2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu-common.h"
24 #include "cpu-common.h"
26 /* some important defines:
28 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
31 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32 * otherwise little endian.
34 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 * TARGET_WORDS_BIGENDIAN : same for target cpu
39 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
45 static inline uint16_t tswap16(uint16_t s
)
50 static inline uint32_t tswap32(uint32_t s
)
55 static inline uint64_t tswap64(uint64_t s
)
60 static inline void tswap16s(uint16_t *s
)
65 static inline void tswap32s(uint32_t *s
)
70 static inline void tswap64s(uint64_t *s
)
77 static inline uint16_t tswap16(uint16_t s
)
82 static inline uint32_t tswap32(uint32_t s
)
87 static inline uint64_t tswap64(uint64_t s
)
92 static inline void tswap16s(uint16_t *s
)
96 static inline void tswap32s(uint32_t *s
)
100 static inline void tswap64s(uint64_t *s
)
106 #if TARGET_LONG_SIZE == 4
107 #define tswapl(s) tswap32(s)
108 #define tswapls(s) tswap32s((uint32_t *)(s))
109 #define bswaptls(s) bswap32s(s)
111 #define tswapl(s) tswap64(s)
112 #define tswapls(s) tswap64s((uint64_t *)(s))
113 #define bswaptls(s) bswap64s(s)
116 /* CPU memory access without any memory or io remapping */
119 * the generic syntax for the memory accesses is:
121 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
123 * store: st{type}{size}{endian}_{access_type}(ptr, val)
126 * (empty): integer access
130 * (empty): for floats or 32 bit size
141 * (empty): target cpu endianness or 8 bit access
142 * r : reversed target cpu endianness (not implemented yet)
143 * be : big endian (not implemented yet)
144 * le : little endian (not implemented yet)
147 * raw : host memory access
148 * user : user mode access using soft MMU
149 * kernel : kernel mode access using soft MMU
152 /* target-endianness CPU memory access functions */
153 #if defined(TARGET_WORDS_BIGENDIAN)
154 #define lduw_p(p) lduw_be_p(p)
155 #define ldsw_p(p) ldsw_be_p(p)
156 #define ldl_p(p) ldl_be_p(p)
157 #define ldq_p(p) ldq_be_p(p)
158 #define ldfl_p(p) ldfl_be_p(p)
159 #define ldfq_p(p) ldfq_be_p(p)
160 #define stw_p(p, v) stw_be_p(p, v)
161 #define stl_p(p, v) stl_be_p(p, v)
162 #define stq_p(p, v) stq_be_p(p, v)
163 #define stfl_p(p, v) stfl_be_p(p, v)
164 #define stfq_p(p, v) stfq_be_p(p, v)
166 #define lduw_p(p) lduw_le_p(p)
167 #define ldsw_p(p) ldsw_le_p(p)
168 #define ldl_p(p) ldl_le_p(p)
169 #define ldq_p(p) ldq_le_p(p)
170 #define ldfl_p(p) ldfl_le_p(p)
171 #define ldfq_p(p) ldfq_le_p(p)
172 #define stw_p(p, v) stw_le_p(p, v)
173 #define stl_p(p, v) stl_le_p(p, v)
174 #define stq_p(p, v) stq_le_p(p, v)
175 #define stfl_p(p, v) stfl_le_p(p, v)
176 #define stfq_p(p, v) stfq_le_p(p, v)
179 /* MMU memory access macros */
181 #if defined(CONFIG_USER_ONLY)
183 #include "qemu-types.h"
185 /* On some host systems the guest address space is reserved on the host.
186 * This allows the guest address space to be offset to a convenient location.
188 #if defined(CONFIG_USE_GUEST_BASE)
189 extern unsigned long guest_base
;
190 extern int have_guest_base
;
191 extern unsigned long reserved_va
;
192 #define GUEST_BASE guest_base
193 #define RESERVED_VA reserved_va
195 #define GUEST_BASE 0ul
196 #define RESERVED_VA 0ul
199 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
200 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
202 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203 #define h2g_valid(x) 1
205 #define h2g_valid(x) ({ \
206 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
212 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
213 /* Check if given address fits target address space */ \
214 assert(h2g_valid(x)); \
218 #define saddr(x) g2h(x)
219 #define laddr(x) g2h(x)
221 #else /* !CONFIG_USER_ONLY */
222 /* NOTE: we use double casts if pointers and target_ulong have
224 #define saddr(x) (uint8_t *)(long)(x)
225 #define laddr(x) (uint8_t *)(long)(x)
228 #define ldub_raw(p) ldub_p(laddr((p)))
229 #define ldsb_raw(p) ldsb_p(laddr((p)))
230 #define lduw_raw(p) lduw_p(laddr((p)))
231 #define ldsw_raw(p) ldsw_p(laddr((p)))
232 #define ldl_raw(p) ldl_p(laddr((p)))
233 #define ldq_raw(p) ldq_p(laddr((p)))
234 #define ldfl_raw(p) ldfl_p(laddr((p)))
235 #define ldfq_raw(p) ldfq_p(laddr((p)))
236 #define stb_raw(p, v) stb_p(saddr((p)), v)
237 #define stw_raw(p, v) stw_p(saddr((p)), v)
238 #define stl_raw(p, v) stl_p(saddr((p)), v)
239 #define stq_raw(p, v) stq_p(saddr((p)), v)
240 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
241 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
244 #if defined(CONFIG_USER_ONLY)
246 /* if user mode, no other memory access functions */
247 #define ldub(p) ldub_raw(p)
248 #define ldsb(p) ldsb_raw(p)
249 #define lduw(p) lduw_raw(p)
250 #define ldsw(p) ldsw_raw(p)
251 #define ldl(p) ldl_raw(p)
252 #define ldq(p) ldq_raw(p)
253 #define ldfl(p) ldfl_raw(p)
254 #define ldfq(p) ldfq_raw(p)
255 #define stb(p, v) stb_raw(p, v)
256 #define stw(p, v) stw_raw(p, v)
257 #define stl(p, v) stl_raw(p, v)
258 #define stq(p, v) stq_raw(p, v)
259 #define stfl(p, v) stfl_raw(p, v)
260 #define stfq(p, v) stfq_raw(p, v)
262 #define ldub_code(p) ldub_raw(p)
263 #define ldsb_code(p) ldsb_raw(p)
264 #define lduw_code(p) lduw_raw(p)
265 #define ldsw_code(p) ldsw_raw(p)
266 #define ldl_code(p) ldl_raw(p)
267 #define ldq_code(p) ldq_raw(p)
269 #define ldub_kernel(p) ldub_raw(p)
270 #define ldsb_kernel(p) ldsb_raw(p)
271 #define lduw_kernel(p) lduw_raw(p)
272 #define ldsw_kernel(p) ldsw_raw(p)
273 #define ldl_kernel(p) ldl_raw(p)
274 #define ldq_kernel(p) ldq_raw(p)
275 #define ldfl_kernel(p) ldfl_raw(p)
276 #define ldfq_kernel(p) ldfq_raw(p)
277 #define stb_kernel(p, v) stb_raw(p, v)
278 #define stw_kernel(p, v) stw_raw(p, v)
279 #define stl_kernel(p, v) stl_raw(p, v)
280 #define stq_kernel(p, v) stq_raw(p, v)
281 #define stfl_kernel(p, v) stfl_raw(p, v)
282 #define stfq_kernel(p, vt) stfq_raw(p, v)
284 #endif /* defined(CONFIG_USER_ONLY) */
286 /* page related stuff */
288 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
289 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
290 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
292 /* ??? These should be the larger of unsigned long and target_ulong. */
293 extern unsigned long qemu_real_host_page_size
;
294 extern unsigned long qemu_host_page_size
;
295 extern unsigned long qemu_host_page_mask
;
297 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
299 /* same as PROT_xxx */
300 #define PAGE_READ 0x0001
301 #define PAGE_WRITE 0x0002
302 #define PAGE_EXEC 0x0004
303 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
304 #define PAGE_VALID 0x0008
305 /* original state of the write flag (used when tracking self-modifying
307 #define PAGE_WRITE_ORG 0x0010
308 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
309 /* FIXME: Code that sets/uses this is broken and needs to go away. */
310 #define PAGE_RESERVED 0x0020
313 #if defined(CONFIG_USER_ONLY)
314 void page_dump(FILE *f
);
316 typedef int (*walk_memory_regions_fn
)(void *, abi_ulong
,
317 abi_ulong
, unsigned long);
318 int walk_memory_regions(void *, walk_memory_regions_fn
);
320 int page_get_flags(target_ulong address
);
321 void page_set_flags(target_ulong start
, target_ulong end
, int flags
);
322 int page_check_range(target_ulong start
, target_ulong len
, int flags
);
325 CPUState
*cpu_copy(CPUState
*env
);
326 CPUState
*qemu_get_cpu(int cpu
);
328 #define CPU_DUMP_CODE 0x00010000
330 void cpu_dump_state(CPUState
*env
, FILE *f
, fprintf_function cpu_fprintf
,
332 void cpu_dump_statistics(CPUState
*env
, FILE *f
, fprintf_function cpu_fprintf
,
335 void QEMU_NORETURN
cpu_abort(CPUState
*env
, const char *fmt
, ...)
337 extern CPUState
*first_cpu
;
338 DECLARE_TLS(CPUState
*,cpu_single_env
);
339 #define cpu_single_env get_tls(cpu_single_env)
341 /* Flags for use in ENV->INTERRUPT_PENDING.
343 The numbers assigned here are non-sequential in order to preserve
344 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
345 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
348 /* External hardware interrupt pending. This is typically used for
349 interrupts from devices. */
350 #define CPU_INTERRUPT_HARD 0x0002
352 /* Exit the current TB. This is typically used when some system-level device
353 makes some change to the memory mapping. E.g. the a20 line change. */
354 #define CPU_INTERRUPT_EXITTB 0x0004
357 #define CPU_INTERRUPT_HALT 0x0020
359 /* Debug event pending. */
360 #define CPU_INTERRUPT_DEBUG 0x0080
362 /* Several target-specific external hardware interrupts. Each target/cpu.h
363 should define proper names based on these defines. */
364 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
365 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
366 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
367 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
368 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
370 /* Several target-specific internal interrupts. These differ from the
371 preceding target-specific interrupts in that they are intended to
372 originate from within the cpu itself, typically in response to some
373 instruction being executed. These, therefore, are not masked while
374 single-stepping within the debugger. */
375 #define CPU_INTERRUPT_TGT_INT_0 0x0100
376 #define CPU_INTERRUPT_TGT_INT_1 0x0400
377 #define CPU_INTERRUPT_TGT_INT_2 0x0800
379 /* First unused bit: 0x2000. */
381 /* The set of all bits that should be masked when single-stepping. */
382 #define CPU_INTERRUPT_SSTEP_MASK \
383 (CPU_INTERRUPT_HARD \
384 | CPU_INTERRUPT_TGT_EXT_0 \
385 | CPU_INTERRUPT_TGT_EXT_1 \
386 | CPU_INTERRUPT_TGT_EXT_2 \
387 | CPU_INTERRUPT_TGT_EXT_3 \
388 | CPU_INTERRUPT_TGT_EXT_4)
390 #ifndef CONFIG_USER_ONLY
391 typedef void (*CPUInterruptHandler
)(CPUState
*, int);
393 extern CPUInterruptHandler cpu_interrupt_handler
;
395 static inline void cpu_interrupt(CPUState
*s
, int mask
)
397 cpu_interrupt_handler(s
, mask
);
399 #else /* USER_ONLY */
400 void cpu_interrupt(CPUState
*env
, int mask
);
401 #endif /* USER_ONLY */
403 void cpu_reset_interrupt(CPUState
*env
, int mask
);
405 void cpu_exit(CPUState
*s
);
407 bool qemu_cpu_has_work(CPUState
*env
);
409 /* Breakpoint/watchpoint flags */
410 #define BP_MEM_READ 0x01
411 #define BP_MEM_WRITE 0x02
412 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
413 #define BP_STOP_BEFORE_ACCESS 0x04
414 #define BP_WATCHPOINT_HIT 0x08
418 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
419 CPUBreakpoint
**breakpoint
);
420 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
);
421 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
);
422 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
);
423 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
424 int flags
, CPUWatchpoint
**watchpoint
);
425 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
,
426 target_ulong len
, int flags
);
427 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
);
428 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
);
430 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
431 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
432 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
434 void cpu_single_step(CPUState
*env
, int enabled
);
435 void cpu_reset(CPUState
*s
);
436 int cpu_is_stopped(CPUState
*env
);
437 void run_on_cpu(CPUState
*env
, void (*func
)(void *data
), void *data
);
439 #define CPU_LOG_TB_OUT_ASM (1 << 0)
440 #define CPU_LOG_TB_IN_ASM (1 << 1)
441 #define CPU_LOG_TB_OP (1 << 2)
442 #define CPU_LOG_TB_OP_OPT (1 << 3)
443 #define CPU_LOG_INT (1 << 4)
444 #define CPU_LOG_EXEC (1 << 5)
445 #define CPU_LOG_PCALL (1 << 6)
446 #define CPU_LOG_IOPORT (1 << 7)
447 #define CPU_LOG_TB_CPU (1 << 8)
448 #define CPU_LOG_RESET (1 << 9)
450 /* define log items */
451 typedef struct CPULogItem
{
457 extern const CPULogItem cpu_log_items
[];
459 void cpu_set_log(int log_flags
);
460 void cpu_set_log_filename(const char *filename
);
461 int cpu_str_to_log_mask(const char *str
);
463 #if !defined(CONFIG_USER_ONLY)
465 /* Return the physical page corresponding to a virtual one. Use it
466 only for debugging because no protection checks are done. Return -1
468 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
);
472 extern int phys_ram_fd
;
473 extern ram_addr_t ram_size
;
475 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
476 #define RAM_PREALLOC_MASK (1 << 0)
478 typedef struct RAMBlock
{
484 QLIST_ENTRY(RAMBlock
) next
;
485 #if defined(__linux__) && !defined(TARGET_S390X)
490 typedef struct RAMList
{
492 QLIST_HEAD(, RAMBlock
) blocks
;
494 extern RAMList ram_list
;
496 extern const char *mem_path
;
497 extern int mem_prealloc
;
499 /* physical memory access */
501 /* MMIO pages are identified by a combination of an IO device index and
502 3 flags. The ROMD code stores the page ram offset in iotlb entry,
503 so only a limited number of ids are avaiable. */
505 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
507 /* Flags stored in the low bits of the TLB virtual address. These are
508 defined so that fast path ram access is all zeros. */
509 /* Zero if TLB entry is valid. */
510 #define TLB_INVALID_MASK (1 << 3)
511 /* Set if TLB entry references a clean RAM page. The iotlb entry will
512 contain the page physical address. */
513 #define TLB_NOTDIRTY (1 << 4)
514 /* Set if TLB entry is an IO callback. */
515 #define TLB_MMIO (1 << 5)
517 #define VGA_DIRTY_FLAG 0x01
518 #define CODE_DIRTY_FLAG 0x02
519 #define MIGRATION_DIRTY_FLAG 0x08
521 /* read dirty bit (return 0 or 1) */
522 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr
)
524 return ram_list
.phys_dirty
[addr
>> TARGET_PAGE_BITS
] == 0xff;
527 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr
)
529 return ram_list
.phys_dirty
[addr
>> TARGET_PAGE_BITS
];
532 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr
,
535 return ram_list
.phys_dirty
[addr
>> TARGET_PAGE_BITS
] & dirty_flags
;
538 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr
)
540 ram_list
.phys_dirty
[addr
>> TARGET_PAGE_BITS
] = 0xff;
543 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr
,
546 return ram_list
.phys_dirty
[addr
>> TARGET_PAGE_BITS
] |= dirty_flags
;
549 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start
,
556 len
= length
>> TARGET_PAGE_BITS
;
558 p
= ram_list
.phys_dirty
+ (start
>> TARGET_PAGE_BITS
);
559 for (i
= 0; i
< len
; i
++) {
564 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
566 void cpu_tlb_update_dirty(CPUState
*env
);
568 int cpu_physical_memory_set_dirty_tracking(int enable
);
570 int cpu_physical_memory_get_dirty_tracking(void);
572 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
573 target_phys_addr_t end_addr
);
575 int cpu_physical_log_start(target_phys_addr_t start_addr
,
578 int cpu_physical_log_stop(target_phys_addr_t start_addr
,
581 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
);
582 #endif /* !CONFIG_USER_ONLY */
584 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
585 uint8_t *buf
, int len
, int is_write
);
587 #endif /* CPU_ALL_H */