2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu-timer.h"
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
38 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
40 # define LOG_IRQ(...) do { } while (0)
45 # define LOG_TB(...) qemu_log(__VA_ARGS__)
47 # define LOG_TB(...) do { } while (0)
50 static void cpu_ppc_tb_stop (CPUState
*env
);
51 static void cpu_ppc_tb_start (CPUState
*env
);
53 void ppc_set_irq(CPUState
*env
, int n_IRQ
, int level
)
55 unsigned int old_pending
= env
->pending_interrupts
;
58 env
->pending_interrupts
|= 1 << n_IRQ
;
59 cpu_interrupt(env
, CPU_INTERRUPT_HARD
);
61 env
->pending_interrupts
&= ~(1 << n_IRQ
);
62 if (env
->pending_interrupts
== 0)
63 cpu_reset_interrupt(env
, CPU_INTERRUPT_HARD
);
66 if (old_pending
!= env
->pending_interrupts
) {
68 kvmppc_set_interrupt(env
, n_IRQ
, level
);
72 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73 "req %08x\n", __func__
, env
, n_IRQ
, level
,
74 env
->pending_interrupts
, env
->interrupt_request
);
77 /* PowerPC 6xx / 7xx internal IRQ controller */
78 static void ppc6xx_set_irq (void *opaque
, int pin
, int level
)
80 CPUState
*env
= opaque
;
83 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
85 cur_level
= (env
->irq_input_state
>> pin
) & 1;
86 /* Don't generate spurious events */
87 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
89 case PPC6xx_INPUT_TBEN
:
90 /* Level sensitive - active high */
91 LOG_IRQ("%s: %s the time base\n",
92 __func__
, level
? "start" : "stop");
94 cpu_ppc_tb_start(env
);
98 case PPC6xx_INPUT_INT
:
99 /* Level sensitive - active high */
100 LOG_IRQ("%s: set the external IRQ state to %d\n",
102 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
104 case PPC6xx_INPUT_SMI
:
105 /* Level sensitive - active high */
106 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
108 ppc_set_irq(env
, PPC_INTERRUPT_SMI
, level
);
110 case PPC6xx_INPUT_MCP
:
111 /* Negative edge sensitive */
112 /* XXX: TODO: actual reaction may depends on HID0 status
113 * 603/604/740/750: check HID0[EMCP]
115 if (cur_level
== 1 && level
== 0) {
116 LOG_IRQ("%s: raise machine check state\n",
118 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
121 case PPC6xx_INPUT_CKSTP_IN
:
122 /* Level sensitive - active low */
123 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
124 /* XXX: Note that the only way to restart the CPU is to reset it */
126 LOG_IRQ("%s: stop the CPU\n", __func__
);
130 case PPC6xx_INPUT_HRESET
:
131 /* Level sensitive - active low */
133 LOG_IRQ("%s: reset the CPU\n", __func__
);
134 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
139 qemu_system_reset_request();
143 case PPC6xx_INPUT_SRESET
:
144 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
146 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
149 /* Unknown pin - do nothing */
150 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
154 env
->irq_input_state
|= 1 << pin
;
156 env
->irq_input_state
&= ~(1 << pin
);
160 void ppc6xx_irq_init (CPUState
*env
)
162 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, env
,
166 #if defined(TARGET_PPC64)
167 /* PowerPC 970 internal IRQ controller */
168 static void ppc970_set_irq (void *opaque
, int pin
, int level
)
170 CPUState
*env
= opaque
;
173 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
175 cur_level
= (env
->irq_input_state
>> pin
) & 1;
176 /* Don't generate spurious events */
177 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
179 case PPC970_INPUT_INT
:
180 /* Level sensitive - active high */
181 LOG_IRQ("%s: set the external IRQ state to %d\n",
183 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
185 case PPC970_INPUT_THINT
:
186 /* Level sensitive - active high */
187 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
189 ppc_set_irq(env
, PPC_INTERRUPT_THERM
, level
);
191 case PPC970_INPUT_MCP
:
192 /* Negative edge sensitive */
193 /* XXX: TODO: actual reaction may depends on HID0 status
194 * 603/604/740/750: check HID0[EMCP]
196 if (cur_level
== 1 && level
== 0) {
197 LOG_IRQ("%s: raise machine check state\n",
199 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
202 case PPC970_INPUT_CKSTP
:
203 /* Level sensitive - active low */
204 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
206 LOG_IRQ("%s: stop the CPU\n", __func__
);
209 LOG_IRQ("%s: restart the CPU\n", __func__
);
214 case PPC970_INPUT_HRESET
:
215 /* Level sensitive - active low */
218 LOG_IRQ("%s: reset the CPU\n", __func__
);
223 case PPC970_INPUT_SRESET
:
224 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
226 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
228 case PPC970_INPUT_TBEN
:
229 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
234 /* Unknown pin - do nothing */
235 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
239 env
->irq_input_state
|= 1 << pin
;
241 env
->irq_input_state
&= ~(1 << pin
);
245 void ppc970_irq_init (CPUState
*env
)
247 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, env
,
251 /* POWER7 internal IRQ controller */
252 static void power7_set_irq (void *opaque
, int pin
, int level
)
254 CPUState
*env
= opaque
;
256 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
260 case POWER7_INPUT_INT
:
261 /* Level sensitive - active high */
262 LOG_IRQ("%s: set the external IRQ state to %d\n",
264 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
267 /* Unknown pin - do nothing */
268 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
272 env
->irq_input_state
|= 1 << pin
;
274 env
->irq_input_state
&= ~(1 << pin
);
278 void ppcPOWER7_irq_init (CPUState
*env
)
280 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, env
,
283 #endif /* defined(TARGET_PPC64) */
285 /* PowerPC 40x internal IRQ controller */
286 static void ppc40x_set_irq (void *opaque
, int pin
, int level
)
288 CPUState
*env
= opaque
;
291 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
293 cur_level
= (env
->irq_input_state
>> pin
) & 1;
294 /* Don't generate spurious events */
295 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
297 case PPC40x_INPUT_RESET_SYS
:
299 LOG_IRQ("%s: reset the PowerPC system\n",
301 ppc40x_system_reset(env
);
304 case PPC40x_INPUT_RESET_CHIP
:
306 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
307 ppc40x_chip_reset(env
);
310 case PPC40x_INPUT_RESET_CORE
:
311 /* XXX: TODO: update DBSR[MRR] */
313 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
314 ppc40x_core_reset(env
);
317 case PPC40x_INPUT_CINT
:
318 /* Level sensitive - active high */
319 LOG_IRQ("%s: set the critical IRQ state to %d\n",
321 ppc_set_irq(env
, PPC_INTERRUPT_CEXT
, level
);
323 case PPC40x_INPUT_INT
:
324 /* Level sensitive - active high */
325 LOG_IRQ("%s: set the external IRQ state to %d\n",
327 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
329 case PPC40x_INPUT_HALT
:
330 /* Level sensitive - active low */
332 LOG_IRQ("%s: stop the CPU\n", __func__
);
335 LOG_IRQ("%s: restart the CPU\n", __func__
);
340 case PPC40x_INPUT_DEBUG
:
341 /* Level sensitive - active high */
342 LOG_IRQ("%s: set the debug pin state to %d\n",
344 ppc_set_irq(env
, PPC_INTERRUPT_DEBUG
, level
);
347 /* Unknown pin - do nothing */
348 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
352 env
->irq_input_state
|= 1 << pin
;
354 env
->irq_input_state
&= ~(1 << pin
);
358 void ppc40x_irq_init (CPUState
*env
)
360 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
361 env
, PPC40x_INPUT_NB
);
364 /* PowerPC E500 internal IRQ controller */
365 static void ppce500_set_irq (void *opaque
, int pin
, int level
)
367 CPUState
*env
= opaque
;
370 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
372 cur_level
= (env
->irq_input_state
>> pin
) & 1;
373 /* Don't generate spurious events */
374 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
376 case PPCE500_INPUT_MCK
:
378 LOG_IRQ("%s: reset the PowerPC system\n",
380 qemu_system_reset_request();
383 case PPCE500_INPUT_RESET_CORE
:
385 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
386 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, level
);
389 case PPCE500_INPUT_CINT
:
390 /* Level sensitive - active high */
391 LOG_IRQ("%s: set the critical IRQ state to %d\n",
393 ppc_set_irq(env
, PPC_INTERRUPT_CEXT
, level
);
395 case PPCE500_INPUT_INT
:
396 /* Level sensitive - active high */
397 LOG_IRQ("%s: set the core IRQ state to %d\n",
399 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
401 case PPCE500_INPUT_DEBUG
:
402 /* Level sensitive - active high */
403 LOG_IRQ("%s: set the debug pin state to %d\n",
405 ppc_set_irq(env
, PPC_INTERRUPT_DEBUG
, level
);
408 /* Unknown pin - do nothing */
409 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
413 env
->irq_input_state
|= 1 << pin
;
415 env
->irq_input_state
&= ~(1 << pin
);
419 void ppce500_irq_init (CPUState
*env
)
421 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
422 env
, PPCE500_INPUT_NB
);
424 /*****************************************************************************/
425 /* PowerPC time base and decrementer emulation */
427 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
429 /* TB time in tb periods */
430 return muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec()) + tb_offset
;
433 uint64_t cpu_ppc_load_tbl (CPUState
*env
)
435 ppc_tb_t
*tb_env
= env
->tb_env
;
439 return env
->spr
[SPR_TBL
];
442 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
443 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
448 static inline uint32_t _cpu_ppc_load_tbu(CPUState
*env
)
450 ppc_tb_t
*tb_env
= env
->tb_env
;
453 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
454 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
459 uint32_t cpu_ppc_load_tbu (CPUState
*env
)
462 return env
->spr
[SPR_TBU
];
465 return _cpu_ppc_load_tbu(env
);
468 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
469 int64_t *tb_offsetp
, uint64_t value
)
471 *tb_offsetp
= value
- muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec());
472 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
473 __func__
, value
, *tb_offsetp
);
476 void cpu_ppc_store_tbl (CPUState
*env
, uint32_t value
)
478 ppc_tb_t
*tb_env
= env
->tb_env
;
481 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
482 tb
&= 0xFFFFFFFF00000000ULL
;
483 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
484 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
487 static inline void _cpu_ppc_store_tbu(CPUState
*env
, uint32_t value
)
489 ppc_tb_t
*tb_env
= env
->tb_env
;
492 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
493 tb
&= 0x00000000FFFFFFFFULL
;
494 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
495 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
498 void cpu_ppc_store_tbu (CPUState
*env
, uint32_t value
)
500 _cpu_ppc_store_tbu(env
, value
);
503 uint64_t cpu_ppc_load_atbl (CPUState
*env
)
505 ppc_tb_t
*tb_env
= env
->tb_env
;
508 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
509 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
514 uint32_t cpu_ppc_load_atbu (CPUState
*env
)
516 ppc_tb_t
*tb_env
= env
->tb_env
;
519 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
520 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
525 void cpu_ppc_store_atbl (CPUState
*env
, uint32_t value
)
527 ppc_tb_t
*tb_env
= env
->tb_env
;
530 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
531 tb
&= 0xFFFFFFFF00000000ULL
;
532 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
533 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
536 void cpu_ppc_store_atbu (CPUState
*env
, uint32_t value
)
538 ppc_tb_t
*tb_env
= env
->tb_env
;
541 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
542 tb
&= 0x00000000FFFFFFFFULL
;
543 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
544 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
547 static void cpu_ppc_tb_stop (CPUState
*env
)
549 ppc_tb_t
*tb_env
= env
->tb_env
;
550 uint64_t tb
, atb
, vmclk
;
552 /* If the time base is already frozen, do nothing */
553 if (tb_env
->tb_freq
!= 0) {
554 vmclk
= qemu_get_clock_ns(vm_clock
);
555 /* Get the time base */
556 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
557 /* Get the alternate time base */
558 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
559 /* Store the time base value (ie compute the current offset) */
560 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
561 /* Store the alternate time base value (compute the current offset) */
562 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
563 /* Set the time base frequency to zero */
565 /* Now, the time bases are frozen to tb_offset / atb_offset value */
569 static void cpu_ppc_tb_start (CPUState
*env
)
571 ppc_tb_t
*tb_env
= env
->tb_env
;
572 uint64_t tb
, atb
, vmclk
;
574 /* If the time base is not frozen, do nothing */
575 if (tb_env
->tb_freq
== 0) {
576 vmclk
= qemu_get_clock_ns(vm_clock
);
577 /* Get the time base from tb_offset */
578 tb
= tb_env
->tb_offset
;
579 /* Get the alternate time base from atb_offset */
580 atb
= tb_env
->atb_offset
;
581 /* Restore the tb frequency from the decrementer frequency */
582 tb_env
->tb_freq
= tb_env
->decr_freq
;
583 /* Store the time base value */
584 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
585 /* Store the alternate time base value */
586 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
590 static inline uint32_t _cpu_ppc_load_decr(CPUState
*env
, uint64_t next
)
592 ppc_tb_t
*tb_env
= env
->tb_env
;
596 diff
= next
- qemu_get_clock_ns(vm_clock
);
598 decr
= muldiv64(diff
, tb_env
->decr_freq
, get_ticks_per_sec());
599 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
602 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, get_ticks_per_sec());
604 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
609 uint32_t cpu_ppc_load_decr (CPUState
*env
)
611 ppc_tb_t
*tb_env
= env
->tb_env
;
614 return env
->spr
[SPR_DECR
];
617 return _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
620 uint32_t cpu_ppc_load_hdecr (CPUState
*env
)
622 ppc_tb_t
*tb_env
= env
->tb_env
;
624 return _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
627 uint64_t cpu_ppc_load_purr (CPUState
*env
)
629 ppc_tb_t
*tb_env
= env
->tb_env
;
632 diff
= qemu_get_clock_ns(vm_clock
) - tb_env
->purr_start
;
634 return tb_env
->purr_load
+ muldiv64(diff
, tb_env
->tb_freq
, get_ticks_per_sec());
637 /* When decrementer expires,
638 * all we need to do is generate or queue a CPU exception
640 static inline void cpu_ppc_decr_excp(CPUState
*env
)
643 LOG_TB("raise decrementer exception\n");
644 ppc_set_irq(env
, PPC_INTERRUPT_DECR
, 1);
647 static inline void cpu_ppc_hdecr_excp(CPUState
*env
)
650 LOG_TB("raise decrementer exception\n");
651 ppc_set_irq(env
, PPC_INTERRUPT_HDECR
, 1);
654 static void __cpu_ppc_store_decr (CPUState
*env
, uint64_t *nextp
,
655 struct QEMUTimer
*timer
,
656 void (*raise_excp
)(CPUState
*),
657 uint32_t decr
, uint32_t value
,
660 ppc_tb_t
*tb_env
= env
->tb_env
;
663 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
665 now
= qemu_get_clock_ns(vm_clock
);
666 next
= now
+ muldiv64(value
, get_ticks_per_sec(), tb_env
->decr_freq
);
668 next
+= *nextp
- now
;
675 qemu_mod_timer(timer
, next
);
677 /* If we set a negative value and the decrementer was positive, raise an
680 if ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
)
681 && (value
& 0x80000000)
682 && !(decr
& 0x80000000)) {
687 static inline void _cpu_ppc_store_decr(CPUState
*env
, uint32_t decr
,
688 uint32_t value
, int is_excp
)
690 ppc_tb_t
*tb_env
= env
->tb_env
;
692 __cpu_ppc_store_decr(env
, &tb_env
->decr_next
, tb_env
->decr_timer
,
693 &cpu_ppc_decr_excp
, decr
, value
, is_excp
);
696 void cpu_ppc_store_decr (CPUState
*env
, uint32_t value
)
698 _cpu_ppc_store_decr(env
, cpu_ppc_load_decr(env
), value
, 0);
701 static void cpu_ppc_decr_cb (void *opaque
)
703 _cpu_ppc_store_decr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
706 static inline void _cpu_ppc_store_hdecr(CPUState
*env
, uint32_t hdecr
,
707 uint32_t value
, int is_excp
)
709 ppc_tb_t
*tb_env
= env
->tb_env
;
711 if (tb_env
->hdecr_timer
!= NULL
) {
712 __cpu_ppc_store_decr(env
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
713 &cpu_ppc_hdecr_excp
, hdecr
, value
, is_excp
);
717 void cpu_ppc_store_hdecr (CPUState
*env
, uint32_t value
)
719 _cpu_ppc_store_hdecr(env
, cpu_ppc_load_hdecr(env
), value
, 0);
722 static void cpu_ppc_hdecr_cb (void *opaque
)
724 _cpu_ppc_store_hdecr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
727 void cpu_ppc_store_purr (CPUState
*env
, uint64_t value
)
729 ppc_tb_t
*tb_env
= env
->tb_env
;
731 tb_env
->purr_load
= value
;
732 tb_env
->purr_start
= qemu_get_clock_ns(vm_clock
);
735 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
737 CPUState
*env
= opaque
;
738 ppc_tb_t
*tb_env
= env
->tb_env
;
740 tb_env
->tb_freq
= freq
;
741 tb_env
->decr_freq
= freq
;
742 /* There is a bug in Linux 2.4 kernels:
743 * if a decrementer exception is pending when it enables msr_ee at startup,
744 * it's not ready to handle it...
746 _cpu_ppc_store_decr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
747 _cpu_ppc_store_hdecr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
748 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
751 /* Set up (once) timebase frequency (in Hz) */
752 clk_setup_cb
cpu_ppc_tb_init (CPUState
*env
, uint32_t freq
)
756 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
757 env
->tb_env
= tb_env
;
758 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
759 /* Create new timer */
760 tb_env
->decr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_ppc_decr_cb
, env
);
762 /* XXX: find a suitable condition to enable the hypervisor decrementer
764 tb_env
->hdecr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_ppc_hdecr_cb
, env
);
766 tb_env
->hdecr_timer
= NULL
;
768 cpu_ppc_set_tb_clk(env
, freq
);
770 return &cpu_ppc_set_tb_clk
;
773 /* Specific helpers for POWER & PowerPC 601 RTC */
775 static clk_setup_cb
cpu_ppc601_rtc_init (CPUState
*env
)
777 return cpu_ppc_tb_init(env
, 7812500);
781 void cpu_ppc601_store_rtcu (CPUState
*env
, uint32_t value
)
783 _cpu_ppc_store_tbu(env
, value
);
786 uint32_t cpu_ppc601_load_rtcu (CPUState
*env
)
788 return _cpu_ppc_load_tbu(env
);
791 void cpu_ppc601_store_rtcl (CPUState
*env
, uint32_t value
)
793 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
796 uint32_t cpu_ppc601_load_rtcl (CPUState
*env
)
798 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
801 /*****************************************************************************/
802 /* PowerPC 40x timers */
805 typedef struct ppc40x_timer_t ppc40x_timer_t
;
806 struct ppc40x_timer_t
{
807 uint64_t pit_reload
; /* PIT auto-reload value */
808 uint64_t fit_next
; /* Tick for next FIT interrupt */
809 struct QEMUTimer
*fit_timer
;
810 uint64_t wdt_next
; /* Tick for next WDT interrupt */
811 struct QEMUTimer
*wdt_timer
;
813 /* 405 have the PIT, 440 have a DECR. */
814 unsigned int decr_excp
;
817 /* Fixed interval timer */
818 static void cpu_4xx_fit_cb (void *opaque
)
822 ppc40x_timer_t
*ppc40x_timer
;
826 tb_env
= env
->tb_env
;
827 ppc40x_timer
= tb_env
->opaque
;
828 now
= qemu_get_clock_ns(vm_clock
);
829 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
843 /* Cannot occur, but makes gcc happy */
846 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->tb_freq
);
849 qemu_mod_timer(ppc40x_timer
->fit_timer
, next
);
850 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
851 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1)
852 ppc_set_irq(env
, PPC_INTERRUPT_FIT
, 1);
853 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
854 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
855 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
858 /* Programmable interval timer */
859 static void start_stop_pit (CPUState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
861 ppc40x_timer_t
*ppc40x_timer
;
864 ppc40x_timer
= tb_env
->opaque
;
865 if (ppc40x_timer
->pit_reload
<= 1 ||
866 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
867 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
869 LOG_TB("%s: stop PIT\n", __func__
);
870 qemu_del_timer(tb_env
->decr_timer
);
872 LOG_TB("%s: start PIT %016" PRIx64
"\n",
873 __func__
, ppc40x_timer
->pit_reload
);
874 now
= qemu_get_clock_ns(vm_clock
);
875 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
876 get_ticks_per_sec(), tb_env
->decr_freq
);
878 next
+= tb_env
->decr_next
- now
;
881 qemu_mod_timer(tb_env
->decr_timer
, next
);
882 tb_env
->decr_next
= next
;
886 static void cpu_4xx_pit_cb (void *opaque
)
890 ppc40x_timer_t
*ppc40x_timer
;
893 tb_env
= env
->tb_env
;
894 ppc40x_timer
= tb_env
->opaque
;
895 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
896 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1)
897 ppc_set_irq(env
, ppc40x_timer
->decr_excp
, 1);
898 start_stop_pit(env
, tb_env
, 1);
899 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
900 "%016" PRIx64
"\n", __func__
,
901 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
902 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
903 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
904 ppc40x_timer
->pit_reload
);
908 static void cpu_4xx_wdt_cb (void *opaque
)
912 ppc40x_timer_t
*ppc40x_timer
;
916 tb_env
= env
->tb_env
;
917 ppc40x_timer
= tb_env
->opaque
;
918 now
= qemu_get_clock_ns(vm_clock
);
919 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
933 /* Cannot occur, but makes gcc happy */
936 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->decr_freq
);
939 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
940 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
941 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
944 qemu_mod_timer(ppc40x_timer
->wdt_timer
, next
);
945 ppc40x_timer
->wdt_next
= next
;
946 env
->spr
[SPR_40x_TSR
] |= 1 << 31;
949 qemu_mod_timer(ppc40x_timer
->wdt_timer
, next
);
950 ppc40x_timer
->wdt_next
= next
;
951 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
952 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1)
953 ppc_set_irq(env
, PPC_INTERRUPT_WDT
, 1);
956 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
957 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
958 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
962 case 0x1: /* Core reset */
963 ppc40x_core_reset(env
);
965 case 0x2: /* Chip reset */
966 ppc40x_chip_reset(env
);
968 case 0x3: /* System reset */
969 ppc40x_system_reset(env
);
975 void store_40x_pit (CPUState
*env
, target_ulong val
)
978 ppc40x_timer_t
*ppc40x_timer
;
980 tb_env
= env
->tb_env
;
981 ppc40x_timer
= tb_env
->opaque
;
982 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
983 ppc40x_timer
->pit_reload
= val
;
984 start_stop_pit(env
, tb_env
, 0);
987 target_ulong
load_40x_pit (CPUState
*env
)
989 return cpu_ppc_load_decr(env
);
992 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
994 CPUState
*env
= opaque
;
995 ppc_tb_t
*tb_env
= env
->tb_env
;
997 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
999 tb_env
->tb_freq
= freq
;
1000 tb_env
->decr_freq
= freq
;
1001 /* XXX: we should also update all timers */
1004 clk_setup_cb
ppc_40x_timers_init (CPUState
*env
, uint32_t freq
,
1005 unsigned int decr_excp
)
1008 ppc40x_timer_t
*ppc40x_timer
;
1010 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1011 env
->tb_env
= tb_env
;
1012 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1013 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1014 tb_env
->tb_freq
= freq
;
1015 tb_env
->decr_freq
= freq
;
1016 tb_env
->opaque
= ppc40x_timer
;
1017 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1018 if (ppc40x_timer
!= NULL
) {
1019 /* We use decr timer for PIT */
1020 tb_env
->decr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_4xx_pit_cb
, env
);
1021 ppc40x_timer
->fit_timer
=
1022 qemu_new_timer_ns(vm_clock
, &cpu_4xx_fit_cb
, env
);
1023 ppc40x_timer
->wdt_timer
=
1024 qemu_new_timer_ns(vm_clock
, &cpu_4xx_wdt_cb
, env
);
1025 ppc40x_timer
->decr_excp
= decr_excp
;
1028 return &ppc_40x_set_tb_clk
;
1031 /*****************************************************************************/
1032 /* Embedded PowerPC Device Control Registers */
1033 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1035 dcr_read_cb dcr_read
;
1036 dcr_write_cb dcr_write
;
1040 /* XXX: on 460, DCR addresses are 32 bits wide,
1041 * using DCRIPR to get the 22 upper bits of the DCR address
1043 #define DCRN_NB 1024
1045 ppc_dcrn_t dcrn
[DCRN_NB
];
1046 int (*read_error
)(int dcrn
);
1047 int (*write_error
)(int dcrn
);
1050 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1054 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1056 dcr
= &dcr_env
->dcrn
[dcrn
];
1057 if (dcr
->dcr_read
== NULL
)
1059 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1064 if (dcr_env
->read_error
!= NULL
)
1065 return (*dcr_env
->read_error
)(dcrn
);
1070 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1074 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1076 dcr
= &dcr_env
->dcrn
[dcrn
];
1077 if (dcr
->dcr_write
== NULL
)
1079 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1084 if (dcr_env
->write_error
!= NULL
)
1085 return (*dcr_env
->write_error
)(dcrn
);
1090 int ppc_dcr_register (CPUState
*env
, int dcrn
, void *opaque
,
1091 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1096 dcr_env
= env
->dcr_env
;
1097 if (dcr_env
== NULL
)
1099 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1101 dcr
= &dcr_env
->dcrn
[dcrn
];
1102 if (dcr
->opaque
!= NULL
||
1103 dcr
->dcr_read
!= NULL
||
1104 dcr
->dcr_write
!= NULL
)
1106 dcr
->opaque
= opaque
;
1107 dcr
->dcr_read
= dcr_read
;
1108 dcr
->dcr_write
= dcr_write
;
1113 int ppc_dcr_init (CPUState
*env
, int (*read_error
)(int dcrn
),
1114 int (*write_error
)(int dcrn
))
1118 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1119 dcr_env
->read_error
= read_error
;
1120 dcr_env
->write_error
= write_error
;
1121 env
->dcr_env
= dcr_env
;
1126 /*****************************************************************************/
1128 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1140 printf("Set loglevel to %04" PRIx32
"\n", val
);
1141 cpu_set_log(val
| 0x100);
1146 /*****************************************************************************/
1148 static inline uint32_t nvram_read (nvram_t
*nvram
, uint32_t addr
)
1150 return (*nvram
->read_fn
)(nvram
->opaque
, addr
);;
1153 static inline void nvram_write (nvram_t
*nvram
, uint32_t addr
, uint32_t val
)
1155 (*nvram
->write_fn
)(nvram
->opaque
, addr
, val
);
1158 void NVRAM_set_byte (nvram_t
*nvram
, uint32_t addr
, uint8_t value
)
1160 nvram_write(nvram
, addr
, value
);
1163 uint8_t NVRAM_get_byte (nvram_t
*nvram
, uint32_t addr
)
1165 return nvram_read(nvram
, addr
);
1168 void NVRAM_set_word (nvram_t
*nvram
, uint32_t addr
, uint16_t value
)
1170 nvram_write(nvram
, addr
, value
>> 8);
1171 nvram_write(nvram
, addr
+ 1, value
& 0xFF);
1174 uint16_t NVRAM_get_word (nvram_t
*nvram
, uint32_t addr
)
1178 tmp
= nvram_read(nvram
, addr
) << 8;
1179 tmp
|= nvram_read(nvram
, addr
+ 1);
1184 void NVRAM_set_lword (nvram_t
*nvram
, uint32_t addr
, uint32_t value
)
1186 nvram_write(nvram
, addr
, value
>> 24);
1187 nvram_write(nvram
, addr
+ 1, (value
>> 16) & 0xFF);
1188 nvram_write(nvram
, addr
+ 2, (value
>> 8) & 0xFF);
1189 nvram_write(nvram
, addr
+ 3, value
& 0xFF);
1192 uint32_t NVRAM_get_lword (nvram_t
*nvram
, uint32_t addr
)
1196 tmp
= nvram_read(nvram
, addr
) << 24;
1197 tmp
|= nvram_read(nvram
, addr
+ 1) << 16;
1198 tmp
|= nvram_read(nvram
, addr
+ 2) << 8;
1199 tmp
|= nvram_read(nvram
, addr
+ 3);
1204 void NVRAM_set_string (nvram_t
*nvram
, uint32_t addr
,
1205 const char *str
, uint32_t max
)
1209 for (i
= 0; i
< max
&& str
[i
] != '\0'; i
++) {
1210 nvram_write(nvram
, addr
+ i
, str
[i
]);
1212 nvram_write(nvram
, addr
+ i
, str
[i
]);
1213 nvram_write(nvram
, addr
+ max
- 1, '\0');
1216 int NVRAM_get_string (nvram_t
*nvram
, uint8_t *dst
, uint16_t addr
, int max
)
1220 memset(dst
, 0, max
);
1221 for (i
= 0; i
< max
; i
++) {
1222 dst
[i
] = NVRAM_get_byte(nvram
, addr
+ i
);
1230 static uint16_t NVRAM_crc_update (uint16_t prev
, uint16_t value
)
1233 uint16_t pd
, pd1
, pd2
;
1238 pd2
= ((pd
>> 4) & 0x000F) ^ pd1
;
1239 tmp
^= (pd1
<< 3) | (pd1
<< 8);
1240 tmp
^= pd2
| (pd2
<< 7) | (pd2
<< 12);
1245 static uint16_t NVRAM_compute_crc (nvram_t
*nvram
, uint32_t start
, uint32_t count
)
1248 uint16_t crc
= 0xFFFF;
1253 for (i
= 0; i
!= count
; i
++) {
1254 crc
= NVRAM_crc_update(crc
, NVRAM_get_word(nvram
, start
+ i
));
1257 crc
= NVRAM_crc_update(crc
, NVRAM_get_byte(nvram
, start
+ i
) << 8);
1263 #define CMDLINE_ADDR 0x017ff000
1265 int PPC_NVRAM_set_params (nvram_t
*nvram
, uint16_t NVRAM_size
,
1267 uint32_t RAM_size
, int boot_device
,
1268 uint32_t kernel_image
, uint32_t kernel_size
,
1269 const char *cmdline
,
1270 uint32_t initrd_image
, uint32_t initrd_size
,
1271 uint32_t NVRAM_image
,
1272 int width
, int height
, int depth
)
1276 /* Set parameters for Open Hack'Ware BIOS */
1277 NVRAM_set_string(nvram
, 0x00, "QEMU_BIOS", 16);
1278 NVRAM_set_lword(nvram
, 0x10, 0x00000002); /* structure v2 */
1279 NVRAM_set_word(nvram
, 0x14, NVRAM_size
);
1280 NVRAM_set_string(nvram
, 0x20, arch
, 16);
1281 NVRAM_set_lword(nvram
, 0x30, RAM_size
);
1282 NVRAM_set_byte(nvram
, 0x34, boot_device
);
1283 NVRAM_set_lword(nvram
, 0x38, kernel_image
);
1284 NVRAM_set_lword(nvram
, 0x3C, kernel_size
);
1286 /* XXX: put the cmdline in NVRAM too ? */
1287 pstrcpy_targphys("cmdline", CMDLINE_ADDR
, RAM_size
- CMDLINE_ADDR
, cmdline
);
1288 NVRAM_set_lword(nvram
, 0x40, CMDLINE_ADDR
);
1289 NVRAM_set_lword(nvram
, 0x44, strlen(cmdline
));
1291 NVRAM_set_lword(nvram
, 0x40, 0);
1292 NVRAM_set_lword(nvram
, 0x44, 0);
1294 NVRAM_set_lword(nvram
, 0x48, initrd_image
);
1295 NVRAM_set_lword(nvram
, 0x4C, initrd_size
);
1296 NVRAM_set_lword(nvram
, 0x50, NVRAM_image
);
1298 NVRAM_set_word(nvram
, 0x54, width
);
1299 NVRAM_set_word(nvram
, 0x56, height
);
1300 NVRAM_set_word(nvram
, 0x58, depth
);
1301 crc
= NVRAM_compute_crc(nvram
, 0x00, 0xF8);
1302 NVRAM_set_word(nvram
, 0xFC, crc
);