2 * Alpha emulation cpu definitions for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #if !defined (__CPU_ALPHA_H__)
21 #define __CPU_ALPHA_H__
24 #include "qemu-common.h"
26 #define TARGET_LONG_BITS 64
28 #define CPUArchState struct CPUAlphaState
30 #include "exec/cpu-defs.h"
32 #include "fpu/softfloat.h"
34 #define TARGET_HAS_ICE 1
36 #define ELF_MACHINE EM_ALPHA
38 #define ICACHE_LINE_SIZE 32
39 #define DCACHE_LINE_SIZE 32
41 #define TARGET_PAGE_BITS 13
43 #ifdef CONFIG_USER_ONLY
44 /* ??? The kernel likes to give addresses in high memory. If the host has
45 more virtual address space than the guest, this can lead to impossible
46 allocations. Honor the long-standing assumption that only kernel addrs
47 are negative, but otherwise allow allocations anywhere. This could lead
48 to tricky emulation problems for programs doing tagged addressing, but
49 that's far fewer than encounter the impossible allocation problem. */
50 #define TARGET_PHYS_ADDR_SPACE_BITS 63
51 #define TARGET_VIRT_ADDR_SPACE_BITS 63
53 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
54 #define TARGET_PHYS_ADDR_SPACE_BITS 44
55 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
58 /* Alpha major type */
64 ALPHA_EV5
= 5, /* 21164 */
65 ALPHA_EV45
= 6, /* 21064A */
66 ALPHA_EV56
= 7, /* 21164A */
77 ALPHA_LCA_1
= 1, /* 21066 */
78 ALPHA_LCA_2
= 2, /* 20166 */
79 ALPHA_LCA_3
= 3, /* 21068 */
80 ALPHA_LCA_4
= 4, /* 21068 */
81 ALPHA_LCA_5
= 5, /* 21066A */
82 ALPHA_LCA_6
= 6, /* 21068A */
87 ALPHA_EV5_1
= 1, /* Rev BA, CA */
88 ALPHA_EV5_2
= 2, /* Rev DA, EA */
89 ALPHA_EV5_3
= 3, /* Pass 3 */
90 ALPHA_EV5_4
= 4, /* Pass 3.2 */
91 ALPHA_EV5_5
= 5, /* Pass 4 */
96 ALPHA_EV45_1
= 1, /* Pass 1 */
97 ALPHA_EV45_2
= 2, /* Pass 1.1 */
98 ALPHA_EV45_3
= 3, /* Pass 2 */
101 /* EV56 minor type */
103 ALPHA_EV56_1
= 1, /* Pass 1 */
104 ALPHA_EV56_2
= 2, /* Pass 2 */
108 IMPLVER_2106x
= 0, /* EV4, EV45 & LCA45 */
109 IMPLVER_21164
= 1, /* EV5, EV56 & PCA45 */
110 IMPLVER_21264
= 2, /* EV6, EV67 & EV68x */
111 IMPLVER_21364
= 3, /* EV7 & EV79 */
115 AMASK_BWX
= 0x00000001,
116 AMASK_FIX
= 0x00000002,
117 AMASK_CIX
= 0x00000004,
118 AMASK_MVI
= 0x00000100,
119 AMASK_TRAP
= 0x00000200,
120 AMASK_PREFETCH
= 0x00001000,
124 VAX_ROUND_NORMAL
= 0,
129 IEEE_ROUND_NORMAL
= 0,
136 /* IEEE floating-point operations encoding */
148 FP_ROUND_CHOPPED
= 0x0,
149 FP_ROUND_MINUS
= 0x1,
150 FP_ROUND_NORMAL
= 0x2,
151 FP_ROUND_DYNAMIC
= 0x3,
155 #define FPCR_SUM (1ULL << 63)
156 #define FPCR_INED (1ULL << 62)
157 #define FPCR_UNFD (1ULL << 61)
158 #define FPCR_UNDZ (1ULL << 60)
159 #define FPCR_DYN_SHIFT 58
160 #define FPCR_DYN_CHOPPED (0ULL << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_MINUS (1ULL << FPCR_DYN_SHIFT)
162 #define FPCR_DYN_NORMAL (2ULL << FPCR_DYN_SHIFT)
163 #define FPCR_DYN_PLUS (3ULL << FPCR_DYN_SHIFT)
164 #define FPCR_DYN_MASK (3ULL << FPCR_DYN_SHIFT)
165 #define FPCR_IOV (1ULL << 57)
166 #define FPCR_INE (1ULL << 56)
167 #define FPCR_UNF (1ULL << 55)
168 #define FPCR_OVF (1ULL << 54)
169 #define FPCR_DZE (1ULL << 53)
170 #define FPCR_INV (1ULL << 52)
171 #define FPCR_OVFD (1ULL << 51)
172 #define FPCR_DZED (1ULL << 50)
173 #define FPCR_INVD (1ULL << 49)
174 #define FPCR_DNZ (1ULL << 48)
175 #define FPCR_DNOD (1ULL << 47)
176 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
177 | FPCR_OVF | FPCR_DZE | FPCR_INV)
179 /* The silly software trap enables implemented by the kernel emulation.
180 These are more or less architecturally required, since the real hardware
181 has read-as-zero bits in the FPCR when the features aren't implemented.
182 For the purposes of QEMU, we pretend the FPCR can hold everything. */
183 #define SWCR_TRAP_ENABLE_INV (1ULL << 1)
184 #define SWCR_TRAP_ENABLE_DZE (1ULL << 2)
185 #define SWCR_TRAP_ENABLE_OVF (1ULL << 3)
186 #define SWCR_TRAP_ENABLE_UNF (1ULL << 4)
187 #define SWCR_TRAP_ENABLE_INE (1ULL << 5)
188 #define SWCR_TRAP_ENABLE_DNO (1ULL << 6)
189 #define SWCR_TRAP_ENABLE_MASK ((1ULL << 7) - (1ULL << 1))
191 #define SWCR_MAP_DMZ (1ULL << 12)
192 #define SWCR_MAP_UMZ (1ULL << 13)
193 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
195 #define SWCR_STATUS_INV (1ULL << 17)
196 #define SWCR_STATUS_DZE (1ULL << 18)
197 #define SWCR_STATUS_OVF (1ULL << 19)
198 #define SWCR_STATUS_UNF (1ULL << 20)
199 #define SWCR_STATUS_INE (1ULL << 21)
200 #define SWCR_STATUS_DNO (1ULL << 22)
201 #define SWCR_STATUS_MASK ((1ULL << 23) - (1ULL << 17))
203 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
205 /* MMU modes definitions */
207 /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
208 The Unix PALcode only exposes the kernel and user modes; presumably
209 executive and supervisor are used by VMS.
211 PALcode itself uses physical mode for code and kernel mode for data;
212 there are PALmode instructions that can access data via physical mode
213 or via an os-installed "alternate mode", which is one of the 4 above.
215 QEMU does not currently properly distinguish between code/data when
216 looking up addresses. To avoid having to address this issue, our
217 emulated PALcode will cheat and use the KSEG mapping for its code+data
218 rather than physical addresses.
220 Moreover, we're only emulating Unix PALcode, and not attempting VMS.
222 All of which allows us to drop all but kernel and user modes.
223 Elide the unused MMU modes to save space. */
225 #define NB_MMU_MODES 2
227 #define MMU_MODE0_SUFFIX _kernel
228 #define MMU_MODE1_SUFFIX _user
229 #define MMU_KERNEL_IDX 0
230 #define MMU_USER_IDX 1
232 typedef struct CPUAlphaState CPUAlphaState
;
234 struct CPUAlphaState
{
240 uint64_t lock_st_addr
;
242 float_status fp_status
;
243 /* The following fields make up the FPCR, but in FP_STATUS format. */
244 uint8_t fpcr_exc_status
;
245 uint8_t fpcr_exc_mask
;
246 uint8_t fpcr_dyn_round
;
247 uint8_t fpcr_flush_to_zero
;
251 /* The Internal Processor Registers. Some of these we assume always
252 exist for use in user-mode. */
260 /* These pass data from the exception logic in the translator and
261 helpers to the OS entry point. This is used for both system
262 emulation and user-mode. */
267 #if !defined(CONFIG_USER_ONLY)
268 /* The internal data required by our emulation of the Unix PALcode. */
276 uint64_t scratch
[24];
279 /* This alarm doesn't exist in real hardware; we wish it did. */
280 uint64_t alarm_expire
;
282 /* Those resources are used only in QEMU core */
292 #define cpu_list alpha_cpu_list
293 #define cpu_exec cpu_alpha_exec
294 #define cpu_gen_code cpu_alpha_gen_code
295 #define cpu_signal_handler cpu_alpha_signal_handler
297 #include "exec/cpu-all.h"
301 FEATURE_ASN
= 0x00000001,
302 FEATURE_SPS
= 0x00000002,
303 FEATURE_VIRBND
= 0x00000004,
304 FEATURE_TBCHK
= 0x00000008,
319 /* For Usermode emulation. */
324 /* Alpha-specific interrupt pending bits. */
325 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
326 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
327 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
329 /* OSF/1 Page table bits. */
332 PTE_FOR
= 0x0002, /* used for page protection (fault on read) */
333 PTE_FOW
= 0x0004, /* used for page protection (fault on write) */
334 PTE_FOE
= 0x0008, /* used for page protection (fault on exec) */
342 /* Hardware interrupt (entInt) constants. */
351 /* Memory management (entMM) constants. */
360 /* Arithmetic exception (entArith) constants. */
362 EXC_M_SWC
= 1, /* Software completion */
363 EXC_M_INV
= 2, /* Invalid operation */
364 EXC_M_DZE
= 4, /* Division by zero */
365 EXC_M_FOV
= 8, /* Overflow */
366 EXC_M_UNF
= 16, /* Underflow */
367 EXC_M_INE
= 32, /* Inexact result */
368 EXC_M_IOV
= 64 /* Integer Overflow */
371 /* Processor status constants. */
373 /* Low 3 bits are interrupt mask level. */
376 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
377 The Unix PALcode only uses bit 4. */
381 static inline int cpu_mmu_index(CPUAlphaState
*env
)
384 return MMU_KERNEL_IDX
;
385 } else if (env
->ps
& PS_USER_MODE
) {
388 return MMU_KERNEL_IDX
;
429 void alpha_translate_init(void);
431 AlphaCPU
*cpu_alpha_init(const char *cpu_model
);
433 static inline CPUAlphaState
*cpu_init(const char *cpu_model
)
435 AlphaCPU
*cpu
= cpu_alpha_init(cpu_model
);
442 void alpha_cpu_list(FILE *f
, fprintf_function cpu_fprintf
);
443 int cpu_alpha_exec(CPUAlphaState
*s
);
444 /* you can call this signal handler from your SIGBUS and SIGSEGV
445 signal handlers to inform the virtual CPU of exceptions. non zero
446 is returned if the signal was handled by the virtual CPU. */
447 int cpu_alpha_signal_handler(int host_signum
, void *pinfo
,
449 int cpu_alpha_handle_mmu_fault (CPUAlphaState
*env
, uint64_t address
, int rw
,
451 #define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault
452 void do_restore_state(CPUAlphaState
*, uintptr_t retaddr
);
453 void QEMU_NORETURN
dynamic_excp(CPUAlphaState
*, uintptr_t, int, int);
454 void QEMU_NORETURN
arith_excp(CPUAlphaState
*, uintptr_t, int, uint64_t);
456 uint64_t cpu_alpha_load_fpcr (CPUAlphaState
*env
);
457 void cpu_alpha_store_fpcr (CPUAlphaState
*env
, uint64_t val
);
458 #ifndef CONFIG_USER_ONLY
459 void swap_shadow_regs(CPUAlphaState
*env
);
460 QEMU_NORETURN
void alpha_cpu_unassigned_access(CPUState
*cpu
, hwaddr addr
,
461 bool is_write
, bool is_exec
,
462 int unused
, unsigned size
);
465 /* Bits in TB->FLAGS that control how translation is processed. */
467 TB_FLAGS_PAL_MODE
= 1,
469 TB_FLAGS_USER_MODE
= 8,
471 TB_FLAGS_AMASK_SHIFT
= 4,
472 TB_FLAGS_AMASK_BWX
= AMASK_BWX
<< TB_FLAGS_AMASK_SHIFT
,
473 TB_FLAGS_AMASK_FIX
= AMASK_FIX
<< TB_FLAGS_AMASK_SHIFT
,
474 TB_FLAGS_AMASK_CIX
= AMASK_CIX
<< TB_FLAGS_AMASK_SHIFT
,
475 TB_FLAGS_AMASK_MVI
= AMASK_MVI
<< TB_FLAGS_AMASK_SHIFT
,
476 TB_FLAGS_AMASK_TRAP
= AMASK_TRAP
<< TB_FLAGS_AMASK_SHIFT
,
477 TB_FLAGS_AMASK_PREFETCH
= AMASK_PREFETCH
<< TB_FLAGS_AMASK_SHIFT
,
480 static inline void cpu_get_tb_cpu_state(CPUAlphaState
*env
, target_ulong
*pc
,
481 target_ulong
*cs_base
, int *pflags
)
489 flags
= TB_FLAGS_PAL_MODE
;
491 flags
= env
->ps
& PS_USER_MODE
;
494 flags
|= TB_FLAGS_FEN
;
496 flags
|= env
->amask
<< TB_FLAGS_AMASK_SHIFT
;
501 static inline bool cpu_has_work(CPUState
*cpu
)
503 /* Here we are checking to see if the CPU should wake up from HALT.
504 We will have gotten into this state only for WTINT from PALmode. */
505 /* ??? I'm not sure how the IPL state works with WTINT to keep a CPU
506 asleep even if (some) interrupts have been asserted. For now,
507 assume that if a CPU really wants to stay asleep, it will mask
508 interrupts at the chipset level, which will prevent these bits
509 from being set in the first place. */
510 return cpu
->interrupt_request
& (CPU_INTERRUPT_HARD
511 | CPU_INTERRUPT_TIMER
513 | CPU_INTERRUPT_MCHK
);
516 #include "exec/exec-all.h"
518 #endif /* !defined (__CPU_ALPHA_H__) */