->irq_input_state
>> pin
) & 1;
86 /* Don't generate spurious events */
87 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
89 case PPC6xx_INPUT_TBEN
:
90 /* Level sensitive - active high */
91 LOG_IRQ("%s: %s the time base\n",
92 __func__
, level
? "start" : "stop");
94 cpu_ppc_tb_start(env
);
98 case PPC6xx_INPUT_INT
:
99 /* Level sensitive - active high */
100 LOG_IRQ("%s: set the external IRQ state to %d\n",
102 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
104 case PPC6xx_INPUT_SMI
:
105 /* Level sensitive - active high */
106 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
108 ppc_set_irq(env
, PPC_INTERRUPT_SMI
, level
);
110 case PPC6xx_INPUT_MCP
:
111 /* Negative edge sensitive */
112 /* XXX: TODO: actual reaction may depends on HID0 status
113 * 603/604/740/750: check HID0[EMCP]
115 if (cur_level
== 1 && level
== 0) {
116 LOG_IRQ("%s: raise machine check state\n",
118 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
121 case PPC6xx_INPUT_CKSTP_IN
:
122 /* Level sensitive - active low */
123 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
124 /* XXX: Note that the only way to restart the CPU is to reset it */
126 LOG_IRQ("%s: stop the CPU\n", __func__
);
130 case PPC6xx_INPUT_HRESET
:
131 /* Level sensitive - active low */
133 LOG_IRQ("%s: reset the CPU\n", __func__
);
134 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
139 qemu_system_reset_request();
143 case PPC6xx_INPUT_SRESET
:
144 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
146 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
149 /* Unknown pin - do nothing */
150 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
154 env
->irq_input_state
|= 1 << pin
;
156 env
->irq_input_state
&= ~(1 << pin
);
160 void ppc6xx_irq_init (CPUState
*env
)
162 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, env
,
166 #if defined(TARGET_PPC64)
167 /* PowerPC 970 internal IRQ controller */
168 static void ppc970_set_irq (void *opaque
, int pin
, int level
)
170 CPUState
*env
= opaque
;
173 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
175 cur_level
= (env
->irq_input_state
>> pin
) & 1;
176 /* Don't generate spurious events */
177 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
179 case PPC970_INPUT_INT
:
180 /* Level sensitive - active high */
181 LOG_IRQ("%s: set the external IRQ state to %d\n",
183 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
185 case PPC970_INPUT_THINT
:
186 /* Level sensitive - active high */
187 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
189 ppc_set_irq(env
, PPC_INTERRUPT_THERM
, level
);
191 case PPC970_INPUT_MCP
:
192 /* Negative edge sensitive */
193 /* XXX: TODO: actual reaction may depends on HID0 status
194 * 603/604/740/750: check HID0[EMCP]
196 if (cur_level
== 1 && level
== 0) {
197 LOG_IRQ("%s: raise machine check state\n",
199 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
202 case PPC970_INPUT_CKSTP
:
203 /* Level sensitive - active low */
204 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
206 LOG_IRQ("%s: stop the CPU\n", __func__
);
209 LOG_IRQ("%s: restart the CPU\n", __func__
);
214 case PPC970_INPUT_HRESET
:
215 /* Level sensitive - active low */
218 LOG_IRQ("%s: reset the CPU\n", __func__
);
223 case PPC970_INPUT_SRESET
:
224 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
226 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
228 case PPC970_INPUT_TBEN
:
229 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
234 /* Unknown pin - do nothing */
235 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
239 env
->irq_input_state
|= 1 << pin
;
241 env
->irq_input_state
&= ~(1 << pin
);
245 void ppc970_irq_init (CPUState
*env
)
247 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, env
,
251 /* POWER7 internal IRQ controller */
252 static void power7_set_irq (void *opaque
, int pin
, int level
)
254 CPUState
*env
= opaque
;
256 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
260 case POWER7_INPUT_INT
:
261 /* Level sensitive - active high */
262 LOG_IRQ("%s: set the external IRQ state to %d\n",
264 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
267 /* Unknown pin - do nothing */
268 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
272 env
->irq_input_state
|= 1 << pin
;
274 env
->irq_input_state
&= ~(1 << pin
);
278 void ppcPOWER7_irq_init (CPUState
*env
)
280 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, env
,
283 #endif /* defined(TARGET_PPC64) */
285 /* PowerPC 40x internal IRQ controller */
286 static void ppc40x_set_irq (void *opaque
, int pin
, int level
)
288 CPUState
*env
= opaque
;
291 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
293 cur_level
= (env
->irq_input_state
>> pin
) & 1;
294 /* Don't generate spurious events */
295 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
297 case PPC40x_INPUT_RESET_SYS
:
299 LOG_IRQ("%s: reset the PowerPC system\n",
301 ppc40x_system_reset(env
);
304 case PPC40x_INPUT_RESET_CHIP
:
306 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
307 ppc40x_chip_reset(env
);
310 case PPC40x_INPUT_RESET_CORE
:
311 /* XXX: TODO: update DBSR[MRR] */
313 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
314 ppc40x_core_reset(env
);
317 case PPC40x_INPUT_CINT
:
318 /* Level sensitive - active high */
319 LOG_IRQ("%s: set the critical IRQ state to %d\n",
321 ppc_set_irq(env
, PPC_INTERRUPT_CEXT
, level
);
323 case PPC40x_INPUT_INT
:
324 /* Level sensitive - active high */
325 LOG_IRQ("%s: set the external IRQ state to %d\n",
327 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
329 case PPC40x_INPUT_HALT
:
330 /* Level sensitive - active low */
332 LOG_IRQ("%s: stop the CPU\n", __func__
);
335 LOG_IRQ("%s: restart the CPU\n", __func__
);
340 case PPC40x_INPUT_DEBUG
:
341 /* Level sensitive - active high */
342 LOG_IRQ("%s: set the debug pin state to %d\n",
344 ppc_set_irq(env
, PPC_INTERRUPT_DEBUG
, level
);
347 /* Unknown pin - do nothing */
348 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
352 env
->irq_input_state
|= 1 << pin
;
354 env
->irq_input_state
&= ~(1 << pin
);
358 void ppc40x_irq_init (CPUState
*env
)
360 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
361 env
, PPC40x_INPUT_NB
);
364 /* PowerPC E500 internal IRQ controller */
365 static void ppce500_set_irq (void *opaque
, int pin
, int level
)
367 CPUState
*env
= opaque
;
370 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
372 cur_level
= (env
->irq_input_state
>> pin
) & 1;
373 /* Don't generate spurious events */
374 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
376 case PPCE500_INPUT_MCK
:
378 LOG_IRQ("%s: reset the PowerPC system\n",
380 qemu_system_reset_request();
383 case PPCE500_INPUT_RESET_CORE
:
385 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
386 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, level
);
389 case PPCE500_INPUT_CINT
:
390 /* Level sensitive - active high */
391 LOG_IRQ("%s: set the critical IRQ state to %d\n",
393 ppc_set_irq(env
, PPC_INTERRUPT_CEXT
, level
);
395 case PPCE500_INPUT_INT
:
396 /* Level sensitive - active high */
397 LOG_IRQ("%s: set the core IRQ state to %d\n",
399 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
401 case PPCE500_INPUT_DEBUG
:
402 /* Level sensitive - active high */
403 LOG_IRQ("%s: set the debug pin state to %d\n",
405 ppc_set_irq(env
, PPC_INTERRUPT_DEBUG
, level
);
408 /* Unknown pin - do nothing */
409 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
413 env
->irq_input_state
|= 1 << pin
;
415 env
->irq_input_state
&= ~(1 << pin
);
419 void ppce500_irq_init (CPUState
*env
)
421 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
422 env
, PPCE500_INPUT_NB
);
424 /*****************************************************************************/
425 /* PowerPC time base and decrementer emulation */
427 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
429 /* TB time in tb periods */
430 return muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec()) + tb_offset
;
433 uint64_t cpu_ppc_load_tbl (CPUState
*env
)
435 ppc_tb_t
*tb_env
= env
->tb_env
;
439 return env
->spr
[SPR_TBL
];
442 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
443 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
448 static inline uint32_t _cpu_ppc_load_tbu(CPUState
*env
)
450 ppc_tb_t
*tb_env
= env
->tb_env
;
453 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
454 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
459 uint32_t cpu_ppc_load_tbu (CPUState
*env
)
462 return env
->spr
[SPR_TBU
];
465 return _cpu_ppc_load_tbu(env
);
468 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
469 int64_t *tb_offsetp
, uint64_t value
)
471 *tb_offsetp
= value
- muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec());
472 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
473 __func__
, value
, *tb_offsetp
);
476 void cpu_ppc_store_tbl (CPUState
*env
, uint32_t value
)
478 ppc_tb_t
*tb_env
= env
->tb_env
;
481 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
482 tb
&= 0xFFFFFFFF00000000ULL
;
483 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
484 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
487 static inline void _cpu_ppc_store_tbu(CPUState
*env
, uint32_t value
)
489 ppc_tb_t
*tb_env
= env
->tb_env
;
492 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
493 tb
&= 0x00000000FFFFFFFFULL
;
494 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
495 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
498 void cpu_ppc_store_tbu (CPUState
*env
, uint32_t value
)
500 _cpu_ppc_store_tbu(env
, value
);
503 uint64_t cpu_ppc_load_atbl (CPUState
*env
)
505 ppc_tb_t
*tb_env
= env
->tb_env
;
508 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
509 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
514 uint32_t cpu_ppc_load_atbu (CPUState
*env
)
516 ppc_tb_t
*tb_env
= env
->tb_env
;
519 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
520 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
525 void cpu_ppc_store_atbl (CPUState
*env
, uint32_t value
)
527 ppc_tb_t
*tb_env
= env
->tb_env
;
530 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
531 tb
&= 0xFFFFFFFF00000000ULL
;
532 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
533 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
536 void cpu_ppc_store_atbu (CPUState
*env
, uint32_t value
)
538 ppc_tb_t
*tb_env
= env
->tb_env
;
541 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
542 tb
&= 0x00000000FFFFFFFFULL
;
543 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
544 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
547 static void cpu_ppc_tb_stop (CPUState
*env
)
549 ppc_tb_t
*tb_env
= env
->tb_env
;
550 uint64_t tb
, atb
, vmclk
;
552 /* If the time base is already frozen, do nothing */
553 if (tb_env
->tb_freq
!= 0) {
554 vmclk
= qemu_get_clock_ns(vm_clock
);
555 /* Get the time base */
556 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
557 /* Get the alternate time base */
558 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
559 /* Store the time base value (ie compute the current offset) */
560 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
561 /* Store the alternate time base value (compute the current offset) */
562 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
563 /* Set the time base frequency to zero */
565 /* Now, the time bases are frozen to tb_offset / atb_offset value */
569 static void cpu_ppc_tb_start (CPUState
*env
)
571 ppc_tb_t
*tb_env
= env
->tb_env
;
572 uint64_t tb
, atb
, vmclk
;
574 /* If the time base is not frozen, do nothing */
575 if (tb_env
->tb_freq
== 0) {
576 vmclk
= qemu_get_clock_ns(vm_clock
);
577 /* Get the time base from tb_offset */
578 tb
= tb_env
->tb_offset
;
579 /* Get the alternate time base from atb_offset */
580 atb
= tb_env
->atb_offset
;
581 /* Restore the tb frequency from the decrementer frequency */
582 tb_env
->tb_freq
= tb_env
->decr_freq
;
583 /* Store the time base value */
584 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
585 /* Store the alternate time base value */
586 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
590 static inline uint32_t _cpu_ppc_load_decr(CPUState
*env
, uint64_t next
)
592 ppc_tb_t
*tb_env
= env
->tb_env
;
596 diff
= next
- qemu_get_clock_ns(vm_clock
);
598 decr
= muldiv64(diff
, tb_env
->decr_freq
, get_ticks_per_sec());
599 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
602 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, get_ticks_per_sec());
604 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
609 uint32_t cpu_ppc_load_decr (CPUState
*env
)
611 ppc_tb_t
*tb_env
= env
->tb_env
;
614 return env
->spr
[SPR_DECR
];
617 return _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
620 uint32_t cpu_ppc_load_hdecr (CPUState
*env
)
622 ppc_tb_t
*tb_env
= env
->tb_env
;
624 return _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
627 uint64_t cpu_ppc_load_purr (CPUState
*env
)
629 ppc_tb_t
*tb_env
= env
->tb_env
;
632 diff
= qemu_get_clock_ns(vm_clock
) - tb_env
->purr_start
;
634 return tb_env
->purr_load
+ muldiv64(diff
, tb_env
->tb_freq
, get_ticks_per_sec());
637 /* When decrementer expires,
638 * all we need to do is generate or queue a CPU exception
640 static inline void cpu_ppc_decr_excp(CPUState
*env
)
643 LOG_TB("raise decrementer exception\n");
644 ppc_set_irq(env
, PPC_INTERRUPT_DECR
, 1);
647 static inline void cpu_ppc_hdecr_excp(CPUState
*env
)
650 LOG_TB("raise decrementer exception\n");
651 ppc_set_irq(env
, PPC_INTERRUPT_HDECR
, 1);
654 static void __cpu_ppc_store_decr (CPUState
*env
, uint64_t *nextp
,
655 struct QEMUTimer
*timer
,
656 void (*raise_excp
)(CPUState
*),
657 uint32_t decr
, uint32_t value
,
660 ppc_tb_t
*tb_env
= env
->tb_env
;
663 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
667 /* KVM handles decrementer exceptions, we don't need our own timer */
671 now
= qemu_get_clock_ns(vm_clock
);
672 next
= now
+ muldiv64(value
, get_ticks_per_sec(), tb_env
->decr_freq
);
674 next
+= *nextp
- now
;
681 qemu_mod_timer(timer
, next
);
683 /* If we set a negative value and the decrementer was positive, raise an
686 if ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
)
687 && (value
& 0x80000000)
688 && !(decr
& 0x80000000)) {
693 static inline void _cpu_ppc_store_decr(CPUState
*env
, uint32_t decr
,
694 uint32_t value
, int is_excp
)
696 ppc_tb_t
*tb_env
= env
->tb_env
;
698 __cpu_ppc_store_decr(env
, &tb_env
->decr_next
, tb_env
->decr_timer
,
699 &cpu_ppc_decr_excp
, decr
, value
, is_excp
);
702 void cpu_ppc_store_decr (CPUState
*env
, uint32_t value
)
704 _cpu_ppc_store_decr(env
, cpu_ppc_load_decr(env
), value
, 0);
707 static void cpu_ppc_decr_cb (void *opaque
)
709 _cpu_ppc_store_decr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
712 static inline void _cpu_ppc_store_hdecr(CPUState
*env
, uint32_t hdecr
,
713 uint32_t value
, int is_excp
)
715 ppc_tb_t
*tb_env
= env
->tb_env
;
717 if (tb_env
->hdecr_timer
!= NULL
) {
718 __cpu_ppc_store_decr(env
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
719 &cpu_ppc_hdecr_excp
, hdecr
, value
, is_excp
);
723 void cpu_ppc_store_hdecr (CPUState
*env
, uint32_t value
)
725 _cpu_ppc_store_hdecr(env
, cpu_ppc_load_hdecr(env
), value
, 0);
728 static void cpu_ppc_hdecr_cb (void *opaque
)
730 _cpu_ppc_store_hdecr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
733 void cpu_ppc_store_purr (CPUState
*env
, uint64_t value
)
735 ppc_tb_t
*tb_env
= env
->tb_env
;
737 tb_env
->purr_load
= value
;
738 tb_env
->purr_start
= qemu_get_clock_ns(vm_clock
);
741 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
743 CPUState
*env
= opaque
;
744 ppc_tb_t
*tb_env
= env
->tb_env
;
746 tb_env
->tb_freq
= freq
;
747 tb_env
->decr_freq
= freq
;
748 /* There is a bug in Linux 2.4 kernels:
749 * if a decrementer exception is pending when it enables msr_ee at startup,
750 * it's not ready to handle it...
752 _cpu_ppc_store_decr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
753 _cpu_ppc_store_hdecr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
754 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
757 /* Set up (once) timebase frequency (in Hz) */
758 clk_setup_cb
cpu_ppc_tb_init (CPUState
*env
, uint32_t freq
)
762 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
763 env
->tb_env
= tb_env
;
764 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
765 /* Create new timer */
766 tb_env
->decr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_ppc_decr_cb
, env
);
768 /* XXX: find a suitable condition to enable the hypervisor decrementer
770 tb_env
->hdecr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_ppc_hdecr_cb
, env
);
772 tb_env
->hdecr_timer
= NULL
;
774 cpu_ppc_set_tb_clk(env
, freq
);
776 return &cpu_ppc_set_tb_clk
;
779 /* Specific helpers for POWER & PowerPC 601 RTC */
781 static clk_setup_cb
cpu_ppc601_rtc_init (CPUState
*env
)
783 return cpu_ppc_tb_init(env
, 7812500);
787 void cpu_ppc601_store_rtcu (CPUState
*env
, uint32_t value
)
789 _cpu_ppc_store_tbu(env
, value
);
792 uint32_t cpu_ppc601_load_rtcu (CPUState
*env
)
794 return _cpu_ppc_load_tbu(env
);
797 void cpu_ppc601_store_rtcl (CPUState
*env
, uint32_t value
)
799 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
802 uint32_t cpu_ppc601_load_rtcl (CPUState
*env
)
804 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
807 /*****************************************************************************/
808 /* PowerPC 40x timers */
811 typedef struct ppc40x_timer_t ppc40x_timer_t
;
812 struct ppc40x_timer_t
{
813 uint64_t pit_reload
; /* PIT auto-reload value */
814 uint64_t fit_next
; /* Tick for next FIT interrupt */
815 struct QEMUTimer
*fit_timer
;
816 uint64_t wdt_next
; /* Tick for next WDT interrupt */
817 struct QEMUTimer
*wdt_timer
;
819 /* 405 have the PIT, 440 have a DECR. */
820 unsigned int decr_excp
;
823 /* Fixed interval timer */
824 static void cpu_4xx_fit_cb (void *opaque
)
828 ppc40x_timer_t
*ppc40x_timer
;
832 tb_env
= env
->tb_env
;
833 ppc40x_timer
= tb_env
->opaque
;
834 now
= qemu_get_clock_ns(vm_clock
);
835 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
849 /* Cannot occur, but makes gcc happy */
852 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->tb_freq
);
855 qemu_mod_timer(ppc40x_timer
->fit_timer
, next
);
856 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
857 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1)
858 ppc_set_irq(env
, PPC_INTERRUPT_FIT
, 1);
859 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
860 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
861 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
864 /* Programmable interval timer */
865 static void start_stop_pit (CPUState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
867 ppc40x_timer_t
*ppc40x_timer
;
870 ppc40x_timer
= tb_env
->opaque
;
871 if (ppc40x_timer
->pit_reload
<= 1 ||
872 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
873 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
875 LOG_TB("%s: stop PIT\n", __func__
);
876 qemu_del_timer(tb_env
->decr_timer
);
878 LOG_TB("%s: start PIT %016" PRIx64
"\n",
879 __func__
, ppc40x_timer
->pit_reload
);
880 now
= qemu_get_clock_ns(vm_clock
);
881 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
882 get_ticks_per_sec(), tb_env
->decr_freq
);
884 next
+= tb_env
->decr_next
- now
;
887 qemu_mod_timer(tb_env
->decr_timer
, next
);
888 tb_env
->decr_next
= next
;
892 static void cpu_4xx_pit_cb (void *opaque
)
896 ppc40x_timer_t
*ppc40x_timer
;
899 tb_env
= env
->tb_env
;
900 ppc40x_timer
= tb_env
->opaque
;
901 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
902 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1)
903 ppc_set_irq(env
, ppc40x_timer
->decr_excp
, 1);
904 start_stop_pit(env
, tb_env
, 1);
905 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
906 "%016" PRIx64
"\n", __func__
,
907 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
908 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
909 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
910 ppc40x_timer
->pit_reload
);
914 static void cpu_4xx_wdt_cb (void *opaque
)
918 ppc40x_timer_t
*ppc40x_timer
;
922 tb_env
= env
->tb_env
;
923 ppc40x_timer
= tb_env
->opaque
;
924 now
= qemu_get_clock_ns(vm_clock
);
925 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
939 /* Cannot occur, but makes gcc happy */
942 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->decr_freq
);
945 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
946 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
947 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
950 qemu_mod_timer(ppc40x_timer
->wdt_timer
, next
);
951 ppc40x_timer
->wdt_next
= next
;
952 env
->spr
[SPR_40x_TSR
] |= 1 << 31;
955 qemu_mod_timer(ppc40x_timer
->wdt_timer
, next
);
956 ppc40x_timer
->wdt_next
= next
;
957 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
958 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1)
959 ppc_set_irq(env
, PPC_INTERRUPT_WDT
, 1);
962 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
963 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
964 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
968 case 0x1: /* Core reset */
969 ppc40x_core_reset(env
);
971 case 0x2: /* Chip reset */
972 ppc40x_chip_reset(env
);
974 case 0x3: /* System reset */
975 ppc40x_system_reset(env
);
981 void store_40x_pit (CPUState
*env
, target_ulong val
)
984 ppc40x_timer_t
*ppc40x_timer
;
986 tb_env
= env
->tb_env
;
987 ppc40x_timer
= tb_env
->opaque
;
988 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
989 ppc40x_timer
->pit_reload
= val
;
990 start_stop_pit(env
, tb_env
, 0);
993 target_ulong
load_40x_pit (CPUState
*env
)
995 return cpu_ppc_load_decr(env
);
998 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1000 CPUState
*env
= opaque
;
1001 ppc_tb_t
*tb_env
= env
->tb_env
;
1003 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
1005 tb_env
->tb_freq
= freq
;
1006 tb_env
->decr_freq
= freq
;
1007 /* XXX: we should also update all timers */
1010 clk_setup_cb
ppc_40x_timers_init (CPUState
*env
, uint32_t freq
,
1011 unsigned int decr_excp
)
1014 ppc40x_timer_t
*ppc40x_timer
;
1016 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1017 env
->tb_env
= tb_env
;
1018 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1019 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1020 tb_env
->tb_freq
= freq
;
1021 tb_env
->decr_freq
= freq
;
1022 tb_env
->opaque
= ppc40x_timer
;
1023 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1024 if (ppc40x_timer
!= NULL
) {
1025 /* We use decr timer for PIT */
1026 tb_env
->decr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_4xx_pit_cb
, env
);
1027 ppc40x_timer
->fit_timer
=
1028 qemu_new_timer_ns(vm_clock
, &cpu_4xx_fit_cb
, env
);
1029 ppc40x_timer
->wdt_timer
=
1030 qemu_new_timer_ns(vm_clock
, &cpu_4xx_wdt_cb
, env
);
1031 ppc40x_timer
->decr_excp
= decr_excp
;
1034 return &ppc_40x_set_tb_clk
;
1037 /*****************************************************************************/
1038 /* Embedded PowerPC Device Control Registers */
1039 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1041 dcr_read_cb dcr_read
;
1042 dcr_write_cb dcr_write
;
1046 /* XXX: on 460, DCR addresses are 32 bits wide,
1047 * using DCRIPR to get the 22 upper bits of the DCR address
1049 #define DCRN_NB 1024
1051 ppc_dcrn_t dcrn
[DCRN_NB
];
1052 int (*read_error
)(int dcrn
);
1053 int (*write_error
)(int dcrn
);
1056 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1060 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1062 dcr
= &dcr_env
->dcrn
[dcrn
];
1063 if (dcr
->dcr_read
== NULL
)
1065 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1070 if (dcr_env
->read_error
!= NULL
)
1071 return (*dcr_env
->read_error
)(dcrn
);
1076 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1080 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1082 dcr
= &dcr_env
->dcrn
[dcrn
];
1083 if (dcr
->dcr_write
== NULL
)
1085 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1090 if (dcr_env
->write_error
!= NULL
)
1091 return (*dcr_env
->write_error
)(dcrn
);
1096 int ppc_dcr_register (CPUState
*env
, int dcrn
, void *opaque
,
1097 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1102 dcr_env
= env
->dcr_env
;
1103 if (dcr_env
== NULL
)
1105 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1107 dcr
= &dcr_env
->dcrn
[dcrn
];
1108 if (dcr
->opaque
!= NULL
||
1109 dcr
->dcr_read
!= NULL
||
1110 dcr
->dcr_write
!= NULL
)
1112 dcr
->opaque
= opaque
;
1113 dcr
->dcr_read
= dcr_read
;
1114 dcr
->dcr_write
= dcr_write
;
1119 int ppc_dcr_init (CPUState
*env
, int (*read_error
)(int dcrn
),
1120 int (*write_error
)(int dcrn
))
1124 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1125 dcr_env
->read_error
= read_error
;
1126 dcr_env
->write_error
= write_error
;
1127 env
->dcr_env
= dcr_env
;
1132 /*****************************************************************************/
1134 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1146 printf("Set loglevel to %04" PRIx32
"\n", val
);
1147 cpu_set_log(val
| 0x100);
1152 /*****************************************************************************/
1154 static inline uint32_t nvram_read (nvram_t
*nvram
, uint32_t addr
)
1156 return (*nvram
->read_fn
)(nvram
->opaque
, addr
);;
1159 static inline void nvram_write (nvram_t
*nvram
, uint32_t addr
, uint32_t val
)
1161 (*nvram
->write_fn
)(nvram
->opaque
, addr
, val
);
1164 void NVRAM_set_byte (nvram_t
*nvram
, uint32_t addr
, uint8_t value
)
1166 nvram_write(nvram
, addr
, value
);
1169 uint8_t NVRAM_get_byte (nvram_t
*nvram
, uint32_t addr
)
1171 return nvram_read(nvram
, addr
);
1174 void NVRAM_set_word (nvram_t
*nvram
, uint32_t addr
, uint16_t value
)
1176 nvram_write(nvram
, addr
, value
>> 8);
1177 nvram_write(nvram
, addr
+ 1, value
& 0xFF);
1180 uint16_t NVRAM_get_word (nvram_t
*nvram
, uint32_t addr
)
1184 tmp
= nvram_read(nvram
, addr
) << 8;
1185 tmp
|= nvram_read(nvram
, addr
+ 1);
1190 void NVRAM_set_lword (nvram_t
*nvram
, uint32_t addr
, uint32_t value
)
1192 nvram_write(nvram
, addr
, value
>> 24);
1193 nvram_write(nvram
, addr
+ 1, (value
>> 16) & 0xFF);
1194 nvram_write(nvram
, addr
+ 2, (value
>> 8) & 0xFF);
1195 nvram_write(nvram
, addr
+ 3, value
& 0xFF);
1198 uint32_t NVRAM_get_lword (nvram_t
*nvram
, uint32_t addr
)
1202 tmp
= nvram_read(nvram
, addr
) << 24;
1203 tmp
|= nvram_read(nvram
, addr
+ 1) << 16;
1204 tmp
|= nvram_read(nvram
, addr
+ 2) << 8;
1205 tmp
|= nvram_read(nvram
, addr
+ 3);
1210 void NVRAM_set_string (nvram_t
*nvram
, uint32_t addr
,
1211 const char *str
, uint32_t max
)
1215 for (i
= 0; i
< max
&& str
[i
] != '\0'; i
++) {
1216 nvram_write(nvram
, addr
+ i
, str
[i
]);
1218 nvram_write(nvram
, addr
+ i
, str
[i
]);
1219 nvram_write(nvram
, addr
+ max
- 1, '\0');
1222 int NVRAM_get_string (nvram_t
*nvram
, uint8_t *dst
, uint16_t addr
, int max
)
1226 memset(dst
, 0, max
);
1227 for (i
= 0; i
< max
; i
++) {
1228 dst
[i
] = NVRAM_get_byte(nvram
, addr
+ i
);
1236 static uint16_t NVRAM_crc_update (uint16_t prev
, uint16_t value
)
1239 uint16_t pd
, pd1
, pd2
;
1244 pd2
= ((pd
>> 4) & 0x000F) ^ pd1
;
1245 tmp
^= (pd1
<< 3) | (pd1
<< 8);
1246 tmp
^= pd2
| (pd2
<< 7) | (pd2
<< 12);
1251 static uint16_t NVRAM_compute_crc (nvram_t
*nvram
, uint32_t start
, uint32_t count
)
1254 uint16_t crc
= 0xFFFF;
1259 for (i
= 0; i
!= count
; i
++) {
1260 crc
= NVRAM_crc_update(crc
, NVRAM_get_word(nvram
, start
+ i
));
1263 crc
= NVRAM_crc_update(crc
, NVRAM_get_byte(nvram
, start
+ i
) << 8);
1269 #define CMDLINE_ADDR 0x017ff000
1271 int PPC_NVRAM_set_params (nvram_t
*nvram
, uint16_t NVRAM_size
,
1273 uint32_t RAM_size
, int boot_device
,
1274 uint32_t kernel_image
, uint32_t kernel_size
,
1275 const char *cmdline
,
1276 uint32_t initrd_image
, uint32_t initrd_size
,
1277 uint32_t NVRAM_image
,
1278 int width
, int height
, int depth
)
1282 /* Set parameters for Open Hack'Ware BIOS */
1283 NVRAM_set_string(nvram
, 0x00, "QEMU_BIOS", 16);
1284 NVRAM_set_lword(nvram
, 0x10, 0x00000002); /* structure v2 */
1285 NVRAM_set_word(nvram
, 0x14, NVRAM_size
);
1286 NVRAM_set_string(nvram
, 0x20, arch
, 16);
1287 NVRAM_set_lword(nvram
, 0x30, RAM_size
);
1288 NVRAM_set_byte(nvram
, 0x34, boot_device
);
1289 NVRAM_set_lword(nvram
, 0x38, kernel_image
);
1290 NVRAM_set_lword(nvram
, 0x3C, kernel_size
);
1292 /* XXX: put the cmdline in NVRAM too ? */
1293 pstrcpy_targphys("cmdline", CMDLINE_ADDR
, RAM_size
- CMDLINE_ADDR
, cmdline
);
1294 NVRAM_set_lword(nvram
, 0x40, CMDLINE_ADDR
);
1295 NVRAM_set_lword(nvram
, 0x44, strlen(cmdline
));
1297 NVRAM_set_lword(nvram
, 0x40, 0);
1298 NVRAM_set_lword(nvram
, 0x44, 0);
1300 NVRAM_set_lword(nvram
, 0x48, initrd_image
);
1301 NVRAM_set_lword(nvram
, 0x4C, initrd_size
);
1302 NVRAM_set_lword(nvram
, 0x50, NVRAM_image
);
1304 NVRAM_set_word(nvram
, 0x54, width
);
1305 NVRAM_set_word(nvram
, 0x56, height
);
1306 NVRAM_set_word(nvram
, 0x58, depth
);
1307 crc
= NVRAM_compute_crc(nvram
, 0x00, 0xF8);
1308 NVRAM_set_word(nvram
, 0xFC, crc
);