4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
30 #include "qemu-common.h"
33 #include "qemu/timer.h"
34 #include "qemu/envlist.h"
44 static const char *cpu_model
;
45 unsigned long mmap_min_addr
;
46 unsigned long guest_base
;
48 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
50 * When running 32-on-64 we should make sure we can fit all of the possible
51 * guest address space into a contiguous chunk of virtual host memory.
53 * This way we will never overlap with our own libraries or binaries or stack
54 * or anything else that QEMU maps.
57 /* MIPS only supports 31 bits of virtual address space for user space */
58 unsigned long reserved_va
= 0x77000000;
60 unsigned long reserved_va
= 0xf7000000;
63 unsigned long reserved_va
;
66 static void usage(void);
68 static const char *interp_prefix
= CONFIG_QEMU_INTERP_PREFIX
;
69 const char *qemu_uname_release
;
71 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
72 we allocate a bigger stack. Need a better solution, for example
73 by remapping the process stack directly at the right place */
74 unsigned long guest_stack_size
= 8 * 1024 * 1024UL;
76 void gemu_log(const char *fmt
, ...)
81 vfprintf(stderr
, fmt
, ap
);
85 #if defined(TARGET_I386)
86 int cpu_get_pic_interrupt(CPUX86State
*env
)
92 /***********************************************************/
93 /* Helper routines for implementing atomic operations. */
95 /* To implement exclusive operations we force all cpus to syncronise.
96 We don't require a full sync, only that no cpus are executing guest code.
97 The alternative is to map target atomic ops onto host equivalents,
98 which requires quite a lot of per host/target work. */
99 static pthread_mutex_t cpu_list_mutex
= PTHREAD_MUTEX_INITIALIZER
;
100 static pthread_mutex_t exclusive_lock
= PTHREAD_MUTEX_INITIALIZER
;
101 static pthread_cond_t exclusive_cond
= PTHREAD_COND_INITIALIZER
;
102 static pthread_cond_t exclusive_resume
= PTHREAD_COND_INITIALIZER
;
103 static int pending_cpus
;
105 /* Make sure everything is in a consistent state for calling fork(). */
106 void fork_start(void)
108 pthread_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
109 pthread_mutex_lock(&exclusive_lock
);
113 void fork_end(int child
)
115 mmap_fork_end(child
);
117 CPUState
*cpu
, *next_cpu
;
118 /* Child processes created by fork() only have a single thread.
119 Discard information about the parent threads. */
120 CPU_FOREACH_SAFE(cpu
, next_cpu
) {
121 if (cpu
!= thread_cpu
) {
122 QTAILQ_REMOVE(&cpus
, thread_cpu
, node
);
126 pthread_mutex_init(&exclusive_lock
, NULL
);
127 pthread_mutex_init(&cpu_list_mutex
, NULL
);
128 pthread_cond_init(&exclusive_cond
, NULL
);
129 pthread_cond_init(&exclusive_resume
, NULL
);
130 pthread_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
, NULL
);
131 gdbserver_fork(thread_cpu
);
133 pthread_mutex_unlock(&exclusive_lock
);
134 pthread_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
138 /* Wait for pending exclusive operations to complete. The exclusive lock
140 static inline void exclusive_idle(void)
142 while (pending_cpus
) {
143 pthread_cond_wait(&exclusive_resume
, &exclusive_lock
);
147 /* Start an exclusive operation.
148 Must only be called from outside cpu_arm_exec. */
149 static inline void start_exclusive(void)
153 pthread_mutex_lock(&exclusive_lock
);
157 /* Make all other cpus stop executing. */
158 CPU_FOREACH(other_cpu
) {
159 if (other_cpu
->running
) {
164 if (pending_cpus
> 1) {
165 pthread_cond_wait(&exclusive_cond
, &exclusive_lock
);
169 /* Finish an exclusive operation. */
170 static inline void __attribute__((unused
)) end_exclusive(void)
173 pthread_cond_broadcast(&exclusive_resume
);
174 pthread_mutex_unlock(&exclusive_lock
);
177 /* Wait for exclusive ops to finish, and begin cpu execution. */
178 static inline void cpu_exec_start(CPUState
*cpu
)
180 pthread_mutex_lock(&exclusive_lock
);
183 pthread_mutex_unlock(&exclusive_lock
);
186 /* Mark cpu as not executing, and release pending exclusive ops. */
187 static inline void cpu_exec_end(CPUState
*cpu
)
189 pthread_mutex_lock(&exclusive_lock
);
190 cpu
->running
= false;
191 if (pending_cpus
> 1) {
193 if (pending_cpus
== 1) {
194 pthread_cond_signal(&exclusive_cond
);
198 pthread_mutex_unlock(&exclusive_lock
);
201 void cpu_list_lock(void)
203 pthread_mutex_lock(&cpu_list_mutex
);
206 void cpu_list_unlock(void)
208 pthread_mutex_unlock(&cpu_list_mutex
);
213 /***********************************************************/
214 /* CPUX86 core interface */
216 uint64_t cpu_get_tsc(CPUX86State
*env
)
218 return cpu_get_real_ticks();
221 static void write_dt(void *ptr
, unsigned long addr
, unsigned long limit
,
226 e1
= (addr
<< 16) | (limit
& 0xffff);
227 e2
= ((addr
>> 16) & 0xff) | (addr
& 0xff000000) | (limit
& 0x000f0000);
234 static uint64_t *idt_table
;
236 static void set_gate64(void *ptr
, unsigned int type
, unsigned int dpl
,
237 uint64_t addr
, unsigned int sel
)
240 e1
= (addr
& 0xffff) | (sel
<< 16);
241 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
245 p
[2] = tswap32(addr
>> 32);
248 /* only dpl matters as we do only user space emulation */
249 static void set_idt(int n
, unsigned int dpl
)
251 set_gate64(idt_table
+ n
* 2, 0, dpl
, 0, 0);
254 static void set_gate(void *ptr
, unsigned int type
, unsigned int dpl
,
255 uint32_t addr
, unsigned int sel
)
258 e1
= (addr
& 0xffff) | (sel
<< 16);
259 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
265 /* only dpl matters as we do only user space emulation */
266 static void set_idt(int n
, unsigned int dpl
)
268 set_gate(idt_table
+ n
, 0, dpl
, 0, 0);
272 void cpu_loop(CPUX86State
*env
)
274 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
277 target_siginfo_t info
;
281 trapnr
= cpu_x86_exec(cs
);
285 /* linux syscall from int $0x80 */
286 env
->regs
[R_EAX
] = do_syscall(env
,
298 /* linux syscall from syscall instruction */
299 env
->regs
[R_EAX
] = do_syscall(env
,
312 info
.si_signo
= TARGET_SIGBUS
;
314 info
.si_code
= TARGET_SI_KERNEL
;
315 info
._sifields
._sigfault
._addr
= 0;
316 queue_signal(env
, info
.si_signo
, &info
);
319 /* XXX: potential problem if ABI32 */
320 #ifndef TARGET_X86_64
321 if (env
->eflags
& VM_MASK
) {
322 handle_vm86_fault(env
);
326 info
.si_signo
= TARGET_SIGSEGV
;
328 info
.si_code
= TARGET_SI_KERNEL
;
329 info
._sifields
._sigfault
._addr
= 0;
330 queue_signal(env
, info
.si_signo
, &info
);
334 info
.si_signo
= TARGET_SIGSEGV
;
336 if (!(env
->error_code
& 1))
337 info
.si_code
= TARGET_SEGV_MAPERR
;
339 info
.si_code
= TARGET_SEGV_ACCERR
;
340 info
._sifields
._sigfault
._addr
= env
->cr
[2];
341 queue_signal(env
, info
.si_signo
, &info
);
344 #ifndef TARGET_X86_64
345 if (env
->eflags
& VM_MASK
) {
346 handle_vm86_trap(env
, trapnr
);
350 /* division by zero */
351 info
.si_signo
= TARGET_SIGFPE
;
353 info
.si_code
= TARGET_FPE_INTDIV
;
354 info
._sifields
._sigfault
._addr
= env
->eip
;
355 queue_signal(env
, info
.si_signo
, &info
);
360 #ifndef TARGET_X86_64
361 if (env
->eflags
& VM_MASK
) {
362 handle_vm86_trap(env
, trapnr
);
366 info
.si_signo
= TARGET_SIGTRAP
;
368 if (trapnr
== EXCP01_DB
) {
369 info
.si_code
= TARGET_TRAP_BRKPT
;
370 info
._sifields
._sigfault
._addr
= env
->eip
;
372 info
.si_code
= TARGET_SI_KERNEL
;
373 info
._sifields
._sigfault
._addr
= 0;
375 queue_signal(env
, info
.si_signo
, &info
);
380 #ifndef TARGET_X86_64
381 if (env
->eflags
& VM_MASK
) {
382 handle_vm86_trap(env
, trapnr
);
386 info
.si_signo
= TARGET_SIGSEGV
;
388 info
.si_code
= TARGET_SI_KERNEL
;
389 info
._sifields
._sigfault
._addr
= 0;
390 queue_signal(env
, info
.si_signo
, &info
);
394 info
.si_signo
= TARGET_SIGILL
;
396 info
.si_code
= TARGET_ILL_ILLOPN
;
397 info
._sifields
._sigfault
._addr
= env
->eip
;
398 queue_signal(env
, info
.si_signo
, &info
);
401 /* just indicate that signals should be handled asap */
407 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
412 info
.si_code
= TARGET_TRAP_BRKPT
;
413 queue_signal(env
, info
.si_signo
, &info
);
418 pc
= env
->segs
[R_CS
].base
+ env
->eip
;
419 fprintf(stderr
, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
423 process_pending_signals(env
);
430 #define get_user_code_u32(x, gaddr, doswap) \
431 ({ abi_long __r = get_user_u32((x), (gaddr)); \
432 if (!__r && (doswap)) { \
438 #define get_user_code_u16(x, gaddr, doswap) \
439 ({ abi_long __r = get_user_u16((x), (gaddr)); \
440 if (!__r && (doswap)) { \
447 /* Commpage handling -- there is no commpage for AArch64 */
450 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
452 * r0 = pointer to oldval
453 * r1 = pointer to newval
454 * r2 = pointer to target value
457 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
458 * C set if *ptr was changed, clear if no exchange happened
460 * Note segv's in kernel helpers are a bit tricky, we can set the
461 * data address sensibly but the PC address is just the entry point.
463 static void arm_kernel_cmpxchg64_helper(CPUARMState
*env
)
465 uint64_t oldval
, newval
, val
;
467 target_siginfo_t info
;
469 /* Based on the 32 bit code in do_kernel_trap */
471 /* XXX: This only works between threads, not between processes.
472 It's probably possible to implement this with native host
473 operations. However things like ldrex/strex are much harder so
474 there's not much point trying. */
476 cpsr
= cpsr_read(env
);
479 if (get_user_u64(oldval
, env
->regs
[0])) {
480 env
->exception
.vaddress
= env
->regs
[0];
484 if (get_user_u64(newval
, env
->regs
[1])) {
485 env
->exception
.vaddress
= env
->regs
[1];
489 if (get_user_u64(val
, addr
)) {
490 env
->exception
.vaddress
= addr
;
497 if (put_user_u64(val
, addr
)) {
498 env
->exception
.vaddress
= addr
;
508 cpsr_write(env
, cpsr
, CPSR_C
);
514 /* We get the PC of the entry address - which is as good as anything,
515 on a real kernel what you get depends on which mode it uses. */
516 info
.si_signo
= TARGET_SIGSEGV
;
518 /* XXX: check env->error_code */
519 info
.si_code
= TARGET_SEGV_MAPERR
;
520 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
521 queue_signal(env
, info
.si_signo
, &info
);
524 /* Handle a jump to the kernel code page. */
526 do_kernel_trap(CPUARMState
*env
)
532 switch (env
->regs
[15]) {
533 case 0xffff0fa0: /* __kernel_memory_barrier */
534 /* ??? No-op. Will need to do better for SMP. */
536 case 0xffff0fc0: /* __kernel_cmpxchg */
537 /* XXX: This only works between threads, not between processes.
538 It's probably possible to implement this with native host
539 operations. However things like ldrex/strex are much harder so
540 there's not much point trying. */
542 cpsr
= cpsr_read(env
);
544 /* FIXME: This should SEGV if the access fails. */
545 if (get_user_u32(val
, addr
))
547 if (val
== env
->regs
[0]) {
549 /* FIXME: Check for segfaults. */
550 put_user_u32(val
, addr
);
557 cpsr_write(env
, cpsr
, CPSR_C
);
560 case 0xffff0fe0: /* __kernel_get_tls */
561 env
->regs
[0] = cpu_get_tls(env
);
563 case 0xffff0f60: /* __kernel_cmpxchg64 */
564 arm_kernel_cmpxchg64_helper(env
);
570 /* Jump back to the caller. */
571 addr
= env
->regs
[14];
576 env
->regs
[15] = addr
;
581 /* Store exclusive handling for AArch32 */
582 static int do_strex(CPUARMState
*env
)
590 if (env
->exclusive_addr
!= env
->exclusive_test
) {
593 /* We know we're always AArch32 so the address is in uint32_t range
594 * unless it was the -1 exclusive-monitor-lost value (which won't
595 * match exclusive_test above).
597 assert(extract64(env
->exclusive_addr
, 32, 32) == 0);
598 addr
= env
->exclusive_addr
;
599 size
= env
->exclusive_info
& 0xf;
602 segv
= get_user_u8(val
, addr
);
605 segv
= get_user_u16(val
, addr
);
609 segv
= get_user_u32(val
, addr
);
615 env
->exception
.vaddress
= addr
;
620 segv
= get_user_u32(valhi
, addr
+ 4);
622 env
->exception
.vaddress
= addr
+ 4;
625 val
= deposit64(val
, 32, 32, valhi
);
627 if (val
!= env
->exclusive_val
) {
631 val
= env
->regs
[(env
->exclusive_info
>> 8) & 0xf];
634 segv
= put_user_u8(val
, addr
);
637 segv
= put_user_u16(val
, addr
);
641 segv
= put_user_u32(val
, addr
);
645 env
->exception
.vaddress
= addr
;
649 val
= env
->regs
[(env
->exclusive_info
>> 12) & 0xf];
650 segv
= put_user_u32(val
, addr
+ 4);
652 env
->exception
.vaddress
= addr
+ 4;
659 env
->regs
[(env
->exclusive_info
>> 4) & 0xf] = rc
;
665 void cpu_loop(CPUARMState
*env
)
667 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
669 unsigned int n
, insn
;
670 target_siginfo_t info
;
675 trapnr
= cpu_arm_exec(cs
);
680 TaskState
*ts
= cs
->opaque
;
684 /* we handle the FPU emulation here, as Linux */
685 /* we get the opcode */
686 /* FIXME - what to do if get_user() fails? */
687 get_user_code_u32(opcode
, env
->regs
[15], env
->bswap_code
);
689 rc
= EmulateAll(opcode
, &ts
->fpa
, env
);
690 if (rc
== 0) { /* illegal instruction */
691 info
.si_signo
= TARGET_SIGILL
;
693 info
.si_code
= TARGET_ILL_ILLOPN
;
694 info
._sifields
._sigfault
._addr
= env
->regs
[15];
695 queue_signal(env
, info
.si_signo
, &info
);
696 } else if (rc
< 0) { /* FP exception */
699 /* translate softfloat flags to FPSR flags */
700 if (-rc
& float_flag_invalid
)
702 if (-rc
& float_flag_divbyzero
)
704 if (-rc
& float_flag_overflow
)
706 if (-rc
& float_flag_underflow
)
708 if (-rc
& float_flag_inexact
)
711 FPSR fpsr
= ts
->fpa
.fpsr
;
712 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
714 if (fpsr
& (arm_fpe
<< 16)) { /* exception enabled? */
715 info
.si_signo
= TARGET_SIGFPE
;
718 /* ordered by priority, least first */
719 if (arm_fpe
& BIT_IXC
) info
.si_code
= TARGET_FPE_FLTRES
;
720 if (arm_fpe
& BIT_UFC
) info
.si_code
= TARGET_FPE_FLTUND
;
721 if (arm_fpe
& BIT_OFC
) info
.si_code
= TARGET_FPE_FLTOVF
;
722 if (arm_fpe
& BIT_DZC
) info
.si_code
= TARGET_FPE_FLTDIV
;
723 if (arm_fpe
& BIT_IOC
) info
.si_code
= TARGET_FPE_FLTINV
;
725 info
._sifields
._sigfault
._addr
= env
->regs
[15];
726 queue_signal(env
, info
.si_signo
, &info
);
731 /* accumulate unenabled exceptions */
732 if ((!(fpsr
& BIT_IXE
)) && (arm_fpe
& BIT_IXC
))
734 if ((!(fpsr
& BIT_UFE
)) && (arm_fpe
& BIT_UFC
))
736 if ((!(fpsr
& BIT_OFE
)) && (arm_fpe
& BIT_OFC
))
738 if ((!(fpsr
& BIT_DZE
)) && (arm_fpe
& BIT_DZC
))
740 if ((!(fpsr
& BIT_IOE
)) && (arm_fpe
& BIT_IOC
))
743 } else { /* everything OK */
754 if (trapnr
== EXCP_BKPT
) {
756 /* FIXME - what to do if get_user() fails? */
757 get_user_code_u16(insn
, env
->regs
[15], env
->bswap_code
);
761 /* FIXME - what to do if get_user() fails? */
762 get_user_code_u32(insn
, env
->regs
[15], env
->bswap_code
);
763 n
= (insn
& 0xf) | ((insn
>> 4) & 0xff0);
768 /* FIXME - what to do if get_user() fails? */
769 get_user_code_u16(insn
, env
->regs
[15] - 2,
773 /* FIXME - what to do if get_user() fails? */
774 get_user_code_u32(insn
, env
->regs
[15] - 4,
780 if (n
== ARM_NR_cacheflush
) {
782 } else if (n
== ARM_NR_semihosting
783 || n
== ARM_NR_thumb_semihosting
) {
784 env
->regs
[0] = do_arm_semihosting (env
);
785 } else if (n
== 0 || n
>= ARM_SYSCALL_BASE
|| env
->thumb
) {
787 if (env
->thumb
|| n
== 0) {
790 n
-= ARM_SYSCALL_BASE
;
793 if ( n
> ARM_NR_BASE
) {
795 case ARM_NR_cacheflush
:
799 cpu_set_tls(env
, env
->regs
[0]);
802 case ARM_NR_breakpoint
:
803 env
->regs
[15] -= env
->thumb
? 2 : 4;
806 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
808 env
->regs
[0] = -TARGET_ENOSYS
;
812 env
->regs
[0] = do_syscall(env
,
828 /* just indicate that signals should be handled asap */
831 if (!do_strex(env
)) {
834 /* fall through for segv */
835 case EXCP_PREFETCH_ABORT
:
836 case EXCP_DATA_ABORT
:
837 addr
= env
->exception
.vaddress
;
839 info
.si_signo
= TARGET_SIGSEGV
;
841 /* XXX: check env->error_code */
842 info
.si_code
= TARGET_SEGV_MAPERR
;
843 info
._sifields
._sigfault
._addr
= addr
;
844 queue_signal(env
, info
.si_signo
, &info
);
852 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
857 info
.si_code
= TARGET_TRAP_BRKPT
;
858 queue_signal(env
, info
.si_signo
, &info
);
862 case EXCP_KERNEL_TRAP
:
863 if (do_kernel_trap(env
))
868 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
870 cpu_dump_state(cs
, stderr
, fprintf
, 0);
873 process_pending_signals(env
);
880 * Handle AArch64 store-release exclusive
882 * rs = gets the status result of store exclusive
883 * rt = is the register that is stored
884 * rt2 = is the second register store (in STP)
887 static int do_strex_a64(CPUARMState
*env
)
898 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
899 size
= extract32(env
->exclusive_info
, 0, 2);
900 is_pair
= extract32(env
->exclusive_info
, 2, 1);
901 rs
= extract32(env
->exclusive_info
, 4, 5);
902 rt
= extract32(env
->exclusive_info
, 9, 5);
903 rt2
= extract32(env
->exclusive_info
, 14, 5);
905 addr
= env
->exclusive_addr
;
907 if (addr
!= env
->exclusive_test
) {
913 segv
= get_user_u8(val
, addr
);
916 segv
= get_user_u16(val
, addr
);
919 segv
= get_user_u32(val
, addr
);
922 segv
= get_user_u64(val
, addr
);
928 env
->exception
.vaddress
= addr
;
931 if (val
!= env
->exclusive_val
) {
936 segv
= get_user_u32(val
, addr
+ 4);
938 segv
= get_user_u64(val
, addr
+ 8);
941 env
->exception
.vaddress
= addr
+ (size
== 2 ? 4 : 8);
944 if (val
!= env
->exclusive_high
) {
948 /* handle the zero register */
949 val
= rt
== 31 ? 0 : env
->xregs
[rt
];
952 segv
= put_user_u8(val
, addr
);
955 segv
= put_user_u16(val
, addr
);
958 segv
= put_user_u32(val
, addr
);
961 segv
= put_user_u64(val
, addr
);
968 /* handle the zero register */
969 val
= rt2
== 31 ? 0 : env
->xregs
[rt2
];
971 segv
= put_user_u32(val
, addr
+ 4);
973 segv
= put_user_u64(val
, addr
+ 8);
976 env
->exception
.vaddress
= addr
+ (size
== 2 ? 4 : 8);
983 /* rs == 31 encodes a write to the ZR, thus throwing away
984 * the status return. This is rather silly but valid.
990 /* instruction faulted, PC does not advance */
991 /* either way a strex releases any exclusive lock we have */
992 env
->exclusive_addr
= -1;
997 /* AArch64 main loop */
998 void cpu_loop(CPUARMState
*env
)
1000 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1002 target_siginfo_t info
;
1006 trapnr
= cpu_arm_exec(cs
);
1011 env
->xregs
[0] = do_syscall(env
,
1021 case EXCP_INTERRUPT
:
1022 /* just indicate that signals should be handled asap */
1025 info
.si_signo
= TARGET_SIGILL
;
1027 info
.si_code
= TARGET_ILL_ILLOPN
;
1028 info
._sifields
._sigfault
._addr
= env
->pc
;
1029 queue_signal(env
, info
.si_signo
, &info
);
1032 if (!do_strex_a64(env
)) {
1035 /* fall through for segv */
1036 case EXCP_PREFETCH_ABORT
:
1037 case EXCP_DATA_ABORT
:
1038 info
.si_signo
= TARGET_SIGSEGV
;
1040 /* XXX: check env->error_code */
1041 info
.si_code
= TARGET_SEGV_MAPERR
;
1042 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
1043 queue_signal(env
, info
.si_signo
, &info
);
1047 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1049 info
.si_signo
= sig
;
1051 info
.si_code
= TARGET_TRAP_BRKPT
;
1052 queue_signal(env
, info
.si_signo
, &info
);
1056 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
1058 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1061 process_pending_signals(env
);
1062 /* Exception return on AArch64 always clears the exclusive monitor,
1063 * so any return to running guest code implies this.
1064 * A strex (successful or otherwise) also clears the monitor, so
1065 * we don't need to specialcase EXCP_STREX.
1067 env
->exclusive_addr
= -1;
1070 #endif /* ndef TARGET_ABI32 */
1074 #ifdef TARGET_UNICORE32
1076 void cpu_loop(CPUUniCore32State
*env
)
1078 CPUState
*cs
= CPU(uc32_env_get_cpu(env
));
1080 unsigned int n
, insn
;
1081 target_siginfo_t info
;
1085 trapnr
= uc32_cpu_exec(cs
);
1088 case UC32_EXCP_PRIV
:
1091 get_user_u32(insn
, env
->regs
[31] - 4);
1092 n
= insn
& 0xffffff;
1094 if (n
>= UC32_SYSCALL_BASE
) {
1096 n
-= UC32_SYSCALL_BASE
;
1097 if (n
== UC32_SYSCALL_NR_set_tls
) {
1098 cpu_set_tls(env
, env
->regs
[0]);
1101 env
->regs
[0] = do_syscall(env
,
1116 case UC32_EXCP_DTRAP
:
1117 case UC32_EXCP_ITRAP
:
1118 info
.si_signo
= TARGET_SIGSEGV
;
1120 /* XXX: check env->error_code */
1121 info
.si_code
= TARGET_SEGV_MAPERR
;
1122 info
._sifields
._sigfault
._addr
= env
->cp0
.c4_faultaddr
;
1123 queue_signal(env
, info
.si_signo
, &info
);
1125 case EXCP_INTERRUPT
:
1126 /* just indicate that signals should be handled asap */
1132 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1134 info
.si_signo
= sig
;
1136 info
.si_code
= TARGET_TRAP_BRKPT
;
1137 queue_signal(env
, info
.si_signo
, &info
);
1144 process_pending_signals(env
);
1148 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
1149 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1155 #define SPARC64_STACK_BIAS 2047
1159 /* WARNING: dealing with register windows _is_ complicated. More info
1160 can be found at http://www.sics.se/~psm/sparcstack.html */
1161 static inline int get_reg_index(CPUSPARCState
*env
, int cwp
, int index
)
1163 index
= (index
+ cwp
* 16) % (16 * env
->nwindows
);
1164 /* wrap handling : if cwp is on the last window, then we use the
1165 registers 'after' the end */
1166 if (index
< 8 && env
->cwp
== env
->nwindows
- 1)
1167 index
+= 16 * env
->nwindows
;
1171 /* save the register window 'cwp1' */
1172 static inline void save_window_offset(CPUSPARCState
*env
, int cwp1
)
1177 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1178 #ifdef TARGET_SPARC64
1180 sp_ptr
+= SPARC64_STACK_BIAS
;
1182 #if defined(DEBUG_WIN)
1183 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" save_cwp=%d\n",
1186 for(i
= 0; i
< 16; i
++) {
1187 /* FIXME - what to do if put_user() fails? */
1188 put_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1189 sp_ptr
+= sizeof(abi_ulong
);
1193 static void save_window(CPUSPARCState
*env
)
1195 #ifndef TARGET_SPARC64
1196 unsigned int new_wim
;
1197 new_wim
= ((env
->wim
>> 1) | (env
->wim
<< (env
->nwindows
- 1))) &
1198 ((1LL << env
->nwindows
) - 1);
1199 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1202 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1208 static void restore_window(CPUSPARCState
*env
)
1210 #ifndef TARGET_SPARC64
1211 unsigned int new_wim
;
1213 unsigned int i
, cwp1
;
1216 #ifndef TARGET_SPARC64
1217 new_wim
= ((env
->wim
<< 1) | (env
->wim
>> (env
->nwindows
- 1))) &
1218 ((1LL << env
->nwindows
) - 1);
1221 /* restore the invalid window */
1222 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1223 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1224 #ifdef TARGET_SPARC64
1226 sp_ptr
+= SPARC64_STACK_BIAS
;
1228 #if defined(DEBUG_WIN)
1229 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" load_cwp=%d\n",
1232 for(i
= 0; i
< 16; i
++) {
1233 /* FIXME - what to do if get_user() fails? */
1234 get_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1235 sp_ptr
+= sizeof(abi_ulong
);
1237 #ifdef TARGET_SPARC64
1239 if (env
->cleanwin
< env
->nwindows
- 1)
1247 static void flush_windows(CPUSPARCState
*env
)
1253 /* if restore would invoke restore_window(), then we can stop */
1254 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ offset
);
1255 #ifndef TARGET_SPARC64
1256 if (env
->wim
& (1 << cwp1
))
1259 if (env
->canrestore
== 0)
1264 save_window_offset(env
, cwp1
);
1267 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1268 #ifndef TARGET_SPARC64
1269 /* set wim so that restore will reload the registers */
1270 env
->wim
= 1 << cwp1
;
1272 #if defined(DEBUG_WIN)
1273 printf("flush_windows: nb=%d\n", offset
- 1);
1277 void cpu_loop (CPUSPARCState
*env
)
1279 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1282 target_siginfo_t info
;
1286 trapnr
= cpu_sparc_exec(cs
);
1289 /* Compute PSR before exposing state. */
1290 if (env
->cc_op
!= CC_OP_FLAGS
) {
1295 #ifndef TARGET_SPARC64
1302 ret
= do_syscall (env
, env
->gregs
[1],
1303 env
->regwptr
[0], env
->regwptr
[1],
1304 env
->regwptr
[2], env
->regwptr
[3],
1305 env
->regwptr
[4], env
->regwptr
[5],
1307 if ((abi_ulong
)ret
>= (abi_ulong
)(-515)) {
1308 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1309 env
->xcc
|= PSR_CARRY
;
1311 env
->psr
|= PSR_CARRY
;
1315 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1316 env
->xcc
&= ~PSR_CARRY
;
1318 env
->psr
&= ~PSR_CARRY
;
1321 env
->regwptr
[0] = ret
;
1322 /* next instruction */
1324 env
->npc
= env
->npc
+ 4;
1326 case 0x83: /* flush windows */
1331 /* next instruction */
1333 env
->npc
= env
->npc
+ 4;
1335 #ifndef TARGET_SPARC64
1336 case TT_WIN_OVF
: /* window overflow */
1339 case TT_WIN_UNF
: /* window underflow */
1340 restore_window(env
);
1345 info
.si_signo
= TARGET_SIGSEGV
;
1347 /* XXX: check env->error_code */
1348 info
.si_code
= TARGET_SEGV_MAPERR
;
1349 info
._sifields
._sigfault
._addr
= env
->mmuregs
[4];
1350 queue_signal(env
, info
.si_signo
, &info
);
1354 case TT_SPILL
: /* window overflow */
1357 case TT_FILL
: /* window underflow */
1358 restore_window(env
);
1363 info
.si_signo
= TARGET_SIGSEGV
;
1365 /* XXX: check env->error_code */
1366 info
.si_code
= TARGET_SEGV_MAPERR
;
1367 if (trapnr
== TT_DFAULT
)
1368 info
._sifields
._sigfault
._addr
= env
->dmmuregs
[4];
1370 info
._sifields
._sigfault
._addr
= cpu_tsptr(env
)->tpc
;
1371 queue_signal(env
, info
.si_signo
, &info
);
1374 #ifndef TARGET_ABI32
1377 sparc64_get_context(env
);
1381 sparc64_set_context(env
);
1385 case EXCP_INTERRUPT
:
1386 /* just indicate that signals should be handled asap */
1390 info
.si_signo
= TARGET_SIGILL
;
1392 info
.si_code
= TARGET_ILL_ILLOPC
;
1393 info
._sifields
._sigfault
._addr
= env
->pc
;
1394 queue_signal(env
, info
.si_signo
, &info
);
1401 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1404 info
.si_signo
= sig
;
1406 info
.si_code
= TARGET_TRAP_BRKPT
;
1407 queue_signal(env
, info
.si_signo
, &info
);
1412 printf ("Unhandled trap: 0x%x\n", trapnr
);
1413 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1416 process_pending_signals (env
);
1423 static inline uint64_t cpu_ppc_get_tb(CPUPPCState
*env
)
1425 return cpu_get_real_ticks();
1428 uint64_t cpu_ppc_load_tbl(CPUPPCState
*env
)
1430 return cpu_ppc_get_tb(env
);
1433 uint32_t cpu_ppc_load_tbu(CPUPPCState
*env
)
1435 return cpu_ppc_get_tb(env
) >> 32;
1438 uint64_t cpu_ppc_load_atbl(CPUPPCState
*env
)
1440 return cpu_ppc_get_tb(env
);
1443 uint32_t cpu_ppc_load_atbu(CPUPPCState
*env
)
1445 return cpu_ppc_get_tb(env
) >> 32;
1448 uint32_t cpu_ppc601_load_rtcu(CPUPPCState
*env
)
1449 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1451 uint32_t cpu_ppc601_load_rtcl(CPUPPCState
*env
)
1453 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1456 /* XXX: to be fixed */
1457 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1462 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1467 #define EXCP_DUMP(env, fmt, ...) \
1469 CPUState *cs = ENV_GET_CPU(env); \
1470 fprintf(stderr, fmt , ## __VA_ARGS__); \
1471 cpu_dump_state(cs, stderr, fprintf, 0); \
1472 qemu_log(fmt, ## __VA_ARGS__); \
1473 if (qemu_log_enabled()) { \
1474 log_cpu_state(cs, 0); \
1478 static int do_store_exclusive(CPUPPCState
*env
)
1481 target_ulong page_addr
;
1482 target_ulong val
, val2
__attribute__((unused
)) = 0;
1486 addr
= env
->reserve_ea
;
1487 page_addr
= addr
& TARGET_PAGE_MASK
;
1490 flags
= page_get_flags(page_addr
);
1491 if ((flags
& PAGE_READ
) == 0) {
1494 int reg
= env
->reserve_info
& 0x1f;
1495 int size
= env
->reserve_info
>> 5;
1498 if (addr
== env
->reserve_addr
) {
1500 case 1: segv
= get_user_u8(val
, addr
); break;
1501 case 2: segv
= get_user_u16(val
, addr
); break;
1502 case 4: segv
= get_user_u32(val
, addr
); break;
1503 #if defined(TARGET_PPC64)
1504 case 8: segv
= get_user_u64(val
, addr
); break;
1506 segv
= get_user_u64(val
, addr
);
1508 segv
= get_user_u64(val2
, addr
+ 8);
1515 if (!segv
&& val
== env
->reserve_val
) {
1516 val
= env
->gpr
[reg
];
1518 case 1: segv
= put_user_u8(val
, addr
); break;
1519 case 2: segv
= put_user_u16(val
, addr
); break;
1520 case 4: segv
= put_user_u32(val
, addr
); break;
1521 #if defined(TARGET_PPC64)
1522 case 8: segv
= put_user_u64(val
, addr
); break;
1524 if (val2
== env
->reserve_val2
) {
1527 val
= env
->gpr
[reg
+1];
1529 val2
= env
->gpr
[reg
+1];
1531 segv
= put_user_u64(val
, addr
);
1533 segv
= put_user_u64(val2
, addr
+ 8);
1546 env
->crf
[0] = (stored
<< 1) | xer_so
;
1547 env
->reserve_addr
= (target_ulong
)-1;
1557 void cpu_loop(CPUPPCState
*env
)
1559 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1560 target_siginfo_t info
;
1566 trapnr
= cpu_ppc_exec(cs
);
1569 case POWERPC_EXCP_NONE
:
1572 case POWERPC_EXCP_CRITICAL
: /* Critical input */
1573 cpu_abort(cs
, "Critical interrupt while in user mode. "
1576 case POWERPC_EXCP_MCHECK
: /* Machine check exception */
1577 cpu_abort(cs
, "Machine check exception while in user mode. "
1580 case POWERPC_EXCP_DSI
: /* Data storage exception */
1581 EXCP_DUMP(env
, "Invalid data memory access: 0x" TARGET_FMT_lx
"\n",
1583 /* XXX: check this. Seems bugged */
1584 switch (env
->error_code
& 0xFF000000) {
1586 info
.si_signo
= TARGET_SIGSEGV
;
1588 info
.si_code
= TARGET_SEGV_MAPERR
;
1591 info
.si_signo
= TARGET_SIGILL
;
1593 info
.si_code
= TARGET_ILL_ILLADR
;
1596 info
.si_signo
= TARGET_SIGSEGV
;
1598 info
.si_code
= TARGET_SEGV_ACCERR
;
1601 /* Let's send a regular segfault... */
1602 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1604 info
.si_signo
= TARGET_SIGSEGV
;
1606 info
.si_code
= TARGET_SEGV_MAPERR
;
1609 info
._sifields
._sigfault
._addr
= env
->nip
;
1610 queue_signal(env
, info
.si_signo
, &info
);
1612 case POWERPC_EXCP_ISI
: /* Instruction storage exception */
1613 EXCP_DUMP(env
, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1614 "\n", env
->spr
[SPR_SRR0
]);
1615 /* XXX: check this */
1616 switch (env
->error_code
& 0xFF000000) {
1618 info
.si_signo
= TARGET_SIGSEGV
;
1620 info
.si_code
= TARGET_SEGV_MAPERR
;
1624 info
.si_signo
= TARGET_SIGSEGV
;
1626 info
.si_code
= TARGET_SEGV_ACCERR
;
1629 /* Let's send a regular segfault... */
1630 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1632 info
.si_signo
= TARGET_SIGSEGV
;
1634 info
.si_code
= TARGET_SEGV_MAPERR
;
1637 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1638 queue_signal(env
, info
.si_signo
, &info
);
1640 case POWERPC_EXCP_EXTERNAL
: /* External input */
1641 cpu_abort(cs
, "External interrupt while in user mode. "
1644 case POWERPC_EXCP_ALIGN
: /* Alignment exception */
1645 EXCP_DUMP(env
, "Unaligned memory access\n");
1646 /* XXX: check this */
1647 info
.si_signo
= TARGET_SIGBUS
;
1649 info
.si_code
= TARGET_BUS_ADRALN
;
1650 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1651 queue_signal(env
, info
.si_signo
, &info
);
1653 case POWERPC_EXCP_PROGRAM
: /* Program exception */
1654 /* XXX: check this */
1655 switch (env
->error_code
& ~0xF) {
1656 case POWERPC_EXCP_FP
:
1657 EXCP_DUMP(env
, "Floating point program exception\n");
1658 info
.si_signo
= TARGET_SIGFPE
;
1660 switch (env
->error_code
& 0xF) {
1661 case POWERPC_EXCP_FP_OX
:
1662 info
.si_code
= TARGET_FPE_FLTOVF
;
1664 case POWERPC_EXCP_FP_UX
:
1665 info
.si_code
= TARGET_FPE_FLTUND
;
1667 case POWERPC_EXCP_FP_ZX
:
1668 case POWERPC_EXCP_FP_VXZDZ
:
1669 info
.si_code
= TARGET_FPE_FLTDIV
;
1671 case POWERPC_EXCP_FP_XX
:
1672 info
.si_code
= TARGET_FPE_FLTRES
;
1674 case POWERPC_EXCP_FP_VXSOFT
:
1675 info
.si_code
= TARGET_FPE_FLTINV
;
1677 case POWERPC_EXCP_FP_VXSNAN
:
1678 case POWERPC_EXCP_FP_VXISI
:
1679 case POWERPC_EXCP_FP_VXIDI
:
1680 case POWERPC_EXCP_FP_VXIMZ
:
1681 case POWERPC_EXCP_FP_VXVC
:
1682 case POWERPC_EXCP_FP_VXSQRT
:
1683 case POWERPC_EXCP_FP_VXCVI
:
1684 info
.si_code
= TARGET_FPE_FLTSUB
;
1687 EXCP_DUMP(env
, "Unknown floating point exception (%02x)\n",
1692 case POWERPC_EXCP_INVAL
:
1693 EXCP_DUMP(env
, "Invalid instruction\n");
1694 info
.si_signo
= TARGET_SIGILL
;
1696 switch (env
->error_code
& 0xF) {
1697 case POWERPC_EXCP_INVAL_INVAL
:
1698 info
.si_code
= TARGET_ILL_ILLOPC
;
1700 case POWERPC_EXCP_INVAL_LSWX
:
1701 info
.si_code
= TARGET_ILL_ILLOPN
;
1703 case POWERPC_EXCP_INVAL_SPR
:
1704 info
.si_code
= TARGET_ILL_PRVREG
;
1706 case POWERPC_EXCP_INVAL_FP
:
1707 info
.si_code
= TARGET_ILL_COPROC
;
1710 EXCP_DUMP(env
, "Unknown invalid operation (%02x)\n",
1711 env
->error_code
& 0xF);
1712 info
.si_code
= TARGET_ILL_ILLADR
;
1716 case POWERPC_EXCP_PRIV
:
1717 EXCP_DUMP(env
, "Privilege violation\n");
1718 info
.si_signo
= TARGET_SIGILL
;
1720 switch (env
->error_code
& 0xF) {
1721 case POWERPC_EXCP_PRIV_OPC
:
1722 info
.si_code
= TARGET_ILL_PRVOPC
;
1724 case POWERPC_EXCP_PRIV_REG
:
1725 info
.si_code
= TARGET_ILL_PRVREG
;
1728 EXCP_DUMP(env
, "Unknown privilege violation (%02x)\n",
1729 env
->error_code
& 0xF);
1730 info
.si_code
= TARGET_ILL_PRVOPC
;
1734 case POWERPC_EXCP_TRAP
:
1735 cpu_abort(cs
, "Tried to call a TRAP\n");
1738 /* Should not happen ! */
1739 cpu_abort(cs
, "Unknown program exception (%02x)\n",
1743 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1744 queue_signal(env
, info
.si_signo
, &info
);
1746 case POWERPC_EXCP_FPU
: /* Floating-point unavailable exception */
1747 EXCP_DUMP(env
, "No floating point allowed\n");
1748 info
.si_signo
= TARGET_SIGILL
;
1750 info
.si_code
= TARGET_ILL_COPROC
;
1751 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1752 queue_signal(env
, info
.si_signo
, &info
);
1754 case POWERPC_EXCP_SYSCALL
: /* System call exception */
1755 cpu_abort(cs
, "Syscall exception while in user mode. "
1758 case POWERPC_EXCP_APU
: /* Auxiliary processor unavailable */
1759 EXCP_DUMP(env
, "No APU instruction allowed\n");
1760 info
.si_signo
= TARGET_SIGILL
;
1762 info
.si_code
= TARGET_ILL_COPROC
;
1763 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1764 queue_signal(env
, info
.si_signo
, &info
);
1766 case POWERPC_EXCP_DECR
: /* Decrementer exception */
1767 cpu_abort(cs
, "Decrementer interrupt while in user mode. "
1770 case POWERPC_EXCP_FIT
: /* Fixed-interval timer interrupt */
1771 cpu_abort(cs
, "Fix interval timer interrupt while in user mode. "
1774 case POWERPC_EXCP_WDT
: /* Watchdog timer interrupt */
1775 cpu_abort(cs
, "Watchdog timer interrupt while in user mode. "
1778 case POWERPC_EXCP_DTLB
: /* Data TLB error */
1779 cpu_abort(cs
, "Data TLB exception while in user mode. "
1782 case POWERPC_EXCP_ITLB
: /* Instruction TLB error */
1783 cpu_abort(cs
, "Instruction TLB exception while in user mode. "
1786 case POWERPC_EXCP_SPEU
: /* SPE/embedded floating-point unavail. */
1787 EXCP_DUMP(env
, "No SPE/floating-point instruction allowed\n");
1788 info
.si_signo
= TARGET_SIGILL
;
1790 info
.si_code
= TARGET_ILL_COPROC
;
1791 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1792 queue_signal(env
, info
.si_signo
, &info
);
1794 case POWERPC_EXCP_EFPDI
: /* Embedded floating-point data IRQ */
1795 cpu_abort(cs
, "Embedded floating-point data IRQ not handled\n");
1797 case POWERPC_EXCP_EFPRI
: /* Embedded floating-point round IRQ */
1798 cpu_abort(cs
, "Embedded floating-point round IRQ not handled\n");
1800 case POWERPC_EXCP_EPERFM
: /* Embedded performance monitor IRQ */
1801 cpu_abort(cs
, "Performance monitor exception not handled\n");
1803 case POWERPC_EXCP_DOORI
: /* Embedded doorbell interrupt */
1804 cpu_abort(cs
, "Doorbell interrupt while in user mode. "
1807 case POWERPC_EXCP_DOORCI
: /* Embedded doorbell critical interrupt */
1808 cpu_abort(cs
, "Doorbell critical interrupt while in user mode. "
1811 case POWERPC_EXCP_RESET
: /* System reset exception */
1812 cpu_abort(cs
, "Reset interrupt while in user mode. "
1815 case POWERPC_EXCP_DSEG
: /* Data segment exception */
1816 cpu_abort(cs
, "Data segment exception while in user mode. "
1819 case POWERPC_EXCP_ISEG
: /* Instruction segment exception */
1820 cpu_abort(cs
, "Instruction segment exception "
1821 "while in user mode. Aborting\n");
1823 /* PowerPC 64 with hypervisor mode support */
1824 case POWERPC_EXCP_HDECR
: /* Hypervisor decrementer exception */
1825 cpu_abort(cs
, "Hypervisor decrementer interrupt "
1826 "while in user mode. Aborting\n");
1828 case POWERPC_EXCP_TRACE
: /* Trace exception */
1830 * we use this exception to emulate step-by-step execution mode.
1833 /* PowerPC 64 with hypervisor mode support */
1834 case POWERPC_EXCP_HDSI
: /* Hypervisor data storage exception */
1835 cpu_abort(cs
, "Hypervisor data storage exception "
1836 "while in user mode. Aborting\n");
1838 case POWERPC_EXCP_HISI
: /* Hypervisor instruction storage excp */
1839 cpu_abort(cs
, "Hypervisor instruction storage exception "
1840 "while in user mode. Aborting\n");
1842 case POWERPC_EXCP_HDSEG
: /* Hypervisor data segment exception */
1843 cpu_abort(cs
, "Hypervisor data segment exception "
1844 "while in user mode. Aborting\n");
1846 case POWERPC_EXCP_HISEG
: /* Hypervisor instruction segment excp */
1847 cpu_abort(cs
, "Hypervisor instruction segment exception "
1848 "while in user mode. Aborting\n");
1850 case POWERPC_EXCP_VPU
: /* Vector unavailable exception */
1851 EXCP_DUMP(env
, "No Altivec instructions allowed\n");
1852 info
.si_signo
= TARGET_SIGILL
;
1854 info
.si_code
= TARGET_ILL_COPROC
;
1855 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1856 queue_signal(env
, info
.si_signo
, &info
);
1858 case POWERPC_EXCP_PIT
: /* Programmable interval timer IRQ */
1859 cpu_abort(cs
, "Programmable interval timer interrupt "
1860 "while in user mode. Aborting\n");
1862 case POWERPC_EXCP_IO
: /* IO error exception */
1863 cpu_abort(cs
, "IO error exception while in user mode. "
1866 case POWERPC_EXCP_RUNM
: /* Run mode exception */
1867 cpu_abort(cs
, "Run mode exception while in user mode. "
1870 case POWERPC_EXCP_EMUL
: /* Emulation trap exception */
1871 cpu_abort(cs
, "Emulation trap exception not handled\n");
1873 case POWERPC_EXCP_IFTLB
: /* Instruction fetch TLB error */
1874 cpu_abort(cs
, "Instruction fetch TLB exception "
1875 "while in user-mode. Aborting");
1877 case POWERPC_EXCP_DLTLB
: /* Data load TLB miss */
1878 cpu_abort(cs
, "Data load TLB exception while in user-mode. "
1881 case POWERPC_EXCP_DSTLB
: /* Data store TLB miss */
1882 cpu_abort(cs
, "Data store TLB exception while in user-mode. "
1885 case POWERPC_EXCP_FPA
: /* Floating-point assist exception */
1886 cpu_abort(cs
, "Floating-point assist exception not handled\n");
1888 case POWERPC_EXCP_IABR
: /* Instruction address breakpoint */
1889 cpu_abort(cs
, "Instruction address breakpoint exception "
1892 case POWERPC_EXCP_SMI
: /* System management interrupt */
1893 cpu_abort(cs
, "System management interrupt while in user mode. "
1896 case POWERPC_EXCP_THERM
: /* Thermal interrupt */
1897 cpu_abort(cs
, "Thermal interrupt interrupt while in user mode. "
1900 case POWERPC_EXCP_PERFM
: /* Embedded performance monitor IRQ */
1901 cpu_abort(cs
, "Performance monitor exception not handled\n");
1903 case POWERPC_EXCP_VPUA
: /* Vector assist exception */
1904 cpu_abort(cs
, "Vector assist exception not handled\n");
1906 case POWERPC_EXCP_SOFTP
: /* Soft patch exception */
1907 cpu_abort(cs
, "Soft patch exception not handled\n");
1909 case POWERPC_EXCP_MAINT
: /* Maintenance exception */
1910 cpu_abort(cs
, "Maintenance exception while in user mode. "
1913 case POWERPC_EXCP_STOP
: /* stop translation */
1914 /* We did invalidate the instruction cache. Go on */
1916 case POWERPC_EXCP_BRANCH
: /* branch instruction: */
1917 /* We just stopped because of a branch. Go on */
1919 case POWERPC_EXCP_SYSCALL_USER
:
1920 /* system call in user-mode emulation */
1922 * PPC ABI uses overflow flag in cr0 to signal an error
1925 env
->crf
[0] &= ~0x1;
1926 ret
= do_syscall(env
, env
->gpr
[0], env
->gpr
[3], env
->gpr
[4],
1927 env
->gpr
[5], env
->gpr
[6], env
->gpr
[7],
1929 if (ret
== (target_ulong
)(-TARGET_QEMU_ESIGRETURN
)) {
1930 /* Returning from a successful sigreturn syscall.
1931 Avoid corrupting register state. */
1934 if (ret
> (target_ulong
)(-515)) {
1940 case POWERPC_EXCP_STCX
:
1941 if (do_store_exclusive(env
)) {
1942 info
.si_signo
= TARGET_SIGSEGV
;
1944 info
.si_code
= TARGET_SEGV_MAPERR
;
1945 info
._sifields
._sigfault
._addr
= env
->nip
;
1946 queue_signal(env
, info
.si_signo
, &info
);
1953 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1955 info
.si_signo
= sig
;
1957 info
.si_code
= TARGET_TRAP_BRKPT
;
1958 queue_signal(env
, info
.si_signo
, &info
);
1962 case EXCP_INTERRUPT
:
1963 /* just indicate that signals should be handled asap */
1966 cpu_abort(cs
, "Unknown exception 0x%d. Aborting\n", trapnr
);
1969 process_pending_signals(env
);
1976 # ifdef TARGET_ABI_MIPSO32
1977 # define MIPS_SYS(name, args) args,
1978 static const uint8_t mips_syscall_args
[] = {
1979 MIPS_SYS(sys_syscall
, 8) /* 4000 */
1980 MIPS_SYS(sys_exit
, 1)
1981 MIPS_SYS(sys_fork
, 0)
1982 MIPS_SYS(sys_read
, 3)
1983 MIPS_SYS(sys_write
, 3)
1984 MIPS_SYS(sys_open
, 3) /* 4005 */
1985 MIPS_SYS(sys_close
, 1)
1986 MIPS_SYS(sys_waitpid
, 3)
1987 MIPS_SYS(sys_creat
, 2)
1988 MIPS_SYS(sys_link
, 2)
1989 MIPS_SYS(sys_unlink
, 1) /* 4010 */
1990 MIPS_SYS(sys_execve
, 0)
1991 MIPS_SYS(sys_chdir
, 1)
1992 MIPS_SYS(sys_time
, 1)
1993 MIPS_SYS(sys_mknod
, 3)
1994 MIPS_SYS(sys_chmod
, 2) /* 4015 */
1995 MIPS_SYS(sys_lchown
, 3)
1996 MIPS_SYS(sys_ni_syscall
, 0)
1997 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_stat */
1998 MIPS_SYS(sys_lseek
, 3)
1999 MIPS_SYS(sys_getpid
, 0) /* 4020 */
2000 MIPS_SYS(sys_mount
, 5)
2001 MIPS_SYS(sys_umount
, 1)
2002 MIPS_SYS(sys_setuid
, 1)
2003 MIPS_SYS(sys_getuid
, 0)
2004 MIPS_SYS(sys_stime
, 1) /* 4025 */
2005 MIPS_SYS(sys_ptrace
, 4)
2006 MIPS_SYS(sys_alarm
, 1)
2007 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_fstat */
2008 MIPS_SYS(sys_pause
, 0)
2009 MIPS_SYS(sys_utime
, 2) /* 4030 */
2010 MIPS_SYS(sys_ni_syscall
, 0)
2011 MIPS_SYS(sys_ni_syscall
, 0)
2012 MIPS_SYS(sys_access
, 2)
2013 MIPS_SYS(sys_nice
, 1)
2014 MIPS_SYS(sys_ni_syscall
, 0) /* 4035 */
2015 MIPS_SYS(sys_sync
, 0)
2016 MIPS_SYS(sys_kill
, 2)
2017 MIPS_SYS(sys_rename
, 2)
2018 MIPS_SYS(sys_mkdir
, 2)
2019 MIPS_SYS(sys_rmdir
, 1) /* 4040 */
2020 MIPS_SYS(sys_dup
, 1)
2021 MIPS_SYS(sys_pipe
, 0)
2022 MIPS_SYS(sys_times
, 1)
2023 MIPS_SYS(sys_ni_syscall
, 0)
2024 MIPS_SYS(sys_brk
, 1) /* 4045 */
2025 MIPS_SYS(sys_setgid
, 1)
2026 MIPS_SYS(sys_getgid
, 0)
2027 MIPS_SYS(sys_ni_syscall
, 0) /* was signal(2) */
2028 MIPS_SYS(sys_geteuid
, 0)
2029 MIPS_SYS(sys_getegid
, 0) /* 4050 */
2030 MIPS_SYS(sys_acct
, 0)
2031 MIPS_SYS(sys_umount2
, 2)
2032 MIPS_SYS(sys_ni_syscall
, 0)
2033 MIPS_SYS(sys_ioctl
, 3)
2034 MIPS_SYS(sys_fcntl
, 3) /* 4055 */
2035 MIPS_SYS(sys_ni_syscall
, 2)
2036 MIPS_SYS(sys_setpgid
, 2)
2037 MIPS_SYS(sys_ni_syscall
, 0)
2038 MIPS_SYS(sys_olduname
, 1)
2039 MIPS_SYS(sys_umask
, 1) /* 4060 */
2040 MIPS_SYS(sys_chroot
, 1)
2041 MIPS_SYS(sys_ustat
, 2)
2042 MIPS_SYS(sys_dup2
, 2)
2043 MIPS_SYS(sys_getppid
, 0)
2044 MIPS_SYS(sys_getpgrp
, 0) /* 4065 */
2045 MIPS_SYS(sys_setsid
, 0)
2046 MIPS_SYS(sys_sigaction
, 3)
2047 MIPS_SYS(sys_sgetmask
, 0)
2048 MIPS_SYS(sys_ssetmask
, 1)
2049 MIPS_SYS(sys_setreuid
, 2) /* 4070 */
2050 MIPS_SYS(sys_setregid
, 2)
2051 MIPS_SYS(sys_sigsuspend
, 0)
2052 MIPS_SYS(sys_sigpending
, 1)
2053 MIPS_SYS(sys_sethostname
, 2)
2054 MIPS_SYS(sys_setrlimit
, 2) /* 4075 */
2055 MIPS_SYS(sys_getrlimit
, 2)
2056 MIPS_SYS(sys_getrusage
, 2)
2057 MIPS_SYS(sys_gettimeofday
, 2)
2058 MIPS_SYS(sys_settimeofday
, 2)
2059 MIPS_SYS(sys_getgroups
, 2) /* 4080 */
2060 MIPS_SYS(sys_setgroups
, 2)
2061 MIPS_SYS(sys_ni_syscall
, 0) /* old_select */
2062 MIPS_SYS(sys_symlink
, 2)
2063 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_lstat */
2064 MIPS_SYS(sys_readlink
, 3) /* 4085 */
2065 MIPS_SYS(sys_uselib
, 1)
2066 MIPS_SYS(sys_swapon
, 2)
2067 MIPS_SYS(sys_reboot
, 3)
2068 MIPS_SYS(old_readdir
, 3)
2069 MIPS_SYS(old_mmap
, 6) /* 4090 */
2070 MIPS_SYS(sys_munmap
, 2)
2071 MIPS_SYS(sys_truncate
, 2)
2072 MIPS_SYS(sys_ftruncate
, 2)
2073 MIPS_SYS(sys_fchmod
, 2)
2074 MIPS_SYS(sys_fchown
, 3) /* 4095 */
2075 MIPS_SYS(sys_getpriority
, 2)
2076 MIPS_SYS(sys_setpriority
, 3)
2077 MIPS_SYS(sys_ni_syscall
, 0)
2078 MIPS_SYS(sys_statfs
, 2)
2079 MIPS_SYS(sys_fstatfs
, 2) /* 4100 */
2080 MIPS_SYS(sys_ni_syscall
, 0) /* was ioperm(2) */
2081 MIPS_SYS(sys_socketcall
, 2)
2082 MIPS_SYS(sys_syslog
, 3)
2083 MIPS_SYS(sys_setitimer
, 3)
2084 MIPS_SYS(sys_getitimer
, 2) /* 4105 */
2085 MIPS_SYS(sys_newstat
, 2)
2086 MIPS_SYS(sys_newlstat
, 2)
2087 MIPS_SYS(sys_newfstat
, 2)
2088 MIPS_SYS(sys_uname
, 1)
2089 MIPS_SYS(sys_ni_syscall
, 0) /* 4110 was iopl(2) */
2090 MIPS_SYS(sys_vhangup
, 0)
2091 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_idle() */
2092 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_vm86 */
2093 MIPS_SYS(sys_wait4
, 4)
2094 MIPS_SYS(sys_swapoff
, 1) /* 4115 */
2095 MIPS_SYS(sys_sysinfo
, 1)
2096 MIPS_SYS(sys_ipc
, 6)
2097 MIPS_SYS(sys_fsync
, 1)
2098 MIPS_SYS(sys_sigreturn
, 0)
2099 MIPS_SYS(sys_clone
, 6) /* 4120 */
2100 MIPS_SYS(sys_setdomainname
, 2)
2101 MIPS_SYS(sys_newuname
, 1)
2102 MIPS_SYS(sys_ni_syscall
, 0) /* sys_modify_ldt */
2103 MIPS_SYS(sys_adjtimex
, 1)
2104 MIPS_SYS(sys_mprotect
, 3) /* 4125 */
2105 MIPS_SYS(sys_sigprocmask
, 3)
2106 MIPS_SYS(sys_ni_syscall
, 0) /* was create_module */
2107 MIPS_SYS(sys_init_module
, 5)
2108 MIPS_SYS(sys_delete_module
, 1)
2109 MIPS_SYS(sys_ni_syscall
, 0) /* 4130 was get_kernel_syms */
2110 MIPS_SYS(sys_quotactl
, 0)
2111 MIPS_SYS(sys_getpgid
, 1)
2112 MIPS_SYS(sys_fchdir
, 1)
2113 MIPS_SYS(sys_bdflush
, 2)
2114 MIPS_SYS(sys_sysfs
, 3) /* 4135 */
2115 MIPS_SYS(sys_personality
, 1)
2116 MIPS_SYS(sys_ni_syscall
, 0) /* for afs_syscall */
2117 MIPS_SYS(sys_setfsuid
, 1)
2118 MIPS_SYS(sys_setfsgid
, 1)
2119 MIPS_SYS(sys_llseek
, 5) /* 4140 */
2120 MIPS_SYS(sys_getdents
, 3)
2121 MIPS_SYS(sys_select
, 5)
2122 MIPS_SYS(sys_flock
, 2)
2123 MIPS_SYS(sys_msync
, 3)
2124 MIPS_SYS(sys_readv
, 3) /* 4145 */
2125 MIPS_SYS(sys_writev
, 3)
2126 MIPS_SYS(sys_cacheflush
, 3)
2127 MIPS_SYS(sys_cachectl
, 3)
2128 MIPS_SYS(sys_sysmips
, 4)
2129 MIPS_SYS(sys_ni_syscall
, 0) /* 4150 */
2130 MIPS_SYS(sys_getsid
, 1)
2131 MIPS_SYS(sys_fdatasync
, 0)
2132 MIPS_SYS(sys_sysctl
, 1)
2133 MIPS_SYS(sys_mlock
, 2)
2134 MIPS_SYS(sys_munlock
, 2) /* 4155 */
2135 MIPS_SYS(sys_mlockall
, 1)
2136 MIPS_SYS(sys_munlockall
, 0)
2137 MIPS_SYS(sys_sched_setparam
, 2)
2138 MIPS_SYS(sys_sched_getparam
, 2)
2139 MIPS_SYS(sys_sched_setscheduler
, 3) /* 4160 */
2140 MIPS_SYS(sys_sched_getscheduler
, 1)
2141 MIPS_SYS(sys_sched_yield
, 0)
2142 MIPS_SYS(sys_sched_get_priority_max
, 1)
2143 MIPS_SYS(sys_sched_get_priority_min
, 1)
2144 MIPS_SYS(sys_sched_rr_get_interval
, 2) /* 4165 */
2145 MIPS_SYS(sys_nanosleep
, 2)
2146 MIPS_SYS(sys_mremap
, 5)
2147 MIPS_SYS(sys_accept
, 3)
2148 MIPS_SYS(sys_bind
, 3)
2149 MIPS_SYS(sys_connect
, 3) /* 4170 */
2150 MIPS_SYS(sys_getpeername
, 3)
2151 MIPS_SYS(sys_getsockname
, 3)
2152 MIPS_SYS(sys_getsockopt
, 5)
2153 MIPS_SYS(sys_listen
, 2)
2154 MIPS_SYS(sys_recv
, 4) /* 4175 */
2155 MIPS_SYS(sys_recvfrom
, 6)
2156 MIPS_SYS(sys_recvmsg
, 3)
2157 MIPS_SYS(sys_send
, 4)
2158 MIPS_SYS(sys_sendmsg
, 3)
2159 MIPS_SYS(sys_sendto
, 6) /* 4180 */
2160 MIPS_SYS(sys_setsockopt
, 5)
2161 MIPS_SYS(sys_shutdown
, 2)
2162 MIPS_SYS(sys_socket
, 3)
2163 MIPS_SYS(sys_socketpair
, 4)
2164 MIPS_SYS(sys_setresuid
, 3) /* 4185 */
2165 MIPS_SYS(sys_getresuid
, 3)
2166 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_query_module */
2167 MIPS_SYS(sys_poll
, 3)
2168 MIPS_SYS(sys_nfsservctl
, 3)
2169 MIPS_SYS(sys_setresgid
, 3) /* 4190 */
2170 MIPS_SYS(sys_getresgid
, 3)
2171 MIPS_SYS(sys_prctl
, 5)
2172 MIPS_SYS(sys_rt_sigreturn
, 0)
2173 MIPS_SYS(sys_rt_sigaction
, 4)
2174 MIPS_SYS(sys_rt_sigprocmask
, 4) /* 4195 */
2175 MIPS_SYS(sys_rt_sigpending
, 2)
2176 MIPS_SYS(sys_rt_sigtimedwait
, 4)
2177 MIPS_SYS(sys_rt_sigqueueinfo
, 3)
2178 MIPS_SYS(sys_rt_sigsuspend
, 0)
2179 MIPS_SYS(sys_pread64
, 6) /* 4200 */
2180 MIPS_SYS(sys_pwrite64
, 6)
2181 MIPS_SYS(sys_chown
, 3)
2182 MIPS_SYS(sys_getcwd
, 2)
2183 MIPS_SYS(sys_capget
, 2)
2184 MIPS_SYS(sys_capset
, 2) /* 4205 */
2185 MIPS_SYS(sys_sigaltstack
, 2)
2186 MIPS_SYS(sys_sendfile
, 4)
2187 MIPS_SYS(sys_ni_syscall
, 0)
2188 MIPS_SYS(sys_ni_syscall
, 0)
2189 MIPS_SYS(sys_mmap2
, 6) /* 4210 */
2190 MIPS_SYS(sys_truncate64
, 4)
2191 MIPS_SYS(sys_ftruncate64
, 4)
2192 MIPS_SYS(sys_stat64
, 2)
2193 MIPS_SYS(sys_lstat64
, 2)
2194 MIPS_SYS(sys_fstat64
, 2) /* 4215 */
2195 MIPS_SYS(sys_pivot_root
, 2)
2196 MIPS_SYS(sys_mincore
, 3)
2197 MIPS_SYS(sys_madvise
, 3)
2198 MIPS_SYS(sys_getdents64
, 3)
2199 MIPS_SYS(sys_fcntl64
, 3) /* 4220 */
2200 MIPS_SYS(sys_ni_syscall
, 0)
2201 MIPS_SYS(sys_gettid
, 0)
2202 MIPS_SYS(sys_readahead
, 5)
2203 MIPS_SYS(sys_setxattr
, 5)
2204 MIPS_SYS(sys_lsetxattr
, 5) /* 4225 */
2205 MIPS_SYS(sys_fsetxattr
, 5)
2206 MIPS_SYS(sys_getxattr
, 4)
2207 MIPS_SYS(sys_lgetxattr
, 4)
2208 MIPS_SYS(sys_fgetxattr
, 4)
2209 MIPS_SYS(sys_listxattr
, 3) /* 4230 */
2210 MIPS_SYS(sys_llistxattr
, 3)
2211 MIPS_SYS(sys_flistxattr
, 3)
2212 MIPS_SYS(sys_removexattr
, 2)
2213 MIPS_SYS(sys_lremovexattr
, 2)
2214 MIPS_SYS(sys_fremovexattr
, 2) /* 4235 */
2215 MIPS_SYS(sys_tkill
, 2)
2216 MIPS_SYS(sys_sendfile64
, 5)
2217 MIPS_SYS(sys_futex
, 6)
2218 MIPS_SYS(sys_sched_setaffinity
, 3)
2219 MIPS_SYS(sys_sched_getaffinity
, 3) /* 4240 */
2220 MIPS_SYS(sys_io_setup
, 2)
2221 MIPS_SYS(sys_io_destroy
, 1)
2222 MIPS_SYS(sys_io_getevents
, 5)
2223 MIPS_SYS(sys_io_submit
, 3)
2224 MIPS_SYS(sys_io_cancel
, 3) /* 4245 */
2225 MIPS_SYS(sys_exit_group
, 1)
2226 MIPS_SYS(sys_lookup_dcookie
, 3)
2227 MIPS_SYS(sys_epoll_create
, 1)
2228 MIPS_SYS(sys_epoll_ctl
, 4)
2229 MIPS_SYS(sys_epoll_wait
, 3) /* 4250 */
2230 MIPS_SYS(sys_remap_file_pages
, 5)
2231 MIPS_SYS(sys_set_tid_address
, 1)
2232 MIPS_SYS(sys_restart_syscall
, 0)
2233 MIPS_SYS(sys_fadvise64_64
, 7)
2234 MIPS_SYS(sys_statfs64
, 3) /* 4255 */
2235 MIPS_SYS(sys_fstatfs64
, 2)
2236 MIPS_SYS(sys_timer_create
, 3)
2237 MIPS_SYS(sys_timer_settime
, 4)
2238 MIPS_SYS(sys_timer_gettime
, 2)
2239 MIPS_SYS(sys_timer_getoverrun
, 1) /* 4260 */
2240 MIPS_SYS(sys_timer_delete
, 1)
2241 MIPS_SYS(sys_clock_settime
, 2)
2242 MIPS_SYS(sys_clock_gettime
, 2)
2243 MIPS_SYS(sys_clock_getres
, 2)
2244 MIPS_SYS(sys_clock_nanosleep
, 4) /* 4265 */
2245 MIPS_SYS(sys_tgkill
, 3)
2246 MIPS_SYS(sys_utimes
, 2)
2247 MIPS_SYS(sys_mbind
, 4)
2248 MIPS_SYS(sys_ni_syscall
, 0) /* sys_get_mempolicy */
2249 MIPS_SYS(sys_ni_syscall
, 0) /* 4270 sys_set_mempolicy */
2250 MIPS_SYS(sys_mq_open
, 4)
2251 MIPS_SYS(sys_mq_unlink
, 1)
2252 MIPS_SYS(sys_mq_timedsend
, 5)
2253 MIPS_SYS(sys_mq_timedreceive
, 5)
2254 MIPS_SYS(sys_mq_notify
, 2) /* 4275 */
2255 MIPS_SYS(sys_mq_getsetattr
, 3)
2256 MIPS_SYS(sys_ni_syscall
, 0) /* sys_vserver */
2257 MIPS_SYS(sys_waitid
, 4)
2258 MIPS_SYS(sys_ni_syscall
, 0) /* available, was setaltroot */
2259 MIPS_SYS(sys_add_key
, 5)
2260 MIPS_SYS(sys_request_key
, 4)
2261 MIPS_SYS(sys_keyctl
, 5)
2262 MIPS_SYS(sys_set_thread_area
, 1)
2263 MIPS_SYS(sys_inotify_init
, 0)
2264 MIPS_SYS(sys_inotify_add_watch
, 3) /* 4285 */
2265 MIPS_SYS(sys_inotify_rm_watch
, 2)
2266 MIPS_SYS(sys_migrate_pages
, 4)
2267 MIPS_SYS(sys_openat
, 4)
2268 MIPS_SYS(sys_mkdirat
, 3)
2269 MIPS_SYS(sys_mknodat
, 4) /* 4290 */
2270 MIPS_SYS(sys_fchownat
, 5)
2271 MIPS_SYS(sys_futimesat
, 3)
2272 MIPS_SYS(sys_fstatat64
, 4)
2273 MIPS_SYS(sys_unlinkat
, 3)
2274 MIPS_SYS(sys_renameat
, 4) /* 4295 */
2275 MIPS_SYS(sys_linkat
, 5)
2276 MIPS_SYS(sys_symlinkat
, 3)
2277 MIPS_SYS(sys_readlinkat
, 4)
2278 MIPS_SYS(sys_fchmodat
, 3)
2279 MIPS_SYS(sys_faccessat
, 3) /* 4300 */
2280 MIPS_SYS(sys_pselect6
, 6)
2281 MIPS_SYS(sys_ppoll
, 5)
2282 MIPS_SYS(sys_unshare
, 1)
2283 MIPS_SYS(sys_splice
, 6)
2284 MIPS_SYS(sys_sync_file_range
, 7) /* 4305 */
2285 MIPS_SYS(sys_tee
, 4)
2286 MIPS_SYS(sys_vmsplice
, 4)
2287 MIPS_SYS(sys_move_pages
, 6)
2288 MIPS_SYS(sys_set_robust_list
, 2)
2289 MIPS_SYS(sys_get_robust_list
, 3) /* 4310 */
2290 MIPS_SYS(sys_kexec_load
, 4)
2291 MIPS_SYS(sys_getcpu
, 3)
2292 MIPS_SYS(sys_epoll_pwait
, 6)
2293 MIPS_SYS(sys_ioprio_set
, 3)
2294 MIPS_SYS(sys_ioprio_get
, 2)
2295 MIPS_SYS(sys_utimensat
, 4)
2296 MIPS_SYS(sys_signalfd
, 3)
2297 MIPS_SYS(sys_ni_syscall
, 0) /* was timerfd */
2298 MIPS_SYS(sys_eventfd
, 1)
2299 MIPS_SYS(sys_fallocate
, 6) /* 4320 */
2300 MIPS_SYS(sys_timerfd_create
, 2)
2301 MIPS_SYS(sys_timerfd_gettime
, 2)
2302 MIPS_SYS(sys_timerfd_settime
, 4)
2303 MIPS_SYS(sys_signalfd4
, 4)
2304 MIPS_SYS(sys_eventfd2
, 2) /* 4325 */
2305 MIPS_SYS(sys_epoll_create1
, 1)
2306 MIPS_SYS(sys_dup3
, 3)
2307 MIPS_SYS(sys_pipe2
, 2)
2308 MIPS_SYS(sys_inotify_init1
, 1)
2309 MIPS_SYS(sys_preadv
, 6) /* 4330 */
2310 MIPS_SYS(sys_pwritev
, 6)
2311 MIPS_SYS(sys_rt_tgsigqueueinfo
, 4)
2312 MIPS_SYS(sys_perf_event_open
, 5)
2313 MIPS_SYS(sys_accept4
, 4)
2314 MIPS_SYS(sys_recvmmsg
, 5) /* 4335 */
2315 MIPS_SYS(sys_fanotify_init
, 2)
2316 MIPS_SYS(sys_fanotify_mark
, 6)
2317 MIPS_SYS(sys_prlimit64
, 4)
2318 MIPS_SYS(sys_name_to_handle_at
, 5)
2319 MIPS_SYS(sys_open_by_handle_at
, 3) /* 4340 */
2320 MIPS_SYS(sys_clock_adjtime
, 2)
2321 MIPS_SYS(sys_syncfs
, 1)
2326 static int do_store_exclusive(CPUMIPSState
*env
)
2329 target_ulong page_addr
;
2337 page_addr
= addr
& TARGET_PAGE_MASK
;
2340 flags
= page_get_flags(page_addr
);
2341 if ((flags
& PAGE_READ
) == 0) {
2344 reg
= env
->llreg
& 0x1f;
2345 d
= (env
->llreg
& 0x20) != 0;
2347 segv
= get_user_s64(val
, addr
);
2349 segv
= get_user_s32(val
, addr
);
2352 if (val
!= env
->llval
) {
2353 env
->active_tc
.gpr
[reg
] = 0;
2356 segv
= put_user_u64(env
->llnewval
, addr
);
2358 segv
= put_user_u32(env
->llnewval
, addr
);
2361 env
->active_tc
.gpr
[reg
] = 1;
2368 env
->active_tc
.PC
+= 4;
2381 static int do_break(CPUMIPSState
*env
, target_siginfo_t
*info
,
2389 info
->si_signo
= TARGET_SIGFPE
;
2391 info
->si_code
= (code
== BRK_OVERFLOW
) ? FPE_INTOVF
: FPE_INTDIV
;
2392 queue_signal(env
, info
->si_signo
, &*info
);
2396 info
->si_signo
= TARGET_SIGTRAP
;
2398 queue_signal(env
, info
->si_signo
, &*info
);
2406 void cpu_loop(CPUMIPSState
*env
)
2408 CPUState
*cs
= CPU(mips_env_get_cpu(env
));
2409 target_siginfo_t info
;
2412 # ifdef TARGET_ABI_MIPSO32
2413 unsigned int syscall_num
;
2418 trapnr
= cpu_mips_exec(cs
);
2422 env
->active_tc
.PC
+= 4;
2423 # ifdef TARGET_ABI_MIPSO32
2424 syscall_num
= env
->active_tc
.gpr
[2] - 4000;
2425 if (syscall_num
>= sizeof(mips_syscall_args
)) {
2426 ret
= -TARGET_ENOSYS
;
2430 abi_ulong arg5
= 0, arg6
= 0, arg7
= 0, arg8
= 0;
2432 nb_args
= mips_syscall_args
[syscall_num
];
2433 sp_reg
= env
->active_tc
.gpr
[29];
2435 /* these arguments are taken from the stack */
2437 if ((ret
= get_user_ual(arg8
, sp_reg
+ 28)) != 0) {
2441 if ((ret
= get_user_ual(arg7
, sp_reg
+ 24)) != 0) {
2445 if ((ret
= get_user_ual(arg6
, sp_reg
+ 20)) != 0) {
2449 if ((ret
= get_user_ual(arg5
, sp_reg
+ 16)) != 0) {
2455 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2456 env
->active_tc
.gpr
[4],
2457 env
->active_tc
.gpr
[5],
2458 env
->active_tc
.gpr
[6],
2459 env
->active_tc
.gpr
[7],
2460 arg5
, arg6
, arg7
, arg8
);
2464 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2465 env
->active_tc
.gpr
[4], env
->active_tc
.gpr
[5],
2466 env
->active_tc
.gpr
[6], env
->active_tc
.gpr
[7],
2467 env
->active_tc
.gpr
[8], env
->active_tc
.gpr
[9],
2468 env
->active_tc
.gpr
[10], env
->active_tc
.gpr
[11]);
2470 if (ret
== -TARGET_QEMU_ESIGRETURN
) {
2471 /* Returning from a successful sigreturn syscall.
2472 Avoid clobbering register state. */
2475 if ((abi_ulong
)ret
>= (abi_ulong
)-1133) {
2476 env
->active_tc
.gpr
[7] = 1; /* error flag */
2479 env
->active_tc
.gpr
[7] = 0; /* error flag */
2481 env
->active_tc
.gpr
[2] = ret
;
2487 info
.si_signo
= TARGET_SIGSEGV
;
2489 /* XXX: check env->error_code */
2490 info
.si_code
= TARGET_SEGV_MAPERR
;
2491 info
._sifields
._sigfault
._addr
= env
->CP0_BadVAddr
;
2492 queue_signal(env
, info
.si_signo
, &info
);
2496 info
.si_signo
= TARGET_SIGILL
;
2499 queue_signal(env
, info
.si_signo
, &info
);
2501 case EXCP_INTERRUPT
:
2502 /* just indicate that signals should be handled asap */
2508 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2511 info
.si_signo
= sig
;
2513 info
.si_code
= TARGET_TRAP_BRKPT
;
2514 queue_signal(env
, info
.si_signo
, &info
);
2519 if (do_store_exclusive(env
)) {
2520 info
.si_signo
= TARGET_SIGSEGV
;
2522 info
.si_code
= TARGET_SEGV_MAPERR
;
2523 info
._sifields
._sigfault
._addr
= env
->active_tc
.PC
;
2524 queue_signal(env
, info
.si_signo
, &info
);
2528 info
.si_signo
= TARGET_SIGILL
;
2530 info
.si_code
= TARGET_ILL_ILLOPC
;
2531 queue_signal(env
, info
.si_signo
, &info
);
2533 /* The code below was inspired by the MIPS Linux kernel trap
2534 * handling code in arch/mips/kernel/traps.c.
2538 abi_ulong trap_instr
;
2541 if (env
->hflags
& MIPS_HFLAG_M16
) {
2542 if (env
->insn_flags
& ASE_MICROMIPS
) {
2543 /* microMIPS mode */
2544 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2549 if ((trap_instr
>> 10) == 0x11) {
2550 /* 16-bit instruction */
2551 code
= trap_instr
& 0xf;
2553 /* 32-bit instruction */
2556 ret
= get_user_u16(instr_lo
,
2557 env
->active_tc
.PC
+ 2);
2561 trap_instr
= (trap_instr
<< 16) | instr_lo
;
2562 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2563 /* Unfortunately, microMIPS also suffers from
2564 the old assembler bug... */
2565 if (code
>= (1 << 10)) {
2571 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2575 code
= (trap_instr
>> 6) & 0x3f;
2578 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2583 /* As described in the original Linux kernel code, the
2584 * below checks on 'code' are to work around an old
2587 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2588 if (code
>= (1 << 10)) {
2593 if (do_break(env
, &info
, code
) != 0) {
2600 abi_ulong trap_instr
;
2601 unsigned int code
= 0;
2603 if (env
->hflags
& MIPS_HFLAG_M16
) {
2604 /* microMIPS mode */
2607 ret
= get_user_u16(instr
[0], env
->active_tc
.PC
) ||
2608 get_user_u16(instr
[1], env
->active_tc
.PC
+ 2);
2610 trap_instr
= (instr
[0] << 16) | instr
[1];
2612 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2619 /* The immediate versions don't provide a code. */
2620 if (!(trap_instr
& 0xFC000000)) {
2621 if (env
->hflags
& MIPS_HFLAG_M16
) {
2622 /* microMIPS mode */
2623 code
= ((trap_instr
>> 12) & ((1 << 4) - 1));
2625 code
= ((trap_instr
>> 6) & ((1 << 10) - 1));
2629 if (do_break(env
, &info
, code
) != 0) {
2636 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
2638 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2641 process_pending_signals(env
);
2646 #ifdef TARGET_OPENRISC
2648 void cpu_loop(CPUOpenRISCState
*env
)
2650 CPUState
*cs
= CPU(openrisc_env_get_cpu(env
));
2655 trapnr
= cpu_openrisc_exec(cs
);
2661 qemu_log("\nReset request, exit, pc is %#x\n", env
->pc
);
2665 qemu_log("\nBus error, exit, pc is %#x\n", env
->pc
);
2666 gdbsig
= TARGET_SIGBUS
;
2670 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2671 gdbsig
= TARGET_SIGSEGV
;
2674 qemu_log("\nTick time interrupt pc is %#x\n", env
->pc
);
2677 qemu_log("\nAlignment pc is %#x\n", env
->pc
);
2678 gdbsig
= TARGET_SIGBUS
;
2681 qemu_log("\nIllegal instructionpc is %#x\n", env
->pc
);
2682 gdbsig
= TARGET_SIGILL
;
2685 qemu_log("\nExternal interruptpc is %#x\n", env
->pc
);
2689 qemu_log("\nTLB miss\n");
2692 qemu_log("\nRange\n");
2693 gdbsig
= TARGET_SIGSEGV
;
2696 env
->pc
+= 4; /* 0xc00; */
2697 env
->gpr
[11] = do_syscall(env
,
2698 env
->gpr
[11], /* return value */
2699 env
->gpr
[3], /* r3 - r7 are params */
2707 qemu_log("\nFloating point error\n");
2710 qemu_log("\nTrap\n");
2711 gdbsig
= TARGET_SIGTRAP
;
2717 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2719 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2720 gdbsig
= TARGET_SIGILL
;
2724 gdb_handlesig(cs
, gdbsig
);
2725 if (gdbsig
!= TARGET_SIGTRAP
) {
2730 process_pending_signals(env
);
2734 #endif /* TARGET_OPENRISC */
2737 void cpu_loop(CPUSH4State
*env
)
2739 CPUState
*cs
= CPU(sh_env_get_cpu(env
));
2741 target_siginfo_t info
;
2745 trapnr
= cpu_sh4_exec(cs
);
2751 ret
= do_syscall(env
,
2760 env
->gregs
[0] = ret
;
2762 case EXCP_INTERRUPT
:
2763 /* just indicate that signals should be handled asap */
2769 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2772 info
.si_signo
= sig
;
2774 info
.si_code
= TARGET_TRAP_BRKPT
;
2775 queue_signal(env
, info
.si_signo
, &info
);
2781 info
.si_signo
= TARGET_SIGSEGV
;
2783 info
.si_code
= TARGET_SEGV_MAPERR
;
2784 info
._sifields
._sigfault
._addr
= env
->tea
;
2785 queue_signal(env
, info
.si_signo
, &info
);
2789 printf ("Unhandled trap: 0x%x\n", trapnr
);
2790 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2793 process_pending_signals (env
);
2799 void cpu_loop(CPUCRISState
*env
)
2801 CPUState
*cs
= CPU(cris_env_get_cpu(env
));
2803 target_siginfo_t info
;
2807 trapnr
= cpu_cris_exec(cs
);
2812 info
.si_signo
= TARGET_SIGSEGV
;
2814 /* XXX: check env->error_code */
2815 info
.si_code
= TARGET_SEGV_MAPERR
;
2816 info
._sifields
._sigfault
._addr
= env
->pregs
[PR_EDA
];
2817 queue_signal(env
, info
.si_signo
, &info
);
2820 case EXCP_INTERRUPT
:
2821 /* just indicate that signals should be handled asap */
2824 ret
= do_syscall(env
,
2833 env
->regs
[10] = ret
;
2839 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2842 info
.si_signo
= sig
;
2844 info
.si_code
= TARGET_TRAP_BRKPT
;
2845 queue_signal(env
, info
.si_signo
, &info
);
2850 printf ("Unhandled trap: 0x%x\n", trapnr
);
2851 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2854 process_pending_signals (env
);
2859 #ifdef TARGET_MICROBLAZE
2860 void cpu_loop(CPUMBState
*env
)
2862 CPUState
*cs
= CPU(mb_env_get_cpu(env
));
2864 target_siginfo_t info
;
2868 trapnr
= cpu_mb_exec(cs
);
2873 info
.si_signo
= TARGET_SIGSEGV
;
2875 /* XXX: check env->error_code */
2876 info
.si_code
= TARGET_SEGV_MAPERR
;
2877 info
._sifields
._sigfault
._addr
= 0;
2878 queue_signal(env
, info
.si_signo
, &info
);
2881 case EXCP_INTERRUPT
:
2882 /* just indicate that signals should be handled asap */
2885 /* Return address is 4 bytes after the call. */
2887 env
->sregs
[SR_PC
] = env
->regs
[14];
2888 ret
= do_syscall(env
,
2900 env
->regs
[17] = env
->sregs
[SR_PC
] + 4;
2901 if (env
->iflags
& D_FLAG
) {
2902 env
->sregs
[SR_ESR
] |= 1 << 12;
2903 env
->sregs
[SR_PC
] -= 4;
2904 /* FIXME: if branch was immed, replay the imm as well. */
2907 env
->iflags
&= ~(IMM_FLAG
| D_FLAG
);
2909 switch (env
->sregs
[SR_ESR
] & 31) {
2910 case ESR_EC_DIVZERO
:
2911 info
.si_signo
= TARGET_SIGFPE
;
2913 info
.si_code
= TARGET_FPE_FLTDIV
;
2914 info
._sifields
._sigfault
._addr
= 0;
2915 queue_signal(env
, info
.si_signo
, &info
);
2918 info
.si_signo
= TARGET_SIGFPE
;
2920 if (env
->sregs
[SR_FSR
] & FSR_IO
) {
2921 info
.si_code
= TARGET_FPE_FLTINV
;
2923 if (env
->sregs
[SR_FSR
] & FSR_DZ
) {
2924 info
.si_code
= TARGET_FPE_FLTDIV
;
2926 info
._sifields
._sigfault
._addr
= 0;
2927 queue_signal(env
, info
.si_signo
, &info
);
2930 printf ("Unhandled hw-exception: 0x%x\n",
2931 env
->sregs
[SR_ESR
] & ESR_EC_MASK
);
2932 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2941 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2944 info
.si_signo
= sig
;
2946 info
.si_code
= TARGET_TRAP_BRKPT
;
2947 queue_signal(env
, info
.si_signo
, &info
);
2952 printf ("Unhandled trap: 0x%x\n", trapnr
);
2953 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2956 process_pending_signals (env
);
2963 void cpu_loop(CPUM68KState
*env
)
2965 CPUState
*cs
= CPU(m68k_env_get_cpu(env
));
2968 target_siginfo_t info
;
2969 TaskState
*ts
= cs
->opaque
;
2973 trapnr
= cpu_m68k_exec(cs
);
2978 if (ts
->sim_syscalls
) {
2980 get_user_u16(nr
, env
->pc
+ 2);
2982 do_m68k_simcall(env
, nr
);
2988 case EXCP_HALT_INSN
:
2989 /* Semihosing syscall. */
2991 do_m68k_semihosting(env
, env
->dregs
[0]);
2995 case EXCP_UNSUPPORTED
:
2997 info
.si_signo
= TARGET_SIGILL
;
2999 info
.si_code
= TARGET_ILL_ILLOPN
;
3000 info
._sifields
._sigfault
._addr
= env
->pc
;
3001 queue_signal(env
, info
.si_signo
, &info
);
3005 ts
->sim_syscalls
= 0;
3008 env
->dregs
[0] = do_syscall(env
,
3019 case EXCP_INTERRUPT
:
3020 /* just indicate that signals should be handled asap */
3024 info
.si_signo
= TARGET_SIGSEGV
;
3026 /* XXX: check env->error_code */
3027 info
.si_code
= TARGET_SEGV_MAPERR
;
3028 info
._sifields
._sigfault
._addr
= env
->mmu
.ar
;
3029 queue_signal(env
, info
.si_signo
, &info
);
3036 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3039 info
.si_signo
= sig
;
3041 info
.si_code
= TARGET_TRAP_BRKPT
;
3042 queue_signal(env
, info
.si_signo
, &info
);
3047 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
3049 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3052 process_pending_signals(env
);
3055 #endif /* TARGET_M68K */
3058 static void do_store_exclusive(CPUAlphaState
*env
, int reg
, int quad
)
3060 target_ulong addr
, val
, tmp
;
3061 target_siginfo_t info
;
3064 addr
= env
->lock_addr
;
3065 tmp
= env
->lock_st_addr
;
3066 env
->lock_addr
= -1;
3067 env
->lock_st_addr
= 0;
3073 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3077 if (val
== env
->lock_value
) {
3079 if (quad
? put_user_u64(tmp
, addr
) : put_user_u32(tmp
, addr
)) {
3096 info
.si_signo
= TARGET_SIGSEGV
;
3098 info
.si_code
= TARGET_SEGV_MAPERR
;
3099 info
._sifields
._sigfault
._addr
= addr
;
3100 queue_signal(env
, TARGET_SIGSEGV
, &info
);
3103 void cpu_loop(CPUAlphaState
*env
)
3105 CPUState
*cs
= CPU(alpha_env_get_cpu(env
));
3107 target_siginfo_t info
;
3112 trapnr
= cpu_alpha_exec(cs
);
3115 /* All of the traps imply a transition through PALcode, which
3116 implies an REI instruction has been executed. Which means
3117 that the intr_flag should be cleared. */
3122 fprintf(stderr
, "Reset requested. Exit\n");
3126 fprintf(stderr
, "Machine check exception. Exit\n");
3129 case EXCP_SMP_INTERRUPT
:
3130 case EXCP_CLK_INTERRUPT
:
3131 case EXCP_DEV_INTERRUPT
:
3132 fprintf(stderr
, "External interrupt. Exit\n");
3136 env
->lock_addr
= -1;
3137 info
.si_signo
= TARGET_SIGSEGV
;
3139 info
.si_code
= (page_get_flags(env
->trap_arg0
) & PAGE_VALID
3140 ? TARGET_SEGV_ACCERR
: TARGET_SEGV_MAPERR
);
3141 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3142 queue_signal(env
, info
.si_signo
, &info
);
3145 env
->lock_addr
= -1;
3146 info
.si_signo
= TARGET_SIGBUS
;
3148 info
.si_code
= TARGET_BUS_ADRALN
;
3149 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3150 queue_signal(env
, info
.si_signo
, &info
);
3154 env
->lock_addr
= -1;
3155 info
.si_signo
= TARGET_SIGILL
;
3157 info
.si_code
= TARGET_ILL_ILLOPC
;
3158 info
._sifields
._sigfault
._addr
= env
->pc
;
3159 queue_signal(env
, info
.si_signo
, &info
);
3162 env
->lock_addr
= -1;
3163 info
.si_signo
= TARGET_SIGFPE
;
3165 info
.si_code
= TARGET_FPE_FLTINV
;
3166 info
._sifields
._sigfault
._addr
= env
->pc
;
3167 queue_signal(env
, info
.si_signo
, &info
);
3170 /* No-op. Linux simply re-enables the FPU. */
3173 env
->lock_addr
= -1;
3174 switch (env
->error_code
) {
3177 info
.si_signo
= TARGET_SIGTRAP
;
3179 info
.si_code
= TARGET_TRAP_BRKPT
;
3180 info
._sifields
._sigfault
._addr
= env
->pc
;
3181 queue_signal(env
, info
.si_signo
, &info
);
3185 info
.si_signo
= TARGET_SIGTRAP
;
3188 info
._sifields
._sigfault
._addr
= env
->pc
;
3189 queue_signal(env
, info
.si_signo
, &info
);
3193 trapnr
= env
->ir
[IR_V0
];
3194 sysret
= do_syscall(env
, trapnr
,
3195 env
->ir
[IR_A0
], env
->ir
[IR_A1
],
3196 env
->ir
[IR_A2
], env
->ir
[IR_A3
],
3197 env
->ir
[IR_A4
], env
->ir
[IR_A5
],
3199 if (trapnr
== TARGET_NR_sigreturn
3200 || trapnr
== TARGET_NR_rt_sigreturn
) {
3203 /* Syscall writes 0 to V0 to bypass error check, similar
3204 to how this is handled internal to Linux kernel.
3205 (Ab)use trapnr temporarily as boolean indicating error. */
3206 trapnr
= (env
->ir
[IR_V0
] != 0 && sysret
< 0);
3207 env
->ir
[IR_V0
] = (trapnr
? -sysret
: sysret
);
3208 env
->ir
[IR_A3
] = trapnr
;
3212 /* ??? We can probably elide the code using page_unprotect
3213 that is checking for self-modifying code. Instead we
3214 could simply call tb_flush here. Until we work out the
3215 changes required to turn off the extra write protection,
3216 this can be a no-op. */
3220 /* Handled in the translator for usermode. */
3224 /* Handled in the translator for usermode. */
3228 info
.si_signo
= TARGET_SIGFPE
;
3229 switch (env
->ir
[IR_A0
]) {
3230 case TARGET_GEN_INTOVF
:
3231 info
.si_code
= TARGET_FPE_INTOVF
;
3233 case TARGET_GEN_INTDIV
:
3234 info
.si_code
= TARGET_FPE_INTDIV
;
3236 case TARGET_GEN_FLTOVF
:
3237 info
.si_code
= TARGET_FPE_FLTOVF
;
3239 case TARGET_GEN_FLTUND
:
3240 info
.si_code
= TARGET_FPE_FLTUND
;
3242 case TARGET_GEN_FLTINV
:
3243 info
.si_code
= TARGET_FPE_FLTINV
;
3245 case TARGET_GEN_FLTINE
:
3246 info
.si_code
= TARGET_FPE_FLTRES
;
3248 case TARGET_GEN_ROPRAND
:
3252 info
.si_signo
= TARGET_SIGTRAP
;
3257 info
._sifields
._sigfault
._addr
= env
->pc
;
3258 queue_signal(env
, info
.si_signo
, &info
);
3265 info
.si_signo
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3266 if (info
.si_signo
) {
3267 env
->lock_addr
= -1;
3269 info
.si_code
= TARGET_TRAP_BRKPT
;
3270 queue_signal(env
, info
.si_signo
, &info
);
3275 do_store_exclusive(env
, env
->error_code
, trapnr
- EXCP_STL_C
);
3277 case EXCP_INTERRUPT
:
3278 /* Just indicate that signals should be handled asap. */
3281 printf ("Unhandled trap: 0x%x\n", trapnr
);
3282 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3285 process_pending_signals (env
);
3288 #endif /* TARGET_ALPHA */
3291 void cpu_loop(CPUS390XState
*env
)
3293 CPUState
*cs
= CPU(s390_env_get_cpu(env
));
3295 target_siginfo_t info
;
3300 trapnr
= cpu_s390x_exec(cs
);
3303 case EXCP_INTERRUPT
:
3304 /* Just indicate that signals should be handled asap. */
3308 n
= env
->int_svc_code
;
3310 /* syscalls > 255 */
3313 env
->psw
.addr
+= env
->int_svc_ilen
;
3314 env
->regs
[2] = do_syscall(env
, n
, env
->regs
[2], env
->regs
[3],
3315 env
->regs
[4], env
->regs
[5],
3316 env
->regs
[6], env
->regs
[7], 0, 0);
3320 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3322 n
= TARGET_TRAP_BRKPT
;
3327 n
= env
->int_pgm_code
;
3330 case PGM_PRIVILEGED
:
3331 sig
= TARGET_SIGILL
;
3332 n
= TARGET_ILL_ILLOPC
;
3334 case PGM_PROTECTION
:
3335 case PGM_ADDRESSING
:
3336 sig
= TARGET_SIGSEGV
;
3337 /* XXX: check env->error_code */
3338 n
= TARGET_SEGV_MAPERR
;
3339 addr
= env
->__excp_addr
;
3342 case PGM_SPECIFICATION
:
3343 case PGM_SPECIAL_OP
:
3346 sig
= TARGET_SIGILL
;
3347 n
= TARGET_ILL_ILLOPN
;
3350 case PGM_FIXPT_OVERFLOW
:
3351 sig
= TARGET_SIGFPE
;
3352 n
= TARGET_FPE_INTOVF
;
3354 case PGM_FIXPT_DIVIDE
:
3355 sig
= TARGET_SIGFPE
;
3356 n
= TARGET_FPE_INTDIV
;
3360 n
= (env
->fpc
>> 8) & 0xff;
3362 /* compare-and-trap */
3365 /* An IEEE exception, simulated or otherwise. */
3367 n
= TARGET_FPE_FLTINV
;
3368 } else if (n
& 0x40) {
3369 n
= TARGET_FPE_FLTDIV
;
3370 } else if (n
& 0x20) {
3371 n
= TARGET_FPE_FLTOVF
;
3372 } else if (n
& 0x10) {
3373 n
= TARGET_FPE_FLTUND
;
3374 } else if (n
& 0x08) {
3375 n
= TARGET_FPE_FLTRES
;
3377 /* ??? Quantum exception; BFP, DFP error. */
3380 sig
= TARGET_SIGFPE
;
3385 fprintf(stderr
, "Unhandled program exception: %#x\n", n
);
3386 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3392 addr
= env
->psw
.addr
;
3394 info
.si_signo
= sig
;
3397 info
._sifields
._sigfault
._addr
= addr
;
3398 queue_signal(env
, info
.si_signo
, &info
);
3402 fprintf(stderr
, "Unhandled trap: 0x%x\n", trapnr
);
3403 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3406 process_pending_signals (env
);
3410 #endif /* TARGET_S390X */
3412 THREAD CPUState
*thread_cpu
;
3414 void task_settid(TaskState
*ts
)
3416 if (ts
->ts_tid
== 0) {
3417 ts
->ts_tid
= (pid_t
)syscall(SYS_gettid
);
3421 void stop_all_tasks(void)
3424 * We trust that when using NPTL, start_exclusive()
3425 * handles thread stopping correctly.
3430 /* Assumes contents are already zeroed. */
3431 void init_task_state(TaskState
*ts
)
3436 ts
->first_free
= ts
->sigqueue_table
;
3437 for (i
= 0; i
< MAX_SIGQUEUE_SIZE
- 1; i
++) {
3438 ts
->sigqueue_table
[i
].next
= &ts
->sigqueue_table
[i
+ 1];
3440 ts
->sigqueue_table
[i
].next
= NULL
;
3443 CPUArchState
*cpu_copy(CPUArchState
*env
)
3445 CPUState
*cpu
= ENV_GET_CPU(env
);
3446 CPUState
*new_cpu
= cpu_init(cpu_model
);
3447 CPUArchState
*new_env
= new_cpu
->env_ptr
;
3451 /* Reset non arch specific state */
3454 memcpy(new_env
, env
, sizeof(CPUArchState
));
3456 /* Clone all break/watchpoints.
3457 Note: Once we support ptrace with hw-debug register access, make sure
3458 BP_CPU break/watchpoints are handled correctly on clone. */
3459 QTAILQ_INIT(&new_cpu
->breakpoints
);
3460 QTAILQ_INIT(&new_cpu
->watchpoints
);
3461 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
3462 cpu_breakpoint_insert(new_cpu
, bp
->pc
, bp
->flags
, NULL
);
3464 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
3465 cpu_watchpoint_insert(new_cpu
, wp
->vaddr
, wp
->len
, wp
->flags
, NULL
);
3471 static void handle_arg_help(const char *arg
)
3476 static void handle_arg_log(const char *arg
)
3480 mask
= qemu_str_to_log_mask(arg
);
3482 qemu_print_log_usage(stdout
);
3488 static void handle_arg_log_filename(const char *arg
)
3490 qemu_set_log_filename(arg
);
3493 static void handle_arg_set_env(const char *arg
)
3495 char *r
, *p
, *token
;
3496 r
= p
= strdup(arg
);
3497 while ((token
= strsep(&p
, ",")) != NULL
) {
3498 if (envlist_setenv(envlist
, token
) != 0) {
3505 static void handle_arg_unset_env(const char *arg
)
3507 char *r
, *p
, *token
;
3508 r
= p
= strdup(arg
);
3509 while ((token
= strsep(&p
, ",")) != NULL
) {
3510 if (envlist_unsetenv(envlist
, token
) != 0) {
3517 static void handle_arg_argv0(const char *arg
)
3519 argv0
= strdup(arg
);
3522 static void handle_arg_stack_size(const char *arg
)
3525 guest_stack_size
= strtoul(arg
, &p
, 0);
3526 if (guest_stack_size
== 0) {
3531 guest_stack_size
*= 1024 * 1024;
3532 } else if (*p
== 'k' || *p
== 'K') {
3533 guest_stack_size
*= 1024;
3537 static void handle_arg_ld_prefix(const char *arg
)
3539 interp_prefix
= strdup(arg
);
3542 static void handle_arg_pagesize(const char *arg
)
3544 qemu_host_page_size
= atoi(arg
);
3545 if (qemu_host_page_size
== 0 ||
3546 (qemu_host_page_size
& (qemu_host_page_size
- 1)) != 0) {
3547 fprintf(stderr
, "page size must be a power of two\n");
3552 static void handle_arg_randseed(const char *arg
)
3554 unsigned long long seed
;
3556 if (parse_uint_full(arg
, &seed
, 0) != 0 || seed
> UINT_MAX
) {
3557 fprintf(stderr
, "Invalid seed number: %s\n", arg
);
3563 static void handle_arg_gdb(const char *arg
)
3565 gdbstub_port
= atoi(arg
);
3568 static void handle_arg_uname(const char *arg
)
3570 qemu_uname_release
= strdup(arg
);
3573 static void handle_arg_cpu(const char *arg
)
3575 cpu_model
= strdup(arg
);
3576 if (cpu_model
== NULL
|| is_help_option(cpu_model
)) {
3577 /* XXX: implement xxx_cpu_list for targets that still miss it */
3578 #if defined(cpu_list)
3579 cpu_list(stdout
, &fprintf
);
3585 static void handle_arg_guest_base(const char *arg
)
3587 guest_base
= strtol(arg
, NULL
, 0);
3588 have_guest_base
= 1;
3591 static void handle_arg_reserved_va(const char *arg
)
3595 reserved_va
= strtoul(arg
, &p
, 0);
3609 unsigned long unshifted
= reserved_va
;
3611 reserved_va
<<= shift
;
3612 if (((reserved_va
>> shift
) != unshifted
)
3613 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3614 || (reserved_va
> (1ul << TARGET_VIRT_ADDR_SPACE_BITS
))
3617 fprintf(stderr
, "Reserved virtual address too big\n");
3622 fprintf(stderr
, "Unrecognised -R size suffix '%s'\n", p
);
3627 static void handle_arg_singlestep(const char *arg
)
3632 static void handle_arg_strace(const char *arg
)
3637 static void handle_arg_version(const char *arg
)
3639 printf("qemu-" TARGET_NAME
" version " QEMU_VERSION QEMU_PKGVERSION
3640 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3644 struct qemu_argument
{
3648 void (*handle_opt
)(const char *arg
);
3649 const char *example
;
3653 static const struct qemu_argument arg_table
[] = {
3654 {"h", "", false, handle_arg_help
,
3655 "", "print this help"},
3656 {"g", "QEMU_GDB", true, handle_arg_gdb
,
3657 "port", "wait gdb connection to 'port'"},
3658 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix
,
3659 "path", "set the elf interpreter prefix to 'path'"},
3660 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size
,
3661 "size", "set the stack size to 'size' bytes"},
3662 {"cpu", "QEMU_CPU", true, handle_arg_cpu
,
3663 "model", "select CPU (-cpu help for list)"},
3664 {"E", "QEMU_SET_ENV", true, handle_arg_set_env
,
3665 "var=value", "sets targets environment variable (see below)"},
3666 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env
,
3667 "var", "unsets targets environment variable (see below)"},
3668 {"0", "QEMU_ARGV0", true, handle_arg_argv0
,
3669 "argv0", "forces target process argv[0] to be 'argv0'"},
3670 {"r", "QEMU_UNAME", true, handle_arg_uname
,
3671 "uname", "set qemu uname release string to 'uname'"},
3672 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base
,
3673 "address", "set guest_base address to 'address'"},
3674 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va
,
3675 "size", "reserve 'size' bytes for guest virtual address space"},
3676 {"d", "QEMU_LOG", true, handle_arg_log
,
3677 "item[,...]", "enable logging of specified items "
3678 "(use '-d help' for a list of items)"},
3679 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename
,
3680 "logfile", "write logs to 'logfile' (default stderr)"},
3681 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize
,
3682 "pagesize", "set the host page size to 'pagesize'"},
3683 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep
,
3684 "", "run in singlestep mode"},
3685 {"strace", "QEMU_STRACE", false, handle_arg_strace
,
3686 "", "log system calls"},
3687 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed
,
3688 "", "Seed for pseudo-random number generator"},
3689 {"version", "QEMU_VERSION", false, handle_arg_version
,
3690 "", "display version information and exit"},
3691 {NULL
, NULL
, false, NULL
, NULL
, NULL
}
3694 static void usage(void)
3696 const struct qemu_argument
*arginfo
;
3700 printf("usage: qemu-" TARGET_NAME
" [options] program [arguments...]\n"
3701 "Linux CPU emulator (compiled for " TARGET_NAME
" emulation)\n"
3703 "Options and associated environment variables:\n"
3706 /* Calculate column widths. We must always have at least enough space
3707 * for the column header.
3709 maxarglen
= strlen("Argument");
3710 maxenvlen
= strlen("Env-variable");
3712 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3713 int arglen
= strlen(arginfo
->argv
);
3714 if (arginfo
->has_arg
) {
3715 arglen
+= strlen(arginfo
->example
) + 1;
3717 if (strlen(arginfo
->env
) > maxenvlen
) {
3718 maxenvlen
= strlen(arginfo
->env
);
3720 if (arglen
> maxarglen
) {
3725 printf("%-*s %-*s Description\n", maxarglen
+1, "Argument",
3726 maxenvlen
, "Env-variable");
3728 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3729 if (arginfo
->has_arg
) {
3730 printf("-%s %-*s %-*s %s\n", arginfo
->argv
,
3731 (int)(maxarglen
- strlen(arginfo
->argv
) - 1),
3732 arginfo
->example
, maxenvlen
, arginfo
->env
, arginfo
->help
);
3734 printf("-%-*s %-*s %s\n", maxarglen
, arginfo
->argv
,
3735 maxenvlen
, arginfo
->env
,
3742 "QEMU_LD_PREFIX = %s\n"
3743 "QEMU_STACK_SIZE = %ld byte\n",
3748 "You can use -E and -U options or the QEMU_SET_ENV and\n"
3749 "QEMU_UNSET_ENV environment variables to set and unset\n"
3750 "environment variables for the target process.\n"
3751 "It is possible to provide several variables by separating them\n"
3752 "by commas in getsubopt(3) style. Additionally it is possible to\n"
3753 "provide the -E and -U options multiple times.\n"
3754 "The following lines are equivalent:\n"
3755 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3756 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3757 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3758 "Note that if you provide several changes to a single variable\n"
3759 "the last change will stay in effect.\n");
3764 static int parse_args(int argc
, char **argv
)
3768 const struct qemu_argument
*arginfo
;
3770 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3771 if (arginfo
->env
== NULL
) {
3775 r
= getenv(arginfo
->env
);
3777 arginfo
->handle_opt(r
);
3783 if (optind
>= argc
) {
3792 if (!strcmp(r
, "-")) {
3796 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3797 if (!strcmp(r
, arginfo
->argv
)) {
3798 if (arginfo
->has_arg
) {
3799 if (optind
>= argc
) {
3802 arginfo
->handle_opt(argv
[optind
]);
3805 arginfo
->handle_opt(NULL
);
3811 /* no option matched the current argv */
3812 if (arginfo
->handle_opt
== NULL
) {
3817 if (optind
>= argc
) {
3821 filename
= argv
[optind
];
3822 exec_path
= argv
[optind
];
3827 int main(int argc
, char **argv
, char **envp
)
3829 struct target_pt_regs regs1
, *regs
= ®s1
;
3830 struct image_info info1
, *info
= &info1
;
3831 struct linux_binprm bprm
;
3836 char **target_environ
, **wrk
;
3843 module_call_init(MODULE_INIT_QOM
);
3845 if ((envlist
= envlist_create()) == NULL
) {
3846 (void) fprintf(stderr
, "Unable to allocate envlist\n");
3850 /* add current environment into the list */
3851 for (wrk
= environ
; *wrk
!= NULL
; wrk
++) {
3852 (void) envlist_setenv(envlist
, *wrk
);
3855 /* Read the stack limit from the kernel. If it's "unlimited",
3856 then we can do little else besides use the default. */
3859 if (getrlimit(RLIMIT_STACK
, &lim
) == 0
3860 && lim
.rlim_cur
!= RLIM_INFINITY
3861 && lim
.rlim_cur
== (target_long
)lim
.rlim_cur
) {
3862 guest_stack_size
= lim
.rlim_cur
;
3867 #if defined(cpudef_setup)
3868 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3873 optind
= parse_args(argc
, argv
);
3876 memset(regs
, 0, sizeof(struct target_pt_regs
));
3878 /* Zero out image_info */
3879 memset(info
, 0, sizeof(struct image_info
));
3881 memset(&bprm
, 0, sizeof (bprm
));
3883 /* Scan interp_prefix dir for replacement files. */
3884 init_paths(interp_prefix
);
3886 init_qemu_uname_release();
3888 if (cpu_model
== NULL
) {
3889 #if defined(TARGET_I386)
3890 #ifdef TARGET_X86_64
3891 cpu_model
= "qemu64";
3893 cpu_model
= "qemu32";
3895 #elif defined(TARGET_ARM)
3897 #elif defined(TARGET_UNICORE32)
3899 #elif defined(TARGET_M68K)
3901 #elif defined(TARGET_SPARC)
3902 #ifdef TARGET_SPARC64
3903 cpu_model
= "TI UltraSparc II";
3905 cpu_model
= "Fujitsu MB86904";
3907 #elif defined(TARGET_MIPS)
3908 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3913 #elif defined TARGET_OPENRISC
3914 cpu_model
= "or1200";
3915 #elif defined(TARGET_PPC)
3916 # ifdef TARGET_PPC64
3917 cpu_model
= "POWER7";
3921 #elif defined TARGET_SH4
3922 cpu_model
= TYPE_SH7785_CPU
;
3928 /* NOTE: we need to init the CPU at this stage to get
3929 qemu_host_page_size */
3930 cpu
= cpu_init(cpu_model
);
3932 fprintf(stderr
, "Unable to find CPU definition\n");
3940 if (getenv("QEMU_STRACE")) {
3944 if (getenv("QEMU_RAND_SEED")) {
3945 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
3948 target_environ
= envlist_to_environ(envlist
, NULL
);
3949 envlist_free(envlist
);
3952 * Now that page sizes are configured in cpu_init() we can do
3953 * proper page alignment for guest_base.
3955 guest_base
= HOST_PAGE_ALIGN(guest_base
);
3957 if (reserved_va
|| have_guest_base
) {
3958 guest_base
= init_guest_space(guest_base
, reserved_va
, 0,
3960 if (guest_base
== (unsigned long)-1) {
3961 fprintf(stderr
, "Unable to reserve 0x%lx bytes of virtual address "
3962 "space for use as guest address space (check your virtual "
3963 "memory ulimit setting or reserve less using -R option)\n",
3969 mmap_next_start
= reserved_va
;
3974 * Read in mmap_min_addr kernel parameter. This value is used
3975 * When loading the ELF image to determine whether guest_base
3976 * is needed. It is also used in mmap_find_vma.
3981 if ((fp
= fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL
) {
3983 if (fscanf(fp
, "%lu", &tmp
) == 1) {
3984 mmap_min_addr
= tmp
;
3985 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr
);
3992 * Prepare copy of argv vector for target.
3994 target_argc
= argc
- optind
;
3995 target_argv
= calloc(target_argc
+ 1, sizeof (char *));
3996 if (target_argv
== NULL
) {
3997 (void) fprintf(stderr
, "Unable to allocate memory for target_argv\n");
4002 * If argv0 is specified (using '-0' switch) we replace
4003 * argv[0] pointer with the given one.
4006 if (argv0
!= NULL
) {
4007 target_argv
[i
++] = strdup(argv0
);
4009 for (; i
< target_argc
; i
++) {
4010 target_argv
[i
] = strdup(argv
[optind
+ i
]);
4012 target_argv
[target_argc
] = NULL
;
4014 ts
= g_malloc0 (sizeof(TaskState
));
4015 init_task_state(ts
);
4016 /* build Task State */
4022 execfd
= qemu_getauxval(AT_EXECFD
);
4024 execfd
= open(filename
, O_RDONLY
);
4026 printf("Error while loading %s: %s\n", filename
, strerror(errno
));
4031 ret
= loader_exec(execfd
, filename
, target_argv
, target_environ
, regs
,
4034 printf("Error while loading %s: %s\n", filename
, strerror(-ret
));
4038 for (wrk
= target_environ
; *wrk
; wrk
++) {
4042 free(target_environ
);
4044 if (qemu_log_enabled()) {
4045 qemu_log("guest_base 0x%lx\n", guest_base
);
4048 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx
"\n", info
->start_brk
);
4049 qemu_log("end_code 0x" TARGET_ABI_FMT_lx
"\n", info
->end_code
);
4050 qemu_log("start_code 0x" TARGET_ABI_FMT_lx
"\n",
4052 qemu_log("start_data 0x" TARGET_ABI_FMT_lx
"\n",
4054 qemu_log("end_data 0x" TARGET_ABI_FMT_lx
"\n", info
->end_data
);
4055 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx
"\n",
4057 qemu_log("brk 0x" TARGET_ABI_FMT_lx
"\n", info
->brk
);
4058 qemu_log("entry 0x" TARGET_ABI_FMT_lx
"\n", info
->entry
);
4061 target_set_brk(info
->brk
);
4065 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4066 generating the prologue until now so that the prologue can take
4067 the real value of GUEST_BASE into account. */
4068 tcg_prologue_init(&tcg_ctx
);
4070 #if defined(TARGET_I386)
4071 env
->cr
[0] = CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
;
4072 env
->hflags
|= HF_PE_MASK
| HF_CPL_MASK
;
4073 if (env
->features
[FEAT_1_EDX
] & CPUID_SSE
) {
4074 env
->cr
[4] |= CR4_OSFXSR_MASK
;
4075 env
->hflags
|= HF_OSFXSR_MASK
;
4077 #ifndef TARGET_ABI32
4078 /* enable 64 bit mode if possible */
4079 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
)) {
4080 fprintf(stderr
, "The selected x86 CPU does not support 64 bit mode\n");
4083 env
->cr
[4] |= CR4_PAE_MASK
;
4084 env
->efer
|= MSR_EFER_LMA
| MSR_EFER_LME
;
4085 env
->hflags
|= HF_LMA_MASK
;
4088 /* flags setup : we activate the IRQs by default as in user mode */
4089 env
->eflags
|= IF_MASK
;
4091 /* linux register setup */
4092 #ifndef TARGET_ABI32
4093 env
->regs
[R_EAX
] = regs
->rax
;
4094 env
->regs
[R_EBX
] = regs
->rbx
;
4095 env
->regs
[R_ECX
] = regs
->rcx
;
4096 env
->regs
[R_EDX
] = regs
->rdx
;
4097 env
->regs
[R_ESI
] = regs
->rsi
;
4098 env
->regs
[R_EDI
] = regs
->rdi
;
4099 env
->regs
[R_EBP
] = regs
->rbp
;
4100 env
->regs
[R_ESP
] = regs
->rsp
;
4101 env
->eip
= regs
->rip
;
4103 env
->regs
[R_EAX
] = regs
->eax
;
4104 env
->regs
[R_EBX
] = regs
->ebx
;
4105 env
->regs
[R_ECX
] = regs
->ecx
;
4106 env
->regs
[R_EDX
] = regs
->edx
;
4107 env
->regs
[R_ESI
] = regs
->esi
;
4108 env
->regs
[R_EDI
] = regs
->edi
;
4109 env
->regs
[R_EBP
] = regs
->ebp
;
4110 env
->regs
[R_ESP
] = regs
->esp
;
4111 env
->eip
= regs
->eip
;
4114 /* linux interrupt setup */
4115 #ifndef TARGET_ABI32
4116 env
->idt
.limit
= 511;
4118 env
->idt
.limit
= 255;
4120 env
->idt
.base
= target_mmap(0, sizeof(uint64_t) * (env
->idt
.limit
+ 1),
4121 PROT_READ
|PROT_WRITE
,
4122 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4123 idt_table
= g2h(env
->idt
.base
);
4146 /* linux segment setup */
4148 uint64_t *gdt_table
;
4149 env
->gdt
.base
= target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES
,
4150 PROT_READ
|PROT_WRITE
,
4151 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4152 env
->gdt
.limit
= sizeof(uint64_t) * TARGET_GDT_ENTRIES
- 1;
4153 gdt_table
= g2h(env
->gdt
.base
);
4155 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4156 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4157 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4159 /* 64 bit code segment */
4160 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4161 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4163 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4165 write_dt(&gdt_table
[__USER_DS
>> 3], 0, 0xfffff,
4166 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4167 (3 << DESC_DPL_SHIFT
) | (0x2 << DESC_TYPE_SHIFT
));
4169 cpu_x86_load_seg(env
, R_CS
, __USER_CS
);
4170 cpu_x86_load_seg(env
, R_SS
, __USER_DS
);
4172 cpu_x86_load_seg(env
, R_DS
, __USER_DS
);
4173 cpu_x86_load_seg(env
, R_ES
, __USER_DS
);
4174 cpu_x86_load_seg(env
, R_FS
, __USER_DS
);
4175 cpu_x86_load_seg(env
, R_GS
, __USER_DS
);
4176 /* This hack makes Wine work... */
4177 env
->segs
[R_FS
].selector
= 0;
4179 cpu_x86_load_seg(env
, R_DS
, 0);
4180 cpu_x86_load_seg(env
, R_ES
, 0);
4181 cpu_x86_load_seg(env
, R_FS
, 0);
4182 cpu_x86_load_seg(env
, R_GS
, 0);
4184 #elif defined(TARGET_AARCH64)
4188 if (!(arm_feature(env
, ARM_FEATURE_AARCH64
))) {
4190 "The selected ARM CPU does not support 64 bit mode\n");
4194 for (i
= 0; i
< 31; i
++) {
4195 env
->xregs
[i
] = regs
->regs
[i
];
4198 env
->xregs
[31] = regs
->sp
;
4200 #elif defined(TARGET_ARM)
4203 cpsr_write(env
, regs
->uregs
[16], 0xffffffff);
4204 for(i
= 0; i
< 16; i
++) {
4205 env
->regs
[i
] = regs
->uregs
[i
];
4208 if (EF_ARM_EABI_VERSION(info
->elf_flags
) >= EF_ARM_EABI_VER4
4209 && (info
->elf_flags
& EF_ARM_BE8
)) {
4210 env
->bswap_code
= 1;
4213 #elif defined(TARGET_UNICORE32)
4216 cpu_asr_write(env
, regs
->uregs
[32], 0xffffffff);
4217 for (i
= 0; i
< 32; i
++) {
4218 env
->regs
[i
] = regs
->uregs
[i
];
4221 #elif defined(TARGET_SPARC)
4225 env
->npc
= regs
->npc
;
4227 for(i
= 0; i
< 8; i
++)
4228 env
->gregs
[i
] = regs
->u_regs
[i
];
4229 for(i
= 0; i
< 8; i
++)
4230 env
->regwptr
[i
] = regs
->u_regs
[i
+ 8];
4232 #elif defined(TARGET_PPC)
4236 #if defined(TARGET_PPC64)
4237 #if defined(TARGET_ABI32)
4238 env
->msr
&= ~((target_ulong
)1 << MSR_SF
);
4240 env
->msr
|= (target_ulong
)1 << MSR_SF
;
4243 env
->nip
= regs
->nip
;
4244 for(i
= 0; i
< 32; i
++) {
4245 env
->gpr
[i
] = regs
->gpr
[i
];
4248 #elif defined(TARGET_M68K)
4251 env
->dregs
[0] = regs
->d0
;
4252 env
->dregs
[1] = regs
->d1
;
4253 env
->dregs
[2] = regs
->d2
;
4254 env
->dregs
[3] = regs
->d3
;
4255 env
->dregs
[4] = regs
->d4
;
4256 env
->dregs
[5] = regs
->d5
;
4257 env
->dregs
[6] = regs
->d6
;
4258 env
->dregs
[7] = regs
->d7
;
4259 env
->aregs
[0] = regs
->a0
;
4260 env
->aregs
[1] = regs
->a1
;
4261 env
->aregs
[2] = regs
->a2
;
4262 env
->aregs
[3] = regs
->a3
;
4263 env
->aregs
[4] = regs
->a4
;
4264 env
->aregs
[5] = regs
->a5
;
4265 env
->aregs
[6] = regs
->a6
;
4266 env
->aregs
[7] = regs
->usp
;
4268 ts
->sim_syscalls
= 1;
4270 #elif defined(TARGET_MICROBLAZE)
4272 env
->regs
[0] = regs
->r0
;
4273 env
->regs
[1] = regs
->r1
;
4274 env
->regs
[2] = regs
->r2
;
4275 env
->regs
[3] = regs
->r3
;
4276 env
->regs
[4] = regs
->r4
;
4277 env
->regs
[5] = regs
->r5
;
4278 env
->regs
[6] = regs
->r6
;
4279 env
->regs
[7] = regs
->r7
;
4280 env
->regs
[8] = regs
->r8
;
4281 env
->regs
[9] = regs
->r9
;
4282 env
->regs
[10] = regs
->r10
;
4283 env
->regs
[11] = regs
->r11
;
4284 env
->regs
[12] = regs
->r12
;
4285 env
->regs
[13] = regs
->r13
;
4286 env
->regs
[14] = regs
->r14
;
4287 env
->regs
[15] = regs
->r15
;
4288 env
->regs
[16] = regs
->r16
;
4289 env
->regs
[17] = regs
->r17
;
4290 env
->regs
[18] = regs
->r18
;
4291 env
->regs
[19] = regs
->r19
;
4292 env
->regs
[20] = regs
->r20
;
4293 env
->regs
[21] = regs
->r21
;
4294 env
->regs
[22] = regs
->r22
;
4295 env
->regs
[23] = regs
->r23
;
4296 env
->regs
[24] = regs
->r24
;
4297 env
->regs
[25] = regs
->r25
;
4298 env
->regs
[26] = regs
->r26
;
4299 env
->regs
[27] = regs
->r27
;
4300 env
->regs
[28] = regs
->r28
;
4301 env
->regs
[29] = regs
->r29
;
4302 env
->regs
[30] = regs
->r30
;
4303 env
->regs
[31] = regs
->r31
;
4304 env
->sregs
[SR_PC
] = regs
->pc
;
4306 #elif defined(TARGET_MIPS)
4310 for(i
= 0; i
< 32; i
++) {
4311 env
->active_tc
.gpr
[i
] = regs
->regs
[i
];
4313 env
->active_tc
.PC
= regs
->cp0_epc
& ~(target_ulong
)1;
4314 if (regs
->cp0_epc
& 1) {
4315 env
->hflags
|= MIPS_HFLAG_M16
;
4318 #elif defined(TARGET_OPENRISC)
4322 for (i
= 0; i
< 32; i
++) {
4323 env
->gpr
[i
] = regs
->gpr
[i
];
4329 #elif defined(TARGET_SH4)
4333 for(i
= 0; i
< 16; i
++) {
4334 env
->gregs
[i
] = regs
->regs
[i
];
4338 #elif defined(TARGET_ALPHA)
4342 for(i
= 0; i
< 28; i
++) {
4343 env
->ir
[i
] = ((abi_ulong
*)regs
)[i
];
4345 env
->ir
[IR_SP
] = regs
->usp
;
4348 #elif defined(TARGET_CRIS)
4350 env
->regs
[0] = regs
->r0
;
4351 env
->regs
[1] = regs
->r1
;
4352 env
->regs
[2] = regs
->r2
;
4353 env
->regs
[3] = regs
->r3
;
4354 env
->regs
[4] = regs
->r4
;
4355 env
->regs
[5] = regs
->r5
;
4356 env
->regs
[6] = regs
->r6
;
4357 env
->regs
[7] = regs
->r7
;
4358 env
->regs
[8] = regs
->r8
;
4359 env
->regs
[9] = regs
->r9
;
4360 env
->regs
[10] = regs
->r10
;
4361 env
->regs
[11] = regs
->r11
;
4362 env
->regs
[12] = regs
->r12
;
4363 env
->regs
[13] = regs
->r13
;
4364 env
->regs
[14] = info
->start_stack
;
4365 env
->regs
[15] = regs
->acr
;
4366 env
->pc
= regs
->erp
;
4368 #elif defined(TARGET_S390X)
4371 for (i
= 0; i
< 16; i
++) {
4372 env
->regs
[i
] = regs
->gprs
[i
];
4374 env
->psw
.mask
= regs
->psw
.mask
;
4375 env
->psw
.addr
= regs
->psw
.addr
;
4378 #error unsupported target CPU
4381 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4382 ts
->stack_base
= info
->start_stack
;
4383 ts
->heap_base
= info
->brk
;
4384 /* This will be filled in on the first SYS_HEAPINFO call. */
4389 if (gdbserver_start(gdbstub_port
) < 0) {
4390 fprintf(stderr
, "qemu: could not open gdbserver on port %d\n",
4394 gdb_handlesig(cpu
, 0);