tests: replace free_all() usage with g_auto
[qemu.git] / tcg / tcg.c
blobf8542529d030ab768660f390d0ff87983344d72d
1 /*
2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* define it to use liveness analysis (better code) */
26 #define USE_TCG_OPTIMIZATIONS
28 #include "qemu/osdep.h"
30 /* Define to jump the ELF file used to communicate with GDB. */
31 #undef DEBUG_JIT
33 #include "qemu/error-report.h"
34 #include "qemu/cutils.h"
35 #include "qemu/host-utils.h"
36 #include "qemu/qemu-print.h"
37 #include "qemu/timer.h"
38 #include "qemu/cacheflush.h"
39 #include "qemu/cacheinfo.h"
41 /* Note: the long term plan is to reduce the dependencies on the QEMU
42 CPU definitions. Currently they are used for qemu_ld/st
43 instructions */
44 #define NO_CPU_IO_DEFS
46 #include "exec/exec-all.h"
47 #include "tcg/tcg-op.h"
49 #if UINTPTR_MAX == UINT32_MAX
50 # define ELF_CLASS ELFCLASS32
51 #else
52 # define ELF_CLASS ELFCLASS64
53 #endif
54 #if HOST_BIG_ENDIAN
55 # define ELF_DATA ELFDATA2MSB
56 #else
57 # define ELF_DATA ELFDATA2LSB
58 #endif
60 #include "elf.h"
61 #include "exec/log.h"
62 #include "tcg/tcg-ldst.h"
63 #include "tcg-internal.h"
65 #ifdef CONFIG_TCG_INTERPRETER
66 #include <ffi.h>
67 #endif
69 /* Forward declarations for functions declared in tcg-target.c.inc and
70 used here. */
71 static void tcg_target_init(TCGContext *s);
72 static void tcg_target_qemu_prologue(TCGContext *s);
73 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
74 intptr_t value, intptr_t addend);
76 /* The CIE and FDE header definitions will be common to all hosts. */
77 typedef struct {
78 uint32_t len __attribute__((aligned((sizeof(void *)))));
79 uint32_t id;
80 uint8_t version;
81 char augmentation[1];
82 uint8_t code_align;
83 uint8_t data_align;
84 uint8_t return_column;
85 } DebugFrameCIE;
87 typedef struct QEMU_PACKED {
88 uint32_t len __attribute__((aligned((sizeof(void *)))));
89 uint32_t cie_offset;
90 uintptr_t func_start;
91 uintptr_t func_len;
92 } DebugFrameFDEHeader;
94 typedef struct QEMU_PACKED {
95 DebugFrameCIE cie;
96 DebugFrameFDEHeader fde;
97 } DebugFrameHeader;
99 static void tcg_register_jit_int(const void *buf, size_t size,
100 const void *debug_frame,
101 size_t debug_frame_size)
102 __attribute__((unused));
104 /* Forward declarations for functions declared and used in tcg-target.c.inc. */
105 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
106 intptr_t arg2);
107 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg);
108 static void tcg_out_movi(TCGContext *s, TCGType type,
109 TCGReg ret, tcg_target_long arg);
110 static void tcg_out_op(TCGContext *s, TCGOpcode opc,
111 const TCGArg args[TCG_MAX_OP_ARGS],
112 const int const_args[TCG_MAX_OP_ARGS]);
113 #if TCG_TARGET_MAYBE_vec
114 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
115 TCGReg dst, TCGReg src);
116 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
117 TCGReg dst, TCGReg base, intptr_t offset);
118 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
119 TCGReg dst, int64_t arg);
120 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
121 unsigned vecl, unsigned vece,
122 const TCGArg args[TCG_MAX_OP_ARGS],
123 const int const_args[TCG_MAX_OP_ARGS]);
124 #else
125 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
126 TCGReg dst, TCGReg src)
128 g_assert_not_reached();
130 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
131 TCGReg dst, TCGReg base, intptr_t offset)
133 g_assert_not_reached();
135 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
136 TCGReg dst, int64_t arg)
138 g_assert_not_reached();
140 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
141 unsigned vecl, unsigned vece,
142 const TCGArg args[TCG_MAX_OP_ARGS],
143 const int const_args[TCG_MAX_OP_ARGS])
145 g_assert_not_reached();
147 #endif
148 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
149 intptr_t arg2);
150 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
151 TCGReg base, intptr_t ofs);
152 #ifdef CONFIG_TCG_INTERPRETER
153 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target,
154 ffi_cif *cif);
155 #else
156 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target);
157 #endif
158 static bool tcg_target_const_match(int64_t val, TCGType type, int ct);
159 #ifdef TCG_TARGET_NEED_LDST_LABELS
160 static int tcg_out_ldst_finalize(TCGContext *s);
161 #endif
163 TCGContext tcg_init_ctx;
164 __thread TCGContext *tcg_ctx;
166 TCGContext **tcg_ctxs;
167 unsigned int tcg_cur_ctxs;
168 unsigned int tcg_max_ctxs;
169 TCGv_env cpu_env = 0;
170 const void *tcg_code_gen_epilogue;
171 uintptr_t tcg_splitwx_diff;
173 #ifndef CONFIG_TCG_INTERPRETER
174 tcg_prologue_fn *tcg_qemu_tb_exec;
175 #endif
177 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT];
178 static TCGRegSet tcg_target_call_clobber_regs;
180 #if TCG_TARGET_INSN_UNIT_SIZE == 1
181 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v)
183 *s->code_ptr++ = v;
186 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p,
187 uint8_t v)
189 *p = v;
191 #endif
193 #if TCG_TARGET_INSN_UNIT_SIZE <= 2
194 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v)
196 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
197 *s->code_ptr++ = v;
198 } else {
199 tcg_insn_unit *p = s->code_ptr;
200 memcpy(p, &v, sizeof(v));
201 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE);
205 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p,
206 uint16_t v)
208 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
209 *p = v;
210 } else {
211 memcpy(p, &v, sizeof(v));
214 #endif
216 #if TCG_TARGET_INSN_UNIT_SIZE <= 4
217 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v)
219 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
220 *s->code_ptr++ = v;
221 } else {
222 tcg_insn_unit *p = s->code_ptr;
223 memcpy(p, &v, sizeof(v));
224 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE);
228 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p,
229 uint32_t v)
231 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
232 *p = v;
233 } else {
234 memcpy(p, &v, sizeof(v));
237 #endif
239 #if TCG_TARGET_INSN_UNIT_SIZE <= 8
240 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v)
242 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
243 *s->code_ptr++ = v;
244 } else {
245 tcg_insn_unit *p = s->code_ptr;
246 memcpy(p, &v, sizeof(v));
247 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE);
251 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p,
252 uint64_t v)
254 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
255 *p = v;
256 } else {
257 memcpy(p, &v, sizeof(v));
260 #endif
262 /* label relocation processing */
264 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type,
265 TCGLabel *l, intptr_t addend)
267 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation));
269 r->type = type;
270 r->ptr = code_ptr;
271 r->addend = addend;
272 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next);
275 static void tcg_out_label(TCGContext *s, TCGLabel *l)
277 tcg_debug_assert(!l->has_value);
278 l->has_value = 1;
279 l->u.value_ptr = tcg_splitwx_to_rx(s->code_ptr);
282 TCGLabel *gen_new_label(void)
284 TCGContext *s = tcg_ctx;
285 TCGLabel *l = tcg_malloc(sizeof(TCGLabel));
287 memset(l, 0, sizeof(TCGLabel));
288 l->id = s->nb_labels++;
289 QSIMPLEQ_INIT(&l->relocs);
291 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next);
293 return l;
296 static bool tcg_resolve_relocs(TCGContext *s)
298 TCGLabel *l;
300 QSIMPLEQ_FOREACH(l, &s->labels, next) {
301 TCGRelocation *r;
302 uintptr_t value = l->u.value;
304 QSIMPLEQ_FOREACH(r, &l->relocs, next) {
305 if (!patch_reloc(r->ptr, r->type, value, r->addend)) {
306 return false;
310 return true;
313 static void set_jmp_reset_offset(TCGContext *s, int which)
316 * We will check for overflow at the end of the opcode loop in
317 * tcg_gen_code, where we bound tcg_current_code_size to UINT16_MAX.
319 s->tb_jmp_reset_offset[which] = tcg_current_code_size(s);
322 /* Signal overflow, starting over with fewer guest insns. */
323 static void QEMU_NORETURN tcg_raise_tb_overflow(TCGContext *s)
325 siglongjmp(s->jmp_trans, -2);
328 #define C_PFX1(P, A) P##A
329 #define C_PFX2(P, A, B) P##A##_##B
330 #define C_PFX3(P, A, B, C) P##A##_##B##_##C
331 #define C_PFX4(P, A, B, C, D) P##A##_##B##_##C##_##D
332 #define C_PFX5(P, A, B, C, D, E) P##A##_##B##_##C##_##D##_##E
333 #define C_PFX6(P, A, B, C, D, E, F) P##A##_##B##_##C##_##D##_##E##_##F
335 /* Define an enumeration for the various combinations. */
337 #define C_O0_I1(I1) C_PFX1(c_o0_i1_, I1),
338 #define C_O0_I2(I1, I2) C_PFX2(c_o0_i2_, I1, I2),
339 #define C_O0_I3(I1, I2, I3) C_PFX3(c_o0_i3_, I1, I2, I3),
340 #define C_O0_I4(I1, I2, I3, I4) C_PFX4(c_o0_i4_, I1, I2, I3, I4),
342 #define C_O1_I1(O1, I1) C_PFX2(c_o1_i1_, O1, I1),
343 #define C_O1_I2(O1, I1, I2) C_PFX3(c_o1_i2_, O1, I1, I2),
344 #define C_O1_I3(O1, I1, I2, I3) C_PFX4(c_o1_i3_, O1, I1, I2, I3),
345 #define C_O1_I4(O1, I1, I2, I3, I4) C_PFX5(c_o1_i4_, O1, I1, I2, I3, I4),
347 #define C_N1_I2(O1, I1, I2) C_PFX3(c_n1_i2_, O1, I1, I2),
349 #define C_O2_I1(O1, O2, I1) C_PFX3(c_o2_i1_, O1, O2, I1),
350 #define C_O2_I2(O1, O2, I1, I2) C_PFX4(c_o2_i2_, O1, O2, I1, I2),
351 #define C_O2_I3(O1, O2, I1, I2, I3) C_PFX5(c_o2_i3_, O1, O2, I1, I2, I3),
352 #define C_O2_I4(O1, O2, I1, I2, I3, I4) C_PFX6(c_o2_i4_, O1, O2, I1, I2, I3, I4),
354 typedef enum {
355 #include "tcg-target-con-set.h"
356 } TCGConstraintSetIndex;
358 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode);
360 #undef C_O0_I1
361 #undef C_O0_I2
362 #undef C_O0_I3
363 #undef C_O0_I4
364 #undef C_O1_I1
365 #undef C_O1_I2
366 #undef C_O1_I3
367 #undef C_O1_I4
368 #undef C_N1_I2
369 #undef C_O2_I1
370 #undef C_O2_I2
371 #undef C_O2_I3
372 #undef C_O2_I4
374 /* Put all of the constraint sets into an array, indexed by the enum. */
376 #define C_O0_I1(I1) { .args_ct_str = { #I1 } },
377 #define C_O0_I2(I1, I2) { .args_ct_str = { #I1, #I2 } },
378 #define C_O0_I3(I1, I2, I3) { .args_ct_str = { #I1, #I2, #I3 } },
379 #define C_O0_I4(I1, I2, I3, I4) { .args_ct_str = { #I1, #I2, #I3, #I4 } },
381 #define C_O1_I1(O1, I1) { .args_ct_str = { #O1, #I1 } },
382 #define C_O1_I2(O1, I1, I2) { .args_ct_str = { #O1, #I1, #I2 } },
383 #define C_O1_I3(O1, I1, I2, I3) { .args_ct_str = { #O1, #I1, #I2, #I3 } },
384 #define C_O1_I4(O1, I1, I2, I3, I4) { .args_ct_str = { #O1, #I1, #I2, #I3, #I4 } },
386 #define C_N1_I2(O1, I1, I2) { .args_ct_str = { "&" #O1, #I1, #I2 } },
388 #define C_O2_I1(O1, O2, I1) { .args_ct_str = { #O1, #O2, #I1 } },
389 #define C_O2_I2(O1, O2, I1, I2) { .args_ct_str = { #O1, #O2, #I1, #I2 } },
390 #define C_O2_I3(O1, O2, I1, I2, I3) { .args_ct_str = { #O1, #O2, #I1, #I2, #I3 } },
391 #define C_O2_I4(O1, O2, I1, I2, I3, I4) { .args_ct_str = { #O1, #O2, #I1, #I2, #I3, #I4 } },
393 static const TCGTargetOpDef constraint_sets[] = {
394 #include "tcg-target-con-set.h"
398 #undef C_O0_I1
399 #undef C_O0_I2
400 #undef C_O0_I3
401 #undef C_O0_I4
402 #undef C_O1_I1
403 #undef C_O1_I2
404 #undef C_O1_I3
405 #undef C_O1_I4
406 #undef C_N1_I2
407 #undef C_O2_I1
408 #undef C_O2_I2
409 #undef C_O2_I3
410 #undef C_O2_I4
412 /* Expand the enumerator to be returned from tcg_target_op_def(). */
414 #define C_O0_I1(I1) C_PFX1(c_o0_i1_, I1)
415 #define C_O0_I2(I1, I2) C_PFX2(c_o0_i2_, I1, I2)
416 #define C_O0_I3(I1, I2, I3) C_PFX3(c_o0_i3_, I1, I2, I3)
417 #define C_O0_I4(I1, I2, I3, I4) C_PFX4(c_o0_i4_, I1, I2, I3, I4)
419 #define C_O1_I1(O1, I1) C_PFX2(c_o1_i1_, O1, I1)
420 #define C_O1_I2(O1, I1, I2) C_PFX3(c_o1_i2_, O1, I1, I2)
421 #define C_O1_I3(O1, I1, I2, I3) C_PFX4(c_o1_i3_, O1, I1, I2, I3)
422 #define C_O1_I4(O1, I1, I2, I3, I4) C_PFX5(c_o1_i4_, O1, I1, I2, I3, I4)
424 #define C_N1_I2(O1, I1, I2) C_PFX3(c_n1_i2_, O1, I1, I2)
426 #define C_O2_I1(O1, O2, I1) C_PFX3(c_o2_i1_, O1, O2, I1)
427 #define C_O2_I2(O1, O2, I1, I2) C_PFX4(c_o2_i2_, O1, O2, I1, I2)
428 #define C_O2_I3(O1, O2, I1, I2, I3) C_PFX5(c_o2_i3_, O1, O2, I1, I2, I3)
429 #define C_O2_I4(O1, O2, I1, I2, I3, I4) C_PFX6(c_o2_i4_, O1, O2, I1, I2, I3, I4)
431 #include "tcg-target.c.inc"
433 static void alloc_tcg_plugin_context(TCGContext *s)
435 #ifdef CONFIG_PLUGIN
436 s->plugin_tb = g_new0(struct qemu_plugin_tb, 1);
437 s->plugin_tb->insns =
438 g_ptr_array_new_with_free_func(qemu_plugin_insn_cleanup_fn);
439 #endif
443 * All TCG threads except the parent (i.e. the one that called tcg_context_init
444 * and registered the target's TCG globals) must register with this function
445 * before initiating translation.
447 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation
448 * of tcg_region_init() for the reasoning behind this.
450 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in
451 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context
452 * is not used anymore for translation once this function is called.
454 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates
455 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode.
457 #ifdef CONFIG_USER_ONLY
458 void tcg_register_thread(void)
460 tcg_ctx = &tcg_init_ctx;
462 #else
463 void tcg_register_thread(void)
465 TCGContext *s = g_malloc(sizeof(*s));
466 unsigned int i, n;
468 *s = tcg_init_ctx;
470 /* Relink mem_base. */
471 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) {
472 if (tcg_init_ctx.temps[i].mem_base) {
473 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps;
474 tcg_debug_assert(b >= 0 && b < n);
475 s->temps[i].mem_base = &s->temps[b];
479 /* Claim an entry in tcg_ctxs */
480 n = qatomic_fetch_inc(&tcg_cur_ctxs);
481 g_assert(n < tcg_max_ctxs);
482 qatomic_set(&tcg_ctxs[n], s);
484 if (n > 0) {
485 alloc_tcg_plugin_context(s);
486 tcg_region_initial_alloc(s);
489 tcg_ctx = s;
491 #endif /* !CONFIG_USER_ONLY */
493 /* pool based memory allocation */
494 void *tcg_malloc_internal(TCGContext *s, int size)
496 TCGPool *p;
497 int pool_size;
499 if (size > TCG_POOL_CHUNK_SIZE) {
500 /* big malloc: insert a new pool (XXX: could optimize) */
501 p = g_malloc(sizeof(TCGPool) + size);
502 p->size = size;
503 p->next = s->pool_first_large;
504 s->pool_first_large = p;
505 return p->data;
506 } else {
507 p = s->pool_current;
508 if (!p) {
509 p = s->pool_first;
510 if (!p)
511 goto new_pool;
512 } else {
513 if (!p->next) {
514 new_pool:
515 pool_size = TCG_POOL_CHUNK_SIZE;
516 p = g_malloc(sizeof(TCGPool) + pool_size);
517 p->size = pool_size;
518 p->next = NULL;
519 if (s->pool_current)
520 s->pool_current->next = p;
521 else
522 s->pool_first = p;
523 } else {
524 p = p->next;
528 s->pool_current = p;
529 s->pool_cur = p->data + size;
530 s->pool_end = p->data + p->size;
531 return p->data;
534 void tcg_pool_reset(TCGContext *s)
536 TCGPool *p, *t;
537 for (p = s->pool_first_large; p; p = t) {
538 t = p->next;
539 g_free(p);
541 s->pool_first_large = NULL;
542 s->pool_cur = s->pool_end = NULL;
543 s->pool_current = NULL;
546 #include "exec/helper-proto.h"
548 static const TCGHelperInfo all_helpers[] = {
549 #include "exec/helper-tcg.h"
551 static GHashTable *helper_table;
553 #ifdef CONFIG_TCG_INTERPRETER
554 static GHashTable *ffi_table;
556 static ffi_type * const typecode_to_ffi[8] = {
557 [dh_typecode_void] = &ffi_type_void,
558 [dh_typecode_i32] = &ffi_type_uint32,
559 [dh_typecode_s32] = &ffi_type_sint32,
560 [dh_typecode_i64] = &ffi_type_uint64,
561 [dh_typecode_s64] = &ffi_type_sint64,
562 [dh_typecode_ptr] = &ffi_type_pointer,
564 #endif
566 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)];
567 static void process_op_defs(TCGContext *s);
568 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
569 TCGReg reg, const char *name);
571 static void tcg_context_init(unsigned max_cpus)
573 TCGContext *s = &tcg_init_ctx;
574 int op, total_args, n, i;
575 TCGOpDef *def;
576 TCGArgConstraint *args_ct;
577 TCGTemp *ts;
579 memset(s, 0, sizeof(*s));
580 s->nb_globals = 0;
582 /* Count total number of arguments and allocate the corresponding
583 space */
584 total_args = 0;
585 for(op = 0; op < NB_OPS; op++) {
586 def = &tcg_op_defs[op];
587 n = def->nb_iargs + def->nb_oargs;
588 total_args += n;
591 args_ct = g_new0(TCGArgConstraint, total_args);
593 for(op = 0; op < NB_OPS; op++) {
594 def = &tcg_op_defs[op];
595 def->args_ct = args_ct;
596 n = def->nb_iargs + def->nb_oargs;
597 args_ct += n;
600 /* Register helpers. */
601 /* Use g_direct_hash/equal for direct pointer comparisons on func. */
602 helper_table = g_hash_table_new(NULL, NULL);
604 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) {
605 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func,
606 (gpointer)&all_helpers[i]);
609 #ifdef CONFIG_TCG_INTERPRETER
610 /* g_direct_hash/equal for direct comparisons on uint32_t. */
611 ffi_table = g_hash_table_new(NULL, NULL);
612 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) {
613 struct {
614 ffi_cif cif;
615 ffi_type *args[];
616 } *ca;
617 uint32_t typemask = all_helpers[i].typemask;
618 gpointer hash = (gpointer)(uintptr_t)typemask;
619 ffi_status status;
620 int nargs;
622 if (g_hash_table_lookup(ffi_table, hash)) {
623 continue;
626 /* Ignoring the return type, find the last non-zero field. */
627 nargs = 32 - clz32(typemask >> 3);
628 nargs = DIV_ROUND_UP(nargs, 3);
630 ca = g_malloc0(sizeof(*ca) + nargs * sizeof(ffi_type *));
631 ca->cif.rtype = typecode_to_ffi[typemask & 7];
632 ca->cif.nargs = nargs;
634 if (nargs != 0) {
635 ca->cif.arg_types = ca->args;
636 for (i = 0; i < nargs; ++i) {
637 int typecode = extract32(typemask, (i + 1) * 3, 3);
638 ca->args[i] = typecode_to_ffi[typecode];
642 status = ffi_prep_cif(&ca->cif, FFI_DEFAULT_ABI, nargs,
643 ca->cif.rtype, ca->cif.arg_types);
644 assert(status == FFI_OK);
646 g_hash_table_insert(ffi_table, hash, (gpointer)&ca->cif);
648 #endif
650 tcg_target_init(s);
651 process_op_defs(s);
653 /* Reverse the order of the saved registers, assuming they're all at
654 the start of tcg_target_reg_alloc_order. */
655 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) {
656 int r = tcg_target_reg_alloc_order[n];
657 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) {
658 break;
661 for (i = 0; i < n; ++i) {
662 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i];
664 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) {
665 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i];
668 alloc_tcg_plugin_context(s);
670 tcg_ctx = s;
672 * In user-mode we simply share the init context among threads, since we
673 * use a single region. See the documentation tcg_region_init() for the
674 * reasoning behind this.
675 * In softmmu we will have at most max_cpus TCG threads.
677 #ifdef CONFIG_USER_ONLY
678 tcg_ctxs = &tcg_ctx;
679 tcg_cur_ctxs = 1;
680 tcg_max_ctxs = 1;
681 #else
682 tcg_max_ctxs = max_cpus;
683 tcg_ctxs = g_new0(TCGContext *, max_cpus);
684 #endif
686 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0));
687 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env");
688 cpu_env = temp_tcgv_ptr(ts);
691 void tcg_init(size_t tb_size, int splitwx, unsigned max_cpus)
693 tcg_context_init(max_cpus);
694 tcg_region_init(tb_size, splitwx, max_cpus);
698 * Allocate TBs right before their corresponding translated code, making
699 * sure that TBs and code are on different cache lines.
701 TranslationBlock *tcg_tb_alloc(TCGContext *s)
703 uintptr_t align = qemu_icache_linesize;
704 TranslationBlock *tb;
705 void *next;
707 retry:
708 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align);
709 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align);
711 if (unlikely(next > s->code_gen_highwater)) {
712 if (tcg_region_alloc(s)) {
713 return NULL;
715 goto retry;
717 qatomic_set(&s->code_gen_ptr, next);
718 s->data_gen_ptr = NULL;
719 return tb;
722 void tcg_prologue_init(TCGContext *s)
724 size_t prologue_size;
726 s->code_ptr = s->code_gen_ptr;
727 s->code_buf = s->code_gen_ptr;
728 s->data_gen_ptr = NULL;
730 #ifndef CONFIG_TCG_INTERPRETER
731 tcg_qemu_tb_exec = (tcg_prologue_fn *)tcg_splitwx_to_rx(s->code_ptr);
732 #endif
734 #ifdef TCG_TARGET_NEED_POOL_LABELS
735 s->pool_labels = NULL;
736 #endif
738 qemu_thread_jit_write();
739 /* Generate the prologue. */
740 tcg_target_qemu_prologue(s);
742 #ifdef TCG_TARGET_NEED_POOL_LABELS
743 /* Allow the prologue to put e.g. guest_base into a pool entry. */
745 int result = tcg_out_pool_finalize(s);
746 tcg_debug_assert(result == 0);
748 #endif
750 prologue_size = tcg_current_code_size(s);
752 #ifndef CONFIG_TCG_INTERPRETER
753 flush_idcache_range((uintptr_t)tcg_splitwx_to_rx(s->code_buf),
754 (uintptr_t)s->code_buf, prologue_size);
755 #endif
757 #ifdef DEBUG_DISAS
758 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
759 FILE *logfile = qemu_log_lock();
760 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size);
761 if (s->data_gen_ptr) {
762 size_t code_size = s->data_gen_ptr - s->code_gen_ptr;
763 size_t data_size = prologue_size - code_size;
764 size_t i;
766 log_disas(s->code_gen_ptr, code_size);
768 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
769 if (sizeof(tcg_target_ulong) == 8) {
770 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
771 (uintptr_t)s->data_gen_ptr + i,
772 *(uint64_t *)(s->data_gen_ptr + i));
773 } else {
774 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
775 (uintptr_t)s->data_gen_ptr + i,
776 *(uint32_t *)(s->data_gen_ptr + i));
779 } else {
780 log_disas(s->code_gen_ptr, prologue_size);
782 qemu_log("\n");
783 qemu_log_flush();
784 qemu_log_unlock(logfile);
786 #endif
788 #ifndef CONFIG_TCG_INTERPRETER
790 * Assert that goto_ptr is implemented completely, setting an epilogue.
791 * For tci, we use NULL as the signal to return from the interpreter,
792 * so skip this check.
794 tcg_debug_assert(tcg_code_gen_epilogue != NULL);
795 #endif
797 tcg_region_prologue_set(s);
800 void tcg_func_start(TCGContext *s)
802 tcg_pool_reset(s);
803 s->nb_temps = s->nb_globals;
805 /* No temps have been previously allocated for size or locality. */
806 memset(s->free_temps, 0, sizeof(s->free_temps));
808 /* No constant temps have been previously allocated. */
809 for (int i = 0; i < TCG_TYPE_COUNT; ++i) {
810 if (s->const_table[i]) {
811 g_hash_table_remove_all(s->const_table[i]);
815 s->nb_ops = 0;
816 s->nb_labels = 0;
817 s->current_frame_offset = s->frame_start;
819 #ifdef CONFIG_DEBUG_TCG
820 s->goto_tb_issue_mask = 0;
821 #endif
823 QTAILQ_INIT(&s->ops);
824 QTAILQ_INIT(&s->free_ops);
825 QSIMPLEQ_INIT(&s->labels);
828 static TCGTemp *tcg_temp_alloc(TCGContext *s)
830 int n = s->nb_temps++;
832 if (n >= TCG_MAX_TEMPS) {
833 tcg_raise_tb_overflow(s);
835 return memset(&s->temps[n], 0, sizeof(TCGTemp));
838 static TCGTemp *tcg_global_alloc(TCGContext *s)
840 TCGTemp *ts;
842 tcg_debug_assert(s->nb_globals == s->nb_temps);
843 tcg_debug_assert(s->nb_globals < TCG_MAX_TEMPS);
844 s->nb_globals++;
845 ts = tcg_temp_alloc(s);
846 ts->kind = TEMP_GLOBAL;
848 return ts;
851 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
852 TCGReg reg, const char *name)
854 TCGTemp *ts;
856 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) {
857 tcg_abort();
860 ts = tcg_global_alloc(s);
861 ts->base_type = type;
862 ts->type = type;
863 ts->kind = TEMP_FIXED;
864 ts->reg = reg;
865 ts->name = name;
866 tcg_regset_set_reg(s->reserved_regs, reg);
868 return ts;
871 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size)
873 s->frame_start = start;
874 s->frame_end = start + size;
875 s->frame_temp
876 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame");
879 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base,
880 intptr_t offset, const char *name)
882 TCGContext *s = tcg_ctx;
883 TCGTemp *base_ts = tcgv_ptr_temp(base);
884 TCGTemp *ts = tcg_global_alloc(s);
885 int indirect_reg = 0, bigendian = 0;
886 #if HOST_BIG_ENDIAN
887 bigendian = 1;
888 #endif
890 switch (base_ts->kind) {
891 case TEMP_FIXED:
892 break;
893 case TEMP_GLOBAL:
894 /* We do not support double-indirect registers. */
895 tcg_debug_assert(!base_ts->indirect_reg);
896 base_ts->indirect_base = 1;
897 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64
898 ? 2 : 1);
899 indirect_reg = 1;
900 break;
901 default:
902 g_assert_not_reached();
905 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
906 TCGTemp *ts2 = tcg_global_alloc(s);
907 char buf[64];
909 ts->base_type = TCG_TYPE_I64;
910 ts->type = TCG_TYPE_I32;
911 ts->indirect_reg = indirect_reg;
912 ts->mem_allocated = 1;
913 ts->mem_base = base_ts;
914 ts->mem_offset = offset + bigendian * 4;
915 pstrcpy(buf, sizeof(buf), name);
916 pstrcat(buf, sizeof(buf), "_0");
917 ts->name = strdup(buf);
919 tcg_debug_assert(ts2 == ts + 1);
920 ts2->base_type = TCG_TYPE_I64;
921 ts2->type = TCG_TYPE_I32;
922 ts2->indirect_reg = indirect_reg;
923 ts2->mem_allocated = 1;
924 ts2->mem_base = base_ts;
925 ts2->mem_offset = offset + (1 - bigendian) * 4;
926 pstrcpy(buf, sizeof(buf), name);
927 pstrcat(buf, sizeof(buf), "_1");
928 ts2->name = strdup(buf);
929 } else {
930 ts->base_type = type;
931 ts->type = type;
932 ts->indirect_reg = indirect_reg;
933 ts->mem_allocated = 1;
934 ts->mem_base = base_ts;
935 ts->mem_offset = offset;
936 ts->name = name;
938 return ts;
941 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local)
943 TCGContext *s = tcg_ctx;
944 TCGTempKind kind = temp_local ? TEMP_LOCAL : TEMP_NORMAL;
945 TCGTemp *ts;
946 int idx, k;
948 k = type + (temp_local ? TCG_TYPE_COUNT : 0);
949 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS);
950 if (idx < TCG_MAX_TEMPS) {
951 /* There is already an available temp with the right type. */
952 clear_bit(idx, s->free_temps[k].l);
954 ts = &s->temps[idx];
955 ts->temp_allocated = 1;
956 tcg_debug_assert(ts->base_type == type);
957 tcg_debug_assert(ts->kind == kind);
958 } else {
959 ts = tcg_temp_alloc(s);
960 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
961 TCGTemp *ts2 = tcg_temp_alloc(s);
963 ts->base_type = type;
964 ts->type = TCG_TYPE_I32;
965 ts->temp_allocated = 1;
966 ts->kind = kind;
968 tcg_debug_assert(ts2 == ts + 1);
969 ts2->base_type = TCG_TYPE_I64;
970 ts2->type = TCG_TYPE_I32;
971 ts2->temp_allocated = 1;
972 ts2->kind = kind;
973 } else {
974 ts->base_type = type;
975 ts->type = type;
976 ts->temp_allocated = 1;
977 ts->kind = kind;
981 #if defined(CONFIG_DEBUG_TCG)
982 s->temps_in_use++;
983 #endif
984 return ts;
987 TCGv_vec tcg_temp_new_vec(TCGType type)
989 TCGTemp *t;
991 #ifdef CONFIG_DEBUG_TCG
992 switch (type) {
993 case TCG_TYPE_V64:
994 assert(TCG_TARGET_HAS_v64);
995 break;
996 case TCG_TYPE_V128:
997 assert(TCG_TARGET_HAS_v128);
998 break;
999 case TCG_TYPE_V256:
1000 assert(TCG_TARGET_HAS_v256);
1001 break;
1002 default:
1003 g_assert_not_reached();
1005 #endif
1007 t = tcg_temp_new_internal(type, 0);
1008 return temp_tcgv_vec(t);
1011 /* Create a new temp of the same type as an existing temp. */
1012 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match)
1014 TCGTemp *t = tcgv_vec_temp(match);
1016 tcg_debug_assert(t->temp_allocated != 0);
1018 t = tcg_temp_new_internal(t->base_type, 0);
1019 return temp_tcgv_vec(t);
1022 void tcg_temp_free_internal(TCGTemp *ts)
1024 TCGContext *s = tcg_ctx;
1025 int k, idx;
1027 /* In order to simplify users of tcg_constant_*, silently ignore free. */
1028 if (ts->kind == TEMP_CONST) {
1029 return;
1032 #if defined(CONFIG_DEBUG_TCG)
1033 s->temps_in_use--;
1034 if (s->temps_in_use < 0) {
1035 fprintf(stderr, "More temporaries freed than allocated!\n");
1037 #endif
1039 tcg_debug_assert(ts->kind < TEMP_GLOBAL);
1040 tcg_debug_assert(ts->temp_allocated != 0);
1041 ts->temp_allocated = 0;
1043 idx = temp_idx(ts);
1044 k = ts->base_type + (ts->kind == TEMP_NORMAL ? 0 : TCG_TYPE_COUNT);
1045 set_bit(idx, s->free_temps[k].l);
1048 TCGTemp *tcg_constant_internal(TCGType type, int64_t val)
1050 TCGContext *s = tcg_ctx;
1051 GHashTable *h = s->const_table[type];
1052 TCGTemp *ts;
1054 if (h == NULL) {
1055 h = g_hash_table_new(g_int64_hash, g_int64_equal);
1056 s->const_table[type] = h;
1059 ts = g_hash_table_lookup(h, &val);
1060 if (ts == NULL) {
1061 ts = tcg_temp_alloc(s);
1063 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1064 TCGTemp *ts2 = tcg_temp_alloc(s);
1066 ts->base_type = TCG_TYPE_I64;
1067 ts->type = TCG_TYPE_I32;
1068 ts->kind = TEMP_CONST;
1069 ts->temp_allocated = 1;
1071 * Retain the full value of the 64-bit constant in the low
1072 * part, so that the hash table works. Actual uses will
1073 * truncate the value to the low part.
1075 ts->val = val;
1077 tcg_debug_assert(ts2 == ts + 1);
1078 ts2->base_type = TCG_TYPE_I64;
1079 ts2->type = TCG_TYPE_I32;
1080 ts2->kind = TEMP_CONST;
1081 ts2->temp_allocated = 1;
1082 ts2->val = val >> 32;
1083 } else {
1084 ts->base_type = type;
1085 ts->type = type;
1086 ts->kind = TEMP_CONST;
1087 ts->temp_allocated = 1;
1088 ts->val = val;
1090 g_hash_table_insert(h, &ts->val, ts);
1093 return ts;
1096 TCGv_vec tcg_constant_vec(TCGType type, unsigned vece, int64_t val)
1098 val = dup_const(vece, val);
1099 return temp_tcgv_vec(tcg_constant_internal(type, val));
1102 TCGv_vec tcg_constant_vec_matching(TCGv_vec match, unsigned vece, int64_t val)
1104 TCGTemp *t = tcgv_vec_temp(match);
1106 tcg_debug_assert(t->temp_allocated != 0);
1107 return tcg_constant_vec(t->base_type, vece, val);
1110 TCGv_i32 tcg_const_i32(int32_t val)
1112 TCGv_i32 t0;
1113 t0 = tcg_temp_new_i32();
1114 tcg_gen_movi_i32(t0, val);
1115 return t0;
1118 TCGv_i64 tcg_const_i64(int64_t val)
1120 TCGv_i64 t0;
1121 t0 = tcg_temp_new_i64();
1122 tcg_gen_movi_i64(t0, val);
1123 return t0;
1126 TCGv_i32 tcg_const_local_i32(int32_t val)
1128 TCGv_i32 t0;
1129 t0 = tcg_temp_local_new_i32();
1130 tcg_gen_movi_i32(t0, val);
1131 return t0;
1134 TCGv_i64 tcg_const_local_i64(int64_t val)
1136 TCGv_i64 t0;
1137 t0 = tcg_temp_local_new_i64();
1138 tcg_gen_movi_i64(t0, val);
1139 return t0;
1142 #if defined(CONFIG_DEBUG_TCG)
1143 void tcg_clear_temp_count(void)
1145 TCGContext *s = tcg_ctx;
1146 s->temps_in_use = 0;
1149 int tcg_check_temp_count(void)
1151 TCGContext *s = tcg_ctx;
1152 if (s->temps_in_use) {
1153 /* Clear the count so that we don't give another
1154 * warning immediately next time around.
1156 s->temps_in_use = 0;
1157 return 1;
1159 return 0;
1161 #endif
1163 /* Return true if OP may appear in the opcode stream.
1164 Test the runtime variable that controls each opcode. */
1165 bool tcg_op_supported(TCGOpcode op)
1167 const bool have_vec
1168 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256;
1170 switch (op) {
1171 case INDEX_op_discard:
1172 case INDEX_op_set_label:
1173 case INDEX_op_call:
1174 case INDEX_op_br:
1175 case INDEX_op_mb:
1176 case INDEX_op_insn_start:
1177 case INDEX_op_exit_tb:
1178 case INDEX_op_goto_tb:
1179 case INDEX_op_goto_ptr:
1180 case INDEX_op_qemu_ld_i32:
1181 case INDEX_op_qemu_st_i32:
1182 case INDEX_op_qemu_ld_i64:
1183 case INDEX_op_qemu_st_i64:
1184 return true;
1186 case INDEX_op_qemu_st8_i32:
1187 return TCG_TARGET_HAS_qemu_st8_i32;
1189 case INDEX_op_mov_i32:
1190 case INDEX_op_setcond_i32:
1191 case INDEX_op_brcond_i32:
1192 case INDEX_op_ld8u_i32:
1193 case INDEX_op_ld8s_i32:
1194 case INDEX_op_ld16u_i32:
1195 case INDEX_op_ld16s_i32:
1196 case INDEX_op_ld_i32:
1197 case INDEX_op_st8_i32:
1198 case INDEX_op_st16_i32:
1199 case INDEX_op_st_i32:
1200 case INDEX_op_add_i32:
1201 case INDEX_op_sub_i32:
1202 case INDEX_op_mul_i32:
1203 case INDEX_op_and_i32:
1204 case INDEX_op_or_i32:
1205 case INDEX_op_xor_i32:
1206 case INDEX_op_shl_i32:
1207 case INDEX_op_shr_i32:
1208 case INDEX_op_sar_i32:
1209 return true;
1211 case INDEX_op_movcond_i32:
1212 return TCG_TARGET_HAS_movcond_i32;
1213 case INDEX_op_div_i32:
1214 case INDEX_op_divu_i32:
1215 return TCG_TARGET_HAS_div_i32;
1216 case INDEX_op_rem_i32:
1217 case INDEX_op_remu_i32:
1218 return TCG_TARGET_HAS_rem_i32;
1219 case INDEX_op_div2_i32:
1220 case INDEX_op_divu2_i32:
1221 return TCG_TARGET_HAS_div2_i32;
1222 case INDEX_op_rotl_i32:
1223 case INDEX_op_rotr_i32:
1224 return TCG_TARGET_HAS_rot_i32;
1225 case INDEX_op_deposit_i32:
1226 return TCG_TARGET_HAS_deposit_i32;
1227 case INDEX_op_extract_i32:
1228 return TCG_TARGET_HAS_extract_i32;
1229 case INDEX_op_sextract_i32:
1230 return TCG_TARGET_HAS_sextract_i32;
1231 case INDEX_op_extract2_i32:
1232 return TCG_TARGET_HAS_extract2_i32;
1233 case INDEX_op_add2_i32:
1234 return TCG_TARGET_HAS_add2_i32;
1235 case INDEX_op_sub2_i32:
1236 return TCG_TARGET_HAS_sub2_i32;
1237 case INDEX_op_mulu2_i32:
1238 return TCG_TARGET_HAS_mulu2_i32;
1239 case INDEX_op_muls2_i32:
1240 return TCG_TARGET_HAS_muls2_i32;
1241 case INDEX_op_muluh_i32:
1242 return TCG_TARGET_HAS_muluh_i32;
1243 case INDEX_op_mulsh_i32:
1244 return TCG_TARGET_HAS_mulsh_i32;
1245 case INDEX_op_ext8s_i32:
1246 return TCG_TARGET_HAS_ext8s_i32;
1247 case INDEX_op_ext16s_i32:
1248 return TCG_TARGET_HAS_ext16s_i32;
1249 case INDEX_op_ext8u_i32:
1250 return TCG_TARGET_HAS_ext8u_i32;
1251 case INDEX_op_ext16u_i32:
1252 return TCG_TARGET_HAS_ext16u_i32;
1253 case INDEX_op_bswap16_i32:
1254 return TCG_TARGET_HAS_bswap16_i32;
1255 case INDEX_op_bswap32_i32:
1256 return TCG_TARGET_HAS_bswap32_i32;
1257 case INDEX_op_not_i32:
1258 return TCG_TARGET_HAS_not_i32;
1259 case INDEX_op_neg_i32:
1260 return TCG_TARGET_HAS_neg_i32;
1261 case INDEX_op_andc_i32:
1262 return TCG_TARGET_HAS_andc_i32;
1263 case INDEX_op_orc_i32:
1264 return TCG_TARGET_HAS_orc_i32;
1265 case INDEX_op_eqv_i32:
1266 return TCG_TARGET_HAS_eqv_i32;
1267 case INDEX_op_nand_i32:
1268 return TCG_TARGET_HAS_nand_i32;
1269 case INDEX_op_nor_i32:
1270 return TCG_TARGET_HAS_nor_i32;
1271 case INDEX_op_clz_i32:
1272 return TCG_TARGET_HAS_clz_i32;
1273 case INDEX_op_ctz_i32:
1274 return TCG_TARGET_HAS_ctz_i32;
1275 case INDEX_op_ctpop_i32:
1276 return TCG_TARGET_HAS_ctpop_i32;
1278 case INDEX_op_brcond2_i32:
1279 case INDEX_op_setcond2_i32:
1280 return TCG_TARGET_REG_BITS == 32;
1282 case INDEX_op_mov_i64:
1283 case INDEX_op_setcond_i64:
1284 case INDEX_op_brcond_i64:
1285 case INDEX_op_ld8u_i64:
1286 case INDEX_op_ld8s_i64:
1287 case INDEX_op_ld16u_i64:
1288 case INDEX_op_ld16s_i64:
1289 case INDEX_op_ld32u_i64:
1290 case INDEX_op_ld32s_i64:
1291 case INDEX_op_ld_i64:
1292 case INDEX_op_st8_i64:
1293 case INDEX_op_st16_i64:
1294 case INDEX_op_st32_i64:
1295 case INDEX_op_st_i64:
1296 case INDEX_op_add_i64:
1297 case INDEX_op_sub_i64:
1298 case INDEX_op_mul_i64:
1299 case INDEX_op_and_i64:
1300 case INDEX_op_or_i64:
1301 case INDEX_op_xor_i64:
1302 case INDEX_op_shl_i64:
1303 case INDEX_op_shr_i64:
1304 case INDEX_op_sar_i64:
1305 case INDEX_op_ext_i32_i64:
1306 case INDEX_op_extu_i32_i64:
1307 return TCG_TARGET_REG_BITS == 64;
1309 case INDEX_op_movcond_i64:
1310 return TCG_TARGET_HAS_movcond_i64;
1311 case INDEX_op_div_i64:
1312 case INDEX_op_divu_i64:
1313 return TCG_TARGET_HAS_div_i64;
1314 case INDEX_op_rem_i64:
1315 case INDEX_op_remu_i64:
1316 return TCG_TARGET_HAS_rem_i64;
1317 case INDEX_op_div2_i64:
1318 case INDEX_op_divu2_i64:
1319 return TCG_TARGET_HAS_div2_i64;
1320 case INDEX_op_rotl_i64:
1321 case INDEX_op_rotr_i64:
1322 return TCG_TARGET_HAS_rot_i64;
1323 case INDEX_op_deposit_i64:
1324 return TCG_TARGET_HAS_deposit_i64;
1325 case INDEX_op_extract_i64:
1326 return TCG_TARGET_HAS_extract_i64;
1327 case INDEX_op_sextract_i64:
1328 return TCG_TARGET_HAS_sextract_i64;
1329 case INDEX_op_extract2_i64:
1330 return TCG_TARGET_HAS_extract2_i64;
1331 case INDEX_op_extrl_i64_i32:
1332 return TCG_TARGET_HAS_extrl_i64_i32;
1333 case INDEX_op_extrh_i64_i32:
1334 return TCG_TARGET_HAS_extrh_i64_i32;
1335 case INDEX_op_ext8s_i64:
1336 return TCG_TARGET_HAS_ext8s_i64;
1337 case INDEX_op_ext16s_i64:
1338 return TCG_TARGET_HAS_ext16s_i64;
1339 case INDEX_op_ext32s_i64:
1340 return TCG_TARGET_HAS_ext32s_i64;
1341 case INDEX_op_ext8u_i64:
1342 return TCG_TARGET_HAS_ext8u_i64;
1343 case INDEX_op_ext16u_i64:
1344 return TCG_TARGET_HAS_ext16u_i64;
1345 case INDEX_op_ext32u_i64:
1346 return TCG_TARGET_HAS_ext32u_i64;
1347 case INDEX_op_bswap16_i64:
1348 return TCG_TARGET_HAS_bswap16_i64;
1349 case INDEX_op_bswap32_i64:
1350 return TCG_TARGET_HAS_bswap32_i64;
1351 case INDEX_op_bswap64_i64:
1352 return TCG_TARGET_HAS_bswap64_i64;
1353 case INDEX_op_not_i64:
1354 return TCG_TARGET_HAS_not_i64;
1355 case INDEX_op_neg_i64:
1356 return TCG_TARGET_HAS_neg_i64;
1357 case INDEX_op_andc_i64:
1358 return TCG_TARGET_HAS_andc_i64;
1359 case INDEX_op_orc_i64:
1360 return TCG_TARGET_HAS_orc_i64;
1361 case INDEX_op_eqv_i64:
1362 return TCG_TARGET_HAS_eqv_i64;
1363 case INDEX_op_nand_i64:
1364 return TCG_TARGET_HAS_nand_i64;
1365 case INDEX_op_nor_i64:
1366 return TCG_TARGET_HAS_nor_i64;
1367 case INDEX_op_clz_i64:
1368 return TCG_TARGET_HAS_clz_i64;
1369 case INDEX_op_ctz_i64:
1370 return TCG_TARGET_HAS_ctz_i64;
1371 case INDEX_op_ctpop_i64:
1372 return TCG_TARGET_HAS_ctpop_i64;
1373 case INDEX_op_add2_i64:
1374 return TCG_TARGET_HAS_add2_i64;
1375 case INDEX_op_sub2_i64:
1376 return TCG_TARGET_HAS_sub2_i64;
1377 case INDEX_op_mulu2_i64:
1378 return TCG_TARGET_HAS_mulu2_i64;
1379 case INDEX_op_muls2_i64:
1380 return TCG_TARGET_HAS_muls2_i64;
1381 case INDEX_op_muluh_i64:
1382 return TCG_TARGET_HAS_muluh_i64;
1383 case INDEX_op_mulsh_i64:
1384 return TCG_TARGET_HAS_mulsh_i64;
1386 case INDEX_op_mov_vec:
1387 case INDEX_op_dup_vec:
1388 case INDEX_op_dupm_vec:
1389 case INDEX_op_ld_vec:
1390 case INDEX_op_st_vec:
1391 case INDEX_op_add_vec:
1392 case INDEX_op_sub_vec:
1393 case INDEX_op_and_vec:
1394 case INDEX_op_or_vec:
1395 case INDEX_op_xor_vec:
1396 case INDEX_op_cmp_vec:
1397 return have_vec;
1398 case INDEX_op_dup2_vec:
1399 return have_vec && TCG_TARGET_REG_BITS == 32;
1400 case INDEX_op_not_vec:
1401 return have_vec && TCG_TARGET_HAS_not_vec;
1402 case INDEX_op_neg_vec:
1403 return have_vec && TCG_TARGET_HAS_neg_vec;
1404 case INDEX_op_abs_vec:
1405 return have_vec && TCG_TARGET_HAS_abs_vec;
1406 case INDEX_op_andc_vec:
1407 return have_vec && TCG_TARGET_HAS_andc_vec;
1408 case INDEX_op_orc_vec:
1409 return have_vec && TCG_TARGET_HAS_orc_vec;
1410 case INDEX_op_nand_vec:
1411 return have_vec && TCG_TARGET_HAS_nand_vec;
1412 case INDEX_op_nor_vec:
1413 return have_vec && TCG_TARGET_HAS_nor_vec;
1414 case INDEX_op_eqv_vec:
1415 return have_vec && TCG_TARGET_HAS_eqv_vec;
1416 case INDEX_op_mul_vec:
1417 return have_vec && TCG_TARGET_HAS_mul_vec;
1418 case INDEX_op_shli_vec:
1419 case INDEX_op_shri_vec:
1420 case INDEX_op_sari_vec:
1421 return have_vec && TCG_TARGET_HAS_shi_vec;
1422 case INDEX_op_shls_vec:
1423 case INDEX_op_shrs_vec:
1424 case INDEX_op_sars_vec:
1425 return have_vec && TCG_TARGET_HAS_shs_vec;
1426 case INDEX_op_shlv_vec:
1427 case INDEX_op_shrv_vec:
1428 case INDEX_op_sarv_vec:
1429 return have_vec && TCG_TARGET_HAS_shv_vec;
1430 case INDEX_op_rotli_vec:
1431 return have_vec && TCG_TARGET_HAS_roti_vec;
1432 case INDEX_op_rotls_vec:
1433 return have_vec && TCG_TARGET_HAS_rots_vec;
1434 case INDEX_op_rotlv_vec:
1435 case INDEX_op_rotrv_vec:
1436 return have_vec && TCG_TARGET_HAS_rotv_vec;
1437 case INDEX_op_ssadd_vec:
1438 case INDEX_op_usadd_vec:
1439 case INDEX_op_sssub_vec:
1440 case INDEX_op_ussub_vec:
1441 return have_vec && TCG_TARGET_HAS_sat_vec;
1442 case INDEX_op_smin_vec:
1443 case INDEX_op_umin_vec:
1444 case INDEX_op_smax_vec:
1445 case INDEX_op_umax_vec:
1446 return have_vec && TCG_TARGET_HAS_minmax_vec;
1447 case INDEX_op_bitsel_vec:
1448 return have_vec && TCG_TARGET_HAS_bitsel_vec;
1449 case INDEX_op_cmpsel_vec:
1450 return have_vec && TCG_TARGET_HAS_cmpsel_vec;
1452 default:
1453 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS);
1454 return true;
1458 /* Note: we convert the 64 bit args to 32 bit and do some alignment
1459 and endian swap. Maybe it would be better to do the alignment
1460 and endian swap in tcg_reg_alloc_call(). */
1461 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args)
1463 int i, real_args, nb_rets, pi;
1464 unsigned typemask;
1465 const TCGHelperInfo *info;
1466 TCGOp *op;
1468 info = g_hash_table_lookup(helper_table, (gpointer)func);
1469 typemask = info->typemask;
1471 #ifdef CONFIG_PLUGIN
1472 /* detect non-plugin helpers */
1473 if (tcg_ctx->plugin_insn && unlikely(strncmp(info->name, "plugin_", 7))) {
1474 tcg_ctx->plugin_insn->calls_helpers = true;
1476 #endif
1478 #if defined(__sparc__) && !defined(__arch64__) \
1479 && !defined(CONFIG_TCG_INTERPRETER)
1480 /* We have 64-bit values in one register, but need to pass as two
1481 separate parameters. Split them. */
1482 int orig_typemask = typemask;
1483 int orig_nargs = nargs;
1484 TCGv_i64 retl, reth;
1485 TCGTemp *split_args[MAX_OPC_PARAM];
1487 retl = NULL;
1488 reth = NULL;
1489 typemask = 0;
1490 for (i = real_args = 0; i < nargs; ++i) {
1491 int argtype = extract32(orig_typemask, (i + 1) * 3, 3);
1492 bool is_64bit = (argtype & ~1) == dh_typecode_i64;
1494 if (is_64bit) {
1495 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1496 TCGv_i32 h = tcg_temp_new_i32();
1497 TCGv_i32 l = tcg_temp_new_i32();
1498 tcg_gen_extr_i64_i32(l, h, orig);
1499 split_args[real_args++] = tcgv_i32_temp(h);
1500 typemask |= dh_typecode_i32 << (real_args * 3);
1501 split_args[real_args++] = tcgv_i32_temp(l);
1502 typemask |= dh_typecode_i32 << (real_args * 3);
1503 } else {
1504 split_args[real_args++] = args[i];
1505 typemask |= argtype << (real_args * 3);
1508 nargs = real_args;
1509 args = split_args;
1510 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1511 for (i = 0; i < nargs; ++i) {
1512 int argtype = extract32(typemask, (i + 1) * 3, 3);
1513 bool is_32bit = (argtype & ~1) == dh_typecode_i32;
1514 bool is_signed = argtype & 1;
1516 if (is_32bit) {
1517 TCGv_i64 temp = tcg_temp_new_i64();
1518 TCGv_i32 orig = temp_tcgv_i32(args[i]);
1519 if (is_signed) {
1520 tcg_gen_ext_i32_i64(temp, orig);
1521 } else {
1522 tcg_gen_extu_i32_i64(temp, orig);
1524 args[i] = tcgv_i64_temp(temp);
1527 #endif /* TCG_TARGET_EXTEND_ARGS */
1529 op = tcg_emit_op(INDEX_op_call);
1531 pi = 0;
1532 if (ret != NULL) {
1533 #if defined(__sparc__) && !defined(__arch64__) \
1534 && !defined(CONFIG_TCG_INTERPRETER)
1535 if ((typemask & 6) == dh_typecode_i64) {
1536 /* The 32-bit ABI is going to return the 64-bit value in
1537 the %o0/%o1 register pair. Prepare for this by using
1538 two return temporaries, and reassemble below. */
1539 retl = tcg_temp_new_i64();
1540 reth = tcg_temp_new_i64();
1541 op->args[pi++] = tcgv_i64_arg(reth);
1542 op->args[pi++] = tcgv_i64_arg(retl);
1543 nb_rets = 2;
1544 } else {
1545 op->args[pi++] = temp_arg(ret);
1546 nb_rets = 1;
1548 #else
1549 if (TCG_TARGET_REG_BITS < 64 && (typemask & 6) == dh_typecode_i64) {
1550 #if HOST_BIG_ENDIAN
1551 op->args[pi++] = temp_arg(ret + 1);
1552 op->args[pi++] = temp_arg(ret);
1553 #else
1554 op->args[pi++] = temp_arg(ret);
1555 op->args[pi++] = temp_arg(ret + 1);
1556 #endif
1557 nb_rets = 2;
1558 } else {
1559 op->args[pi++] = temp_arg(ret);
1560 nb_rets = 1;
1562 #endif
1563 } else {
1564 nb_rets = 0;
1566 TCGOP_CALLO(op) = nb_rets;
1568 real_args = 0;
1569 for (i = 0; i < nargs; i++) {
1570 int argtype = extract32(typemask, (i + 1) * 3, 3);
1571 bool is_64bit = (argtype & ~1) == dh_typecode_i64;
1572 bool want_align = false;
1574 #if defined(CONFIG_TCG_INTERPRETER)
1576 * Align all arguments, so that they land in predictable places
1577 * for passing off to ffi_call.
1579 want_align = true;
1580 #elif defined(TCG_TARGET_CALL_ALIGN_ARGS)
1581 /* Some targets want aligned 64 bit args */
1582 want_align = is_64bit;
1583 #endif
1585 if (TCG_TARGET_REG_BITS < 64 && want_align && (real_args & 1)) {
1586 op->args[pi++] = TCG_CALL_DUMMY_ARG;
1587 real_args++;
1590 if (TCG_TARGET_REG_BITS < 64 && is_64bit) {
1592 * If stack grows up, then we will be placing successive
1593 * arguments at lower addresses, which means we need to
1594 * reverse the order compared to how we would normally
1595 * treat either big or little-endian. For those arguments
1596 * that will wind up in registers, this still works for
1597 * HPPA (the only current STACK_GROWSUP target) since the
1598 * argument registers are *also* allocated in decreasing
1599 * order. If another such target is added, this logic may
1600 * have to get more complicated to differentiate between
1601 * stack arguments and register arguments.
1603 #if HOST_BIG_ENDIAN != defined(TCG_TARGET_STACK_GROWSUP)
1604 op->args[pi++] = temp_arg(args[i] + 1);
1605 op->args[pi++] = temp_arg(args[i]);
1606 #else
1607 op->args[pi++] = temp_arg(args[i]);
1608 op->args[pi++] = temp_arg(args[i] + 1);
1609 #endif
1610 real_args += 2;
1611 continue;
1614 op->args[pi++] = temp_arg(args[i]);
1615 real_args++;
1617 op->args[pi++] = (uintptr_t)func;
1618 op->args[pi++] = (uintptr_t)info;
1619 TCGOP_CALLI(op) = real_args;
1621 /* Make sure the fields didn't overflow. */
1622 tcg_debug_assert(TCGOP_CALLI(op) == real_args);
1623 tcg_debug_assert(pi <= ARRAY_SIZE(op->args));
1625 #if defined(__sparc__) && !defined(__arch64__) \
1626 && !defined(CONFIG_TCG_INTERPRETER)
1627 /* Free all of the parts we allocated above. */
1628 for (i = real_args = 0; i < orig_nargs; ++i) {
1629 int argtype = extract32(orig_typemask, (i + 1) * 3, 3);
1630 bool is_64bit = (argtype & ~1) == dh_typecode_i64;
1632 if (is_64bit) {
1633 tcg_temp_free_internal(args[real_args++]);
1634 tcg_temp_free_internal(args[real_args++]);
1635 } else {
1636 real_args++;
1639 if ((orig_typemask & 6) == dh_typecode_i64) {
1640 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them.
1641 Note that describing these as TCGv_i64 eliminates an unnecessary
1642 zero-extension that tcg_gen_concat_i32_i64 would create. */
1643 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth);
1644 tcg_temp_free_i64(retl);
1645 tcg_temp_free_i64(reth);
1647 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1648 for (i = 0; i < nargs; ++i) {
1649 int argtype = extract32(typemask, (i + 1) * 3, 3);
1650 bool is_32bit = (argtype & ~1) == dh_typecode_i32;
1652 if (is_32bit) {
1653 tcg_temp_free_internal(args[i]);
1656 #endif /* TCG_TARGET_EXTEND_ARGS */
1659 static void tcg_reg_alloc_start(TCGContext *s)
1661 int i, n;
1663 for (i = 0, n = s->nb_temps; i < n; i++) {
1664 TCGTemp *ts = &s->temps[i];
1665 TCGTempVal val = TEMP_VAL_MEM;
1667 switch (ts->kind) {
1668 case TEMP_CONST:
1669 val = TEMP_VAL_CONST;
1670 break;
1671 case TEMP_FIXED:
1672 val = TEMP_VAL_REG;
1673 break;
1674 case TEMP_GLOBAL:
1675 break;
1676 case TEMP_NORMAL:
1677 val = TEMP_VAL_DEAD;
1678 /* fall through */
1679 case TEMP_LOCAL:
1680 ts->mem_allocated = 0;
1681 break;
1682 default:
1683 g_assert_not_reached();
1685 ts->val_type = val;
1688 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp));
1691 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size,
1692 TCGTemp *ts)
1694 int idx = temp_idx(ts);
1696 switch (ts->kind) {
1697 case TEMP_FIXED:
1698 case TEMP_GLOBAL:
1699 pstrcpy(buf, buf_size, ts->name);
1700 break;
1701 case TEMP_LOCAL:
1702 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals);
1703 break;
1704 case TEMP_NORMAL:
1705 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals);
1706 break;
1707 case TEMP_CONST:
1708 switch (ts->type) {
1709 case TCG_TYPE_I32:
1710 snprintf(buf, buf_size, "$0x%x", (int32_t)ts->val);
1711 break;
1712 #if TCG_TARGET_REG_BITS > 32
1713 case TCG_TYPE_I64:
1714 snprintf(buf, buf_size, "$0x%" PRIx64, ts->val);
1715 break;
1716 #endif
1717 case TCG_TYPE_V64:
1718 case TCG_TYPE_V128:
1719 case TCG_TYPE_V256:
1720 snprintf(buf, buf_size, "v%d$0x%" PRIx64,
1721 64 << (ts->type - TCG_TYPE_V64), ts->val);
1722 break;
1723 default:
1724 g_assert_not_reached();
1726 break;
1728 return buf;
1731 static char *tcg_get_arg_str(TCGContext *s, char *buf,
1732 int buf_size, TCGArg arg)
1734 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg));
1737 static const char * const cond_name[] =
1739 [TCG_COND_NEVER] = "never",
1740 [TCG_COND_ALWAYS] = "always",
1741 [TCG_COND_EQ] = "eq",
1742 [TCG_COND_NE] = "ne",
1743 [TCG_COND_LT] = "lt",
1744 [TCG_COND_GE] = "ge",
1745 [TCG_COND_LE] = "le",
1746 [TCG_COND_GT] = "gt",
1747 [TCG_COND_LTU] = "ltu",
1748 [TCG_COND_GEU] = "geu",
1749 [TCG_COND_LEU] = "leu",
1750 [TCG_COND_GTU] = "gtu"
1753 static const char * const ldst_name[] =
1755 [MO_UB] = "ub",
1756 [MO_SB] = "sb",
1757 [MO_LEUW] = "leuw",
1758 [MO_LESW] = "lesw",
1759 [MO_LEUL] = "leul",
1760 [MO_LESL] = "lesl",
1761 [MO_LEUQ] = "leq",
1762 [MO_BEUW] = "beuw",
1763 [MO_BESW] = "besw",
1764 [MO_BEUL] = "beul",
1765 [MO_BESL] = "besl",
1766 [MO_BEUQ] = "beq",
1769 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = {
1770 #ifdef TARGET_ALIGNED_ONLY
1771 [MO_UNALN >> MO_ASHIFT] = "un+",
1772 [MO_ALIGN >> MO_ASHIFT] = "",
1773 #else
1774 [MO_UNALN >> MO_ASHIFT] = "",
1775 [MO_ALIGN >> MO_ASHIFT] = "al+",
1776 #endif
1777 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+",
1778 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+",
1779 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+",
1780 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+",
1781 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+",
1782 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+",
1785 static const char bswap_flag_name[][6] = {
1786 [TCG_BSWAP_IZ] = "iz",
1787 [TCG_BSWAP_OZ] = "oz",
1788 [TCG_BSWAP_OS] = "os",
1789 [TCG_BSWAP_IZ | TCG_BSWAP_OZ] = "iz,oz",
1790 [TCG_BSWAP_IZ | TCG_BSWAP_OS] = "iz,os",
1793 static inline bool tcg_regset_single(TCGRegSet d)
1795 return (d & (d - 1)) == 0;
1798 static inline TCGReg tcg_regset_first(TCGRegSet d)
1800 if (TCG_TARGET_NB_REGS <= 32) {
1801 return ctz32(d);
1802 } else {
1803 return ctz64(d);
1807 static void tcg_dump_ops(TCGContext *s, bool have_prefs)
1809 char buf[128];
1810 TCGOp *op;
1812 QTAILQ_FOREACH(op, &s->ops, link) {
1813 int i, k, nb_oargs, nb_iargs, nb_cargs;
1814 const TCGOpDef *def;
1815 TCGOpcode c;
1816 int col = 0;
1818 c = op->opc;
1819 def = &tcg_op_defs[c];
1821 if (c == INDEX_op_insn_start) {
1822 nb_oargs = 0;
1823 col += qemu_log("\n ----");
1825 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
1826 target_ulong a;
1827 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
1828 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
1829 #else
1830 a = op->args[i];
1831 #endif
1832 col += qemu_log(" " TARGET_FMT_lx, a);
1834 } else if (c == INDEX_op_call) {
1835 const TCGHelperInfo *info = tcg_call_info(op);
1836 void *func = tcg_call_func(op);
1838 /* variable number of arguments */
1839 nb_oargs = TCGOP_CALLO(op);
1840 nb_iargs = TCGOP_CALLI(op);
1841 nb_cargs = def->nb_cargs;
1843 col += qemu_log(" %s ", def->name);
1846 * Print the function name from TCGHelperInfo, if available.
1847 * Note that plugins have a template function for the info,
1848 * but the actual function pointer comes from the plugin.
1850 if (func == info->func) {
1851 col += qemu_log("%s", info->name);
1852 } else {
1853 col += qemu_log("plugin(%p)", func);
1856 col += qemu_log(",$0x%x,$%d", info->flags, nb_oargs);
1857 for (i = 0; i < nb_oargs; i++) {
1858 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf),
1859 op->args[i]));
1861 for (i = 0; i < nb_iargs; i++) {
1862 TCGArg arg = op->args[nb_oargs + i];
1863 const char *t = "<dummy>";
1864 if (arg != TCG_CALL_DUMMY_ARG) {
1865 t = tcg_get_arg_str(s, buf, sizeof(buf), arg);
1867 col += qemu_log(",%s", t);
1869 } else {
1870 col += qemu_log(" %s ", def->name);
1872 nb_oargs = def->nb_oargs;
1873 nb_iargs = def->nb_iargs;
1874 nb_cargs = def->nb_cargs;
1876 if (def->flags & TCG_OPF_VECTOR) {
1877 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op),
1878 8 << TCGOP_VECE(op));
1881 k = 0;
1882 for (i = 0; i < nb_oargs; i++) {
1883 if (k != 0) {
1884 col += qemu_log(",");
1886 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
1887 op->args[k++]));
1889 for (i = 0; i < nb_iargs; i++) {
1890 if (k != 0) {
1891 col += qemu_log(",");
1893 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
1894 op->args[k++]));
1896 switch (c) {
1897 case INDEX_op_brcond_i32:
1898 case INDEX_op_setcond_i32:
1899 case INDEX_op_movcond_i32:
1900 case INDEX_op_brcond2_i32:
1901 case INDEX_op_setcond2_i32:
1902 case INDEX_op_brcond_i64:
1903 case INDEX_op_setcond_i64:
1904 case INDEX_op_movcond_i64:
1905 case INDEX_op_cmp_vec:
1906 case INDEX_op_cmpsel_vec:
1907 if (op->args[k] < ARRAY_SIZE(cond_name)
1908 && cond_name[op->args[k]]) {
1909 col += qemu_log(",%s", cond_name[op->args[k++]]);
1910 } else {
1911 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]);
1913 i = 1;
1914 break;
1915 case INDEX_op_qemu_ld_i32:
1916 case INDEX_op_qemu_st_i32:
1917 case INDEX_op_qemu_st8_i32:
1918 case INDEX_op_qemu_ld_i64:
1919 case INDEX_op_qemu_st_i64:
1921 MemOpIdx oi = op->args[k++];
1922 MemOp op = get_memop(oi);
1923 unsigned ix = get_mmuidx(oi);
1925 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) {
1926 col += qemu_log(",$0x%x,%u", op, ix);
1927 } else {
1928 const char *s_al, *s_op;
1929 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT];
1930 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)];
1931 col += qemu_log(",%s%s,%u", s_al, s_op, ix);
1933 i = 1;
1935 break;
1936 case INDEX_op_bswap16_i32:
1937 case INDEX_op_bswap16_i64:
1938 case INDEX_op_bswap32_i32:
1939 case INDEX_op_bswap32_i64:
1940 case INDEX_op_bswap64_i64:
1942 TCGArg flags = op->args[k];
1943 const char *name = NULL;
1945 if (flags < ARRAY_SIZE(bswap_flag_name)) {
1946 name = bswap_flag_name[flags];
1948 if (name) {
1949 col += qemu_log(",%s", name);
1950 } else {
1951 col += qemu_log(",$0x%" TCG_PRIlx, flags);
1953 i = k = 1;
1955 break;
1956 default:
1957 i = 0;
1958 break;
1960 switch (c) {
1961 case INDEX_op_set_label:
1962 case INDEX_op_br:
1963 case INDEX_op_brcond_i32:
1964 case INDEX_op_brcond_i64:
1965 case INDEX_op_brcond2_i32:
1966 col += qemu_log("%s$L%d", k ? "," : "",
1967 arg_label(op->args[k])->id);
1968 i++, k++;
1969 break;
1970 default:
1971 break;
1973 for (; i < nb_cargs; i++, k++) {
1974 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]);
1978 if (have_prefs || op->life) {
1980 QemuLogFile *logfile;
1982 rcu_read_lock();
1983 logfile = qatomic_rcu_read(&qemu_logfile);
1984 if (logfile) {
1985 for (; col < 40; ++col) {
1986 putc(' ', logfile->fd);
1989 rcu_read_unlock();
1992 if (op->life) {
1993 unsigned life = op->life;
1995 if (life & (SYNC_ARG * 3)) {
1996 qemu_log(" sync:");
1997 for (i = 0; i < 2; ++i) {
1998 if (life & (SYNC_ARG << i)) {
1999 qemu_log(" %d", i);
2003 life /= DEAD_ARG;
2004 if (life) {
2005 qemu_log(" dead:");
2006 for (i = 0; life; ++i, life >>= 1) {
2007 if (life & 1) {
2008 qemu_log(" %d", i);
2014 if (have_prefs) {
2015 for (i = 0; i < nb_oargs; ++i) {
2016 TCGRegSet set = op->output_pref[i];
2018 if (i == 0) {
2019 qemu_log(" pref=");
2020 } else {
2021 qemu_log(",");
2023 if (set == 0) {
2024 qemu_log("none");
2025 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) {
2026 qemu_log("all");
2027 #ifdef CONFIG_DEBUG_TCG
2028 } else if (tcg_regset_single(set)) {
2029 TCGReg reg = tcg_regset_first(set);
2030 qemu_log("%s", tcg_target_reg_names[reg]);
2031 #endif
2032 } else if (TCG_TARGET_NB_REGS <= 32) {
2033 qemu_log("%#x", (uint32_t)set);
2034 } else {
2035 qemu_log("%#" PRIx64, (uint64_t)set);
2040 qemu_log("\n");
2044 /* we give more priority to constraints with less registers */
2045 static int get_constraint_priority(const TCGOpDef *def, int k)
2047 const TCGArgConstraint *arg_ct = &def->args_ct[k];
2048 int n;
2050 if (arg_ct->oalias) {
2051 /* an alias is equivalent to a single register */
2052 n = 1;
2053 } else {
2054 n = ctpop64(arg_ct->regs);
2056 return TCG_TARGET_NB_REGS - n + 1;
2059 /* sort from highest priority to lowest */
2060 static void sort_constraints(TCGOpDef *def, int start, int n)
2062 int i, j;
2063 TCGArgConstraint *a = def->args_ct;
2065 for (i = 0; i < n; i++) {
2066 a[start + i].sort_index = start + i;
2068 if (n <= 1) {
2069 return;
2071 for (i = 0; i < n - 1; i++) {
2072 for (j = i + 1; j < n; j++) {
2073 int p1 = get_constraint_priority(def, a[start + i].sort_index);
2074 int p2 = get_constraint_priority(def, a[start + j].sort_index);
2075 if (p1 < p2) {
2076 int tmp = a[start + i].sort_index;
2077 a[start + i].sort_index = a[start + j].sort_index;
2078 a[start + j].sort_index = tmp;
2084 static void process_op_defs(TCGContext *s)
2086 TCGOpcode op;
2088 for (op = 0; op < NB_OPS; op++) {
2089 TCGOpDef *def = &tcg_op_defs[op];
2090 const TCGTargetOpDef *tdefs;
2091 int i, nb_args;
2093 if (def->flags & TCG_OPF_NOT_PRESENT) {
2094 continue;
2097 nb_args = def->nb_iargs + def->nb_oargs;
2098 if (nb_args == 0) {
2099 continue;
2103 * Macro magic should make it impossible, but double-check that
2104 * the array index is in range. Since the signness of an enum
2105 * is implementation defined, force the result to unsigned.
2107 unsigned con_set = tcg_target_op_def(op);
2108 tcg_debug_assert(con_set < ARRAY_SIZE(constraint_sets));
2109 tdefs = &constraint_sets[con_set];
2111 for (i = 0; i < nb_args; i++) {
2112 const char *ct_str = tdefs->args_ct_str[i];
2113 /* Incomplete TCGTargetOpDef entry. */
2114 tcg_debug_assert(ct_str != NULL);
2116 while (*ct_str != '\0') {
2117 switch(*ct_str) {
2118 case '0' ... '9':
2120 int oarg = *ct_str - '0';
2121 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]);
2122 tcg_debug_assert(oarg < def->nb_oargs);
2123 tcg_debug_assert(def->args_ct[oarg].regs != 0);
2124 def->args_ct[i] = def->args_ct[oarg];
2125 /* The output sets oalias. */
2126 def->args_ct[oarg].oalias = true;
2127 def->args_ct[oarg].alias_index = i;
2128 /* The input sets ialias. */
2129 def->args_ct[i].ialias = true;
2130 def->args_ct[i].alias_index = oarg;
2132 ct_str++;
2133 break;
2134 case '&':
2135 def->args_ct[i].newreg = true;
2136 ct_str++;
2137 break;
2138 case 'i':
2139 def->args_ct[i].ct |= TCG_CT_CONST;
2140 ct_str++;
2141 break;
2143 /* Include all of the target-specific constraints. */
2145 #undef CONST
2146 #define CONST(CASE, MASK) \
2147 case CASE: def->args_ct[i].ct |= MASK; ct_str++; break;
2148 #define REGS(CASE, MASK) \
2149 case CASE: def->args_ct[i].regs |= MASK; ct_str++; break;
2151 #include "tcg-target-con-str.h"
2153 #undef REGS
2154 #undef CONST
2155 default:
2156 /* Typo in TCGTargetOpDef constraint. */
2157 g_assert_not_reached();
2162 /* TCGTargetOpDef entry with too much information? */
2163 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL);
2165 /* sort the constraints (XXX: this is just an heuristic) */
2166 sort_constraints(def, 0, def->nb_oargs);
2167 sort_constraints(def, def->nb_oargs, def->nb_iargs);
2171 void tcg_op_remove(TCGContext *s, TCGOp *op)
2173 TCGLabel *label;
2175 switch (op->opc) {
2176 case INDEX_op_br:
2177 label = arg_label(op->args[0]);
2178 label->refs--;
2179 break;
2180 case INDEX_op_brcond_i32:
2181 case INDEX_op_brcond_i64:
2182 label = arg_label(op->args[3]);
2183 label->refs--;
2184 break;
2185 case INDEX_op_brcond2_i32:
2186 label = arg_label(op->args[5]);
2187 label->refs--;
2188 break;
2189 default:
2190 break;
2193 QTAILQ_REMOVE(&s->ops, op, link);
2194 QTAILQ_INSERT_TAIL(&s->free_ops, op, link);
2195 s->nb_ops--;
2197 #ifdef CONFIG_PROFILER
2198 qatomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1);
2199 #endif
2202 void tcg_remove_ops_after(TCGOp *op)
2204 TCGContext *s = tcg_ctx;
2206 while (true) {
2207 TCGOp *last = tcg_last_op();
2208 if (last == op) {
2209 return;
2211 tcg_op_remove(s, last);
2215 static TCGOp *tcg_op_alloc(TCGOpcode opc)
2217 TCGContext *s = tcg_ctx;
2218 TCGOp *op;
2220 if (likely(QTAILQ_EMPTY(&s->free_ops))) {
2221 op = tcg_malloc(sizeof(TCGOp));
2222 } else {
2223 op = QTAILQ_FIRST(&s->free_ops);
2224 QTAILQ_REMOVE(&s->free_ops, op, link);
2226 memset(op, 0, offsetof(TCGOp, link));
2227 op->opc = opc;
2228 s->nb_ops++;
2230 return op;
2233 TCGOp *tcg_emit_op(TCGOpcode opc)
2235 TCGOp *op = tcg_op_alloc(opc);
2236 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link);
2237 return op;
2240 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2242 TCGOp *new_op = tcg_op_alloc(opc);
2243 QTAILQ_INSERT_BEFORE(old_op, new_op, link);
2244 return new_op;
2247 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2249 TCGOp *new_op = tcg_op_alloc(opc);
2250 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link);
2251 return new_op;
2254 /* Reachable analysis : remove unreachable code. */
2255 static void reachable_code_pass(TCGContext *s)
2257 TCGOp *op, *op_next;
2258 bool dead = false;
2260 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2261 bool remove = dead;
2262 TCGLabel *label;
2264 switch (op->opc) {
2265 case INDEX_op_set_label:
2266 label = arg_label(op->args[0]);
2267 if (label->refs == 0) {
2269 * While there is an occasional backward branch, virtually
2270 * all branches generated by the translators are forward.
2271 * Which means that generally we will have already removed
2272 * all references to the label that will be, and there is
2273 * little to be gained by iterating.
2275 remove = true;
2276 } else {
2277 /* Once we see a label, insns become live again. */
2278 dead = false;
2279 remove = false;
2282 * Optimization can fold conditional branches to unconditional.
2283 * If we find a label with one reference which is preceded by
2284 * an unconditional branch to it, remove both. This needed to
2285 * wait until the dead code in between them was removed.
2287 if (label->refs == 1) {
2288 TCGOp *op_prev = QTAILQ_PREV(op, link);
2289 if (op_prev->opc == INDEX_op_br &&
2290 label == arg_label(op_prev->args[0])) {
2291 tcg_op_remove(s, op_prev);
2292 remove = true;
2296 break;
2298 case INDEX_op_br:
2299 case INDEX_op_exit_tb:
2300 case INDEX_op_goto_ptr:
2301 /* Unconditional branches; everything following is dead. */
2302 dead = true;
2303 break;
2305 case INDEX_op_call:
2306 /* Notice noreturn helper calls, raising exceptions. */
2307 if (tcg_call_flags(op) & TCG_CALL_NO_RETURN) {
2308 dead = true;
2310 break;
2312 case INDEX_op_insn_start:
2313 /* Never remove -- we need to keep these for unwind. */
2314 remove = false;
2315 break;
2317 default:
2318 break;
2321 if (remove) {
2322 tcg_op_remove(s, op);
2327 #define TS_DEAD 1
2328 #define TS_MEM 2
2330 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n)))
2331 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n)))
2333 /* For liveness_pass_1, the register preferences for a given temp. */
2334 static inline TCGRegSet *la_temp_pref(TCGTemp *ts)
2336 return ts->state_ptr;
2339 /* For liveness_pass_1, reset the preferences for a given temp to the
2340 * maximal regset for its type.
2342 static inline void la_reset_pref(TCGTemp *ts)
2344 *la_temp_pref(ts)
2345 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]);
2348 /* liveness analysis: end of function: all temps are dead, and globals
2349 should be in memory. */
2350 static void la_func_end(TCGContext *s, int ng, int nt)
2352 int i;
2354 for (i = 0; i < ng; ++i) {
2355 s->temps[i].state = TS_DEAD | TS_MEM;
2356 la_reset_pref(&s->temps[i]);
2358 for (i = ng; i < nt; ++i) {
2359 s->temps[i].state = TS_DEAD;
2360 la_reset_pref(&s->temps[i]);
2364 /* liveness analysis: end of basic block: all temps are dead, globals
2365 and local temps should be in memory. */
2366 static void la_bb_end(TCGContext *s, int ng, int nt)
2368 int i;
2370 for (i = 0; i < nt; ++i) {
2371 TCGTemp *ts = &s->temps[i];
2372 int state;
2374 switch (ts->kind) {
2375 case TEMP_FIXED:
2376 case TEMP_GLOBAL:
2377 case TEMP_LOCAL:
2378 state = TS_DEAD | TS_MEM;
2379 break;
2380 case TEMP_NORMAL:
2381 case TEMP_CONST:
2382 state = TS_DEAD;
2383 break;
2384 default:
2385 g_assert_not_reached();
2387 ts->state = state;
2388 la_reset_pref(ts);
2392 /* liveness analysis: sync globals back to memory. */
2393 static void la_global_sync(TCGContext *s, int ng)
2395 int i;
2397 for (i = 0; i < ng; ++i) {
2398 int state = s->temps[i].state;
2399 s->temps[i].state = state | TS_MEM;
2400 if (state == TS_DEAD) {
2401 /* If the global was previously dead, reset prefs. */
2402 la_reset_pref(&s->temps[i]);
2408 * liveness analysis: conditional branch: all temps are dead,
2409 * globals and local temps should be synced.
2411 static void la_bb_sync(TCGContext *s, int ng, int nt)
2413 la_global_sync(s, ng);
2415 for (int i = ng; i < nt; ++i) {
2416 TCGTemp *ts = &s->temps[i];
2417 int state;
2419 switch (ts->kind) {
2420 case TEMP_LOCAL:
2421 state = ts->state;
2422 ts->state = state | TS_MEM;
2423 if (state != TS_DEAD) {
2424 continue;
2426 break;
2427 case TEMP_NORMAL:
2428 s->temps[i].state = TS_DEAD;
2429 break;
2430 case TEMP_CONST:
2431 continue;
2432 default:
2433 g_assert_not_reached();
2435 la_reset_pref(&s->temps[i]);
2439 /* liveness analysis: sync globals back to memory and kill. */
2440 static void la_global_kill(TCGContext *s, int ng)
2442 int i;
2444 for (i = 0; i < ng; i++) {
2445 s->temps[i].state = TS_DEAD | TS_MEM;
2446 la_reset_pref(&s->temps[i]);
2450 /* liveness analysis: note live globals crossing calls. */
2451 static void la_cross_call(TCGContext *s, int nt)
2453 TCGRegSet mask = ~tcg_target_call_clobber_regs;
2454 int i;
2456 for (i = 0; i < nt; i++) {
2457 TCGTemp *ts = &s->temps[i];
2458 if (!(ts->state & TS_DEAD)) {
2459 TCGRegSet *pset = la_temp_pref(ts);
2460 TCGRegSet set = *pset;
2462 set &= mask;
2463 /* If the combination is not possible, restart. */
2464 if (set == 0) {
2465 set = tcg_target_available_regs[ts->type] & mask;
2467 *pset = set;
2472 /* Liveness analysis : update the opc_arg_life array to tell if a
2473 given input arguments is dead. Instructions updating dead
2474 temporaries are removed. */
2475 static void liveness_pass_1(TCGContext *s)
2477 int nb_globals = s->nb_globals;
2478 int nb_temps = s->nb_temps;
2479 TCGOp *op, *op_prev;
2480 TCGRegSet *prefs;
2481 int i;
2483 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps);
2484 for (i = 0; i < nb_temps; ++i) {
2485 s->temps[i].state_ptr = prefs + i;
2488 /* ??? Should be redundant with the exit_tb that ends the TB. */
2489 la_func_end(s, nb_globals, nb_temps);
2491 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) {
2492 int nb_iargs, nb_oargs;
2493 TCGOpcode opc_new, opc_new2;
2494 bool have_opc_new2;
2495 TCGLifeData arg_life = 0;
2496 TCGTemp *ts;
2497 TCGOpcode opc = op->opc;
2498 const TCGOpDef *def = &tcg_op_defs[opc];
2500 switch (opc) {
2501 case INDEX_op_call:
2503 int call_flags;
2504 int nb_call_regs;
2506 nb_oargs = TCGOP_CALLO(op);
2507 nb_iargs = TCGOP_CALLI(op);
2508 call_flags = tcg_call_flags(op);
2510 /* pure functions can be removed if their result is unused */
2511 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) {
2512 for (i = 0; i < nb_oargs; i++) {
2513 ts = arg_temp(op->args[i]);
2514 if (ts->state != TS_DEAD) {
2515 goto do_not_remove_call;
2518 goto do_remove;
2520 do_not_remove_call:
2522 /* Output args are dead. */
2523 for (i = 0; i < nb_oargs; i++) {
2524 ts = arg_temp(op->args[i]);
2525 if (ts->state & TS_DEAD) {
2526 arg_life |= DEAD_ARG << i;
2528 if (ts->state & TS_MEM) {
2529 arg_life |= SYNC_ARG << i;
2531 ts->state = TS_DEAD;
2532 la_reset_pref(ts);
2534 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */
2535 op->output_pref[i] = 0;
2538 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS |
2539 TCG_CALL_NO_READ_GLOBALS))) {
2540 la_global_kill(s, nb_globals);
2541 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) {
2542 la_global_sync(s, nb_globals);
2545 /* Record arguments that die in this helper. */
2546 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2547 ts = arg_temp(op->args[i]);
2548 if (ts && ts->state & TS_DEAD) {
2549 arg_life |= DEAD_ARG << i;
2553 /* For all live registers, remove call-clobbered prefs. */
2554 la_cross_call(s, nb_temps);
2556 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
2558 /* Input arguments are live for preceding opcodes. */
2559 for (i = 0; i < nb_iargs; i++) {
2560 ts = arg_temp(op->args[i + nb_oargs]);
2561 if (ts && ts->state & TS_DEAD) {
2562 /* For those arguments that die, and will be allocated
2563 * in registers, clear the register set for that arg,
2564 * to be filled in below. For args that will be on
2565 * the stack, reset to any available reg.
2567 *la_temp_pref(ts)
2568 = (i < nb_call_regs ? 0 :
2569 tcg_target_available_regs[ts->type]);
2570 ts->state &= ~TS_DEAD;
2574 /* For each input argument, add its input register to prefs.
2575 If a temp is used once, this produces a single set bit. */
2576 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) {
2577 ts = arg_temp(op->args[i + nb_oargs]);
2578 if (ts) {
2579 tcg_regset_set_reg(*la_temp_pref(ts),
2580 tcg_target_call_iarg_regs[i]);
2584 break;
2585 case INDEX_op_insn_start:
2586 break;
2587 case INDEX_op_discard:
2588 /* mark the temporary as dead */
2589 ts = arg_temp(op->args[0]);
2590 ts->state = TS_DEAD;
2591 la_reset_pref(ts);
2592 break;
2594 case INDEX_op_add2_i32:
2595 opc_new = INDEX_op_add_i32;
2596 goto do_addsub2;
2597 case INDEX_op_sub2_i32:
2598 opc_new = INDEX_op_sub_i32;
2599 goto do_addsub2;
2600 case INDEX_op_add2_i64:
2601 opc_new = INDEX_op_add_i64;
2602 goto do_addsub2;
2603 case INDEX_op_sub2_i64:
2604 opc_new = INDEX_op_sub_i64;
2605 do_addsub2:
2606 nb_iargs = 4;
2607 nb_oargs = 2;
2608 /* Test if the high part of the operation is dead, but not
2609 the low part. The result can be optimized to a simple
2610 add or sub. This happens often for x86_64 guest when the
2611 cpu mode is set to 32 bit. */
2612 if (arg_temp(op->args[1])->state == TS_DEAD) {
2613 if (arg_temp(op->args[0])->state == TS_DEAD) {
2614 goto do_remove;
2616 /* Replace the opcode and adjust the args in place,
2617 leaving 3 unused args at the end. */
2618 op->opc = opc = opc_new;
2619 op->args[1] = op->args[2];
2620 op->args[2] = op->args[4];
2621 /* Fall through and mark the single-word operation live. */
2622 nb_iargs = 2;
2623 nb_oargs = 1;
2625 goto do_not_remove;
2627 case INDEX_op_mulu2_i32:
2628 opc_new = INDEX_op_mul_i32;
2629 opc_new2 = INDEX_op_muluh_i32;
2630 have_opc_new2 = TCG_TARGET_HAS_muluh_i32;
2631 goto do_mul2;
2632 case INDEX_op_muls2_i32:
2633 opc_new = INDEX_op_mul_i32;
2634 opc_new2 = INDEX_op_mulsh_i32;
2635 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32;
2636 goto do_mul2;
2637 case INDEX_op_mulu2_i64:
2638 opc_new = INDEX_op_mul_i64;
2639 opc_new2 = INDEX_op_muluh_i64;
2640 have_opc_new2 = TCG_TARGET_HAS_muluh_i64;
2641 goto do_mul2;
2642 case INDEX_op_muls2_i64:
2643 opc_new = INDEX_op_mul_i64;
2644 opc_new2 = INDEX_op_mulsh_i64;
2645 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64;
2646 goto do_mul2;
2647 do_mul2:
2648 nb_iargs = 2;
2649 nb_oargs = 2;
2650 if (arg_temp(op->args[1])->state == TS_DEAD) {
2651 if (arg_temp(op->args[0])->state == TS_DEAD) {
2652 /* Both parts of the operation are dead. */
2653 goto do_remove;
2655 /* The high part of the operation is dead; generate the low. */
2656 op->opc = opc = opc_new;
2657 op->args[1] = op->args[2];
2658 op->args[2] = op->args[3];
2659 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) {
2660 /* The low part of the operation is dead; generate the high. */
2661 op->opc = opc = opc_new2;
2662 op->args[0] = op->args[1];
2663 op->args[1] = op->args[2];
2664 op->args[2] = op->args[3];
2665 } else {
2666 goto do_not_remove;
2668 /* Mark the single-word operation live. */
2669 nb_oargs = 1;
2670 goto do_not_remove;
2672 default:
2673 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */
2674 nb_iargs = def->nb_iargs;
2675 nb_oargs = def->nb_oargs;
2677 /* Test if the operation can be removed because all
2678 its outputs are dead. We assume that nb_oargs == 0
2679 implies side effects */
2680 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) {
2681 for (i = 0; i < nb_oargs; i++) {
2682 if (arg_temp(op->args[i])->state != TS_DEAD) {
2683 goto do_not_remove;
2686 goto do_remove;
2688 goto do_not_remove;
2690 do_remove:
2691 tcg_op_remove(s, op);
2692 break;
2694 do_not_remove:
2695 for (i = 0; i < nb_oargs; i++) {
2696 ts = arg_temp(op->args[i]);
2698 /* Remember the preference of the uses that followed. */
2699 op->output_pref[i] = *la_temp_pref(ts);
2701 /* Output args are dead. */
2702 if (ts->state & TS_DEAD) {
2703 arg_life |= DEAD_ARG << i;
2705 if (ts->state & TS_MEM) {
2706 arg_life |= SYNC_ARG << i;
2708 ts->state = TS_DEAD;
2709 la_reset_pref(ts);
2712 /* If end of basic block, update. */
2713 if (def->flags & TCG_OPF_BB_EXIT) {
2714 la_func_end(s, nb_globals, nb_temps);
2715 } else if (def->flags & TCG_OPF_COND_BRANCH) {
2716 la_bb_sync(s, nb_globals, nb_temps);
2717 } else if (def->flags & TCG_OPF_BB_END) {
2718 la_bb_end(s, nb_globals, nb_temps);
2719 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2720 la_global_sync(s, nb_globals);
2721 if (def->flags & TCG_OPF_CALL_CLOBBER) {
2722 la_cross_call(s, nb_temps);
2726 /* Record arguments that die in this opcode. */
2727 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2728 ts = arg_temp(op->args[i]);
2729 if (ts->state & TS_DEAD) {
2730 arg_life |= DEAD_ARG << i;
2734 /* Input arguments are live for preceding opcodes. */
2735 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2736 ts = arg_temp(op->args[i]);
2737 if (ts->state & TS_DEAD) {
2738 /* For operands that were dead, initially allow
2739 all regs for the type. */
2740 *la_temp_pref(ts) = tcg_target_available_regs[ts->type];
2741 ts->state &= ~TS_DEAD;
2745 /* Incorporate constraints for this operand. */
2746 switch (opc) {
2747 case INDEX_op_mov_i32:
2748 case INDEX_op_mov_i64:
2749 /* Note that these are TCG_OPF_NOT_PRESENT and do not
2750 have proper constraints. That said, special case
2751 moves to propagate preferences backward. */
2752 if (IS_DEAD_ARG(1)) {
2753 *la_temp_pref(arg_temp(op->args[0]))
2754 = *la_temp_pref(arg_temp(op->args[1]));
2756 break;
2758 default:
2759 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2760 const TCGArgConstraint *ct = &def->args_ct[i];
2761 TCGRegSet set, *pset;
2763 ts = arg_temp(op->args[i]);
2764 pset = la_temp_pref(ts);
2765 set = *pset;
2767 set &= ct->regs;
2768 if (ct->ialias) {
2769 set &= op->output_pref[ct->alias_index];
2771 /* If the combination is not possible, restart. */
2772 if (set == 0) {
2773 set = ct->regs;
2775 *pset = set;
2777 break;
2779 break;
2781 op->life = arg_life;
2785 /* Liveness analysis: Convert indirect regs to direct temporaries. */
2786 static bool liveness_pass_2(TCGContext *s)
2788 int nb_globals = s->nb_globals;
2789 int nb_temps, i;
2790 bool changes = false;
2791 TCGOp *op, *op_next;
2793 /* Create a temporary for each indirect global. */
2794 for (i = 0; i < nb_globals; ++i) {
2795 TCGTemp *its = &s->temps[i];
2796 if (its->indirect_reg) {
2797 TCGTemp *dts = tcg_temp_alloc(s);
2798 dts->type = its->type;
2799 dts->base_type = its->base_type;
2800 its->state_ptr = dts;
2801 } else {
2802 its->state_ptr = NULL;
2804 /* All globals begin dead. */
2805 its->state = TS_DEAD;
2807 for (nb_temps = s->nb_temps; i < nb_temps; ++i) {
2808 TCGTemp *its = &s->temps[i];
2809 its->state_ptr = NULL;
2810 its->state = TS_DEAD;
2813 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2814 TCGOpcode opc = op->opc;
2815 const TCGOpDef *def = &tcg_op_defs[opc];
2816 TCGLifeData arg_life = op->life;
2817 int nb_iargs, nb_oargs, call_flags;
2818 TCGTemp *arg_ts, *dir_ts;
2820 if (opc == INDEX_op_call) {
2821 nb_oargs = TCGOP_CALLO(op);
2822 nb_iargs = TCGOP_CALLI(op);
2823 call_flags = tcg_call_flags(op);
2824 } else {
2825 nb_iargs = def->nb_iargs;
2826 nb_oargs = def->nb_oargs;
2828 /* Set flags similar to how calls require. */
2829 if (def->flags & TCG_OPF_COND_BRANCH) {
2830 /* Like reading globals: sync_globals */
2831 call_flags = TCG_CALL_NO_WRITE_GLOBALS;
2832 } else if (def->flags & TCG_OPF_BB_END) {
2833 /* Like writing globals: save_globals */
2834 call_flags = 0;
2835 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2836 /* Like reading globals: sync_globals */
2837 call_flags = TCG_CALL_NO_WRITE_GLOBALS;
2838 } else {
2839 /* No effect on globals. */
2840 call_flags = (TCG_CALL_NO_READ_GLOBALS |
2841 TCG_CALL_NO_WRITE_GLOBALS);
2845 /* Make sure that input arguments are available. */
2846 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2847 arg_ts = arg_temp(op->args[i]);
2848 if (arg_ts) {
2849 dir_ts = arg_ts->state_ptr;
2850 if (dir_ts && arg_ts->state == TS_DEAD) {
2851 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32
2852 ? INDEX_op_ld_i32
2853 : INDEX_op_ld_i64);
2854 TCGOp *lop = tcg_op_insert_before(s, op, lopc);
2856 lop->args[0] = temp_arg(dir_ts);
2857 lop->args[1] = temp_arg(arg_ts->mem_base);
2858 lop->args[2] = arg_ts->mem_offset;
2860 /* Loaded, but synced with memory. */
2861 arg_ts->state = TS_MEM;
2866 /* Perform input replacement, and mark inputs that became dead.
2867 No action is required except keeping temp_state up to date
2868 so that we reload when needed. */
2869 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2870 arg_ts = arg_temp(op->args[i]);
2871 if (arg_ts) {
2872 dir_ts = arg_ts->state_ptr;
2873 if (dir_ts) {
2874 op->args[i] = temp_arg(dir_ts);
2875 changes = true;
2876 if (IS_DEAD_ARG(i)) {
2877 arg_ts->state = TS_DEAD;
2883 /* Liveness analysis should ensure that the following are
2884 all correct, for call sites and basic block end points. */
2885 if (call_flags & TCG_CALL_NO_READ_GLOBALS) {
2886 /* Nothing to do */
2887 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) {
2888 for (i = 0; i < nb_globals; ++i) {
2889 /* Liveness should see that globals are synced back,
2890 that is, either TS_DEAD or TS_MEM. */
2891 arg_ts = &s->temps[i];
2892 tcg_debug_assert(arg_ts->state_ptr == 0
2893 || arg_ts->state != 0);
2895 } else {
2896 for (i = 0; i < nb_globals; ++i) {
2897 /* Liveness should see that globals are saved back,
2898 that is, TS_DEAD, waiting to be reloaded. */
2899 arg_ts = &s->temps[i];
2900 tcg_debug_assert(arg_ts->state_ptr == 0
2901 || arg_ts->state == TS_DEAD);
2905 /* Outputs become available. */
2906 if (opc == INDEX_op_mov_i32 || opc == INDEX_op_mov_i64) {
2907 arg_ts = arg_temp(op->args[0]);
2908 dir_ts = arg_ts->state_ptr;
2909 if (dir_ts) {
2910 op->args[0] = temp_arg(dir_ts);
2911 changes = true;
2913 /* The output is now live and modified. */
2914 arg_ts->state = 0;
2916 if (NEED_SYNC_ARG(0)) {
2917 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
2918 ? INDEX_op_st_i32
2919 : INDEX_op_st_i64);
2920 TCGOp *sop = tcg_op_insert_after(s, op, sopc);
2921 TCGTemp *out_ts = dir_ts;
2923 if (IS_DEAD_ARG(0)) {
2924 out_ts = arg_temp(op->args[1]);
2925 arg_ts->state = TS_DEAD;
2926 tcg_op_remove(s, op);
2927 } else {
2928 arg_ts->state = TS_MEM;
2931 sop->args[0] = temp_arg(out_ts);
2932 sop->args[1] = temp_arg(arg_ts->mem_base);
2933 sop->args[2] = arg_ts->mem_offset;
2934 } else {
2935 tcg_debug_assert(!IS_DEAD_ARG(0));
2938 } else {
2939 for (i = 0; i < nb_oargs; i++) {
2940 arg_ts = arg_temp(op->args[i]);
2941 dir_ts = arg_ts->state_ptr;
2942 if (!dir_ts) {
2943 continue;
2945 op->args[i] = temp_arg(dir_ts);
2946 changes = true;
2948 /* The output is now live and modified. */
2949 arg_ts->state = 0;
2951 /* Sync outputs upon their last write. */
2952 if (NEED_SYNC_ARG(i)) {
2953 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
2954 ? INDEX_op_st_i32
2955 : INDEX_op_st_i64);
2956 TCGOp *sop = tcg_op_insert_after(s, op, sopc);
2958 sop->args[0] = temp_arg(dir_ts);
2959 sop->args[1] = temp_arg(arg_ts->mem_base);
2960 sop->args[2] = arg_ts->mem_offset;
2962 arg_ts->state = TS_MEM;
2964 /* Drop outputs that are dead. */
2965 if (IS_DEAD_ARG(i)) {
2966 arg_ts->state = TS_DEAD;
2972 return changes;
2975 #ifdef CONFIG_DEBUG_TCG
2976 static void dump_regs(TCGContext *s)
2978 TCGTemp *ts;
2979 int i;
2980 char buf[64];
2982 for(i = 0; i < s->nb_temps; i++) {
2983 ts = &s->temps[i];
2984 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
2985 switch(ts->val_type) {
2986 case TEMP_VAL_REG:
2987 printf("%s", tcg_target_reg_names[ts->reg]);
2988 break;
2989 case TEMP_VAL_MEM:
2990 printf("%d(%s)", (int)ts->mem_offset,
2991 tcg_target_reg_names[ts->mem_base->reg]);
2992 break;
2993 case TEMP_VAL_CONST:
2994 printf("$0x%" PRIx64, ts->val);
2995 break;
2996 case TEMP_VAL_DEAD:
2997 printf("D");
2998 break;
2999 default:
3000 printf("???");
3001 break;
3003 printf("\n");
3006 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
3007 if (s->reg_to_temp[i] != NULL) {
3008 printf("%s: %s\n",
3009 tcg_target_reg_names[i],
3010 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i]));
3015 static void check_regs(TCGContext *s)
3017 int reg;
3018 int k;
3019 TCGTemp *ts;
3020 char buf[64];
3022 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
3023 ts = s->reg_to_temp[reg];
3024 if (ts != NULL) {
3025 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) {
3026 printf("Inconsistency for register %s:\n",
3027 tcg_target_reg_names[reg]);
3028 goto fail;
3032 for (k = 0; k < s->nb_temps; k++) {
3033 ts = &s->temps[k];
3034 if (ts->val_type == TEMP_VAL_REG
3035 && ts->kind != TEMP_FIXED
3036 && s->reg_to_temp[ts->reg] != ts) {
3037 printf("Inconsistency for temp %s:\n",
3038 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
3039 fail:
3040 printf("reg state:\n");
3041 dump_regs(s);
3042 tcg_abort();
3046 #endif
3048 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts)
3050 intptr_t off, size, align;
3052 switch (ts->type) {
3053 case TCG_TYPE_I32:
3054 size = align = 4;
3055 break;
3056 case TCG_TYPE_I64:
3057 case TCG_TYPE_V64:
3058 size = align = 8;
3059 break;
3060 case TCG_TYPE_V128:
3061 size = align = 16;
3062 break;
3063 case TCG_TYPE_V256:
3064 /* Note that we do not require aligned storage for V256. */
3065 size = 32, align = 16;
3066 break;
3067 default:
3068 g_assert_not_reached();
3072 * Assume the stack is sufficiently aligned.
3073 * This affects e.g. ARM NEON, where we have 8 byte stack alignment
3074 * and do not require 16 byte vector alignment. This seems slightly
3075 * easier than fully parameterizing the above switch statement.
3077 align = MIN(TCG_TARGET_STACK_ALIGN, align);
3078 off = ROUND_UP(s->current_frame_offset, align);
3080 /* If we've exhausted the stack frame, restart with a smaller TB. */
3081 if (off + size > s->frame_end) {
3082 tcg_raise_tb_overflow(s);
3084 s->current_frame_offset = off + size;
3086 ts->mem_offset = off;
3087 #if defined(__sparc__)
3088 ts->mem_offset += TCG_TARGET_STACK_BIAS;
3089 #endif
3090 ts->mem_base = s->frame_temp;
3091 ts->mem_allocated = 1;
3094 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet);
3096 /* Mark a temporary as free or dead. If 'free_or_dead' is negative,
3097 mark it free; otherwise mark it dead. */
3098 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead)
3100 TCGTempVal new_type;
3102 switch (ts->kind) {
3103 case TEMP_FIXED:
3104 return;
3105 case TEMP_GLOBAL:
3106 case TEMP_LOCAL:
3107 new_type = TEMP_VAL_MEM;
3108 break;
3109 case TEMP_NORMAL:
3110 new_type = free_or_dead < 0 ? TEMP_VAL_MEM : TEMP_VAL_DEAD;
3111 break;
3112 case TEMP_CONST:
3113 new_type = TEMP_VAL_CONST;
3114 break;
3115 default:
3116 g_assert_not_reached();
3118 if (ts->val_type == TEMP_VAL_REG) {
3119 s->reg_to_temp[ts->reg] = NULL;
3121 ts->val_type = new_type;
3124 /* Mark a temporary as dead. */
3125 static inline void temp_dead(TCGContext *s, TCGTemp *ts)
3127 temp_free_or_dead(s, ts, 1);
3130 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary
3131 registers needs to be allocated to store a constant. If 'free_or_dead'
3132 is non-zero, subsequently release the temporary; if it is positive, the
3133 temp is dead; if it is negative, the temp is free. */
3134 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs,
3135 TCGRegSet preferred_regs, int free_or_dead)
3137 if (!temp_readonly(ts) && !ts->mem_coherent) {
3138 if (!ts->mem_allocated) {
3139 temp_allocate_frame(s, ts);
3141 switch (ts->val_type) {
3142 case TEMP_VAL_CONST:
3143 /* If we're going to free the temp immediately, then we won't
3144 require it later in a register, so attempt to store the
3145 constant to memory directly. */
3146 if (free_or_dead
3147 && tcg_out_sti(s, ts->type, ts->val,
3148 ts->mem_base->reg, ts->mem_offset)) {
3149 break;
3151 temp_load(s, ts, tcg_target_available_regs[ts->type],
3152 allocated_regs, preferred_regs);
3153 /* fallthrough */
3155 case TEMP_VAL_REG:
3156 tcg_out_st(s, ts->type, ts->reg,
3157 ts->mem_base->reg, ts->mem_offset);
3158 break;
3160 case TEMP_VAL_MEM:
3161 break;
3163 case TEMP_VAL_DEAD:
3164 default:
3165 tcg_abort();
3167 ts->mem_coherent = 1;
3169 if (free_or_dead) {
3170 temp_free_or_dead(s, ts, free_or_dead);
3174 /* free register 'reg' by spilling the corresponding temporary if necessary */
3175 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs)
3177 TCGTemp *ts = s->reg_to_temp[reg];
3178 if (ts != NULL) {
3179 temp_sync(s, ts, allocated_regs, 0, -1);
3184 * tcg_reg_alloc:
3185 * @required_regs: Set of registers in which we must allocate.
3186 * @allocated_regs: Set of registers which must be avoided.
3187 * @preferred_regs: Set of registers we should prefer.
3188 * @rev: True if we search the registers in "indirect" order.
3190 * The allocated register must be in @required_regs & ~@allocated_regs,
3191 * but if we can put it in @preferred_regs we may save a move later.
3193 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs,
3194 TCGRegSet allocated_regs,
3195 TCGRegSet preferred_regs, bool rev)
3197 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order);
3198 TCGRegSet reg_ct[2];
3199 const int *order;
3201 reg_ct[1] = required_regs & ~allocated_regs;
3202 tcg_debug_assert(reg_ct[1] != 0);
3203 reg_ct[0] = reg_ct[1] & preferred_regs;
3205 /* Skip the preferred_regs option if it cannot be satisfied,
3206 or if the preference made no difference. */
3207 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1];
3209 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
3211 /* Try free registers, preferences first. */
3212 for (j = f; j < 2; j++) {
3213 TCGRegSet set = reg_ct[j];
3215 if (tcg_regset_single(set)) {
3216 /* One register in the set. */
3217 TCGReg reg = tcg_regset_first(set);
3218 if (s->reg_to_temp[reg] == NULL) {
3219 return reg;
3221 } else {
3222 for (i = 0; i < n; i++) {
3223 TCGReg reg = order[i];
3224 if (s->reg_to_temp[reg] == NULL &&
3225 tcg_regset_test_reg(set, reg)) {
3226 return reg;
3232 /* We must spill something. */
3233 for (j = f; j < 2; j++) {
3234 TCGRegSet set = reg_ct[j];
3236 if (tcg_regset_single(set)) {
3237 /* One register in the set. */
3238 TCGReg reg = tcg_regset_first(set);
3239 tcg_reg_free(s, reg, allocated_regs);
3240 return reg;
3241 } else {
3242 for (i = 0; i < n; i++) {
3243 TCGReg reg = order[i];
3244 if (tcg_regset_test_reg(set, reg)) {
3245 tcg_reg_free(s, reg, allocated_regs);
3246 return reg;
3252 tcg_abort();
3255 /* Make sure the temporary is in a register. If needed, allocate the register
3256 from DESIRED while avoiding ALLOCATED. */
3257 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs,
3258 TCGRegSet allocated_regs, TCGRegSet preferred_regs)
3260 TCGReg reg;
3262 switch (ts->val_type) {
3263 case TEMP_VAL_REG:
3264 return;
3265 case TEMP_VAL_CONST:
3266 reg = tcg_reg_alloc(s, desired_regs, allocated_regs,
3267 preferred_regs, ts->indirect_base);
3268 if (ts->type <= TCG_TYPE_I64) {
3269 tcg_out_movi(s, ts->type, reg, ts->val);
3270 } else {
3271 uint64_t val = ts->val;
3272 MemOp vece = MO_64;
3275 * Find the minimal vector element that matches the constant.
3276 * The targets will, in general, have to do this search anyway,
3277 * do this generically.
3279 if (val == dup_const(MO_8, val)) {
3280 vece = MO_8;
3281 } else if (val == dup_const(MO_16, val)) {
3282 vece = MO_16;
3283 } else if (val == dup_const(MO_32, val)) {
3284 vece = MO_32;
3287 tcg_out_dupi_vec(s, ts->type, vece, reg, ts->val);
3289 ts->mem_coherent = 0;
3290 break;
3291 case TEMP_VAL_MEM:
3292 reg = tcg_reg_alloc(s, desired_regs, allocated_regs,
3293 preferred_regs, ts->indirect_base);
3294 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset);
3295 ts->mem_coherent = 1;
3296 break;
3297 case TEMP_VAL_DEAD:
3298 default:
3299 tcg_abort();
3301 ts->reg = reg;
3302 ts->val_type = TEMP_VAL_REG;
3303 s->reg_to_temp[reg] = ts;
3306 /* Save a temporary to memory. 'allocated_regs' is used in case a
3307 temporary registers needs to be allocated to store a constant. */
3308 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs)
3310 /* The liveness analysis already ensures that globals are back
3311 in memory. Keep an tcg_debug_assert for safety. */
3312 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || temp_readonly(ts));
3315 /* save globals to their canonical location and assume they can be
3316 modified be the following code. 'allocated_regs' is used in case a
3317 temporary registers needs to be allocated to store a constant. */
3318 static void save_globals(TCGContext *s, TCGRegSet allocated_regs)
3320 int i, n;
3322 for (i = 0, n = s->nb_globals; i < n; i++) {
3323 temp_save(s, &s->temps[i], allocated_regs);
3327 /* sync globals to their canonical location and assume they can be
3328 read by the following code. 'allocated_regs' is used in case a
3329 temporary registers needs to be allocated to store a constant. */
3330 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs)
3332 int i, n;
3334 for (i = 0, n = s->nb_globals; i < n; i++) {
3335 TCGTemp *ts = &s->temps[i];
3336 tcg_debug_assert(ts->val_type != TEMP_VAL_REG
3337 || ts->kind == TEMP_FIXED
3338 || ts->mem_coherent);
3342 /* at the end of a basic block, we assume all temporaries are dead and
3343 all globals are stored at their canonical location. */
3344 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs)
3346 int i;
3348 for (i = s->nb_globals; i < s->nb_temps; i++) {
3349 TCGTemp *ts = &s->temps[i];
3351 switch (ts->kind) {
3352 case TEMP_LOCAL:
3353 temp_save(s, ts, allocated_regs);
3354 break;
3355 case TEMP_NORMAL:
3356 /* The liveness analysis already ensures that temps are dead.
3357 Keep an tcg_debug_assert for safety. */
3358 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD);
3359 break;
3360 case TEMP_CONST:
3361 /* Similarly, we should have freed any allocated register. */
3362 tcg_debug_assert(ts->val_type == TEMP_VAL_CONST);
3363 break;
3364 default:
3365 g_assert_not_reached();
3369 save_globals(s, allocated_regs);
3373 * At a conditional branch, we assume all temporaries are dead and
3374 * all globals and local temps are synced to their location.
3376 static void tcg_reg_alloc_cbranch(TCGContext *s, TCGRegSet allocated_regs)
3378 sync_globals(s, allocated_regs);
3380 for (int i = s->nb_globals; i < s->nb_temps; i++) {
3381 TCGTemp *ts = &s->temps[i];
3383 * The liveness analysis already ensures that temps are dead.
3384 * Keep tcg_debug_asserts for safety.
3386 switch (ts->kind) {
3387 case TEMP_LOCAL:
3388 tcg_debug_assert(ts->val_type != TEMP_VAL_REG || ts->mem_coherent);
3389 break;
3390 case TEMP_NORMAL:
3391 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD);
3392 break;
3393 case TEMP_CONST:
3394 break;
3395 default:
3396 g_assert_not_reached();
3402 * Specialized code generation for INDEX_op_mov_* with a constant.
3404 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots,
3405 tcg_target_ulong val, TCGLifeData arg_life,
3406 TCGRegSet preferred_regs)
3408 /* ENV should not be modified. */
3409 tcg_debug_assert(!temp_readonly(ots));
3411 /* The movi is not explicitly generated here. */
3412 if (ots->val_type == TEMP_VAL_REG) {
3413 s->reg_to_temp[ots->reg] = NULL;
3415 ots->val_type = TEMP_VAL_CONST;
3416 ots->val = val;
3417 ots->mem_coherent = 0;
3418 if (NEED_SYNC_ARG(0)) {
3419 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0));
3420 } else if (IS_DEAD_ARG(0)) {
3421 temp_dead(s, ots);
3426 * Specialized code generation for INDEX_op_mov_*.
3428 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op)
3430 const TCGLifeData arg_life = op->life;
3431 TCGRegSet allocated_regs, preferred_regs;
3432 TCGTemp *ts, *ots;
3433 TCGType otype, itype;
3435 allocated_regs = s->reserved_regs;
3436 preferred_regs = op->output_pref[0];
3437 ots = arg_temp(op->args[0]);
3438 ts = arg_temp(op->args[1]);
3440 /* ENV should not be modified. */
3441 tcg_debug_assert(!temp_readonly(ots));
3443 /* Note that otype != itype for no-op truncation. */
3444 otype = ots->type;
3445 itype = ts->type;
3447 if (ts->val_type == TEMP_VAL_CONST) {
3448 /* propagate constant or generate sti */
3449 tcg_target_ulong val = ts->val;
3450 if (IS_DEAD_ARG(1)) {
3451 temp_dead(s, ts);
3453 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs);
3454 return;
3457 /* If the source value is in memory we're going to be forced
3458 to have it in a register in order to perform the copy. Copy
3459 the SOURCE value into its own register first, that way we
3460 don't have to reload SOURCE the next time it is used. */
3461 if (ts->val_type == TEMP_VAL_MEM) {
3462 temp_load(s, ts, tcg_target_available_regs[itype],
3463 allocated_regs, preferred_regs);
3466 tcg_debug_assert(ts->val_type == TEMP_VAL_REG);
3467 if (IS_DEAD_ARG(0)) {
3468 /* mov to a non-saved dead register makes no sense (even with
3469 liveness analysis disabled). */
3470 tcg_debug_assert(NEED_SYNC_ARG(0));
3471 if (!ots->mem_allocated) {
3472 temp_allocate_frame(s, ots);
3474 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset);
3475 if (IS_DEAD_ARG(1)) {
3476 temp_dead(s, ts);
3478 temp_dead(s, ots);
3479 } else {
3480 if (IS_DEAD_ARG(1) && ts->kind != TEMP_FIXED) {
3481 /* the mov can be suppressed */
3482 if (ots->val_type == TEMP_VAL_REG) {
3483 s->reg_to_temp[ots->reg] = NULL;
3485 ots->reg = ts->reg;
3486 temp_dead(s, ts);
3487 } else {
3488 if (ots->val_type != TEMP_VAL_REG) {
3489 /* When allocating a new register, make sure to not spill the
3490 input one. */
3491 tcg_regset_set_reg(allocated_regs, ts->reg);
3492 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype],
3493 allocated_regs, preferred_regs,
3494 ots->indirect_base);
3496 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) {
3498 * Cross register class move not supported.
3499 * Store the source register into the destination slot
3500 * and leave the destination temp as TEMP_VAL_MEM.
3502 assert(!temp_readonly(ots));
3503 if (!ts->mem_allocated) {
3504 temp_allocate_frame(s, ots);
3506 tcg_out_st(s, ts->type, ts->reg,
3507 ots->mem_base->reg, ots->mem_offset);
3508 ots->mem_coherent = 1;
3509 temp_free_or_dead(s, ots, -1);
3510 return;
3513 ots->val_type = TEMP_VAL_REG;
3514 ots->mem_coherent = 0;
3515 s->reg_to_temp[ots->reg] = ots;
3516 if (NEED_SYNC_ARG(0)) {
3517 temp_sync(s, ots, allocated_regs, 0, 0);
3523 * Specialized code generation for INDEX_op_dup_vec.
3525 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op)
3527 const TCGLifeData arg_life = op->life;
3528 TCGRegSet dup_out_regs, dup_in_regs;
3529 TCGTemp *its, *ots;
3530 TCGType itype, vtype;
3531 intptr_t endian_fixup;
3532 unsigned vece;
3533 bool ok;
3535 ots = arg_temp(op->args[0]);
3536 its = arg_temp(op->args[1]);
3538 /* ENV should not be modified. */
3539 tcg_debug_assert(!temp_readonly(ots));
3541 itype = its->type;
3542 vece = TCGOP_VECE(op);
3543 vtype = TCGOP_VECL(op) + TCG_TYPE_V64;
3545 if (its->val_type == TEMP_VAL_CONST) {
3546 /* Propagate constant via movi -> dupi. */
3547 tcg_target_ulong val = its->val;
3548 if (IS_DEAD_ARG(1)) {
3549 temp_dead(s, its);
3551 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]);
3552 return;
3555 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].regs;
3556 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].regs;
3558 /* Allocate the output register now. */
3559 if (ots->val_type != TEMP_VAL_REG) {
3560 TCGRegSet allocated_regs = s->reserved_regs;
3562 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) {
3563 /* Make sure to not spill the input register. */
3564 tcg_regset_set_reg(allocated_regs, its->reg);
3566 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs,
3567 op->output_pref[0], ots->indirect_base);
3568 ots->val_type = TEMP_VAL_REG;
3569 ots->mem_coherent = 0;
3570 s->reg_to_temp[ots->reg] = ots;
3573 switch (its->val_type) {
3574 case TEMP_VAL_REG:
3576 * The dup constriaints must be broad, covering all possible VECE.
3577 * However, tcg_op_dup_vec() gets to see the VECE and we allow it
3578 * to fail, indicating that extra moves are required for that case.
3580 if (tcg_regset_test_reg(dup_in_regs, its->reg)) {
3581 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) {
3582 goto done;
3584 /* Try again from memory or a vector input register. */
3586 if (!its->mem_coherent) {
3588 * The input register is not synced, and so an extra store
3589 * would be required to use memory. Attempt an integer-vector
3590 * register move first. We do not have a TCGRegSet for this.
3592 if (tcg_out_mov(s, itype, ots->reg, its->reg)) {
3593 break;
3595 /* Sync the temp back to its slot and load from there. */
3596 temp_sync(s, its, s->reserved_regs, 0, 0);
3598 /* fall through */
3600 case TEMP_VAL_MEM:
3601 #if HOST_BIG_ENDIAN
3602 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8;
3603 endian_fixup -= 1 << vece;
3604 #else
3605 endian_fixup = 0;
3606 #endif
3607 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg,
3608 its->mem_offset + endian_fixup)) {
3609 goto done;
3611 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset);
3612 break;
3614 default:
3615 g_assert_not_reached();
3618 /* We now have a vector input register, so dup must succeed. */
3619 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg);
3620 tcg_debug_assert(ok);
3622 done:
3623 if (IS_DEAD_ARG(1)) {
3624 temp_dead(s, its);
3626 if (NEED_SYNC_ARG(0)) {
3627 temp_sync(s, ots, s->reserved_regs, 0, 0);
3629 if (IS_DEAD_ARG(0)) {
3630 temp_dead(s, ots);
3634 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op)
3636 const TCGLifeData arg_life = op->life;
3637 const TCGOpDef * const def = &tcg_op_defs[op->opc];
3638 TCGRegSet i_allocated_regs;
3639 TCGRegSet o_allocated_regs;
3640 int i, k, nb_iargs, nb_oargs;
3641 TCGReg reg;
3642 TCGArg arg;
3643 const TCGArgConstraint *arg_ct;
3644 TCGTemp *ts;
3645 TCGArg new_args[TCG_MAX_OP_ARGS];
3646 int const_args[TCG_MAX_OP_ARGS];
3648 nb_oargs = def->nb_oargs;
3649 nb_iargs = def->nb_iargs;
3651 /* copy constants */
3652 memcpy(new_args + nb_oargs + nb_iargs,
3653 op->args + nb_oargs + nb_iargs,
3654 sizeof(TCGArg) * def->nb_cargs);
3656 i_allocated_regs = s->reserved_regs;
3657 o_allocated_regs = s->reserved_regs;
3659 /* satisfy input constraints */
3660 for (k = 0; k < nb_iargs; k++) {
3661 TCGRegSet i_preferred_regs, o_preferred_regs;
3663 i = def->args_ct[nb_oargs + k].sort_index;
3664 arg = op->args[i];
3665 arg_ct = &def->args_ct[i];
3666 ts = arg_temp(arg);
3668 if (ts->val_type == TEMP_VAL_CONST
3669 && tcg_target_const_match(ts->val, ts->type, arg_ct->ct)) {
3670 /* constant is OK for instruction */
3671 const_args[i] = 1;
3672 new_args[i] = ts->val;
3673 continue;
3676 i_preferred_regs = o_preferred_regs = 0;
3677 if (arg_ct->ialias) {
3678 o_preferred_regs = op->output_pref[arg_ct->alias_index];
3681 * If the input is readonly, then it cannot also be an
3682 * output and aliased to itself. If the input is not
3683 * dead after the instruction, we must allocate a new
3684 * register and move it.
3686 if (temp_readonly(ts) || !IS_DEAD_ARG(i)) {
3687 goto allocate_in_reg;
3691 * Check if the current register has already been allocated
3692 * for another input aliased to an output.
3694 if (ts->val_type == TEMP_VAL_REG) {
3695 reg = ts->reg;
3696 for (int k2 = 0; k2 < k; k2++) {
3697 int i2 = def->args_ct[nb_oargs + k2].sort_index;
3698 if (def->args_ct[i2].ialias && reg == new_args[i2]) {
3699 goto allocate_in_reg;
3703 i_preferred_regs = o_preferred_regs;
3706 temp_load(s, ts, arg_ct->regs, i_allocated_regs, i_preferred_regs);
3707 reg = ts->reg;
3709 if (!tcg_regset_test_reg(arg_ct->regs, reg)) {
3710 allocate_in_reg:
3712 * Allocate a new register matching the constraint
3713 * and move the temporary register into it.
3715 temp_load(s, ts, tcg_target_available_regs[ts->type],
3716 i_allocated_regs, 0);
3717 reg = tcg_reg_alloc(s, arg_ct->regs, i_allocated_regs,
3718 o_preferred_regs, ts->indirect_base);
3719 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) {
3721 * Cross register class move not supported. Sync the
3722 * temp back to its slot and load from there.
3724 temp_sync(s, ts, i_allocated_regs, 0, 0);
3725 tcg_out_ld(s, ts->type, reg,
3726 ts->mem_base->reg, ts->mem_offset);
3729 new_args[i] = reg;
3730 const_args[i] = 0;
3731 tcg_regset_set_reg(i_allocated_regs, reg);
3734 /* mark dead temporaries and free the associated registers */
3735 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
3736 if (IS_DEAD_ARG(i)) {
3737 temp_dead(s, arg_temp(op->args[i]));
3741 if (def->flags & TCG_OPF_COND_BRANCH) {
3742 tcg_reg_alloc_cbranch(s, i_allocated_regs);
3743 } else if (def->flags & TCG_OPF_BB_END) {
3744 tcg_reg_alloc_bb_end(s, i_allocated_regs);
3745 } else {
3746 if (def->flags & TCG_OPF_CALL_CLOBBER) {
3747 /* XXX: permit generic clobber register list ? */
3748 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3749 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3750 tcg_reg_free(s, i, i_allocated_regs);
3754 if (def->flags & TCG_OPF_SIDE_EFFECTS) {
3755 /* sync globals if the op has side effects and might trigger
3756 an exception. */
3757 sync_globals(s, i_allocated_regs);
3760 /* satisfy the output constraints */
3761 for(k = 0; k < nb_oargs; k++) {
3762 i = def->args_ct[k].sort_index;
3763 arg = op->args[i];
3764 arg_ct = &def->args_ct[i];
3765 ts = arg_temp(arg);
3767 /* ENV should not be modified. */
3768 tcg_debug_assert(!temp_readonly(ts));
3770 if (arg_ct->oalias && !const_args[arg_ct->alias_index]) {
3771 reg = new_args[arg_ct->alias_index];
3772 } else if (arg_ct->newreg) {
3773 reg = tcg_reg_alloc(s, arg_ct->regs,
3774 i_allocated_regs | o_allocated_regs,
3775 op->output_pref[k], ts->indirect_base);
3776 } else {
3777 reg = tcg_reg_alloc(s, arg_ct->regs, o_allocated_regs,
3778 op->output_pref[k], ts->indirect_base);
3780 tcg_regset_set_reg(o_allocated_regs, reg);
3781 if (ts->val_type == TEMP_VAL_REG) {
3782 s->reg_to_temp[ts->reg] = NULL;
3784 ts->val_type = TEMP_VAL_REG;
3785 ts->reg = reg;
3787 * Temp value is modified, so the value kept in memory is
3788 * potentially not the same.
3790 ts->mem_coherent = 0;
3791 s->reg_to_temp[reg] = ts;
3792 new_args[i] = reg;
3796 /* emit instruction */
3797 if (def->flags & TCG_OPF_VECTOR) {
3798 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op),
3799 new_args, const_args);
3800 } else {
3801 tcg_out_op(s, op->opc, new_args, const_args);
3804 /* move the outputs in the correct register if needed */
3805 for(i = 0; i < nb_oargs; i++) {
3806 ts = arg_temp(op->args[i]);
3808 /* ENV should not be modified. */
3809 tcg_debug_assert(!temp_readonly(ts));
3811 if (NEED_SYNC_ARG(i)) {
3812 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i));
3813 } else if (IS_DEAD_ARG(i)) {
3814 temp_dead(s, ts);
3819 static bool tcg_reg_alloc_dup2(TCGContext *s, const TCGOp *op)
3821 const TCGLifeData arg_life = op->life;
3822 TCGTemp *ots, *itsl, *itsh;
3823 TCGType vtype = TCGOP_VECL(op) + TCG_TYPE_V64;
3825 /* This opcode is only valid for 32-bit hosts, for 64-bit elements. */
3826 tcg_debug_assert(TCG_TARGET_REG_BITS == 32);
3827 tcg_debug_assert(TCGOP_VECE(op) == MO_64);
3829 ots = arg_temp(op->args[0]);
3830 itsl = arg_temp(op->args[1]);
3831 itsh = arg_temp(op->args[2]);
3833 /* ENV should not be modified. */
3834 tcg_debug_assert(!temp_readonly(ots));
3836 /* Allocate the output register now. */
3837 if (ots->val_type != TEMP_VAL_REG) {
3838 TCGRegSet allocated_regs = s->reserved_regs;
3839 TCGRegSet dup_out_regs =
3840 tcg_op_defs[INDEX_op_dup_vec].args_ct[0].regs;
3842 /* Make sure to not spill the input registers. */
3843 if (!IS_DEAD_ARG(1) && itsl->val_type == TEMP_VAL_REG) {
3844 tcg_regset_set_reg(allocated_regs, itsl->reg);
3846 if (!IS_DEAD_ARG(2) && itsh->val_type == TEMP_VAL_REG) {
3847 tcg_regset_set_reg(allocated_regs, itsh->reg);
3850 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs,
3851 op->output_pref[0], ots->indirect_base);
3852 ots->val_type = TEMP_VAL_REG;
3853 ots->mem_coherent = 0;
3854 s->reg_to_temp[ots->reg] = ots;
3857 /* Promote dup2 of immediates to dupi_vec. */
3858 if (itsl->val_type == TEMP_VAL_CONST && itsh->val_type == TEMP_VAL_CONST) {
3859 uint64_t val = deposit64(itsl->val, 32, 32, itsh->val);
3860 MemOp vece = MO_64;
3862 if (val == dup_const(MO_8, val)) {
3863 vece = MO_8;
3864 } else if (val == dup_const(MO_16, val)) {
3865 vece = MO_16;
3866 } else if (val == dup_const(MO_32, val)) {
3867 vece = MO_32;
3870 tcg_out_dupi_vec(s, vtype, vece, ots->reg, val);
3871 goto done;
3874 /* If the two inputs form one 64-bit value, try dupm_vec. */
3875 if (itsl + 1 == itsh && itsl->base_type == TCG_TYPE_I64) {
3876 if (!itsl->mem_coherent) {
3877 temp_sync(s, itsl, s->reserved_regs, 0, 0);
3879 if (!itsh->mem_coherent) {
3880 temp_sync(s, itsh, s->reserved_regs, 0, 0);
3882 #if HOST_BIG_ENDIAN
3883 TCGTemp *its = itsh;
3884 #else
3885 TCGTemp *its = itsl;
3886 #endif
3887 if (tcg_out_dupm_vec(s, vtype, MO_64, ots->reg,
3888 its->mem_base->reg, its->mem_offset)) {
3889 goto done;
3893 /* Fall back to generic expansion. */
3894 return false;
3896 done:
3897 if (IS_DEAD_ARG(1)) {
3898 temp_dead(s, itsl);
3900 if (IS_DEAD_ARG(2)) {
3901 temp_dead(s, itsh);
3903 if (NEED_SYNC_ARG(0)) {
3904 temp_sync(s, ots, s->reserved_regs, 0, IS_DEAD_ARG(0));
3905 } else if (IS_DEAD_ARG(0)) {
3906 temp_dead(s, ots);
3908 return true;
3911 #ifdef TCG_TARGET_STACK_GROWSUP
3912 #define STACK_DIR(x) (-(x))
3913 #else
3914 #define STACK_DIR(x) (x)
3915 #endif
3917 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op)
3919 const int nb_oargs = TCGOP_CALLO(op);
3920 const int nb_iargs = TCGOP_CALLI(op);
3921 const TCGLifeData arg_life = op->life;
3922 const TCGHelperInfo *info;
3923 int flags, nb_regs, i;
3924 TCGReg reg;
3925 TCGArg arg;
3926 TCGTemp *ts;
3927 intptr_t stack_offset;
3928 size_t call_stack_size;
3929 tcg_insn_unit *func_addr;
3930 int allocate_args;
3931 TCGRegSet allocated_regs;
3933 func_addr = tcg_call_func(op);
3934 info = tcg_call_info(op);
3935 flags = info->flags;
3937 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
3938 if (nb_regs > nb_iargs) {
3939 nb_regs = nb_iargs;
3942 /* assign stack slots first */
3943 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long);
3944 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) &
3945 ~(TCG_TARGET_STACK_ALIGN - 1);
3946 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE);
3947 if (allocate_args) {
3948 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed,
3949 preallocate call stack */
3950 tcg_abort();
3953 stack_offset = TCG_TARGET_CALL_STACK_OFFSET;
3954 for (i = nb_regs; i < nb_iargs; i++) {
3955 arg = op->args[nb_oargs + i];
3956 #ifdef TCG_TARGET_STACK_GROWSUP
3957 stack_offset -= sizeof(tcg_target_long);
3958 #endif
3959 if (arg != TCG_CALL_DUMMY_ARG) {
3960 ts = arg_temp(arg);
3961 temp_load(s, ts, tcg_target_available_regs[ts->type],
3962 s->reserved_regs, 0);
3963 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset);
3965 #ifndef TCG_TARGET_STACK_GROWSUP
3966 stack_offset += sizeof(tcg_target_long);
3967 #endif
3970 /* assign input registers */
3971 allocated_regs = s->reserved_regs;
3972 for (i = 0; i < nb_regs; i++) {
3973 arg = op->args[nb_oargs + i];
3974 if (arg != TCG_CALL_DUMMY_ARG) {
3975 ts = arg_temp(arg);
3976 reg = tcg_target_call_iarg_regs[i];
3978 if (ts->val_type == TEMP_VAL_REG) {
3979 if (ts->reg != reg) {
3980 tcg_reg_free(s, reg, allocated_regs);
3981 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) {
3983 * Cross register class move not supported. Sync the
3984 * temp back to its slot and load from there.
3986 temp_sync(s, ts, allocated_regs, 0, 0);
3987 tcg_out_ld(s, ts->type, reg,
3988 ts->mem_base->reg, ts->mem_offset);
3991 } else {
3992 TCGRegSet arg_set = 0;
3994 tcg_reg_free(s, reg, allocated_regs);
3995 tcg_regset_set_reg(arg_set, reg);
3996 temp_load(s, ts, arg_set, allocated_regs, 0);
3999 tcg_regset_set_reg(allocated_regs, reg);
4003 /* mark dead temporaries and free the associated registers */
4004 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
4005 if (IS_DEAD_ARG(i)) {
4006 temp_dead(s, arg_temp(op->args[i]));
4010 /* clobber call registers */
4011 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
4012 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
4013 tcg_reg_free(s, i, allocated_regs);
4017 /* Save globals if they might be written by the helper, sync them if
4018 they might be read. */
4019 if (flags & TCG_CALL_NO_READ_GLOBALS) {
4020 /* Nothing to do */
4021 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) {
4022 sync_globals(s, allocated_regs);
4023 } else {
4024 save_globals(s, allocated_regs);
4027 #ifdef CONFIG_TCG_INTERPRETER
4029 gpointer hash = (gpointer)(uintptr_t)info->typemask;
4030 ffi_cif *cif = g_hash_table_lookup(ffi_table, hash);
4031 assert(cif != NULL);
4032 tcg_out_call(s, func_addr, cif);
4034 #else
4035 tcg_out_call(s, func_addr);
4036 #endif
4038 /* assign output registers and emit moves if needed */
4039 for(i = 0; i < nb_oargs; i++) {
4040 arg = op->args[i];
4041 ts = arg_temp(arg);
4043 /* ENV should not be modified. */
4044 tcg_debug_assert(!temp_readonly(ts));
4046 reg = tcg_target_call_oarg_regs[i];
4047 tcg_debug_assert(s->reg_to_temp[reg] == NULL);
4048 if (ts->val_type == TEMP_VAL_REG) {
4049 s->reg_to_temp[ts->reg] = NULL;
4051 ts->val_type = TEMP_VAL_REG;
4052 ts->reg = reg;
4053 ts->mem_coherent = 0;
4054 s->reg_to_temp[reg] = ts;
4055 if (NEED_SYNC_ARG(i)) {
4056 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i));
4057 } else if (IS_DEAD_ARG(i)) {
4058 temp_dead(s, ts);
4063 #ifdef CONFIG_PROFILER
4065 /* avoid copy/paste errors */
4066 #define PROF_ADD(to, from, field) \
4067 do { \
4068 (to)->field += qatomic_read(&((from)->field)); \
4069 } while (0)
4071 #define PROF_MAX(to, from, field) \
4072 do { \
4073 typeof((from)->field) val__ = qatomic_read(&((from)->field)); \
4074 if (val__ > (to)->field) { \
4075 (to)->field = val__; \
4077 } while (0)
4079 /* Pass in a zero'ed @prof */
4080 static inline
4081 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table)
4083 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
4084 unsigned int i;
4086 for (i = 0; i < n_ctxs; i++) {
4087 TCGContext *s = qatomic_read(&tcg_ctxs[i]);
4088 const TCGProfile *orig = &s->prof;
4090 if (counters) {
4091 PROF_ADD(prof, orig, cpu_exec_time);
4092 PROF_ADD(prof, orig, tb_count1);
4093 PROF_ADD(prof, orig, tb_count);
4094 PROF_ADD(prof, orig, op_count);
4095 PROF_MAX(prof, orig, op_count_max);
4096 PROF_ADD(prof, orig, temp_count);
4097 PROF_MAX(prof, orig, temp_count_max);
4098 PROF_ADD(prof, orig, del_op_count);
4099 PROF_ADD(prof, orig, code_in_len);
4100 PROF_ADD(prof, orig, code_out_len);
4101 PROF_ADD(prof, orig, search_out_len);
4102 PROF_ADD(prof, orig, interm_time);
4103 PROF_ADD(prof, orig, code_time);
4104 PROF_ADD(prof, orig, la_time);
4105 PROF_ADD(prof, orig, opt_time);
4106 PROF_ADD(prof, orig, restore_count);
4107 PROF_ADD(prof, orig, restore_time);
4109 if (table) {
4110 int i;
4112 for (i = 0; i < NB_OPS; i++) {
4113 PROF_ADD(prof, orig, table_op_count[i]);
4119 #undef PROF_ADD
4120 #undef PROF_MAX
4122 static void tcg_profile_snapshot_counters(TCGProfile *prof)
4124 tcg_profile_snapshot(prof, true, false);
4127 static void tcg_profile_snapshot_table(TCGProfile *prof)
4129 tcg_profile_snapshot(prof, false, true);
4132 void tcg_dump_op_count(GString *buf)
4134 TCGProfile prof = {};
4135 int i;
4137 tcg_profile_snapshot_table(&prof);
4138 for (i = 0; i < NB_OPS; i++) {
4139 g_string_append_printf(buf, "%s %" PRId64 "\n", tcg_op_defs[i].name,
4140 prof.table_op_count[i]);
4144 int64_t tcg_cpu_exec_time(void)
4146 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
4147 unsigned int i;
4148 int64_t ret = 0;
4150 for (i = 0; i < n_ctxs; i++) {
4151 const TCGContext *s = qatomic_read(&tcg_ctxs[i]);
4152 const TCGProfile *prof = &s->prof;
4154 ret += qatomic_read(&prof->cpu_exec_time);
4156 return ret;
4158 #else
4159 void tcg_dump_op_count(GString *buf)
4161 g_string_append_printf(buf, "[TCG profiler not compiled]\n");
4164 int64_t tcg_cpu_exec_time(void)
4166 error_report("%s: TCG profiler not compiled", __func__);
4167 exit(EXIT_FAILURE);
4169 #endif
4172 int tcg_gen_code(TCGContext *s, TranslationBlock *tb)
4174 #ifdef CONFIG_PROFILER
4175 TCGProfile *prof = &s->prof;
4176 #endif
4177 int i, num_insns;
4178 TCGOp *op;
4180 #ifdef CONFIG_PROFILER
4182 int n = 0;
4184 QTAILQ_FOREACH(op, &s->ops, link) {
4185 n++;
4187 qatomic_set(&prof->op_count, prof->op_count + n);
4188 if (n > prof->op_count_max) {
4189 qatomic_set(&prof->op_count_max, n);
4192 n = s->nb_temps;
4193 qatomic_set(&prof->temp_count, prof->temp_count + n);
4194 if (n > prof->temp_count_max) {
4195 qatomic_set(&prof->temp_count_max, n);
4198 #endif
4200 #ifdef DEBUG_DISAS
4201 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP)
4202 && qemu_log_in_addr_range(tb->pc))) {
4203 FILE *logfile = qemu_log_lock();
4204 qemu_log("OP:\n");
4205 tcg_dump_ops(s, false);
4206 qemu_log("\n");
4207 qemu_log_unlock(logfile);
4209 #endif
4211 #ifdef CONFIG_DEBUG_TCG
4212 /* Ensure all labels referenced have been emitted. */
4214 TCGLabel *l;
4215 bool error = false;
4217 QSIMPLEQ_FOREACH(l, &s->labels, next) {
4218 if (unlikely(!l->present) && l->refs) {
4219 qemu_log_mask(CPU_LOG_TB_OP,
4220 "$L%d referenced but not present.\n", l->id);
4221 error = true;
4224 assert(!error);
4226 #endif
4228 #ifdef CONFIG_PROFILER
4229 qatomic_set(&prof->opt_time, prof->opt_time - profile_getclock());
4230 #endif
4232 #ifdef USE_TCG_OPTIMIZATIONS
4233 tcg_optimize(s);
4234 #endif
4236 #ifdef CONFIG_PROFILER
4237 qatomic_set(&prof->opt_time, prof->opt_time + profile_getclock());
4238 qatomic_set(&prof->la_time, prof->la_time - profile_getclock());
4239 #endif
4241 reachable_code_pass(s);
4242 liveness_pass_1(s);
4244 if (s->nb_indirects > 0) {
4245 #ifdef DEBUG_DISAS
4246 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND)
4247 && qemu_log_in_addr_range(tb->pc))) {
4248 FILE *logfile = qemu_log_lock();
4249 qemu_log("OP before indirect lowering:\n");
4250 tcg_dump_ops(s, false);
4251 qemu_log("\n");
4252 qemu_log_unlock(logfile);
4254 #endif
4255 /* Replace indirect temps with direct temps. */
4256 if (liveness_pass_2(s)) {
4257 /* If changes were made, re-run liveness. */
4258 liveness_pass_1(s);
4262 #ifdef CONFIG_PROFILER
4263 qatomic_set(&prof->la_time, prof->la_time + profile_getclock());
4264 #endif
4266 #ifdef DEBUG_DISAS
4267 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT)
4268 && qemu_log_in_addr_range(tb->pc))) {
4269 FILE *logfile = qemu_log_lock();
4270 qemu_log("OP after optimization and liveness analysis:\n");
4271 tcg_dump_ops(s, true);
4272 qemu_log("\n");
4273 qemu_log_unlock(logfile);
4275 #endif
4277 tcg_reg_alloc_start(s);
4280 * Reset the buffer pointers when restarting after overflow.
4281 * TODO: Move this into translate-all.c with the rest of the
4282 * buffer management. Having only this done here is confusing.
4284 s->code_buf = tcg_splitwx_to_rw(tb->tc.ptr);
4285 s->code_ptr = s->code_buf;
4287 #ifdef TCG_TARGET_NEED_LDST_LABELS
4288 QSIMPLEQ_INIT(&s->ldst_labels);
4289 #endif
4290 #ifdef TCG_TARGET_NEED_POOL_LABELS
4291 s->pool_labels = NULL;
4292 #endif
4294 num_insns = -1;
4295 QTAILQ_FOREACH(op, &s->ops, link) {
4296 TCGOpcode opc = op->opc;
4298 #ifdef CONFIG_PROFILER
4299 qatomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1);
4300 #endif
4302 switch (opc) {
4303 case INDEX_op_mov_i32:
4304 case INDEX_op_mov_i64:
4305 case INDEX_op_mov_vec:
4306 tcg_reg_alloc_mov(s, op);
4307 break;
4308 case INDEX_op_dup_vec:
4309 tcg_reg_alloc_dup(s, op);
4310 break;
4311 case INDEX_op_insn_start:
4312 if (num_insns >= 0) {
4313 size_t off = tcg_current_code_size(s);
4314 s->gen_insn_end_off[num_insns] = off;
4315 /* Assert that we do not overflow our stored offset. */
4316 assert(s->gen_insn_end_off[num_insns] == off);
4318 num_insns++;
4319 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
4320 target_ulong a;
4321 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
4322 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
4323 #else
4324 a = op->args[i];
4325 #endif
4326 s->gen_insn_data[num_insns][i] = a;
4328 break;
4329 case INDEX_op_discard:
4330 temp_dead(s, arg_temp(op->args[0]));
4331 break;
4332 case INDEX_op_set_label:
4333 tcg_reg_alloc_bb_end(s, s->reserved_regs);
4334 tcg_out_label(s, arg_label(op->args[0]));
4335 break;
4336 case INDEX_op_call:
4337 tcg_reg_alloc_call(s, op);
4338 break;
4339 case INDEX_op_dup2_vec:
4340 if (tcg_reg_alloc_dup2(s, op)) {
4341 break;
4343 /* fall through */
4344 default:
4345 /* Sanity check that we've not introduced any unhandled opcodes. */
4346 tcg_debug_assert(tcg_op_supported(opc));
4347 /* Note: in order to speed up the code, it would be much
4348 faster to have specialized register allocator functions for
4349 some common argument patterns */
4350 tcg_reg_alloc_op(s, op);
4351 break;
4353 #ifdef CONFIG_DEBUG_TCG
4354 check_regs(s);
4355 #endif
4356 /* Test for (pending) buffer overflow. The assumption is that any
4357 one operation beginning below the high water mark cannot overrun
4358 the buffer completely. Thus we can test for overflow after
4359 generating code without having to check during generation. */
4360 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) {
4361 return -1;
4363 /* Test for TB overflow, as seen by gen_insn_end_off. */
4364 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) {
4365 return -2;
4368 tcg_debug_assert(num_insns >= 0);
4369 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s);
4371 /* Generate TB finalization at the end of block */
4372 #ifdef TCG_TARGET_NEED_LDST_LABELS
4373 i = tcg_out_ldst_finalize(s);
4374 if (i < 0) {
4375 return i;
4377 #endif
4378 #ifdef TCG_TARGET_NEED_POOL_LABELS
4379 i = tcg_out_pool_finalize(s);
4380 if (i < 0) {
4381 return i;
4383 #endif
4384 if (!tcg_resolve_relocs(s)) {
4385 return -2;
4388 #ifndef CONFIG_TCG_INTERPRETER
4389 /* flush instruction cache */
4390 flush_idcache_range((uintptr_t)tcg_splitwx_to_rx(s->code_buf),
4391 (uintptr_t)s->code_buf,
4392 tcg_ptr_byte_diff(s->code_ptr, s->code_buf));
4393 #endif
4395 return tcg_current_code_size(s);
4398 #ifdef CONFIG_PROFILER
4399 void tcg_dump_info(GString *buf)
4401 TCGProfile prof = {};
4402 const TCGProfile *s;
4403 int64_t tb_count;
4404 int64_t tb_div_count;
4405 int64_t tot;
4407 tcg_profile_snapshot_counters(&prof);
4408 s = &prof;
4409 tb_count = s->tb_count;
4410 tb_div_count = tb_count ? tb_count : 1;
4411 tot = s->interm_time + s->code_time;
4413 g_string_append_printf(buf, "JIT cycles %" PRId64
4414 " (%0.3f s at 2.4 GHz)\n",
4415 tot, tot / 2.4e9);
4416 g_string_append_printf(buf, "translated TBs %" PRId64
4417 " (aborted=%" PRId64 " %0.1f%%)\n",
4418 tb_count, s->tb_count1 - tb_count,
4419 (double)(s->tb_count1 - s->tb_count)
4420 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0);
4421 g_string_append_printf(buf, "avg ops/TB %0.1f max=%d\n",
4422 (double)s->op_count / tb_div_count, s->op_count_max);
4423 g_string_append_printf(buf, "deleted ops/TB %0.2f\n",
4424 (double)s->del_op_count / tb_div_count);
4425 g_string_append_printf(buf, "avg temps/TB %0.2f max=%d\n",
4426 (double)s->temp_count / tb_div_count,
4427 s->temp_count_max);
4428 g_string_append_printf(buf, "avg host code/TB %0.1f\n",
4429 (double)s->code_out_len / tb_div_count);
4430 g_string_append_printf(buf, "avg search data/TB %0.1f\n",
4431 (double)s->search_out_len / tb_div_count);
4433 g_string_append_printf(buf, "cycles/op %0.1f\n",
4434 s->op_count ? (double)tot / s->op_count : 0);
4435 g_string_append_printf(buf, "cycles/in byte %0.1f\n",
4436 s->code_in_len ? (double)tot / s->code_in_len : 0);
4437 g_string_append_printf(buf, "cycles/out byte %0.1f\n",
4438 s->code_out_len ? (double)tot / s->code_out_len : 0);
4439 g_string_append_printf(buf, "cycles/search byte %0.1f\n",
4440 s->search_out_len ?
4441 (double)tot / s->search_out_len : 0);
4442 if (tot == 0) {
4443 tot = 1;
4445 g_string_append_printf(buf, " gen_interm time %0.1f%%\n",
4446 (double)s->interm_time / tot * 100.0);
4447 g_string_append_printf(buf, " gen_code time %0.1f%%\n",
4448 (double)s->code_time / tot * 100.0);
4449 g_string_append_printf(buf, "optim./code time %0.1f%%\n",
4450 (double)s->opt_time / (s->code_time ?
4451 s->code_time : 1)
4452 * 100.0);
4453 g_string_append_printf(buf, "liveness/code time %0.1f%%\n",
4454 (double)s->la_time / (s->code_time ?
4455 s->code_time : 1) * 100.0);
4456 g_string_append_printf(buf, "cpu_restore count %" PRId64 "\n",
4457 s->restore_count);
4458 g_string_append_printf(buf, " avg cycles %0.1f\n",
4459 s->restore_count ?
4460 (double)s->restore_time / s->restore_count : 0);
4462 #else
4463 void tcg_dump_info(GString *buf)
4465 g_string_append_printf(buf, "[TCG profiler not compiled]\n");
4467 #endif
4469 #ifdef ELF_HOST_MACHINE
4470 /* In order to use this feature, the backend needs to do three things:
4472 (1) Define ELF_HOST_MACHINE to indicate both what value to
4473 put into the ELF image and to indicate support for the feature.
4475 (2) Define tcg_register_jit. This should create a buffer containing
4476 the contents of a .debug_frame section that describes the post-
4477 prologue unwind info for the tcg machine.
4479 (3) Call tcg_register_jit_int, with the constructed .debug_frame.
4482 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */
4483 typedef enum {
4484 JIT_NOACTION = 0,
4485 JIT_REGISTER_FN,
4486 JIT_UNREGISTER_FN
4487 } jit_actions_t;
4489 struct jit_code_entry {
4490 struct jit_code_entry *next_entry;
4491 struct jit_code_entry *prev_entry;
4492 const void *symfile_addr;
4493 uint64_t symfile_size;
4496 struct jit_descriptor {
4497 uint32_t version;
4498 uint32_t action_flag;
4499 struct jit_code_entry *relevant_entry;
4500 struct jit_code_entry *first_entry;
4503 void __jit_debug_register_code(void) __attribute__((noinline));
4504 void __jit_debug_register_code(void)
4506 asm("");
4509 /* Must statically initialize the version, because GDB may check
4510 the version before we can set it. */
4511 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
4513 /* End GDB interface. */
4515 static int find_string(const char *strtab, const char *str)
4517 const char *p = strtab + 1;
4519 while (1) {
4520 if (strcmp(p, str) == 0) {
4521 return p - strtab;
4523 p += strlen(p) + 1;
4527 static void tcg_register_jit_int(const void *buf_ptr, size_t buf_size,
4528 const void *debug_frame,
4529 size_t debug_frame_size)
4531 struct __attribute__((packed)) DebugInfo {
4532 uint32_t len;
4533 uint16_t version;
4534 uint32_t abbrev;
4535 uint8_t ptr_size;
4536 uint8_t cu_die;
4537 uint16_t cu_lang;
4538 uintptr_t cu_low_pc;
4539 uintptr_t cu_high_pc;
4540 uint8_t fn_die;
4541 char fn_name[16];
4542 uintptr_t fn_low_pc;
4543 uintptr_t fn_high_pc;
4544 uint8_t cu_eoc;
4547 struct ElfImage {
4548 ElfW(Ehdr) ehdr;
4549 ElfW(Phdr) phdr;
4550 ElfW(Shdr) shdr[7];
4551 ElfW(Sym) sym[2];
4552 struct DebugInfo di;
4553 uint8_t da[24];
4554 char str[80];
4557 struct ElfImage *img;
4559 static const struct ElfImage img_template = {
4560 .ehdr = {
4561 .e_ident[EI_MAG0] = ELFMAG0,
4562 .e_ident[EI_MAG1] = ELFMAG1,
4563 .e_ident[EI_MAG2] = ELFMAG2,
4564 .e_ident[EI_MAG3] = ELFMAG3,
4565 .e_ident[EI_CLASS] = ELF_CLASS,
4566 .e_ident[EI_DATA] = ELF_DATA,
4567 .e_ident[EI_VERSION] = EV_CURRENT,
4568 .e_type = ET_EXEC,
4569 .e_machine = ELF_HOST_MACHINE,
4570 .e_version = EV_CURRENT,
4571 .e_phoff = offsetof(struct ElfImage, phdr),
4572 .e_shoff = offsetof(struct ElfImage, shdr),
4573 .e_ehsize = sizeof(ElfW(Shdr)),
4574 .e_phentsize = sizeof(ElfW(Phdr)),
4575 .e_phnum = 1,
4576 .e_shentsize = sizeof(ElfW(Shdr)),
4577 .e_shnum = ARRAY_SIZE(img->shdr),
4578 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1,
4579 #ifdef ELF_HOST_FLAGS
4580 .e_flags = ELF_HOST_FLAGS,
4581 #endif
4582 #ifdef ELF_OSABI
4583 .e_ident[EI_OSABI] = ELF_OSABI,
4584 #endif
4586 .phdr = {
4587 .p_type = PT_LOAD,
4588 .p_flags = PF_X,
4590 .shdr = {
4591 [0] = { .sh_type = SHT_NULL },
4592 /* Trick: The contents of code_gen_buffer are not present in
4593 this fake ELF file; that got allocated elsewhere. Therefore
4594 we mark .text as SHT_NOBITS (similar to .bss) so that readers
4595 will not look for contents. We can record any address. */
4596 [1] = { /* .text */
4597 .sh_type = SHT_NOBITS,
4598 .sh_flags = SHF_EXECINSTR | SHF_ALLOC,
4600 [2] = { /* .debug_info */
4601 .sh_type = SHT_PROGBITS,
4602 .sh_offset = offsetof(struct ElfImage, di),
4603 .sh_size = sizeof(struct DebugInfo),
4605 [3] = { /* .debug_abbrev */
4606 .sh_type = SHT_PROGBITS,
4607 .sh_offset = offsetof(struct ElfImage, da),
4608 .sh_size = sizeof(img->da),
4610 [4] = { /* .debug_frame */
4611 .sh_type = SHT_PROGBITS,
4612 .sh_offset = sizeof(struct ElfImage),
4614 [5] = { /* .symtab */
4615 .sh_type = SHT_SYMTAB,
4616 .sh_offset = offsetof(struct ElfImage, sym),
4617 .sh_size = sizeof(img->sym),
4618 .sh_info = 1,
4619 .sh_link = ARRAY_SIZE(img->shdr) - 1,
4620 .sh_entsize = sizeof(ElfW(Sym)),
4622 [6] = { /* .strtab */
4623 .sh_type = SHT_STRTAB,
4624 .sh_offset = offsetof(struct ElfImage, str),
4625 .sh_size = sizeof(img->str),
4628 .sym = {
4629 [1] = { /* code_gen_buffer */
4630 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC),
4631 .st_shndx = 1,
4634 .di = {
4635 .len = sizeof(struct DebugInfo) - 4,
4636 .version = 2,
4637 .ptr_size = sizeof(void *),
4638 .cu_die = 1,
4639 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */
4640 .fn_die = 2,
4641 .fn_name = "code_gen_buffer"
4643 .da = {
4644 1, /* abbrev number (the cu) */
4645 0x11, 1, /* DW_TAG_compile_unit, has children */
4646 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */
4647 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
4648 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
4649 0, 0, /* end of abbrev */
4650 2, /* abbrev number (the fn) */
4651 0x2e, 0, /* DW_TAG_subprogram, no children */
4652 0x3, 0x8, /* DW_AT_name, DW_FORM_string */
4653 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
4654 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
4655 0, 0, /* end of abbrev */
4656 0 /* no more abbrev */
4658 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0"
4659 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer",
4662 /* We only need a single jit entry; statically allocate it. */
4663 static struct jit_code_entry one_entry;
4665 uintptr_t buf = (uintptr_t)buf_ptr;
4666 size_t img_size = sizeof(struct ElfImage) + debug_frame_size;
4667 DebugFrameHeader *dfh;
4669 img = g_malloc(img_size);
4670 *img = img_template;
4672 img->phdr.p_vaddr = buf;
4673 img->phdr.p_paddr = buf;
4674 img->phdr.p_memsz = buf_size;
4676 img->shdr[1].sh_name = find_string(img->str, ".text");
4677 img->shdr[1].sh_addr = buf;
4678 img->shdr[1].sh_size = buf_size;
4680 img->shdr[2].sh_name = find_string(img->str, ".debug_info");
4681 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev");
4683 img->shdr[4].sh_name = find_string(img->str, ".debug_frame");
4684 img->shdr[4].sh_size = debug_frame_size;
4686 img->shdr[5].sh_name = find_string(img->str, ".symtab");
4687 img->shdr[6].sh_name = find_string(img->str, ".strtab");
4689 img->sym[1].st_name = find_string(img->str, "code_gen_buffer");
4690 img->sym[1].st_value = buf;
4691 img->sym[1].st_size = buf_size;
4693 img->di.cu_low_pc = buf;
4694 img->di.cu_high_pc = buf + buf_size;
4695 img->di.fn_low_pc = buf;
4696 img->di.fn_high_pc = buf + buf_size;
4698 dfh = (DebugFrameHeader *)(img + 1);
4699 memcpy(dfh, debug_frame, debug_frame_size);
4700 dfh->fde.func_start = buf;
4701 dfh->fde.func_len = buf_size;
4703 #ifdef DEBUG_JIT
4704 /* Enable this block to be able to debug the ELF image file creation.
4705 One can use readelf, objdump, or other inspection utilities. */
4707 FILE *f = fopen("/tmp/qemu.jit", "w+b");
4708 if (f) {
4709 if (fwrite(img, img_size, 1, f) != img_size) {
4710 /* Avoid stupid unused return value warning for fwrite. */
4712 fclose(f);
4715 #endif
4717 one_entry.symfile_addr = img;
4718 one_entry.symfile_size = img_size;
4720 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
4721 __jit_debug_descriptor.relevant_entry = &one_entry;
4722 __jit_debug_descriptor.first_entry = &one_entry;
4723 __jit_debug_register_code();
4725 #else
4726 /* No support for the feature. Provide the entry point expected by exec.c,
4727 and implement the internal function we declared earlier. */
4729 static void tcg_register_jit_int(const void *buf, size_t size,
4730 const void *debug_frame,
4731 size_t debug_frame_size)
4735 void tcg_register_jit(const void *buf, size_t buf_size)
4738 #endif /* ELF_HOST_MACHINE */
4740 #if !TCG_TARGET_MAYBE_vec
4741 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...)
4743 g_assert_not_reached();
4745 #endif