virtio-balloon: Fix possible guest memory corruption with inflates & deflates
[qemu.git] / exec.c
blob86a38d3b3b96a8aef4eb3f5f2af4db8b970eb6bd
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90 #endif
92 #ifdef TARGET_PAGE_BITS_VARY
93 int target_page_bits;
94 bool target_page_bits_decided;
95 #endif
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
102 /* 0 = Do not count executed instructions.
103 1 = Precise instruction counting.
104 2 = Adaptive rate instruction counting. */
105 int use_icount;
107 uintptr_t qemu_host_page_size;
108 intptr_t qemu_host_page_mask;
110 bool set_preferred_target_page_bits(int bits)
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
117 #ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
123 target_page_bits = bits;
125 #endif
126 return true;
129 #if !defined(CONFIG_USER_ONLY)
131 static void finalize_target_page_bits(void)
133 #ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
137 target_page_bits_decided = true;
138 #endif
141 typedef struct PhysPageEntry PhysPageEntry;
143 struct PhysPageEntry {
144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
145 uint32_t skip : 6;
146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
147 uint32_t ptr : 26;
150 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define ADDR_SPACE_BITS 64
155 #define P_L2_BITS 9
156 #define P_L2_SIZE (1 << P_L2_BITS)
158 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160 typedef PhysPageEntry Node[P_L2_SIZE];
162 typedef struct PhysPageMap {
163 struct rcu_head rcu;
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171 } PhysPageMap;
173 struct AddressSpaceDispatch {
174 MemoryRegionSection *mru_section;
175 /* This is a multi-level map on the physical address space.
176 * The bottom level has pointers to MemoryRegionSections.
178 PhysPageEntry phys_map;
179 PhysPageMap map;
182 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
183 typedef struct subpage_t {
184 MemoryRegion iomem;
185 FlatView *fv;
186 hwaddr base;
187 uint16_t sub_section[];
188 } subpage_t;
190 #define PHYS_SECTION_UNASSIGNED 0
191 #define PHYS_SECTION_NOTDIRTY 1
192 #define PHYS_SECTION_ROM 2
193 #define PHYS_SECTION_WATCH 3
195 static void io_mem_init(void);
196 static void memory_map_init(void);
197 static void tcg_commit(MemoryListener *listener);
199 static MemoryRegion io_mem_watch;
202 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
203 * @cpu: the CPU whose AddressSpace this is
204 * @as: the AddressSpace itself
205 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
206 * @tcg_as_listener: listener for tracking changes to the AddressSpace
208 struct CPUAddressSpace {
209 CPUState *cpu;
210 AddressSpace *as;
211 struct AddressSpaceDispatch *memory_dispatch;
212 MemoryListener tcg_as_listener;
215 struct DirtyBitmapSnapshot {
216 ram_addr_t start;
217 ram_addr_t end;
218 unsigned long dirty[];
221 #endif
223 #if !defined(CONFIG_USER_ONLY)
225 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
227 static unsigned alloc_hint = 16;
228 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
231 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
232 alloc_hint = map->nodes_nb_alloc;
236 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
238 unsigned i;
239 uint32_t ret;
240 PhysPageEntry e;
241 PhysPageEntry *p;
243 ret = map->nodes_nb++;
244 p = map->nodes[ret];
245 assert(ret != PHYS_MAP_NODE_NIL);
246 assert(ret != map->nodes_nb_alloc);
248 e.skip = leaf ? 0 : 1;
249 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
250 for (i = 0; i < P_L2_SIZE; ++i) {
251 memcpy(&p[i], &e, sizeof(e));
253 return ret;
256 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
257 hwaddr *index, hwaddr *nb, uint16_t leaf,
258 int level)
260 PhysPageEntry *p;
261 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
263 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
264 lp->ptr = phys_map_node_alloc(map, level == 0);
266 p = map->nodes[lp->ptr];
267 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
269 while (*nb && lp < &p[P_L2_SIZE]) {
270 if ((*index & (step - 1)) == 0 && *nb >= step) {
271 lp->skip = 0;
272 lp->ptr = leaf;
273 *index += step;
274 *nb -= step;
275 } else {
276 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
278 ++lp;
282 static void phys_page_set(AddressSpaceDispatch *d,
283 hwaddr index, hwaddr nb,
284 uint16_t leaf)
286 /* Wildly overreserve - it doesn't matter much. */
287 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
289 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
292 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
293 * and update our entry so we can skip it and go directly to the destination.
295 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
297 unsigned valid_ptr = P_L2_SIZE;
298 int valid = 0;
299 PhysPageEntry *p;
300 int i;
302 if (lp->ptr == PHYS_MAP_NODE_NIL) {
303 return;
306 p = nodes[lp->ptr];
307 for (i = 0; i < P_L2_SIZE; i++) {
308 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
309 continue;
312 valid_ptr = i;
313 valid++;
314 if (p[i].skip) {
315 phys_page_compact(&p[i], nodes);
319 /* We can only compress if there's only one child. */
320 if (valid != 1) {
321 return;
324 assert(valid_ptr < P_L2_SIZE);
326 /* Don't compress if it won't fit in the # of bits we have. */
327 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
328 return;
331 lp->ptr = p[valid_ptr].ptr;
332 if (!p[valid_ptr].skip) {
333 /* If our only child is a leaf, make this a leaf. */
334 /* By design, we should have made this node a leaf to begin with so we
335 * should never reach here.
336 * But since it's so simple to handle this, let's do it just in case we
337 * change this rule.
339 lp->skip = 0;
340 } else {
341 lp->skip += p[valid_ptr].skip;
345 void address_space_dispatch_compact(AddressSpaceDispatch *d)
347 if (d->phys_map.skip) {
348 phys_page_compact(&d->phys_map, d->map.nodes);
352 static inline bool section_covers_addr(const MemoryRegionSection *section,
353 hwaddr addr)
355 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
356 * the section must cover the entire address space.
358 return int128_gethi(section->size) ||
359 range_covers_byte(section->offset_within_address_space,
360 int128_getlo(section->size), addr);
363 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
365 PhysPageEntry lp = d->phys_map, *p;
366 Node *nodes = d->map.nodes;
367 MemoryRegionSection *sections = d->map.sections;
368 hwaddr index = addr >> TARGET_PAGE_BITS;
369 int i;
371 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
372 if (lp.ptr == PHYS_MAP_NODE_NIL) {
373 return &sections[PHYS_SECTION_UNASSIGNED];
375 p = nodes[lp.ptr];
376 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
379 if (section_covers_addr(&sections[lp.ptr], addr)) {
380 return &sections[lp.ptr];
381 } else {
382 return &sections[PHYS_SECTION_UNASSIGNED];
386 /* Called from RCU critical section */
387 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
388 hwaddr addr,
389 bool resolve_subpage)
391 MemoryRegionSection *section = atomic_read(&d->mru_section);
392 subpage_t *subpage;
394 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
395 !section_covers_addr(section, addr)) {
396 section = phys_page_find(d, addr);
397 atomic_set(&d->mru_section, section);
399 if (resolve_subpage && section->mr->subpage) {
400 subpage = container_of(section->mr, subpage_t, iomem);
401 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
403 return section;
406 /* Called from RCU critical section */
407 static MemoryRegionSection *
408 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
409 hwaddr *plen, bool resolve_subpage)
411 MemoryRegionSection *section;
412 MemoryRegion *mr;
413 Int128 diff;
415 section = address_space_lookup_region(d, addr, resolve_subpage);
416 /* Compute offset within MemoryRegionSection */
417 addr -= section->offset_within_address_space;
419 /* Compute offset within MemoryRegion */
420 *xlat = addr + section->offset_within_region;
422 mr = section->mr;
424 /* MMIO registers can be expected to perform full-width accesses based only
425 * on their address, without considering adjacent registers that could
426 * decode to completely different MemoryRegions. When such registers
427 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
428 * regions overlap wildly. For this reason we cannot clamp the accesses
429 * here.
431 * If the length is small (as is the case for address_space_ldl/stl),
432 * everything works fine. If the incoming length is large, however,
433 * the caller really has to do the clamping through memory_access_size.
435 if (memory_region_is_ram(mr)) {
436 diff = int128_sub(section->size, int128_make64(addr));
437 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
439 return section;
443 * address_space_translate_iommu - translate an address through an IOMMU
444 * memory region and then through the target address space.
446 * @iommu_mr: the IOMMU memory region that we start the translation from
447 * @addr: the address to be translated through the MMU
448 * @xlat: the translated address offset within the destination memory region.
449 * It cannot be %NULL.
450 * @plen_out: valid read/write length of the translated address. It
451 * cannot be %NULL.
452 * @page_mask_out: page mask for the translated address. This
453 * should only be meaningful for IOMMU translated
454 * addresses, since there may be huge pages that this bit
455 * would tell. It can be %NULL if we don't care about it.
456 * @is_write: whether the translation operation is for write
457 * @is_mmio: whether this can be MMIO, set true if it can
458 * @target_as: the address space targeted by the IOMMU
459 * @attrs: transaction attributes
461 * This function is called from RCU critical section. It is the common
462 * part of flatview_do_translate and address_space_translate_cached.
464 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
465 hwaddr *xlat,
466 hwaddr *plen_out,
467 hwaddr *page_mask_out,
468 bool is_write,
469 bool is_mmio,
470 AddressSpace **target_as,
471 MemTxAttrs attrs)
473 MemoryRegionSection *section;
474 hwaddr page_mask = (hwaddr)-1;
476 do {
477 hwaddr addr = *xlat;
478 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
479 int iommu_idx = 0;
480 IOMMUTLBEntry iotlb;
482 if (imrc->attrs_to_index) {
483 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
486 iotlb = imrc->translate(iommu_mr, addr, is_write ?
487 IOMMU_WO : IOMMU_RO, iommu_idx);
489 if (!(iotlb.perm & (1 << is_write))) {
490 goto unassigned;
493 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
494 | (addr & iotlb.addr_mask));
495 page_mask &= iotlb.addr_mask;
496 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
497 *target_as = iotlb.target_as;
499 section = address_space_translate_internal(
500 address_space_to_dispatch(iotlb.target_as), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 } while (unlikely(iommu_mr));
506 if (page_mask_out) {
507 *page_mask_out = page_mask;
509 return *section;
511 unassigned:
512 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
516 * flatview_do_translate - translate an address in FlatView
518 * @fv: the flat view that we want to translate on
519 * @addr: the address to be translated in above address space
520 * @xlat: the translated address offset within memory region. It
521 * cannot be @NULL.
522 * @plen_out: valid read/write length of the translated address. It
523 * can be @NULL when we don't care about it.
524 * @page_mask_out: page mask for the translated address. This
525 * should only be meaningful for IOMMU translated
526 * addresses, since there may be huge pages that this bit
527 * would tell. It can be @NULL if we don't care about it.
528 * @is_write: whether the translation operation is for write
529 * @is_mmio: whether this can be MMIO, set true if it can
530 * @target_as: the address space targeted by the IOMMU
531 * @attrs: memory transaction attributes
533 * This function is called from RCU critical section
535 static MemoryRegionSection flatview_do_translate(FlatView *fv,
536 hwaddr addr,
537 hwaddr *xlat,
538 hwaddr *plen_out,
539 hwaddr *page_mask_out,
540 bool is_write,
541 bool is_mmio,
542 AddressSpace **target_as,
543 MemTxAttrs attrs)
545 MemoryRegionSection *section;
546 IOMMUMemoryRegion *iommu_mr;
547 hwaddr plen = (hwaddr)(-1);
549 if (!plen_out) {
550 plen_out = &plen;
553 section = address_space_translate_internal(
554 flatview_to_dispatch(fv), addr, xlat,
555 plen_out, is_mmio);
557 iommu_mr = memory_region_get_iommu(section->mr);
558 if (unlikely(iommu_mr)) {
559 return address_space_translate_iommu(iommu_mr, xlat,
560 plen_out, page_mask_out,
561 is_write, is_mmio,
562 target_as, attrs);
564 if (page_mask_out) {
565 /* Not behind an IOMMU, use default page size. */
566 *page_mask_out = ~TARGET_PAGE_MASK;
569 return *section;
572 /* Called from RCU critical section */
573 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
574 bool is_write, MemTxAttrs attrs)
576 MemoryRegionSection section;
577 hwaddr xlat, page_mask;
580 * This can never be MMIO, and we don't really care about plen,
581 * but page mask.
583 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
584 NULL, &page_mask, is_write, false, &as,
585 attrs);
587 /* Illegal translation */
588 if (section.mr == &io_mem_unassigned) {
589 goto iotlb_fail;
592 /* Convert memory region offset into address space offset */
593 xlat += section.offset_within_address_space -
594 section.offset_within_region;
596 return (IOMMUTLBEntry) {
597 .target_as = as,
598 .iova = addr & ~page_mask,
599 .translated_addr = xlat & ~page_mask,
600 .addr_mask = page_mask,
601 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
602 .perm = IOMMU_RW,
605 iotlb_fail:
606 return (IOMMUTLBEntry) {0};
609 /* Called from RCU critical section */
610 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
611 hwaddr *plen, bool is_write,
612 MemTxAttrs attrs)
614 MemoryRegion *mr;
615 MemoryRegionSection section;
616 AddressSpace *as = NULL;
618 /* This can be MMIO, so setup MMIO bit. */
619 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
620 is_write, true, &as, attrs);
621 mr = section.mr;
623 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
624 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
625 *plen = MIN(page, *plen);
628 return mr;
631 typedef struct TCGIOMMUNotifier {
632 IOMMUNotifier n;
633 MemoryRegion *mr;
634 CPUState *cpu;
635 int iommu_idx;
636 bool active;
637 } TCGIOMMUNotifier;
639 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
641 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
643 if (!notifier->active) {
644 return;
646 tlb_flush(notifier->cpu);
647 notifier->active = false;
648 /* We leave the notifier struct on the list to avoid reallocating it later.
649 * Generally the number of IOMMUs a CPU deals with will be small.
650 * In any case we can't unregister the iommu notifier from a notify
651 * callback.
655 static void tcg_register_iommu_notifier(CPUState *cpu,
656 IOMMUMemoryRegion *iommu_mr,
657 int iommu_idx)
659 /* Make sure this CPU has an IOMMU notifier registered for this
660 * IOMMU/IOMMU index combination, so that we can flush its TLB
661 * when the IOMMU tells us the mappings we've cached have changed.
663 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
664 TCGIOMMUNotifier *notifier;
665 int i;
667 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
668 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
669 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
670 break;
673 if (i == cpu->iommu_notifiers->len) {
674 /* Not found, add a new entry at the end of the array */
675 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
676 notifier = g_new0(TCGIOMMUNotifier, 1);
677 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
679 notifier->mr = mr;
680 notifier->iommu_idx = iommu_idx;
681 notifier->cpu = cpu;
682 /* Rather than trying to register interest in the specific part
683 * of the iommu's address space that we've accessed and then
684 * expand it later as subsequent accesses touch more of it, we
685 * just register interest in the whole thing, on the assumption
686 * that iommu reconfiguration will be rare.
688 iommu_notifier_init(&notifier->n,
689 tcg_iommu_unmap_notify,
690 IOMMU_NOTIFIER_UNMAP,
692 HWADDR_MAX,
693 iommu_idx);
694 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
697 if (!notifier->active) {
698 notifier->active = true;
702 static void tcg_iommu_free_notifier_list(CPUState *cpu)
704 /* Destroy the CPU's notifier list */
705 int i;
706 TCGIOMMUNotifier *notifier;
708 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
709 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
710 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
711 g_free(notifier);
713 g_array_free(cpu->iommu_notifiers, true);
716 /* Called from RCU critical section */
717 MemoryRegionSection *
718 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
719 hwaddr *xlat, hwaddr *plen,
720 MemTxAttrs attrs, int *prot)
722 MemoryRegionSection *section;
723 IOMMUMemoryRegion *iommu_mr;
724 IOMMUMemoryRegionClass *imrc;
725 IOMMUTLBEntry iotlb;
726 int iommu_idx;
727 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
729 for (;;) {
730 section = address_space_translate_internal(d, addr, &addr, plen, false);
732 iommu_mr = memory_region_get_iommu(section->mr);
733 if (!iommu_mr) {
734 break;
737 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
739 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
740 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
741 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
742 * doesn't short-cut its translation table walk.
744 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
745 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
746 | (addr & iotlb.addr_mask));
747 /* Update the caller's prot bits to remove permissions the IOMMU
748 * is giving us a failure response for. If we get down to no
749 * permissions left at all we can give up now.
751 if (!(iotlb.perm & IOMMU_RO)) {
752 *prot &= ~(PAGE_READ | PAGE_EXEC);
754 if (!(iotlb.perm & IOMMU_WO)) {
755 *prot &= ~PAGE_WRITE;
758 if (!*prot) {
759 goto translate_fail;
762 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
765 assert(!memory_region_is_iommu(section->mr));
766 *xlat = addr;
767 return section;
769 translate_fail:
770 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
772 #endif
774 #if !defined(CONFIG_USER_ONLY)
776 static int cpu_common_post_load(void *opaque, int version_id)
778 CPUState *cpu = opaque;
780 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
781 version_id is increased. */
782 cpu->interrupt_request &= ~0x01;
783 tlb_flush(cpu);
785 /* loadvm has just updated the content of RAM, bypassing the
786 * usual mechanisms that ensure we flush TBs for writes to
787 * memory we've translated code from. So we must flush all TBs,
788 * which will now be stale.
790 tb_flush(cpu);
792 return 0;
795 static int cpu_common_pre_load(void *opaque)
797 CPUState *cpu = opaque;
799 cpu->exception_index = -1;
801 return 0;
804 static bool cpu_common_exception_index_needed(void *opaque)
806 CPUState *cpu = opaque;
808 return tcg_enabled() && cpu->exception_index != -1;
811 static const VMStateDescription vmstate_cpu_common_exception_index = {
812 .name = "cpu_common/exception_index",
813 .version_id = 1,
814 .minimum_version_id = 1,
815 .needed = cpu_common_exception_index_needed,
816 .fields = (VMStateField[]) {
817 VMSTATE_INT32(exception_index, CPUState),
818 VMSTATE_END_OF_LIST()
822 static bool cpu_common_crash_occurred_needed(void *opaque)
824 CPUState *cpu = opaque;
826 return cpu->crash_occurred;
829 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
830 .name = "cpu_common/crash_occurred",
831 .version_id = 1,
832 .minimum_version_id = 1,
833 .needed = cpu_common_crash_occurred_needed,
834 .fields = (VMStateField[]) {
835 VMSTATE_BOOL(crash_occurred, CPUState),
836 VMSTATE_END_OF_LIST()
840 const VMStateDescription vmstate_cpu_common = {
841 .name = "cpu_common",
842 .version_id = 1,
843 .minimum_version_id = 1,
844 .pre_load = cpu_common_pre_load,
845 .post_load = cpu_common_post_load,
846 .fields = (VMStateField[]) {
847 VMSTATE_UINT32(halted, CPUState),
848 VMSTATE_UINT32(interrupt_request, CPUState),
849 VMSTATE_END_OF_LIST()
851 .subsections = (const VMStateDescription*[]) {
852 &vmstate_cpu_common_exception_index,
853 &vmstate_cpu_common_crash_occurred,
854 NULL
858 #endif
860 CPUState *qemu_get_cpu(int index)
862 CPUState *cpu;
864 CPU_FOREACH(cpu) {
865 if (cpu->cpu_index == index) {
866 return cpu;
870 return NULL;
873 #if !defined(CONFIG_USER_ONLY)
874 void cpu_address_space_init(CPUState *cpu, int asidx,
875 const char *prefix, MemoryRegion *mr)
877 CPUAddressSpace *newas;
878 AddressSpace *as = g_new0(AddressSpace, 1);
879 char *as_name;
881 assert(mr);
882 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
883 address_space_init(as, mr, as_name);
884 g_free(as_name);
886 /* Target code should have set num_ases before calling us */
887 assert(asidx < cpu->num_ases);
889 if (asidx == 0) {
890 /* address space 0 gets the convenience alias */
891 cpu->as = as;
894 /* KVM cannot currently support multiple address spaces. */
895 assert(asidx == 0 || !kvm_enabled());
897 if (!cpu->cpu_ases) {
898 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
901 newas = &cpu->cpu_ases[asidx];
902 newas->cpu = cpu;
903 newas->as = as;
904 if (tcg_enabled()) {
905 newas->tcg_as_listener.commit = tcg_commit;
906 memory_listener_register(&newas->tcg_as_listener, as);
910 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
912 /* Return the AddressSpace corresponding to the specified index */
913 return cpu->cpu_ases[asidx].as;
915 #endif
917 void cpu_exec_unrealizefn(CPUState *cpu)
919 CPUClass *cc = CPU_GET_CLASS(cpu);
921 cpu_list_remove(cpu);
923 if (cc->vmsd != NULL) {
924 vmstate_unregister(NULL, cc->vmsd, cpu);
926 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
927 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
929 #ifndef CONFIG_USER_ONLY
930 tcg_iommu_free_notifier_list(cpu);
931 #endif
934 Property cpu_common_props[] = {
935 #ifndef CONFIG_USER_ONLY
936 /* Create a memory property for softmmu CPU object,
937 * so users can wire up its memory. (This can't go in qom/cpu.c
938 * because that file is compiled only once for both user-mode
939 * and system builds.) The default if no link is set up is to use
940 * the system address space.
942 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
943 MemoryRegion *),
944 #endif
945 DEFINE_PROP_END_OF_LIST(),
948 void cpu_exec_initfn(CPUState *cpu)
950 cpu->as = NULL;
951 cpu->num_ases = 0;
953 #ifndef CONFIG_USER_ONLY
954 cpu->thread_id = qemu_get_thread_id();
955 cpu->memory = system_memory;
956 object_ref(OBJECT(cpu->memory));
957 #endif
960 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
962 CPUClass *cc = CPU_GET_CLASS(cpu);
963 static bool tcg_target_initialized;
965 cpu_list_add(cpu);
967 if (tcg_enabled() && !tcg_target_initialized) {
968 tcg_target_initialized = true;
969 cc->tcg_initialize();
971 tlb_init(cpu);
973 #ifndef CONFIG_USER_ONLY
974 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
975 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
977 if (cc->vmsd != NULL) {
978 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
981 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
982 #endif
985 const char *parse_cpu_model(const char *cpu_model)
987 ObjectClass *oc;
988 CPUClass *cc;
989 gchar **model_pieces;
990 const char *cpu_type;
992 model_pieces = g_strsplit(cpu_model, ",", 2);
994 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
995 if (oc == NULL) {
996 error_report("unable to find CPU model '%s'", model_pieces[0]);
997 g_strfreev(model_pieces);
998 exit(EXIT_FAILURE);
1001 cpu_type = object_class_get_name(oc);
1002 cc = CPU_CLASS(oc);
1003 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1004 g_strfreev(model_pieces);
1005 return cpu_type;
1008 #if defined(CONFIG_USER_ONLY)
1009 void tb_invalidate_phys_addr(target_ulong addr)
1011 mmap_lock();
1012 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1013 mmap_unlock();
1016 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1018 tb_invalidate_phys_addr(pc);
1020 #else
1021 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1023 ram_addr_t ram_addr;
1024 MemoryRegion *mr;
1025 hwaddr l = 1;
1027 if (!tcg_enabled()) {
1028 return;
1031 rcu_read_lock();
1032 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1033 if (!(memory_region_is_ram(mr)
1034 || memory_region_is_romd(mr))) {
1035 rcu_read_unlock();
1036 return;
1038 ram_addr = memory_region_get_ram_addr(mr) + addr;
1039 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1040 rcu_read_unlock();
1043 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1045 MemTxAttrs attrs;
1046 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1047 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1048 if (phys != -1) {
1049 /* Locks grabbed by tb_invalidate_phys_addr */
1050 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1051 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1054 #endif
1056 #if defined(CONFIG_USER_ONLY)
1057 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1062 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1063 int flags)
1065 return -ENOSYS;
1068 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1072 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1073 int flags, CPUWatchpoint **watchpoint)
1075 return -ENOSYS;
1077 #else
1078 /* Add a watchpoint. */
1079 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1080 int flags, CPUWatchpoint **watchpoint)
1082 CPUWatchpoint *wp;
1084 /* forbid ranges which are empty or run off the end of the address space */
1085 if (len == 0 || (addr + len - 1) < addr) {
1086 error_report("tried to set invalid watchpoint at %"
1087 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1088 return -EINVAL;
1090 wp = g_malloc(sizeof(*wp));
1092 wp->vaddr = addr;
1093 wp->len = len;
1094 wp->flags = flags;
1096 /* keep all GDB-injected watchpoints in front */
1097 if (flags & BP_GDB) {
1098 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1099 } else {
1100 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1103 tlb_flush_page(cpu, addr);
1105 if (watchpoint)
1106 *watchpoint = wp;
1107 return 0;
1110 /* Remove a specific watchpoint. */
1111 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1112 int flags)
1114 CPUWatchpoint *wp;
1116 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1117 if (addr == wp->vaddr && len == wp->len
1118 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1119 cpu_watchpoint_remove_by_ref(cpu, wp);
1120 return 0;
1123 return -ENOENT;
1126 /* Remove a specific watchpoint by reference. */
1127 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1129 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1131 tlb_flush_page(cpu, watchpoint->vaddr);
1133 g_free(watchpoint);
1136 /* Remove all matching watchpoints. */
1137 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1139 CPUWatchpoint *wp, *next;
1141 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1142 if (wp->flags & mask) {
1143 cpu_watchpoint_remove_by_ref(cpu, wp);
1148 /* Return true if this watchpoint address matches the specified
1149 * access (ie the address range covered by the watchpoint overlaps
1150 * partially or completely with the address range covered by the
1151 * access).
1153 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1154 vaddr addr,
1155 vaddr len)
1157 /* We know the lengths are non-zero, but a little caution is
1158 * required to avoid errors in the case where the range ends
1159 * exactly at the top of the address space and so addr + len
1160 * wraps round to zero.
1162 vaddr wpend = wp->vaddr + wp->len - 1;
1163 vaddr addrend = addr + len - 1;
1165 return !(addr > wpend || wp->vaddr > addrend);
1168 #endif
1170 /* Add a breakpoint. */
1171 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1172 CPUBreakpoint **breakpoint)
1174 CPUBreakpoint *bp;
1176 bp = g_malloc(sizeof(*bp));
1178 bp->pc = pc;
1179 bp->flags = flags;
1181 /* keep all GDB-injected breakpoints in front */
1182 if (flags & BP_GDB) {
1183 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1184 } else {
1185 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1188 breakpoint_invalidate(cpu, pc);
1190 if (breakpoint) {
1191 *breakpoint = bp;
1193 return 0;
1196 /* Remove a specific breakpoint. */
1197 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1199 CPUBreakpoint *bp;
1201 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1202 if (bp->pc == pc && bp->flags == flags) {
1203 cpu_breakpoint_remove_by_ref(cpu, bp);
1204 return 0;
1207 return -ENOENT;
1210 /* Remove a specific breakpoint by reference. */
1211 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1213 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1215 breakpoint_invalidate(cpu, breakpoint->pc);
1217 g_free(breakpoint);
1220 /* Remove all matching breakpoints. */
1221 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1223 CPUBreakpoint *bp, *next;
1225 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1226 if (bp->flags & mask) {
1227 cpu_breakpoint_remove_by_ref(cpu, bp);
1232 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1233 CPU loop after each instruction */
1234 void cpu_single_step(CPUState *cpu, int enabled)
1236 if (cpu->singlestep_enabled != enabled) {
1237 cpu->singlestep_enabled = enabled;
1238 if (kvm_enabled()) {
1239 kvm_update_guest_debug(cpu, 0);
1240 } else {
1241 /* must flush all the translated code to avoid inconsistencies */
1242 /* XXX: only flush what is necessary */
1243 tb_flush(cpu);
1248 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1250 va_list ap;
1251 va_list ap2;
1253 va_start(ap, fmt);
1254 va_copy(ap2, ap);
1255 fprintf(stderr, "qemu: fatal: ");
1256 vfprintf(stderr, fmt, ap);
1257 fprintf(stderr, "\n");
1258 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259 if (qemu_log_separate()) {
1260 qemu_log_lock();
1261 qemu_log("qemu: fatal: ");
1262 qemu_log_vprintf(fmt, ap2);
1263 qemu_log("\n");
1264 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1265 qemu_log_flush();
1266 qemu_log_unlock();
1267 qemu_log_close();
1269 va_end(ap2);
1270 va_end(ap);
1271 replay_finish();
1272 #if defined(CONFIG_USER_ONLY)
1274 struct sigaction act;
1275 sigfillset(&act.sa_mask);
1276 act.sa_handler = SIG_DFL;
1277 act.sa_flags = 0;
1278 sigaction(SIGABRT, &act, NULL);
1280 #endif
1281 abort();
1284 #if !defined(CONFIG_USER_ONLY)
1285 /* Called from RCU critical section */
1286 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1288 RAMBlock *block;
1290 block = atomic_rcu_read(&ram_list.mru_block);
1291 if (block && addr - block->offset < block->max_length) {
1292 return block;
1294 RAMBLOCK_FOREACH(block) {
1295 if (addr - block->offset < block->max_length) {
1296 goto found;
1300 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1301 abort();
1303 found:
1304 /* It is safe to write mru_block outside the iothread lock. This
1305 * is what happens:
1307 * mru_block = xxx
1308 * rcu_read_unlock()
1309 * xxx removed from list
1310 * rcu_read_lock()
1311 * read mru_block
1312 * mru_block = NULL;
1313 * call_rcu(reclaim_ramblock, xxx);
1314 * rcu_read_unlock()
1316 * atomic_rcu_set is not needed here. The block was already published
1317 * when it was placed into the list. Here we're just making an extra
1318 * copy of the pointer.
1320 ram_list.mru_block = block;
1321 return block;
1324 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1326 CPUState *cpu;
1327 ram_addr_t start1;
1328 RAMBlock *block;
1329 ram_addr_t end;
1331 assert(tcg_enabled());
1332 end = TARGET_PAGE_ALIGN(start + length);
1333 start &= TARGET_PAGE_MASK;
1335 rcu_read_lock();
1336 block = qemu_get_ram_block(start);
1337 assert(block == qemu_get_ram_block(end - 1));
1338 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1339 CPU_FOREACH(cpu) {
1340 tlb_reset_dirty(cpu, start1, length);
1342 rcu_read_unlock();
1345 /* Note: start and end must be within the same ram block. */
1346 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1347 ram_addr_t length,
1348 unsigned client)
1350 DirtyMemoryBlocks *blocks;
1351 unsigned long end, page;
1352 bool dirty = false;
1354 if (length == 0) {
1355 return false;
1358 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1359 page = start >> TARGET_PAGE_BITS;
1361 rcu_read_lock();
1363 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1365 while (page < end) {
1366 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1367 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1370 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1371 offset, num);
1372 page += num;
1375 rcu_read_unlock();
1377 if (dirty && tcg_enabled()) {
1378 tlb_reset_dirty_range_all(start, length);
1381 return dirty;
1384 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1385 (ram_addr_t start, ram_addr_t length, unsigned client)
1387 DirtyMemoryBlocks *blocks;
1388 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1389 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1390 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1391 DirtyBitmapSnapshot *snap;
1392 unsigned long page, end, dest;
1394 snap = g_malloc0(sizeof(*snap) +
1395 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1396 snap->start = first;
1397 snap->end = last;
1399 page = first >> TARGET_PAGE_BITS;
1400 end = last >> TARGET_PAGE_BITS;
1401 dest = 0;
1403 rcu_read_lock();
1405 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1407 while (page < end) {
1408 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1409 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1410 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1412 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1413 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1414 offset >>= BITS_PER_LEVEL;
1416 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1417 blocks->blocks[idx] + offset,
1418 num);
1419 page += num;
1420 dest += num >> BITS_PER_LEVEL;
1423 rcu_read_unlock();
1425 if (tcg_enabled()) {
1426 tlb_reset_dirty_range_all(start, length);
1429 return snap;
1432 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1433 ram_addr_t start,
1434 ram_addr_t length)
1436 unsigned long page, end;
1438 assert(start >= snap->start);
1439 assert(start + length <= snap->end);
1441 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1442 page = (start - snap->start) >> TARGET_PAGE_BITS;
1444 while (page < end) {
1445 if (test_bit(page, snap->dirty)) {
1446 return true;
1448 page++;
1450 return false;
1453 /* Called from RCU critical section */
1454 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1455 MemoryRegionSection *section,
1456 target_ulong vaddr,
1457 hwaddr paddr, hwaddr xlat,
1458 int prot,
1459 target_ulong *address)
1461 hwaddr iotlb;
1462 CPUWatchpoint *wp;
1464 if (memory_region_is_ram(section->mr)) {
1465 /* Normal RAM. */
1466 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1467 if (!section->readonly) {
1468 iotlb |= PHYS_SECTION_NOTDIRTY;
1469 } else {
1470 iotlb |= PHYS_SECTION_ROM;
1472 } else {
1473 AddressSpaceDispatch *d;
1475 d = flatview_to_dispatch(section->fv);
1476 iotlb = section - d->map.sections;
1477 iotlb += xlat;
1480 /* Make accesses to pages with watchpoints go via the
1481 watchpoint trap routines. */
1482 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1483 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1484 /* Avoid trapping reads of pages with a write breakpoint. */
1485 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1486 iotlb = PHYS_SECTION_WATCH + paddr;
1487 *address |= TLB_MMIO;
1488 break;
1493 return iotlb;
1495 #endif /* defined(CONFIG_USER_ONLY) */
1497 #if !defined(CONFIG_USER_ONLY)
1499 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1500 uint16_t section);
1501 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1503 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1504 qemu_anon_ram_alloc;
1507 * Set a custom physical guest memory alloator.
1508 * Accelerators with unusual needs may need this. Hopefully, we can
1509 * get rid of it eventually.
1511 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1513 phys_mem_alloc = alloc;
1516 static uint16_t phys_section_add(PhysPageMap *map,
1517 MemoryRegionSection *section)
1519 /* The physical section number is ORed with a page-aligned
1520 * pointer to produce the iotlb entries. Thus it should
1521 * never overflow into the page-aligned value.
1523 assert(map->sections_nb < TARGET_PAGE_SIZE);
1525 if (map->sections_nb == map->sections_nb_alloc) {
1526 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1527 map->sections = g_renew(MemoryRegionSection, map->sections,
1528 map->sections_nb_alloc);
1530 map->sections[map->sections_nb] = *section;
1531 memory_region_ref(section->mr);
1532 return map->sections_nb++;
1535 static void phys_section_destroy(MemoryRegion *mr)
1537 bool have_sub_page = mr->subpage;
1539 memory_region_unref(mr);
1541 if (have_sub_page) {
1542 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1543 object_unref(OBJECT(&subpage->iomem));
1544 g_free(subpage);
1548 static void phys_sections_free(PhysPageMap *map)
1550 while (map->sections_nb > 0) {
1551 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1552 phys_section_destroy(section->mr);
1554 g_free(map->sections);
1555 g_free(map->nodes);
1558 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1560 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1561 subpage_t *subpage;
1562 hwaddr base = section->offset_within_address_space
1563 & TARGET_PAGE_MASK;
1564 MemoryRegionSection *existing = phys_page_find(d, base);
1565 MemoryRegionSection subsection = {
1566 .offset_within_address_space = base,
1567 .size = int128_make64(TARGET_PAGE_SIZE),
1569 hwaddr start, end;
1571 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1573 if (!(existing->mr->subpage)) {
1574 subpage = subpage_init(fv, base);
1575 subsection.fv = fv;
1576 subsection.mr = &subpage->iomem;
1577 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1578 phys_section_add(&d->map, &subsection));
1579 } else {
1580 subpage = container_of(existing->mr, subpage_t, iomem);
1582 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1583 end = start + int128_get64(section->size) - 1;
1584 subpage_register(subpage, start, end,
1585 phys_section_add(&d->map, section));
1589 static void register_multipage(FlatView *fv,
1590 MemoryRegionSection *section)
1592 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1593 hwaddr start_addr = section->offset_within_address_space;
1594 uint16_t section_index = phys_section_add(&d->map, section);
1595 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1596 TARGET_PAGE_BITS));
1598 assert(num_pages);
1599 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1603 * The range in *section* may look like this:
1605 * |s|PPPPPPP|s|
1607 * where s stands for subpage and P for page.
1609 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1611 MemoryRegionSection remain = *section;
1612 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1614 /* register first subpage */
1615 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1616 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1617 - remain.offset_within_address_space;
1619 MemoryRegionSection now = remain;
1620 now.size = int128_min(int128_make64(left), now.size);
1621 register_subpage(fv, &now);
1622 if (int128_eq(remain.size, now.size)) {
1623 return;
1625 remain.size = int128_sub(remain.size, now.size);
1626 remain.offset_within_address_space += int128_get64(now.size);
1627 remain.offset_within_region += int128_get64(now.size);
1630 /* register whole pages */
1631 if (int128_ge(remain.size, page_size)) {
1632 MemoryRegionSection now = remain;
1633 now.size = int128_and(now.size, int128_neg(page_size));
1634 register_multipage(fv, &now);
1635 if (int128_eq(remain.size, now.size)) {
1636 return;
1638 remain.size = int128_sub(remain.size, now.size);
1639 remain.offset_within_address_space += int128_get64(now.size);
1640 remain.offset_within_region += int128_get64(now.size);
1643 /* register last subpage */
1644 register_subpage(fv, &remain);
1647 void qemu_flush_coalesced_mmio_buffer(void)
1649 if (kvm_enabled())
1650 kvm_flush_coalesced_mmio_buffer();
1653 void qemu_mutex_lock_ramlist(void)
1655 qemu_mutex_lock(&ram_list.mutex);
1658 void qemu_mutex_unlock_ramlist(void)
1660 qemu_mutex_unlock(&ram_list.mutex);
1663 void ram_block_dump(Monitor *mon)
1665 RAMBlock *block;
1666 char *psize;
1668 rcu_read_lock();
1669 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1670 "Block Name", "PSize", "Offset", "Used", "Total");
1671 RAMBLOCK_FOREACH(block) {
1672 psize = size_to_str(block->page_size);
1673 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1674 " 0x%016" PRIx64 "\n", block->idstr, psize,
1675 (uint64_t)block->offset,
1676 (uint64_t)block->used_length,
1677 (uint64_t)block->max_length);
1678 g_free(psize);
1680 rcu_read_unlock();
1683 #ifdef __linux__
1685 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1686 * may or may not name the same files / on the same filesystem now as
1687 * when we actually open and map them. Iterate over the file
1688 * descriptors instead, and use qemu_fd_getpagesize().
1690 static int find_max_supported_pagesize(Object *obj, void *opaque)
1692 long *hpsize_min = opaque;
1694 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1695 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1697 if (hpsize < *hpsize_min) {
1698 *hpsize_min = hpsize;
1702 return 0;
1705 long qemu_getrampagesize(void)
1707 long hpsize = LONG_MAX;
1708 long mainrampagesize;
1709 Object *memdev_root;
1711 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1713 /* it's possible we have memory-backend objects with
1714 * hugepage-backed RAM. these may get mapped into system
1715 * address space via -numa parameters or memory hotplug
1716 * hooks. we want to take these into account, but we
1717 * also want to make sure these supported hugepage
1718 * sizes are applicable across the entire range of memory
1719 * we may boot from, so we take the min across all
1720 * backends, and assume normal pages in cases where a
1721 * backend isn't backed by hugepages.
1723 memdev_root = object_resolve_path("/objects", NULL);
1724 if (memdev_root) {
1725 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1727 if (hpsize == LONG_MAX) {
1728 /* No additional memory regions found ==> Report main RAM page size */
1729 return mainrampagesize;
1732 /* If NUMA is disabled or the NUMA nodes are not backed with a
1733 * memory-backend, then there is at least one node using "normal" RAM,
1734 * so if its page size is smaller we have got to report that size instead.
1736 if (hpsize > mainrampagesize &&
1737 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1738 static bool warned;
1739 if (!warned) {
1740 error_report("Huge page support disabled (n/a for main memory).");
1741 warned = true;
1743 return mainrampagesize;
1746 return hpsize;
1748 #else
1749 long qemu_getrampagesize(void)
1751 return getpagesize();
1753 #endif
1755 #ifdef CONFIG_POSIX
1756 static int64_t get_file_size(int fd)
1758 int64_t size = lseek(fd, 0, SEEK_END);
1759 if (size < 0) {
1760 return -errno;
1762 return size;
1765 static int file_ram_open(const char *path,
1766 const char *region_name,
1767 bool *created,
1768 Error **errp)
1770 char *filename;
1771 char *sanitized_name;
1772 char *c;
1773 int fd = -1;
1775 *created = false;
1776 for (;;) {
1777 fd = open(path, O_RDWR);
1778 if (fd >= 0) {
1779 /* @path names an existing file, use it */
1780 break;
1782 if (errno == ENOENT) {
1783 /* @path names a file that doesn't exist, create it */
1784 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1785 if (fd >= 0) {
1786 *created = true;
1787 break;
1789 } else if (errno == EISDIR) {
1790 /* @path names a directory, create a file there */
1791 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1792 sanitized_name = g_strdup(region_name);
1793 for (c = sanitized_name; *c != '\0'; c++) {
1794 if (*c == '/') {
1795 *c = '_';
1799 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1800 sanitized_name);
1801 g_free(sanitized_name);
1803 fd = mkstemp(filename);
1804 if (fd >= 0) {
1805 unlink(filename);
1806 g_free(filename);
1807 break;
1809 g_free(filename);
1811 if (errno != EEXIST && errno != EINTR) {
1812 error_setg_errno(errp, errno,
1813 "can't open backing store %s for guest RAM",
1814 path);
1815 return -1;
1818 * Try again on EINTR and EEXIST. The latter happens when
1819 * something else creates the file between our two open().
1823 return fd;
1826 static void *file_ram_alloc(RAMBlock *block,
1827 ram_addr_t memory,
1828 int fd,
1829 bool truncate,
1830 Error **errp)
1832 void *area;
1834 block->page_size = qemu_fd_getpagesize(fd);
1835 if (block->mr->align % block->page_size) {
1836 error_setg(errp, "alignment 0x%" PRIx64
1837 " must be multiples of page size 0x%zx",
1838 block->mr->align, block->page_size);
1839 return NULL;
1840 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1841 error_setg(errp, "alignment 0x%" PRIx64
1842 " must be a power of two", block->mr->align);
1843 return NULL;
1845 block->mr->align = MAX(block->page_size, block->mr->align);
1846 #if defined(__s390x__)
1847 if (kvm_enabled()) {
1848 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1850 #endif
1852 if (memory < block->page_size) {
1853 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1854 "or larger than page size 0x%zx",
1855 memory, block->page_size);
1856 return NULL;
1859 memory = ROUND_UP(memory, block->page_size);
1862 * ftruncate is not supported by hugetlbfs in older
1863 * hosts, so don't bother bailing out on errors.
1864 * If anything goes wrong with it under other filesystems,
1865 * mmap will fail.
1867 * Do not truncate the non-empty backend file to avoid corrupting
1868 * the existing data in the file. Disabling shrinking is not
1869 * enough. For example, the current vNVDIMM implementation stores
1870 * the guest NVDIMM labels at the end of the backend file. If the
1871 * backend file is later extended, QEMU will not be able to find
1872 * those labels. Therefore, extending the non-empty backend file
1873 * is disabled as well.
1875 if (truncate && ftruncate(fd, memory)) {
1876 perror("ftruncate");
1879 area = qemu_ram_mmap(fd, memory, block->mr->align,
1880 block->flags & RAM_SHARED);
1881 if (area == MAP_FAILED) {
1882 error_setg_errno(errp, errno,
1883 "unable to map backing store for guest RAM");
1884 return NULL;
1887 if (mem_prealloc) {
1888 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1889 if (errp && *errp) {
1890 qemu_ram_munmap(fd, area, memory);
1891 return NULL;
1895 block->fd = fd;
1896 return area;
1898 #endif
1900 /* Allocate space within the ram_addr_t space that governs the
1901 * dirty bitmaps.
1902 * Called with the ramlist lock held.
1904 static ram_addr_t find_ram_offset(ram_addr_t size)
1906 RAMBlock *block, *next_block;
1907 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1909 assert(size != 0); /* it would hand out same offset multiple times */
1911 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1912 return 0;
1915 RAMBLOCK_FOREACH(block) {
1916 ram_addr_t candidate, next = RAM_ADDR_MAX;
1918 /* Align blocks to start on a 'long' in the bitmap
1919 * which makes the bitmap sync'ing take the fast path.
1921 candidate = block->offset + block->max_length;
1922 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1924 /* Search for the closest following block
1925 * and find the gap.
1927 RAMBLOCK_FOREACH(next_block) {
1928 if (next_block->offset >= candidate) {
1929 next = MIN(next, next_block->offset);
1933 /* If it fits remember our place and remember the size
1934 * of gap, but keep going so that we might find a smaller
1935 * gap to fill so avoiding fragmentation.
1937 if (next - candidate >= size && next - candidate < mingap) {
1938 offset = candidate;
1939 mingap = next - candidate;
1942 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1945 if (offset == RAM_ADDR_MAX) {
1946 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1947 (uint64_t)size);
1948 abort();
1951 trace_find_ram_offset(size, offset);
1953 return offset;
1956 static unsigned long last_ram_page(void)
1958 RAMBlock *block;
1959 ram_addr_t last = 0;
1961 rcu_read_lock();
1962 RAMBLOCK_FOREACH(block) {
1963 last = MAX(last, block->offset + block->max_length);
1965 rcu_read_unlock();
1966 return last >> TARGET_PAGE_BITS;
1969 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1971 int ret;
1973 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1974 if (!machine_dump_guest_core(current_machine)) {
1975 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1976 if (ret) {
1977 perror("qemu_madvise");
1978 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1979 "but dump_guest_core=off specified\n");
1984 const char *qemu_ram_get_idstr(RAMBlock *rb)
1986 return rb->idstr;
1989 void *qemu_ram_get_host_addr(RAMBlock *rb)
1991 return rb->host;
1994 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1996 return rb->offset;
1999 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2001 return rb->used_length;
2004 bool qemu_ram_is_shared(RAMBlock *rb)
2006 return rb->flags & RAM_SHARED;
2009 /* Note: Only set at the start of postcopy */
2010 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2012 return rb->flags & RAM_UF_ZEROPAGE;
2015 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2017 rb->flags |= RAM_UF_ZEROPAGE;
2020 bool qemu_ram_is_migratable(RAMBlock *rb)
2022 return rb->flags & RAM_MIGRATABLE;
2025 void qemu_ram_set_migratable(RAMBlock *rb)
2027 rb->flags |= RAM_MIGRATABLE;
2030 void qemu_ram_unset_migratable(RAMBlock *rb)
2032 rb->flags &= ~RAM_MIGRATABLE;
2035 /* Called with iothread lock held. */
2036 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2038 RAMBlock *block;
2040 assert(new_block);
2041 assert(!new_block->idstr[0]);
2043 if (dev) {
2044 char *id = qdev_get_dev_path(dev);
2045 if (id) {
2046 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2047 g_free(id);
2050 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2052 rcu_read_lock();
2053 RAMBLOCK_FOREACH(block) {
2054 if (block != new_block &&
2055 !strcmp(block->idstr, new_block->idstr)) {
2056 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2057 new_block->idstr);
2058 abort();
2061 rcu_read_unlock();
2064 /* Called with iothread lock held. */
2065 void qemu_ram_unset_idstr(RAMBlock *block)
2067 /* FIXME: arch_init.c assumes that this is not called throughout
2068 * migration. Ignore the problem since hot-unplug during migration
2069 * does not work anyway.
2071 if (block) {
2072 memset(block->idstr, 0, sizeof(block->idstr));
2076 size_t qemu_ram_pagesize(RAMBlock *rb)
2078 return rb->page_size;
2081 /* Returns the largest size of page in use */
2082 size_t qemu_ram_pagesize_largest(void)
2084 RAMBlock *block;
2085 size_t largest = 0;
2087 RAMBLOCK_FOREACH(block) {
2088 largest = MAX(largest, qemu_ram_pagesize(block));
2091 return largest;
2094 static int memory_try_enable_merging(void *addr, size_t len)
2096 if (!machine_mem_merge(current_machine)) {
2097 /* disabled by the user */
2098 return 0;
2101 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2104 /* Only legal before guest might have detected the memory size: e.g. on
2105 * incoming migration, or right after reset.
2107 * As memory core doesn't know how is memory accessed, it is up to
2108 * resize callback to update device state and/or add assertions to detect
2109 * misuse, if necessary.
2111 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2113 assert(block);
2115 newsize = HOST_PAGE_ALIGN(newsize);
2117 if (block->used_length == newsize) {
2118 return 0;
2121 if (!(block->flags & RAM_RESIZEABLE)) {
2122 error_setg_errno(errp, EINVAL,
2123 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2124 " in != 0x" RAM_ADDR_FMT, block->idstr,
2125 newsize, block->used_length);
2126 return -EINVAL;
2129 if (block->max_length < newsize) {
2130 error_setg_errno(errp, EINVAL,
2131 "Length too large: %s: 0x" RAM_ADDR_FMT
2132 " > 0x" RAM_ADDR_FMT, block->idstr,
2133 newsize, block->max_length);
2134 return -EINVAL;
2137 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2138 block->used_length = newsize;
2139 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2140 DIRTY_CLIENTS_ALL);
2141 memory_region_set_size(block->mr, newsize);
2142 if (block->resized) {
2143 block->resized(block->idstr, newsize, block->host);
2145 return 0;
2148 /* Called with ram_list.mutex held */
2149 static void dirty_memory_extend(ram_addr_t old_ram_size,
2150 ram_addr_t new_ram_size)
2152 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2153 DIRTY_MEMORY_BLOCK_SIZE);
2154 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2155 DIRTY_MEMORY_BLOCK_SIZE);
2156 int i;
2158 /* Only need to extend if block count increased */
2159 if (new_num_blocks <= old_num_blocks) {
2160 return;
2163 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2164 DirtyMemoryBlocks *old_blocks;
2165 DirtyMemoryBlocks *new_blocks;
2166 int j;
2168 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2169 new_blocks = g_malloc(sizeof(*new_blocks) +
2170 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2172 if (old_num_blocks) {
2173 memcpy(new_blocks->blocks, old_blocks->blocks,
2174 old_num_blocks * sizeof(old_blocks->blocks[0]));
2177 for (j = old_num_blocks; j < new_num_blocks; j++) {
2178 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2181 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2183 if (old_blocks) {
2184 g_free_rcu(old_blocks, rcu);
2189 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2191 RAMBlock *block;
2192 RAMBlock *last_block = NULL;
2193 ram_addr_t old_ram_size, new_ram_size;
2194 Error *err = NULL;
2196 old_ram_size = last_ram_page();
2198 qemu_mutex_lock_ramlist();
2199 new_block->offset = find_ram_offset(new_block->max_length);
2201 if (!new_block->host) {
2202 if (xen_enabled()) {
2203 xen_ram_alloc(new_block->offset, new_block->max_length,
2204 new_block->mr, &err);
2205 if (err) {
2206 error_propagate(errp, err);
2207 qemu_mutex_unlock_ramlist();
2208 return;
2210 } else {
2211 new_block->host = phys_mem_alloc(new_block->max_length,
2212 &new_block->mr->align, shared);
2213 if (!new_block->host) {
2214 error_setg_errno(errp, errno,
2215 "cannot set up guest memory '%s'",
2216 memory_region_name(new_block->mr));
2217 qemu_mutex_unlock_ramlist();
2218 return;
2220 memory_try_enable_merging(new_block->host, new_block->max_length);
2224 new_ram_size = MAX(old_ram_size,
2225 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2226 if (new_ram_size > old_ram_size) {
2227 dirty_memory_extend(old_ram_size, new_ram_size);
2229 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2230 * QLIST (which has an RCU-friendly variant) does not have insertion at
2231 * tail, so save the last element in last_block.
2233 RAMBLOCK_FOREACH(block) {
2234 last_block = block;
2235 if (block->max_length < new_block->max_length) {
2236 break;
2239 if (block) {
2240 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2241 } else if (last_block) {
2242 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2243 } else { /* list is empty */
2244 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2246 ram_list.mru_block = NULL;
2248 /* Write list before version */
2249 smp_wmb();
2250 ram_list.version++;
2251 qemu_mutex_unlock_ramlist();
2253 cpu_physical_memory_set_dirty_range(new_block->offset,
2254 new_block->used_length,
2255 DIRTY_CLIENTS_ALL);
2257 if (new_block->host) {
2258 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2259 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2260 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2261 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2262 ram_block_notify_add(new_block->host, new_block->max_length);
2266 #ifdef CONFIG_POSIX
2267 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2268 uint32_t ram_flags, int fd,
2269 Error **errp)
2271 RAMBlock *new_block;
2272 Error *local_err = NULL;
2273 int64_t file_size;
2275 /* Just support these ram flags by now. */
2276 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2278 if (xen_enabled()) {
2279 error_setg(errp, "-mem-path not supported with Xen");
2280 return NULL;
2283 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2284 error_setg(errp,
2285 "host lacks kvm mmu notifiers, -mem-path unsupported");
2286 return NULL;
2289 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2291 * file_ram_alloc() needs to allocate just like
2292 * phys_mem_alloc, but we haven't bothered to provide
2293 * a hook there.
2295 error_setg(errp,
2296 "-mem-path not supported with this accelerator");
2297 return NULL;
2300 size = HOST_PAGE_ALIGN(size);
2301 file_size = get_file_size(fd);
2302 if (file_size > 0 && file_size < size) {
2303 error_setg(errp, "backing store %s size 0x%" PRIx64
2304 " does not match 'size' option 0x" RAM_ADDR_FMT,
2305 mem_path, file_size, size);
2306 return NULL;
2309 new_block = g_malloc0(sizeof(*new_block));
2310 new_block->mr = mr;
2311 new_block->used_length = size;
2312 new_block->max_length = size;
2313 new_block->flags = ram_flags;
2314 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2315 if (!new_block->host) {
2316 g_free(new_block);
2317 return NULL;
2320 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2321 if (local_err) {
2322 g_free(new_block);
2323 error_propagate(errp, local_err);
2324 return NULL;
2326 return new_block;
2331 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2332 uint32_t ram_flags, const char *mem_path,
2333 Error **errp)
2335 int fd;
2336 bool created;
2337 RAMBlock *block;
2339 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2340 if (fd < 0) {
2341 return NULL;
2344 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2345 if (!block) {
2346 if (created) {
2347 unlink(mem_path);
2349 close(fd);
2350 return NULL;
2353 return block;
2355 #endif
2357 static
2358 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2359 void (*resized)(const char*,
2360 uint64_t length,
2361 void *host),
2362 void *host, bool resizeable, bool share,
2363 MemoryRegion *mr, Error **errp)
2365 RAMBlock *new_block;
2366 Error *local_err = NULL;
2368 size = HOST_PAGE_ALIGN(size);
2369 max_size = HOST_PAGE_ALIGN(max_size);
2370 new_block = g_malloc0(sizeof(*new_block));
2371 new_block->mr = mr;
2372 new_block->resized = resized;
2373 new_block->used_length = size;
2374 new_block->max_length = max_size;
2375 assert(max_size >= size);
2376 new_block->fd = -1;
2377 new_block->page_size = getpagesize();
2378 new_block->host = host;
2379 if (host) {
2380 new_block->flags |= RAM_PREALLOC;
2382 if (resizeable) {
2383 new_block->flags |= RAM_RESIZEABLE;
2385 ram_block_add(new_block, &local_err, share);
2386 if (local_err) {
2387 g_free(new_block);
2388 error_propagate(errp, local_err);
2389 return NULL;
2391 return new_block;
2394 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2395 MemoryRegion *mr, Error **errp)
2397 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2398 false, mr, errp);
2401 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2402 MemoryRegion *mr, Error **errp)
2404 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2405 share, mr, errp);
2408 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2409 void (*resized)(const char*,
2410 uint64_t length,
2411 void *host),
2412 MemoryRegion *mr, Error **errp)
2414 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2415 false, mr, errp);
2418 static void reclaim_ramblock(RAMBlock *block)
2420 if (block->flags & RAM_PREALLOC) {
2422 } else if (xen_enabled()) {
2423 xen_invalidate_map_cache_entry(block->host);
2424 #ifndef _WIN32
2425 } else if (block->fd >= 0) {
2426 qemu_ram_munmap(block->fd, block->host, block->max_length);
2427 close(block->fd);
2428 #endif
2429 } else {
2430 qemu_anon_ram_free(block->host, block->max_length);
2432 g_free(block);
2435 void qemu_ram_free(RAMBlock *block)
2437 if (!block) {
2438 return;
2441 if (block->host) {
2442 ram_block_notify_remove(block->host, block->max_length);
2445 qemu_mutex_lock_ramlist();
2446 QLIST_REMOVE_RCU(block, next);
2447 ram_list.mru_block = NULL;
2448 /* Write list before version */
2449 smp_wmb();
2450 ram_list.version++;
2451 call_rcu(block, reclaim_ramblock, rcu);
2452 qemu_mutex_unlock_ramlist();
2455 #ifndef _WIN32
2456 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2458 RAMBlock *block;
2459 ram_addr_t offset;
2460 int flags;
2461 void *area, *vaddr;
2463 RAMBLOCK_FOREACH(block) {
2464 offset = addr - block->offset;
2465 if (offset < block->max_length) {
2466 vaddr = ramblock_ptr(block, offset);
2467 if (block->flags & RAM_PREALLOC) {
2469 } else if (xen_enabled()) {
2470 abort();
2471 } else {
2472 flags = MAP_FIXED;
2473 if (block->fd >= 0) {
2474 flags |= (block->flags & RAM_SHARED ?
2475 MAP_SHARED : MAP_PRIVATE);
2476 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2477 flags, block->fd, offset);
2478 } else {
2480 * Remap needs to match alloc. Accelerators that
2481 * set phys_mem_alloc never remap. If they did,
2482 * we'd need a remap hook here.
2484 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2486 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2487 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2488 flags, -1, 0);
2490 if (area != vaddr) {
2491 error_report("Could not remap addr: "
2492 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2493 length, addr);
2494 exit(1);
2496 memory_try_enable_merging(vaddr, length);
2497 qemu_ram_setup_dump(vaddr, length);
2502 #endif /* !_WIN32 */
2504 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2505 * This should not be used for general purpose DMA. Use address_space_map
2506 * or address_space_rw instead. For local memory (e.g. video ram) that the
2507 * device owns, use memory_region_get_ram_ptr.
2509 * Called within RCU critical section.
2511 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2513 RAMBlock *block = ram_block;
2515 if (block == NULL) {
2516 block = qemu_get_ram_block(addr);
2517 addr -= block->offset;
2520 if (xen_enabled() && block->host == NULL) {
2521 /* We need to check if the requested address is in the RAM
2522 * because we don't want to map the entire memory in QEMU.
2523 * In that case just map until the end of the page.
2525 if (block->offset == 0) {
2526 return xen_map_cache(addr, 0, 0, false);
2529 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2531 return ramblock_ptr(block, addr);
2534 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2535 * but takes a size argument.
2537 * Called within RCU critical section.
2539 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2540 hwaddr *size, bool lock)
2542 RAMBlock *block = ram_block;
2543 if (*size == 0) {
2544 return NULL;
2547 if (block == NULL) {
2548 block = qemu_get_ram_block(addr);
2549 addr -= block->offset;
2551 *size = MIN(*size, block->max_length - addr);
2553 if (xen_enabled() && block->host == NULL) {
2554 /* We need to check if the requested address is in the RAM
2555 * because we don't want to map the entire memory in QEMU.
2556 * In that case just map the requested area.
2558 if (block->offset == 0) {
2559 return xen_map_cache(addr, *size, lock, lock);
2562 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2565 return ramblock_ptr(block, addr);
2568 /* Return the offset of a hostpointer within a ramblock */
2569 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2571 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2572 assert((uintptr_t)host >= (uintptr_t)rb->host);
2573 assert(res < rb->max_length);
2575 return res;
2579 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2580 * in that RAMBlock.
2582 * ptr: Host pointer to look up
2583 * round_offset: If true round the result offset down to a page boundary
2584 * *ram_addr: set to result ram_addr
2585 * *offset: set to result offset within the RAMBlock
2587 * Returns: RAMBlock (or NULL if not found)
2589 * By the time this function returns, the returned pointer is not protected
2590 * by RCU anymore. If the caller is not within an RCU critical section and
2591 * does not hold the iothread lock, it must have other means of protecting the
2592 * pointer, such as a reference to the region that includes the incoming
2593 * ram_addr_t.
2595 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2596 ram_addr_t *offset)
2598 RAMBlock *block;
2599 uint8_t *host = ptr;
2601 if (xen_enabled()) {
2602 ram_addr_t ram_addr;
2603 rcu_read_lock();
2604 ram_addr = xen_ram_addr_from_mapcache(ptr);
2605 block = qemu_get_ram_block(ram_addr);
2606 if (block) {
2607 *offset = ram_addr - block->offset;
2609 rcu_read_unlock();
2610 return block;
2613 rcu_read_lock();
2614 block = atomic_rcu_read(&ram_list.mru_block);
2615 if (block && block->host && host - block->host < block->max_length) {
2616 goto found;
2619 RAMBLOCK_FOREACH(block) {
2620 /* This case append when the block is not mapped. */
2621 if (block->host == NULL) {
2622 continue;
2624 if (host - block->host < block->max_length) {
2625 goto found;
2629 rcu_read_unlock();
2630 return NULL;
2632 found:
2633 *offset = (host - block->host);
2634 if (round_offset) {
2635 *offset &= TARGET_PAGE_MASK;
2637 rcu_read_unlock();
2638 return block;
2642 * Finds the named RAMBlock
2644 * name: The name of RAMBlock to find
2646 * Returns: RAMBlock (or NULL if not found)
2648 RAMBlock *qemu_ram_block_by_name(const char *name)
2650 RAMBlock *block;
2652 RAMBLOCK_FOREACH(block) {
2653 if (!strcmp(name, block->idstr)) {
2654 return block;
2658 return NULL;
2661 /* Some of the softmmu routines need to translate from a host pointer
2662 (typically a TLB entry) back to a ram offset. */
2663 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2665 RAMBlock *block;
2666 ram_addr_t offset;
2668 block = qemu_ram_block_from_host(ptr, false, &offset);
2669 if (!block) {
2670 return RAM_ADDR_INVALID;
2673 return block->offset + offset;
2676 /* Called within RCU critical section. */
2677 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2678 CPUState *cpu,
2679 vaddr mem_vaddr,
2680 ram_addr_t ram_addr,
2681 unsigned size)
2683 ndi->cpu = cpu;
2684 ndi->ram_addr = ram_addr;
2685 ndi->mem_vaddr = mem_vaddr;
2686 ndi->size = size;
2687 ndi->pages = NULL;
2689 assert(tcg_enabled());
2690 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2691 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2692 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2696 /* Called within RCU critical section. */
2697 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2699 if (ndi->pages) {
2700 assert(tcg_enabled());
2701 page_collection_unlock(ndi->pages);
2702 ndi->pages = NULL;
2705 /* Set both VGA and migration bits for simplicity and to remove
2706 * the notdirty callback faster.
2708 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2709 DIRTY_CLIENTS_NOCODE);
2710 /* we remove the notdirty callback only if the code has been
2711 flushed */
2712 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2713 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2717 /* Called within RCU critical section. */
2718 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2719 uint64_t val, unsigned size)
2721 NotDirtyInfo ndi;
2723 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2724 ram_addr, size);
2726 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2727 memory_notdirty_write_complete(&ndi);
2730 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2731 unsigned size, bool is_write,
2732 MemTxAttrs attrs)
2734 return is_write;
2737 static const MemoryRegionOps notdirty_mem_ops = {
2738 .write = notdirty_mem_write,
2739 .valid.accepts = notdirty_mem_accepts,
2740 .endianness = DEVICE_NATIVE_ENDIAN,
2741 .valid = {
2742 .min_access_size = 1,
2743 .max_access_size = 8,
2744 .unaligned = false,
2746 .impl = {
2747 .min_access_size = 1,
2748 .max_access_size = 8,
2749 .unaligned = false,
2753 /* Generate a debug exception if a watchpoint has been hit. */
2754 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2756 CPUState *cpu = current_cpu;
2757 CPUClass *cc = CPU_GET_CLASS(cpu);
2758 target_ulong vaddr;
2759 CPUWatchpoint *wp;
2761 assert(tcg_enabled());
2762 if (cpu->watchpoint_hit) {
2763 /* We re-entered the check after replacing the TB. Now raise
2764 * the debug interrupt so that is will trigger after the
2765 * current instruction. */
2766 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2767 return;
2769 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2770 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2771 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2772 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2773 && (wp->flags & flags)) {
2774 if (flags == BP_MEM_READ) {
2775 wp->flags |= BP_WATCHPOINT_HIT_READ;
2776 } else {
2777 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2779 wp->hitaddr = vaddr;
2780 wp->hitattrs = attrs;
2781 if (!cpu->watchpoint_hit) {
2782 if (wp->flags & BP_CPU &&
2783 !cc->debug_check_watchpoint(cpu, wp)) {
2784 wp->flags &= ~BP_WATCHPOINT_HIT;
2785 continue;
2787 cpu->watchpoint_hit = wp;
2789 mmap_lock();
2790 tb_check_watchpoint(cpu);
2791 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2792 cpu->exception_index = EXCP_DEBUG;
2793 mmap_unlock();
2794 cpu_loop_exit(cpu);
2795 } else {
2796 /* Force execution of one insn next time. */
2797 cpu->cflags_next_tb = 1 | curr_cflags();
2798 mmap_unlock();
2799 cpu_loop_exit_noexc(cpu);
2802 } else {
2803 wp->flags &= ~BP_WATCHPOINT_HIT;
2808 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2809 so these check for a hit then pass through to the normal out-of-line
2810 phys routines. */
2811 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2812 unsigned size, MemTxAttrs attrs)
2814 MemTxResult res;
2815 uint64_t data;
2816 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2817 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2819 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2820 switch (size) {
2821 case 1:
2822 data = address_space_ldub(as, addr, attrs, &res);
2823 break;
2824 case 2:
2825 data = address_space_lduw(as, addr, attrs, &res);
2826 break;
2827 case 4:
2828 data = address_space_ldl(as, addr, attrs, &res);
2829 break;
2830 case 8:
2831 data = address_space_ldq(as, addr, attrs, &res);
2832 break;
2833 default: abort();
2835 *pdata = data;
2836 return res;
2839 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2840 uint64_t val, unsigned size,
2841 MemTxAttrs attrs)
2843 MemTxResult res;
2844 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2845 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2847 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2848 switch (size) {
2849 case 1:
2850 address_space_stb(as, addr, val, attrs, &res);
2851 break;
2852 case 2:
2853 address_space_stw(as, addr, val, attrs, &res);
2854 break;
2855 case 4:
2856 address_space_stl(as, addr, val, attrs, &res);
2857 break;
2858 case 8:
2859 address_space_stq(as, addr, val, attrs, &res);
2860 break;
2861 default: abort();
2863 return res;
2866 static const MemoryRegionOps watch_mem_ops = {
2867 .read_with_attrs = watch_mem_read,
2868 .write_with_attrs = watch_mem_write,
2869 .endianness = DEVICE_NATIVE_ENDIAN,
2870 .valid = {
2871 .min_access_size = 1,
2872 .max_access_size = 8,
2873 .unaligned = false,
2875 .impl = {
2876 .min_access_size = 1,
2877 .max_access_size = 8,
2878 .unaligned = false,
2882 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2883 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2884 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2885 const uint8_t *buf, hwaddr len);
2886 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2887 bool is_write, MemTxAttrs attrs);
2889 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2890 unsigned len, MemTxAttrs attrs)
2892 subpage_t *subpage = opaque;
2893 uint8_t buf[8];
2894 MemTxResult res;
2896 #if defined(DEBUG_SUBPAGE)
2897 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2898 subpage, len, addr);
2899 #endif
2900 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2901 if (res) {
2902 return res;
2904 *data = ldn_p(buf, len);
2905 return MEMTX_OK;
2908 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2909 uint64_t value, unsigned len, MemTxAttrs attrs)
2911 subpage_t *subpage = opaque;
2912 uint8_t buf[8];
2914 #if defined(DEBUG_SUBPAGE)
2915 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2916 " value %"PRIx64"\n",
2917 __func__, subpage, len, addr, value);
2918 #endif
2919 stn_p(buf, len, value);
2920 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2923 static bool subpage_accepts(void *opaque, hwaddr addr,
2924 unsigned len, bool is_write,
2925 MemTxAttrs attrs)
2927 subpage_t *subpage = opaque;
2928 #if defined(DEBUG_SUBPAGE)
2929 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2930 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2931 #endif
2933 return flatview_access_valid(subpage->fv, addr + subpage->base,
2934 len, is_write, attrs);
2937 static const MemoryRegionOps subpage_ops = {
2938 .read_with_attrs = subpage_read,
2939 .write_with_attrs = subpage_write,
2940 .impl.min_access_size = 1,
2941 .impl.max_access_size = 8,
2942 .valid.min_access_size = 1,
2943 .valid.max_access_size = 8,
2944 .valid.accepts = subpage_accepts,
2945 .endianness = DEVICE_NATIVE_ENDIAN,
2948 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2949 uint16_t section)
2951 int idx, eidx;
2953 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2954 return -1;
2955 idx = SUBPAGE_IDX(start);
2956 eidx = SUBPAGE_IDX(end);
2957 #if defined(DEBUG_SUBPAGE)
2958 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2959 __func__, mmio, start, end, idx, eidx, section);
2960 #endif
2961 for (; idx <= eidx; idx++) {
2962 mmio->sub_section[idx] = section;
2965 return 0;
2968 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2970 subpage_t *mmio;
2972 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2973 mmio->fv = fv;
2974 mmio->base = base;
2975 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2976 NULL, TARGET_PAGE_SIZE);
2977 mmio->iomem.subpage = true;
2978 #if defined(DEBUG_SUBPAGE)
2979 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2980 mmio, base, TARGET_PAGE_SIZE);
2981 #endif
2982 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2984 return mmio;
2987 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2989 assert(fv);
2990 MemoryRegionSection section = {
2991 .fv = fv,
2992 .mr = mr,
2993 .offset_within_address_space = 0,
2994 .offset_within_region = 0,
2995 .size = int128_2_64(),
2998 return phys_section_add(map, &section);
3001 static void readonly_mem_write(void *opaque, hwaddr addr,
3002 uint64_t val, unsigned size)
3004 /* Ignore any write to ROM. */
3007 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3008 unsigned size, bool is_write,
3009 MemTxAttrs attrs)
3011 return is_write;
3014 /* This will only be used for writes, because reads are special cased
3015 * to directly access the underlying host ram.
3017 static const MemoryRegionOps readonly_mem_ops = {
3018 .write = readonly_mem_write,
3019 .valid.accepts = readonly_mem_accepts,
3020 .endianness = DEVICE_NATIVE_ENDIAN,
3021 .valid = {
3022 .min_access_size = 1,
3023 .max_access_size = 8,
3024 .unaligned = false,
3026 .impl = {
3027 .min_access_size = 1,
3028 .max_access_size = 8,
3029 .unaligned = false,
3033 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3034 hwaddr index, MemTxAttrs attrs)
3036 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3037 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3038 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3039 MemoryRegionSection *sections = d->map.sections;
3041 return &sections[index & ~TARGET_PAGE_MASK];
3044 static void io_mem_init(void)
3046 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3047 NULL, NULL, UINT64_MAX);
3048 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3049 NULL, UINT64_MAX);
3051 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3052 * which can be called without the iothread mutex.
3054 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3055 NULL, UINT64_MAX);
3056 memory_region_clear_global_locking(&io_mem_notdirty);
3058 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3059 NULL, UINT64_MAX);
3062 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3064 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3065 uint16_t n;
3067 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3068 assert(n == PHYS_SECTION_UNASSIGNED);
3069 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3070 assert(n == PHYS_SECTION_NOTDIRTY);
3071 n = dummy_section(&d->map, fv, &io_mem_rom);
3072 assert(n == PHYS_SECTION_ROM);
3073 n = dummy_section(&d->map, fv, &io_mem_watch);
3074 assert(n == PHYS_SECTION_WATCH);
3076 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3078 return d;
3081 void address_space_dispatch_free(AddressSpaceDispatch *d)
3083 phys_sections_free(&d->map);
3084 g_free(d);
3087 static void tcg_commit(MemoryListener *listener)
3089 CPUAddressSpace *cpuas;
3090 AddressSpaceDispatch *d;
3092 assert(tcg_enabled());
3093 /* since each CPU stores ram addresses in its TLB cache, we must
3094 reset the modified entries */
3095 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3096 cpu_reloading_memory_map();
3097 /* The CPU and TLB are protected by the iothread lock.
3098 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3099 * may have split the RCU critical section.
3101 d = address_space_to_dispatch(cpuas->as);
3102 atomic_rcu_set(&cpuas->memory_dispatch, d);
3103 tlb_flush(cpuas->cpu);
3106 static void memory_map_init(void)
3108 system_memory = g_malloc(sizeof(*system_memory));
3110 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3111 address_space_init(&address_space_memory, system_memory, "memory");
3113 system_io = g_malloc(sizeof(*system_io));
3114 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3115 65536);
3116 address_space_init(&address_space_io, system_io, "I/O");
3119 MemoryRegion *get_system_memory(void)
3121 return system_memory;
3124 MemoryRegion *get_system_io(void)
3126 return system_io;
3129 #endif /* !defined(CONFIG_USER_ONLY) */
3131 /* physical memory access (slow version, mainly for debug) */
3132 #if defined(CONFIG_USER_ONLY)
3133 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3134 uint8_t *buf, target_ulong len, int is_write)
3136 int flags;
3137 target_ulong l, page;
3138 void * p;
3140 while (len > 0) {
3141 page = addr & TARGET_PAGE_MASK;
3142 l = (page + TARGET_PAGE_SIZE) - addr;
3143 if (l > len)
3144 l = len;
3145 flags = page_get_flags(page);
3146 if (!(flags & PAGE_VALID))
3147 return -1;
3148 if (is_write) {
3149 if (!(flags & PAGE_WRITE))
3150 return -1;
3151 /* XXX: this code should not depend on lock_user */
3152 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3153 return -1;
3154 memcpy(p, buf, l);
3155 unlock_user(p, addr, l);
3156 } else {
3157 if (!(flags & PAGE_READ))
3158 return -1;
3159 /* XXX: this code should not depend on lock_user */
3160 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3161 return -1;
3162 memcpy(buf, p, l);
3163 unlock_user(p, addr, 0);
3165 len -= l;
3166 buf += l;
3167 addr += l;
3169 return 0;
3172 #else
3174 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3175 hwaddr length)
3177 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3178 addr += memory_region_get_ram_addr(mr);
3180 /* No early return if dirty_log_mask is or becomes 0, because
3181 * cpu_physical_memory_set_dirty_range will still call
3182 * xen_modified_memory.
3184 if (dirty_log_mask) {
3185 dirty_log_mask =
3186 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3188 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3189 assert(tcg_enabled());
3190 tb_invalidate_phys_range(addr, addr + length);
3191 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3193 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3196 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3199 * In principle this function would work on other memory region types too,
3200 * but the ROM device use case is the only one where this operation is
3201 * necessary. Other memory regions should use the
3202 * address_space_read/write() APIs.
3204 assert(memory_region_is_romd(mr));
3206 invalidate_and_set_dirty(mr, addr, size);
3209 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3211 unsigned access_size_max = mr->ops->valid.max_access_size;
3213 /* Regions are assumed to support 1-4 byte accesses unless
3214 otherwise specified. */
3215 if (access_size_max == 0) {
3216 access_size_max = 4;
3219 /* Bound the maximum access by the alignment of the address. */
3220 if (!mr->ops->impl.unaligned) {
3221 unsigned align_size_max = addr & -addr;
3222 if (align_size_max != 0 && align_size_max < access_size_max) {
3223 access_size_max = align_size_max;
3227 /* Don't attempt accesses larger than the maximum. */
3228 if (l > access_size_max) {
3229 l = access_size_max;
3231 l = pow2floor(l);
3233 return l;
3236 static bool prepare_mmio_access(MemoryRegion *mr)
3238 bool unlocked = !qemu_mutex_iothread_locked();
3239 bool release_lock = false;
3241 if (unlocked && mr->global_locking) {
3242 qemu_mutex_lock_iothread();
3243 unlocked = false;
3244 release_lock = true;
3246 if (mr->flush_coalesced_mmio) {
3247 if (unlocked) {
3248 qemu_mutex_lock_iothread();
3250 qemu_flush_coalesced_mmio_buffer();
3251 if (unlocked) {
3252 qemu_mutex_unlock_iothread();
3256 return release_lock;
3259 /* Called within RCU critical section. */
3260 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3261 MemTxAttrs attrs,
3262 const uint8_t *buf,
3263 hwaddr len, hwaddr addr1,
3264 hwaddr l, MemoryRegion *mr)
3266 uint8_t *ptr;
3267 uint64_t val;
3268 MemTxResult result = MEMTX_OK;
3269 bool release_lock = false;
3271 for (;;) {
3272 if (!memory_access_is_direct(mr, true)) {
3273 release_lock |= prepare_mmio_access(mr);
3274 l = memory_access_size(mr, l, addr1);
3275 /* XXX: could force current_cpu to NULL to avoid
3276 potential bugs */
3277 val = ldn_p(buf, l);
3278 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3279 } else {
3280 /* RAM case */
3281 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3282 memcpy(ptr, buf, l);
3283 invalidate_and_set_dirty(mr, addr1, l);
3286 if (release_lock) {
3287 qemu_mutex_unlock_iothread();
3288 release_lock = false;
3291 len -= l;
3292 buf += l;
3293 addr += l;
3295 if (!len) {
3296 break;
3299 l = len;
3300 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3303 return result;
3306 /* Called from RCU critical section. */
3307 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3308 const uint8_t *buf, hwaddr len)
3310 hwaddr l;
3311 hwaddr addr1;
3312 MemoryRegion *mr;
3313 MemTxResult result = MEMTX_OK;
3315 l = len;
3316 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3317 result = flatview_write_continue(fv, addr, attrs, buf, len,
3318 addr1, l, mr);
3320 return result;
3323 /* Called within RCU critical section. */
3324 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3325 MemTxAttrs attrs, uint8_t *buf,
3326 hwaddr len, hwaddr addr1, hwaddr l,
3327 MemoryRegion *mr)
3329 uint8_t *ptr;
3330 uint64_t val;
3331 MemTxResult result = MEMTX_OK;
3332 bool release_lock = false;
3334 for (;;) {
3335 if (!memory_access_is_direct(mr, false)) {
3336 /* I/O case */
3337 release_lock |= prepare_mmio_access(mr);
3338 l = memory_access_size(mr, l, addr1);
3339 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3340 stn_p(buf, l, val);
3341 } else {
3342 /* RAM case */
3343 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3344 memcpy(buf, ptr, l);
3347 if (release_lock) {
3348 qemu_mutex_unlock_iothread();
3349 release_lock = false;
3352 len -= l;
3353 buf += l;
3354 addr += l;
3356 if (!len) {
3357 break;
3360 l = len;
3361 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3364 return result;
3367 /* Called from RCU critical section. */
3368 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3369 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3371 hwaddr l;
3372 hwaddr addr1;
3373 MemoryRegion *mr;
3375 l = len;
3376 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3377 return flatview_read_continue(fv, addr, attrs, buf, len,
3378 addr1, l, mr);
3381 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3382 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3384 MemTxResult result = MEMTX_OK;
3385 FlatView *fv;
3387 if (len > 0) {
3388 rcu_read_lock();
3389 fv = address_space_to_flatview(as);
3390 result = flatview_read(fv, addr, attrs, buf, len);
3391 rcu_read_unlock();
3394 return result;
3397 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3398 MemTxAttrs attrs,
3399 const uint8_t *buf, hwaddr len)
3401 MemTxResult result = MEMTX_OK;
3402 FlatView *fv;
3404 if (len > 0) {
3405 rcu_read_lock();
3406 fv = address_space_to_flatview(as);
3407 result = flatview_write(fv, addr, attrs, buf, len);
3408 rcu_read_unlock();
3411 return result;
3414 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3415 uint8_t *buf, hwaddr len, bool is_write)
3417 if (is_write) {
3418 return address_space_write(as, addr, attrs, buf, len);
3419 } else {
3420 return address_space_read_full(as, addr, attrs, buf, len);
3424 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3425 hwaddr len, int is_write)
3427 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3428 buf, len, is_write);
3431 enum write_rom_type {
3432 WRITE_DATA,
3433 FLUSH_CACHE,
3436 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3437 hwaddr addr,
3438 MemTxAttrs attrs,
3439 const uint8_t *buf,
3440 hwaddr len,
3441 enum write_rom_type type)
3443 hwaddr l;
3444 uint8_t *ptr;
3445 hwaddr addr1;
3446 MemoryRegion *mr;
3448 rcu_read_lock();
3449 while (len > 0) {
3450 l = len;
3451 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3453 if (!(memory_region_is_ram(mr) ||
3454 memory_region_is_romd(mr))) {
3455 l = memory_access_size(mr, l, addr1);
3456 } else {
3457 /* ROM/RAM case */
3458 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3459 switch (type) {
3460 case WRITE_DATA:
3461 memcpy(ptr, buf, l);
3462 invalidate_and_set_dirty(mr, addr1, l);
3463 break;
3464 case FLUSH_CACHE:
3465 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3466 break;
3469 len -= l;
3470 buf += l;
3471 addr += l;
3473 rcu_read_unlock();
3474 return MEMTX_OK;
3477 /* used for ROM loading : can write in RAM and ROM */
3478 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3479 MemTxAttrs attrs,
3480 const uint8_t *buf, hwaddr len)
3482 return address_space_write_rom_internal(as, addr, attrs,
3483 buf, len, WRITE_DATA);
3486 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3489 * This function should do the same thing as an icache flush that was
3490 * triggered from within the guest. For TCG we are always cache coherent,
3491 * so there is no need to flush anything. For KVM / Xen we need to flush
3492 * the host's instruction cache at least.
3494 if (tcg_enabled()) {
3495 return;
3498 address_space_write_rom_internal(&address_space_memory,
3499 start, MEMTXATTRS_UNSPECIFIED,
3500 NULL, len, FLUSH_CACHE);
3503 typedef struct {
3504 MemoryRegion *mr;
3505 void *buffer;
3506 hwaddr addr;
3507 hwaddr len;
3508 bool in_use;
3509 } BounceBuffer;
3511 static BounceBuffer bounce;
3513 typedef struct MapClient {
3514 QEMUBH *bh;
3515 QLIST_ENTRY(MapClient) link;
3516 } MapClient;
3518 QemuMutex map_client_list_lock;
3519 static QLIST_HEAD(, MapClient) map_client_list
3520 = QLIST_HEAD_INITIALIZER(map_client_list);
3522 static void cpu_unregister_map_client_do(MapClient *client)
3524 QLIST_REMOVE(client, link);
3525 g_free(client);
3528 static void cpu_notify_map_clients_locked(void)
3530 MapClient *client;
3532 while (!QLIST_EMPTY(&map_client_list)) {
3533 client = QLIST_FIRST(&map_client_list);
3534 qemu_bh_schedule(client->bh);
3535 cpu_unregister_map_client_do(client);
3539 void cpu_register_map_client(QEMUBH *bh)
3541 MapClient *client = g_malloc(sizeof(*client));
3543 qemu_mutex_lock(&map_client_list_lock);
3544 client->bh = bh;
3545 QLIST_INSERT_HEAD(&map_client_list, client, link);
3546 if (!atomic_read(&bounce.in_use)) {
3547 cpu_notify_map_clients_locked();
3549 qemu_mutex_unlock(&map_client_list_lock);
3552 void cpu_exec_init_all(void)
3554 qemu_mutex_init(&ram_list.mutex);
3555 /* The data structures we set up here depend on knowing the page size,
3556 * so no more changes can be made after this point.
3557 * In an ideal world, nothing we did before we had finished the
3558 * machine setup would care about the target page size, and we could
3559 * do this much later, rather than requiring board models to state
3560 * up front what their requirements are.
3562 finalize_target_page_bits();
3563 io_mem_init();
3564 memory_map_init();
3565 qemu_mutex_init(&map_client_list_lock);
3568 void cpu_unregister_map_client(QEMUBH *bh)
3570 MapClient *client;
3572 qemu_mutex_lock(&map_client_list_lock);
3573 QLIST_FOREACH(client, &map_client_list, link) {
3574 if (client->bh == bh) {
3575 cpu_unregister_map_client_do(client);
3576 break;
3579 qemu_mutex_unlock(&map_client_list_lock);
3582 static void cpu_notify_map_clients(void)
3584 qemu_mutex_lock(&map_client_list_lock);
3585 cpu_notify_map_clients_locked();
3586 qemu_mutex_unlock(&map_client_list_lock);
3589 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3590 bool is_write, MemTxAttrs attrs)
3592 MemoryRegion *mr;
3593 hwaddr l, xlat;
3595 while (len > 0) {
3596 l = len;
3597 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3598 if (!memory_access_is_direct(mr, is_write)) {
3599 l = memory_access_size(mr, l, addr);
3600 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3601 return false;
3605 len -= l;
3606 addr += l;
3608 return true;
3611 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3612 hwaddr len, bool is_write,
3613 MemTxAttrs attrs)
3615 FlatView *fv;
3616 bool result;
3618 rcu_read_lock();
3619 fv = address_space_to_flatview(as);
3620 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3621 rcu_read_unlock();
3622 return result;
3625 static hwaddr
3626 flatview_extend_translation(FlatView *fv, hwaddr addr,
3627 hwaddr target_len,
3628 MemoryRegion *mr, hwaddr base, hwaddr len,
3629 bool is_write, MemTxAttrs attrs)
3631 hwaddr done = 0;
3632 hwaddr xlat;
3633 MemoryRegion *this_mr;
3635 for (;;) {
3636 target_len -= len;
3637 addr += len;
3638 done += len;
3639 if (target_len == 0) {
3640 return done;
3643 len = target_len;
3644 this_mr = flatview_translate(fv, addr, &xlat,
3645 &len, is_write, attrs);
3646 if (this_mr != mr || xlat != base + done) {
3647 return done;
3652 /* Map a physical memory region into a host virtual address.
3653 * May map a subset of the requested range, given by and returned in *plen.
3654 * May return NULL if resources needed to perform the mapping are exhausted.
3655 * Use only for reads OR writes - not for read-modify-write operations.
3656 * Use cpu_register_map_client() to know when retrying the map operation is
3657 * likely to succeed.
3659 void *address_space_map(AddressSpace *as,
3660 hwaddr addr,
3661 hwaddr *plen,
3662 bool is_write,
3663 MemTxAttrs attrs)
3665 hwaddr len = *plen;
3666 hwaddr l, xlat;
3667 MemoryRegion *mr;
3668 void *ptr;
3669 FlatView *fv;
3671 if (len == 0) {
3672 return NULL;
3675 l = len;
3676 rcu_read_lock();
3677 fv = address_space_to_flatview(as);
3678 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3680 if (!memory_access_is_direct(mr, is_write)) {
3681 if (atomic_xchg(&bounce.in_use, true)) {
3682 rcu_read_unlock();
3683 return NULL;
3685 /* Avoid unbounded allocations */
3686 l = MIN(l, TARGET_PAGE_SIZE);
3687 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3688 bounce.addr = addr;
3689 bounce.len = l;
3691 memory_region_ref(mr);
3692 bounce.mr = mr;
3693 if (!is_write) {
3694 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3695 bounce.buffer, l);
3698 rcu_read_unlock();
3699 *plen = l;
3700 return bounce.buffer;
3704 memory_region_ref(mr);
3705 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3706 l, is_write, attrs);
3707 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3708 rcu_read_unlock();
3710 return ptr;
3713 /* Unmaps a memory region previously mapped by address_space_map().
3714 * Will also mark the memory as dirty if is_write == 1. access_len gives
3715 * the amount of memory that was actually read or written by the caller.
3717 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3718 int is_write, hwaddr access_len)
3720 if (buffer != bounce.buffer) {
3721 MemoryRegion *mr;
3722 ram_addr_t addr1;
3724 mr = memory_region_from_host(buffer, &addr1);
3725 assert(mr != NULL);
3726 if (is_write) {
3727 invalidate_and_set_dirty(mr, addr1, access_len);
3729 if (xen_enabled()) {
3730 xen_invalidate_map_cache_entry(buffer);
3732 memory_region_unref(mr);
3733 return;
3735 if (is_write) {
3736 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3737 bounce.buffer, access_len);
3739 qemu_vfree(bounce.buffer);
3740 bounce.buffer = NULL;
3741 memory_region_unref(bounce.mr);
3742 atomic_mb_set(&bounce.in_use, false);
3743 cpu_notify_map_clients();
3746 void *cpu_physical_memory_map(hwaddr addr,
3747 hwaddr *plen,
3748 int is_write)
3750 return address_space_map(&address_space_memory, addr, plen, is_write,
3751 MEMTXATTRS_UNSPECIFIED);
3754 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3755 int is_write, hwaddr access_len)
3757 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3760 #define ARG1_DECL AddressSpace *as
3761 #define ARG1 as
3762 #define SUFFIX
3763 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3764 #define RCU_READ_LOCK(...) rcu_read_lock()
3765 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3766 #include "memory_ldst.inc.c"
3768 int64_t address_space_cache_init(MemoryRegionCache *cache,
3769 AddressSpace *as,
3770 hwaddr addr,
3771 hwaddr len,
3772 bool is_write)
3774 AddressSpaceDispatch *d;
3775 hwaddr l;
3776 MemoryRegion *mr;
3778 assert(len > 0);
3780 l = len;
3781 cache->fv = address_space_get_flatview(as);
3782 d = flatview_to_dispatch(cache->fv);
3783 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3785 mr = cache->mrs.mr;
3786 memory_region_ref(mr);
3787 if (memory_access_is_direct(mr, is_write)) {
3788 /* We don't care about the memory attributes here as we're only
3789 * doing this if we found actual RAM, which behaves the same
3790 * regardless of attributes; so UNSPECIFIED is fine.
3792 l = flatview_extend_translation(cache->fv, addr, len, mr,
3793 cache->xlat, l, is_write,
3794 MEMTXATTRS_UNSPECIFIED);
3795 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3796 } else {
3797 cache->ptr = NULL;
3800 cache->len = l;
3801 cache->is_write = is_write;
3802 return l;
3805 void address_space_cache_invalidate(MemoryRegionCache *cache,
3806 hwaddr addr,
3807 hwaddr access_len)
3809 assert(cache->is_write);
3810 if (likely(cache->ptr)) {
3811 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3815 void address_space_cache_destroy(MemoryRegionCache *cache)
3817 if (!cache->mrs.mr) {
3818 return;
3821 if (xen_enabled()) {
3822 xen_invalidate_map_cache_entry(cache->ptr);
3824 memory_region_unref(cache->mrs.mr);
3825 flatview_unref(cache->fv);
3826 cache->mrs.mr = NULL;
3827 cache->fv = NULL;
3830 /* Called from RCU critical section. This function has the same
3831 * semantics as address_space_translate, but it only works on a
3832 * predefined range of a MemoryRegion that was mapped with
3833 * address_space_cache_init.
3835 static inline MemoryRegion *address_space_translate_cached(
3836 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3837 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3839 MemoryRegionSection section;
3840 MemoryRegion *mr;
3841 IOMMUMemoryRegion *iommu_mr;
3842 AddressSpace *target_as;
3844 assert(!cache->ptr);
3845 *xlat = addr + cache->xlat;
3847 mr = cache->mrs.mr;
3848 iommu_mr = memory_region_get_iommu(mr);
3849 if (!iommu_mr) {
3850 /* MMIO region. */
3851 return mr;
3854 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3855 NULL, is_write, true,
3856 &target_as, attrs);
3857 return section.mr;
3860 /* Called from RCU critical section. address_space_read_cached uses this
3861 * out of line function when the target is an MMIO or IOMMU region.
3863 void
3864 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3865 void *buf, hwaddr len)
3867 hwaddr addr1, l;
3868 MemoryRegion *mr;
3870 l = len;
3871 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3872 MEMTXATTRS_UNSPECIFIED);
3873 flatview_read_continue(cache->fv,
3874 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3875 addr1, l, mr);
3878 /* Called from RCU critical section. address_space_write_cached uses this
3879 * out of line function when the target is an MMIO or IOMMU region.
3881 void
3882 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3883 const void *buf, hwaddr len)
3885 hwaddr addr1, l;
3886 MemoryRegion *mr;
3888 l = len;
3889 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3890 MEMTXATTRS_UNSPECIFIED);
3891 flatview_write_continue(cache->fv,
3892 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3893 addr1, l, mr);
3896 #define ARG1_DECL MemoryRegionCache *cache
3897 #define ARG1 cache
3898 #define SUFFIX _cached_slow
3899 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3900 #define RCU_READ_LOCK() ((void)0)
3901 #define RCU_READ_UNLOCK() ((void)0)
3902 #include "memory_ldst.inc.c"
3904 /* virtual memory access for debug (includes writing to ROM) */
3905 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3906 uint8_t *buf, target_ulong len, int is_write)
3908 hwaddr phys_addr;
3909 target_ulong l, page;
3911 cpu_synchronize_state(cpu);
3912 while (len > 0) {
3913 int asidx;
3914 MemTxAttrs attrs;
3916 page = addr & TARGET_PAGE_MASK;
3917 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3918 asidx = cpu_asidx_from_attrs(cpu, attrs);
3919 /* if no physical page mapped, return an error */
3920 if (phys_addr == -1)
3921 return -1;
3922 l = (page + TARGET_PAGE_SIZE) - addr;
3923 if (l > len)
3924 l = len;
3925 phys_addr += (addr & ~TARGET_PAGE_MASK);
3926 if (is_write) {
3927 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3928 attrs, buf, l);
3929 } else {
3930 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3931 attrs, buf, l, 0);
3933 len -= l;
3934 buf += l;
3935 addr += l;
3937 return 0;
3941 * Allows code that needs to deal with migration bitmaps etc to still be built
3942 * target independent.
3944 size_t qemu_target_page_size(void)
3946 return TARGET_PAGE_SIZE;
3949 int qemu_target_page_bits(void)
3951 return TARGET_PAGE_BITS;
3954 int qemu_target_page_bits_min(void)
3956 return TARGET_PAGE_BITS_MIN;
3958 #endif
3960 bool target_words_bigendian(void)
3962 #if defined(TARGET_WORDS_BIGENDIAN)
3963 return true;
3964 #else
3965 return false;
3966 #endif
3969 #ifndef CONFIG_USER_ONLY
3970 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3972 MemoryRegion*mr;
3973 hwaddr l = 1;
3974 bool res;
3976 rcu_read_lock();
3977 mr = address_space_translate(&address_space_memory,
3978 phys_addr, &phys_addr, &l, false,
3979 MEMTXATTRS_UNSPECIFIED);
3981 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3982 rcu_read_unlock();
3983 return res;
3986 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3988 RAMBlock *block;
3989 int ret = 0;
3991 rcu_read_lock();
3992 RAMBLOCK_FOREACH(block) {
3993 ret = func(block, opaque);
3994 if (ret) {
3995 break;
3998 rcu_read_unlock();
3999 return ret;
4003 * Unmap pages of memory from start to start+length such that
4004 * they a) read as 0, b) Trigger whatever fault mechanism
4005 * the OS provides for postcopy.
4006 * The pages must be unmapped by the end of the function.
4007 * Returns: 0 on success, none-0 on failure
4010 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4012 int ret = -1;
4014 uint8_t *host_startaddr = rb->host + start;
4016 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4017 error_report("ram_block_discard_range: Unaligned start address: %p",
4018 host_startaddr);
4019 goto err;
4022 if ((start + length) <= rb->used_length) {
4023 bool need_madvise, need_fallocate;
4024 uint8_t *host_endaddr = host_startaddr + length;
4025 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4026 error_report("ram_block_discard_range: Unaligned end address: %p",
4027 host_endaddr);
4028 goto err;
4031 errno = ENOTSUP; /* If we are missing MADVISE etc */
4033 /* The logic here is messy;
4034 * madvise DONTNEED fails for hugepages
4035 * fallocate works on hugepages and shmem
4037 need_madvise = (rb->page_size == qemu_host_page_size);
4038 need_fallocate = rb->fd != -1;
4039 if (need_fallocate) {
4040 /* For a file, this causes the area of the file to be zero'd
4041 * if read, and for hugetlbfs also causes it to be unmapped
4042 * so a userfault will trigger.
4044 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4045 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4046 start, length);
4047 if (ret) {
4048 ret = -errno;
4049 error_report("ram_block_discard_range: Failed to fallocate "
4050 "%s:%" PRIx64 " +%zx (%d)",
4051 rb->idstr, start, length, ret);
4052 goto err;
4054 #else
4055 ret = -ENOSYS;
4056 error_report("ram_block_discard_range: fallocate not available/file"
4057 "%s:%" PRIx64 " +%zx (%d)",
4058 rb->idstr, start, length, ret);
4059 goto err;
4060 #endif
4062 if (need_madvise) {
4063 /* For normal RAM this causes it to be unmapped,
4064 * for shared memory it causes the local mapping to disappear
4065 * and to fall back on the file contents (which we just
4066 * fallocate'd away).
4068 #if defined(CONFIG_MADVISE)
4069 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4070 if (ret) {
4071 ret = -errno;
4072 error_report("ram_block_discard_range: Failed to discard range "
4073 "%s:%" PRIx64 " +%zx (%d)",
4074 rb->idstr, start, length, ret);
4075 goto err;
4077 #else
4078 ret = -ENOSYS;
4079 error_report("ram_block_discard_range: MADVISE not available"
4080 "%s:%" PRIx64 " +%zx (%d)",
4081 rb->idstr, start, length, ret);
4082 goto err;
4083 #endif
4085 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4086 need_madvise, need_fallocate, ret);
4087 } else {
4088 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4089 "/%zx/" RAM_ADDR_FMT")",
4090 rb->idstr, start, length, rb->used_length);
4093 err:
4094 return ret;
4097 bool ramblock_is_pmem(RAMBlock *rb)
4099 return rb->flags & RAM_PMEM;
4102 #endif
4104 void page_size_init(void)
4106 /* NOTE: we can always suppose that qemu_host_page_size >=
4107 TARGET_PAGE_SIZE */
4108 if (qemu_host_page_size == 0) {
4109 qemu_host_page_size = qemu_real_host_page_size;
4111 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4112 qemu_host_page_size = TARGET_PAGE_SIZE;
4114 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4117 #if !defined(CONFIG_USER_ONLY)
4119 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4120 int start, int end, int skip, int ptr)
4122 if (start == end - 1) {
4123 mon(f, "\t%3d ", start);
4124 } else {
4125 mon(f, "\t%3d..%-3d ", start, end - 1);
4127 mon(f, " skip=%d ", skip);
4128 if (ptr == PHYS_MAP_NODE_NIL) {
4129 mon(f, " ptr=NIL");
4130 } else if (!skip) {
4131 mon(f, " ptr=#%d", ptr);
4132 } else {
4133 mon(f, " ptr=[%d]", ptr);
4135 mon(f, "\n");
4138 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4139 int128_sub((size), int128_one())) : 0)
4141 void mtree_print_dispatch(fprintf_function mon, void *f,
4142 AddressSpaceDispatch *d, MemoryRegion *root)
4144 int i;
4146 mon(f, " Dispatch\n");
4147 mon(f, " Physical sections\n");
4149 for (i = 0; i < d->map.sections_nb; ++i) {
4150 MemoryRegionSection *s = d->map.sections + i;
4151 const char *names[] = { " [unassigned]", " [not dirty]",
4152 " [ROM]", " [watch]" };
4154 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4156 s->offset_within_address_space,
4157 s->offset_within_address_space + MR_SIZE(s->mr->size),
4158 s->mr->name ? s->mr->name : "(noname)",
4159 i < ARRAY_SIZE(names) ? names[i] : "",
4160 s->mr == root ? " [ROOT]" : "",
4161 s == d->mru_section ? " [MRU]" : "",
4162 s->mr->is_iommu ? " [iommu]" : "");
4164 if (s->mr->alias) {
4165 mon(f, " alias=%s", s->mr->alias->name ?
4166 s->mr->alias->name : "noname");
4168 mon(f, "\n");
4171 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4172 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4173 for (i = 0; i < d->map.nodes_nb; ++i) {
4174 int j, jprev;
4175 PhysPageEntry prev;
4176 Node *n = d->map.nodes + i;
4178 mon(f, " [%d]\n", i);
4180 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4181 PhysPageEntry *pe = *n + j;
4183 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4184 continue;
4187 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4189 jprev = j;
4190 prev = *pe;
4193 if (jprev != ARRAY_SIZE(*n)) {
4194 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4199 #endif