4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/config-file.h"
35 #include "qemu/error-report.h"
36 #include "hw/i386/pc.h"
37 #include "hw/i386/apic.h"
38 #include "hw/i386/apic_internal.h"
39 #include "hw/i386/apic-msidef.h"
40 #include "hw/i386/intel_iommu.h"
41 #include "hw/i386/x86-iommu.h"
43 #include "hw/pci/pci.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci/msix.h"
46 #include "migration/blocker.h"
47 #include "exec/memattrs.h"
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define MSR_KVM_WALL_CLOCK 0x11
61 #define MSR_KVM_SYSTEM_TIME 0x12
63 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
64 * 255 kvm_msr_entry structs */
65 #define MSR_BUF_SIZE 4096
67 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
68 KVM_CAP_INFO(SET_TSS_ADDR
),
69 KVM_CAP_INFO(EXT_CPUID
),
70 KVM_CAP_INFO(MP_STATE
),
74 static bool has_msr_star
;
75 static bool has_msr_hsave_pa
;
76 static bool has_msr_tsc_aux
;
77 static bool has_msr_tsc_adjust
;
78 static bool has_msr_tsc_deadline
;
79 static bool has_msr_feature_control
;
80 static bool has_msr_misc_enable
;
81 static bool has_msr_smbase
;
82 static bool has_msr_bndcfgs
;
83 static int lm_capable_kernel
;
84 static bool has_msr_hv_hypercall
;
85 static bool has_msr_hv_crash
;
86 static bool has_msr_hv_reset
;
87 static bool has_msr_hv_vpindex
;
88 static bool hv_vpindex_settable
;
89 static bool has_msr_hv_runtime
;
90 static bool has_msr_hv_synic
;
91 static bool has_msr_hv_stimer
;
92 static bool has_msr_hv_frequencies
;
93 static bool has_msr_hv_reenlightenment
;
94 static bool has_msr_xss
;
95 static bool has_msr_spec_ctrl
;
96 static bool has_msr_virt_ssbd
;
97 static bool has_msr_smi_count
;
98 static bool has_msr_arch_capabs
;
100 static uint32_t has_architectural_pmu_version
;
101 static uint32_t num_architectural_pmu_gp_counters
;
102 static uint32_t num_architectural_pmu_fixed_counters
;
104 static int has_xsave
;
106 static int has_pit_state2
;
108 static bool has_msr_mcg_ext_ctl
;
110 static struct kvm_cpuid2
*cpuid_cache
;
111 static struct kvm_msr_list
*kvm_feature_msrs
;
113 int kvm_has_pit_state2(void)
115 return has_pit_state2
;
118 bool kvm_has_smm(void)
120 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
123 bool kvm_has_adjust_clock_stable(void)
125 int ret
= kvm_check_extension(kvm_state
, KVM_CAP_ADJUST_CLOCK
);
127 return (ret
== KVM_CLOCK_TSC_STABLE
);
130 bool kvm_allows_irq0_override(void)
132 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
135 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
137 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
139 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
142 #define MEMORIZE(fn, _result) \
144 static bool _memorized; \
153 static bool has_x2apic_api
;
155 bool kvm_has_x2apic_api(void)
157 return has_x2apic_api
;
160 bool kvm_enable_x2apic(void)
163 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
164 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
),
168 bool kvm_hv_vpindex_settable(void)
170 return hv_vpindex_settable
;
173 static int kvm_get_tsc(CPUState
*cs
)
175 X86CPU
*cpu
= X86_CPU(cs
);
176 CPUX86State
*env
= &cpu
->env
;
178 struct kvm_msrs info
;
179 struct kvm_msr_entry entries
[1];
183 if (env
->tsc_valid
) {
187 msr_data
.info
.nmsrs
= 1;
188 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
189 env
->tsc_valid
= !runstate_is_running();
191 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
197 env
->tsc
= msr_data
.entries
[0].data
;
201 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, run_on_cpu_data arg
)
206 void kvm_synchronize_all_tsc(void)
212 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, RUN_ON_CPU_NULL
);
217 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
219 struct kvm_cpuid2
*cpuid
;
222 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
223 cpuid
= g_malloc0(size
);
225 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
226 if (r
== 0 && cpuid
->nent
>= max
) {
234 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
242 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
245 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
247 struct kvm_cpuid2
*cpuid
;
250 if (cpuid_cache
!= NULL
) {
253 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
260 static const struct kvm_para_features
{
263 } para_features
[] = {
264 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
265 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
266 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
267 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
270 static int get_para_features(KVMState
*s
)
274 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
275 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
276 features
|= (1 << para_features
[i
].feature
);
283 static bool host_tsx_blacklisted(void)
285 int family
, model
, stepping
;\
286 char vendor
[CPUID_VENDOR_SZ
+ 1];
288 host_vendor_fms(vendor
, &family
, &model
, &stepping
);
290 /* Check if we are running on a Haswell host known to have broken TSX */
291 return !strcmp(vendor
, CPUID_VENDOR_INTEL
) &&
293 ((model
== 63 && stepping
< 4) ||
294 model
== 60 || model
== 69 || model
== 70);
297 /* Returns the value for a specific register on the cpuid entry
299 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
319 /* Find matching entry for function/index on kvm_cpuid2 struct
321 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
326 for (i
= 0; i
< cpuid
->nent
; ++i
) {
327 if (cpuid
->entries
[i
].function
== function
&&
328 cpuid
->entries
[i
].index
== index
) {
329 return &cpuid
->entries
[i
];
336 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
337 uint32_t index
, int reg
)
339 struct kvm_cpuid2
*cpuid
;
341 uint32_t cpuid_1_edx
;
344 cpuid
= get_supported_cpuid(s
);
346 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
349 ret
= cpuid_entry_get_reg(entry
, reg
);
352 /* Fixups for the data returned by KVM, below */
354 if (function
== 1 && reg
== R_EDX
) {
355 /* KVM before 2.6.30 misreports the following features */
356 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
357 } else if (function
== 1 && reg
== R_ECX
) {
358 /* We can set the hypervisor flag, even if KVM does not return it on
359 * GET_SUPPORTED_CPUID
361 ret
|= CPUID_EXT_HYPERVISOR
;
362 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
363 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
364 * and the irqchip is in the kernel.
366 if (kvm_irqchip_in_kernel() &&
367 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
368 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
371 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
372 * without the in-kernel irqchip
374 if (!kvm_irqchip_in_kernel()) {
375 ret
&= ~CPUID_EXT_X2APIC
;
379 int disable_exits
= kvm_check_extension(s
,
380 KVM_CAP_X86_DISABLE_EXITS
);
382 if (disable_exits
& KVM_X86_DISABLE_EXITS_MWAIT
) {
383 ret
|= CPUID_EXT_MONITOR
;
386 } else if (function
== 6 && reg
== R_EAX
) {
387 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
388 } else if (function
== 7 && index
== 0 && reg
== R_EBX
) {
389 if (host_tsx_blacklisted()) {
390 ret
&= ~(CPUID_7_0_EBX_RTM
| CPUID_7_0_EBX_HLE
);
392 } else if (function
== 7 && index
== 0 && reg
== R_EDX
) {
394 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
395 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
396 * returned by KVM_GET_MSR_INDEX_LIST.
398 if (!has_msr_arch_capabs
) {
399 ret
&= ~CPUID_7_0_EDX_ARCH_CAPABILITIES
;
401 } else if (function
== 0x80000001 && reg
== R_ECX
) {
403 * It's safe to enable TOPOEXT even if it's not returned by
404 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
405 * us to keep CPU models including TOPOEXT runnable on older kernels.
407 ret
|= CPUID_EXT3_TOPOEXT
;
408 } else if (function
== 0x80000001 && reg
== R_EDX
) {
409 /* On Intel, kvm returns cpuid according to the Intel spec,
410 * so add missing bits according to the AMD spec:
412 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
413 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
414 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
415 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
416 * be enabled without the in-kernel irqchip
418 if (!kvm_irqchip_in_kernel()) {
419 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
421 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EDX
) {
422 ret
|= 1U << KVM_HINTS_REALTIME
;
426 /* fallback for older kernels */
427 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
428 ret
= get_para_features(s
);
434 uint32_t kvm_arch_get_supported_msr_feature(KVMState
*s
, uint32_t index
)
437 struct kvm_msrs info
;
438 struct kvm_msr_entry entries
[1];
442 if (kvm_feature_msrs
== NULL
) { /* Host doesn't support feature MSRs */
446 /* Check if requested MSR is supported feature MSR */
448 for (i
= 0; i
< kvm_feature_msrs
->nmsrs
; i
++)
449 if (kvm_feature_msrs
->indices
[i
] == index
) {
452 if (i
== kvm_feature_msrs
->nmsrs
) {
453 return 0; /* if the feature MSR is not supported, simply return 0 */
456 msr_data
.info
.nmsrs
= 1;
457 msr_data
.entries
[0].index
= index
;
459 ret
= kvm_ioctl(s
, KVM_GET_MSRS
, &msr_data
);
461 error_report("KVM get MSR (index=0x%x) feature failed, %s",
462 index
, strerror(-ret
));
466 return msr_data
.entries
[0].data
;
470 typedef struct HWPoisonPage
{
472 QLIST_ENTRY(HWPoisonPage
) list
;
475 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
476 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
478 static void kvm_unpoison_all(void *param
)
480 HWPoisonPage
*page
, *next_page
;
482 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
483 QLIST_REMOVE(page
, list
);
484 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
489 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
493 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
494 if (page
->ram_addr
== ram_addr
) {
498 page
= g_new(HWPoisonPage
, 1);
499 page
->ram_addr
= ram_addr
;
500 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
503 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
508 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
511 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
516 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
518 CPUState
*cs
= CPU(cpu
);
519 CPUX86State
*env
= &cpu
->env
;
520 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
521 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
522 uint64_t mcg_status
= MCG_STATUS_MCIP
;
525 if (code
== BUS_MCEERR_AR
) {
526 status
|= MCI_STATUS_AR
| 0x134;
527 mcg_status
|= MCG_STATUS_EIPV
;
530 mcg_status
|= MCG_STATUS_RIPV
;
533 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
534 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
535 * guest kernel back into env->mcg_ext_ctl.
537 cpu_synchronize_state(cs
);
538 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
539 mcg_status
|= MCG_STATUS_LMCE
;
543 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
544 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
547 static void hardware_memory_error(void)
549 fprintf(stderr
, "Hardware memory error!\n");
553 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
555 X86CPU
*cpu
= X86_CPU(c
);
556 CPUX86State
*env
= &cpu
->env
;
560 /* If we get an action required MCE, it has been injected by KVM
561 * while the VM was running. An action optional MCE instead should
562 * be coming from the main thread, which qemu_init_sigbus identifies
563 * as the "early kill" thread.
565 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
567 if ((env
->mcg_cap
& MCG_SER_P
) && addr
) {
568 ram_addr
= qemu_ram_addr_from_host(addr
);
569 if (ram_addr
!= RAM_ADDR_INVALID
&&
570 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
571 kvm_hwpoison_page_add(ram_addr
);
572 kvm_mce_inject(cpu
, paddr
, code
);
576 fprintf(stderr
, "Hardware memory error for memory used by "
577 "QEMU itself instead of guest system!\n");
580 if (code
== BUS_MCEERR_AR
) {
581 hardware_memory_error();
584 /* Hope we are lucky for AO MCE */
587 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
589 CPUX86State
*env
= &cpu
->env
;
591 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
592 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
593 struct kvm_x86_mce mce
;
595 env
->exception_injected
= -1;
598 * There must be at least one bank in use if an MCE is pending.
599 * Find it and use its values for the event injection.
601 for (bank
= 0; bank
< bank_num
; bank
++) {
602 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
606 assert(bank
< bank_num
);
609 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
610 mce
.mcg_status
= env
->mcg_status
;
611 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
612 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
614 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
619 static void cpu_update_state(void *opaque
, int running
, RunState state
)
621 CPUX86State
*env
= opaque
;
624 env
->tsc_valid
= false;
628 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
630 X86CPU
*cpu
= X86_CPU(cs
);
634 #ifndef KVM_CPUID_SIGNATURE_NEXT
635 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
638 static bool hyperv_hypercall_available(X86CPU
*cpu
)
640 return cpu
->hyperv_vapic
||
641 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
644 static bool hyperv_enabled(X86CPU
*cpu
)
646 CPUState
*cs
= CPU(cpu
);
647 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
648 (hyperv_hypercall_available(cpu
) ||
650 cpu
->hyperv_relaxed_timing
||
653 cpu
->hyperv_vpindex
||
654 cpu
->hyperv_runtime
||
656 cpu
->hyperv_stimer
||
657 cpu
->hyperv_reenlightenment
||
658 cpu
->hyperv_tlbflush
||
662 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
664 X86CPU
*cpu
= X86_CPU(cs
);
665 CPUX86State
*env
= &cpu
->env
;
672 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
673 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
676 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
677 * TSC frequency doesn't match the one we want.
679 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
680 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
682 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
683 warn_report("TSC frequency mismatch between "
684 "VM (%" PRId64
" kHz) and host (%d kHz), "
685 "and TSC scaling unavailable",
686 env
->tsc_khz
, cur_freq
);
694 static bool tsc_is_stable_and_known(CPUX86State
*env
)
699 return (env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
)
700 || env
->user_tsc_khz
;
703 static int hyperv_handle_properties(CPUState
*cs
)
705 X86CPU
*cpu
= X86_CPU(cs
);
706 CPUX86State
*env
= &cpu
->env
;
708 if (cpu
->hyperv_relaxed_timing
) {
709 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
711 if (cpu
->hyperv_vapic
) {
712 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
713 env
->features
[FEAT_HYPERV_EAX
] |= HV_APIC_ACCESS_AVAILABLE
;
715 if (cpu
->hyperv_time
) {
716 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) <= 0) {
717 fprintf(stderr
, "Hyper-V clocksources "
718 "(requested by 'hv-time' cpu flag) "
719 "are not supported by kernel\n");
722 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
723 env
->features
[FEAT_HYPERV_EAX
] |= HV_TIME_REF_COUNT_AVAILABLE
;
724 env
->features
[FEAT_HYPERV_EAX
] |= HV_REFERENCE_TSC_AVAILABLE
;
726 if (cpu
->hyperv_frequencies
) {
727 if (!has_msr_hv_frequencies
) {
728 fprintf(stderr
, "Hyper-V frequency MSRs "
729 "(requested by 'hv-frequencies' cpu flag) "
730 "are not supported by kernel\n");
733 env
->features
[FEAT_HYPERV_EAX
] |= HV_ACCESS_FREQUENCY_MSRS
;
734 env
->features
[FEAT_HYPERV_EDX
] |= HV_FREQUENCY_MSRS_AVAILABLE
;
736 if (cpu
->hyperv_crash
) {
737 if (!has_msr_hv_crash
) {
738 fprintf(stderr
, "Hyper-V crash MSRs "
739 "(requested by 'hv-crash' cpu flag) "
740 "are not supported by kernel\n");
743 env
->features
[FEAT_HYPERV_EDX
] |= HV_GUEST_CRASH_MSR_AVAILABLE
;
745 if (cpu
->hyperv_reenlightenment
) {
746 if (!has_msr_hv_reenlightenment
) {
748 "Hyper-V Reenlightenment MSRs "
749 "(requested by 'hv-reenlightenment' cpu flag) "
750 "are not supported by kernel\n");
753 env
->features
[FEAT_HYPERV_EAX
] |= HV_ACCESS_REENLIGHTENMENTS_CONTROL
;
755 env
->features
[FEAT_HYPERV_EDX
] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
756 if (cpu
->hyperv_reset
) {
757 if (!has_msr_hv_reset
) {
758 fprintf(stderr
, "Hyper-V reset MSR "
759 "(requested by 'hv-reset' cpu flag) "
760 "is not supported by kernel\n");
763 env
->features
[FEAT_HYPERV_EAX
] |= HV_RESET_AVAILABLE
;
765 if (cpu
->hyperv_vpindex
) {
766 if (!has_msr_hv_vpindex
) {
767 fprintf(stderr
, "Hyper-V VP_INDEX MSR "
768 "(requested by 'hv-vpindex' cpu flag) "
769 "is not supported by kernel\n");
772 env
->features
[FEAT_HYPERV_EAX
] |= HV_VP_INDEX_AVAILABLE
;
774 if (cpu
->hyperv_runtime
) {
775 if (!has_msr_hv_runtime
) {
776 fprintf(stderr
, "Hyper-V VP_RUNTIME MSR "
777 "(requested by 'hv-runtime' cpu flag) "
778 "is not supported by kernel\n");
781 env
->features
[FEAT_HYPERV_EAX
] |= HV_VP_RUNTIME_AVAILABLE
;
783 if (cpu
->hyperv_synic
) {
784 unsigned int cap
= KVM_CAP_HYPERV_SYNIC
;
785 if (!cpu
->hyperv_synic_kvm_only
) {
786 if (!cpu
->hyperv_vpindex
) {
787 fprintf(stderr
, "Hyper-V SynIC "
788 "(requested by 'hv-synic' cpu flag) "
789 "requires Hyper-V VP_INDEX ('hv-vpindex')\n");
792 cap
= KVM_CAP_HYPERV_SYNIC2
;
795 if (!has_msr_hv_synic
|| !kvm_check_extension(cs
->kvm_state
, cap
)) {
796 fprintf(stderr
, "Hyper-V SynIC (requested by 'hv-synic' cpu flag) "
797 "is not supported by kernel\n");
801 env
->features
[FEAT_HYPERV_EAX
] |= HV_SYNIC_AVAILABLE
;
803 if (cpu
->hyperv_stimer
) {
804 if (!has_msr_hv_stimer
) {
805 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
808 env
->features
[FEAT_HYPERV_EAX
] |= HV_SYNTIMERS_AVAILABLE
;
810 if (cpu
->hyperv_relaxed_timing
) {
811 env
->features
[FEAT_HV_RECOMM_EAX
] |= HV_RELAXED_TIMING_RECOMMENDED
;
813 if (cpu
->hyperv_vapic
) {
814 env
->features
[FEAT_HV_RECOMM_EAX
] |= HV_APIC_ACCESS_RECOMMENDED
;
816 if (cpu
->hyperv_tlbflush
) {
817 if (kvm_check_extension(cs
->kvm_state
,
818 KVM_CAP_HYPERV_TLBFLUSH
) <= 0) {
819 fprintf(stderr
, "Hyper-V TLB flush support "
820 "(requested by 'hv-tlbflush' cpu flag) "
821 " is not supported by kernel\n");
824 env
->features
[FEAT_HV_RECOMM_EAX
] |= HV_REMOTE_TLB_FLUSH_RECOMMENDED
;
825 env
->features
[FEAT_HV_RECOMM_EAX
] |= HV_EX_PROCESSOR_MASKS_RECOMMENDED
;
827 if (cpu
->hyperv_ipi
) {
828 if (kvm_check_extension(cs
->kvm_state
,
829 KVM_CAP_HYPERV_SEND_IPI
) <= 0) {
830 fprintf(stderr
, "Hyper-V IPI send support "
831 "(requested by 'hv-ipi' cpu flag) "
832 " is not supported by kernel\n");
835 env
->features
[FEAT_HV_RECOMM_EAX
] |= HV_CLUSTER_IPI_RECOMMENDED
;
836 env
->features
[FEAT_HV_RECOMM_EAX
] |= HV_EX_PROCESSOR_MASKS_RECOMMENDED
;
838 if (cpu
->hyperv_evmcs
) {
839 uint16_t evmcs_version
;
841 if (kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_ENLIGHTENED_VMCS
, 0,
842 (uintptr_t)&evmcs_version
)) {
843 fprintf(stderr
, "Hyper-V Enlightened VMCS "
844 "(requested by 'hv-evmcs' cpu flag) "
845 "is not supported by kernel\n");
848 env
->features
[FEAT_HV_RECOMM_EAX
] |= HV_ENLIGHTENED_VMCS_RECOMMENDED
;
849 env
->features
[FEAT_HV_NESTED_EAX
] = evmcs_version
;
855 static int hyperv_init_vcpu(X86CPU
*cpu
)
857 CPUState
*cs
= CPU(cpu
);
860 if (cpu
->hyperv_vpindex
&& !hv_vpindex_settable
) {
862 * the kernel doesn't support setting vp_index; assert that its value
866 struct kvm_msrs info
;
867 struct kvm_msr_entry entries
[1];
870 .entries
[0].index
= HV_X64_MSR_VP_INDEX
,
873 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MSRS
, &msr_data
);
879 if (msr_data
.entries
[0].data
!= hyperv_vp_index(CPU(cpu
))) {
880 error_report("kernel's vp_index != QEMU's vp_index");
885 if (cpu
->hyperv_synic
) {
886 uint32_t synic_cap
= cpu
->hyperv_synic_kvm_only
?
887 KVM_CAP_HYPERV_SYNIC
: KVM_CAP_HYPERV_SYNIC2
;
888 ret
= kvm_vcpu_enable_cap(cs
, synic_cap
, 0);
890 error_report("failed to turn on HyperV SynIC in KVM: %s",
895 if (!cpu
->hyperv_synic_kvm_only
) {
896 ret
= hyperv_x86_synic_add(cpu
);
898 error_report("failed to create HyperV SynIC: %s",
908 static Error
*invtsc_mig_blocker
;
909 static Error
*vmx_mig_blocker
;
911 #define KVM_MAX_CPUID_ENTRIES 100
913 int kvm_arch_init_vcpu(CPUState
*cs
)
916 struct kvm_cpuid2 cpuid
;
917 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
920 * The kernel defines these structs with padding fields so there
921 * should be no extra padding in our cpuid_data struct.
923 QEMU_BUILD_BUG_ON(sizeof(cpuid_data
) !=
924 sizeof(struct kvm_cpuid2
) +
925 sizeof(struct kvm_cpuid_entry2
) * KVM_MAX_CPUID_ENTRIES
);
927 X86CPU
*cpu
= X86_CPU(cs
);
928 CPUX86State
*env
= &cpu
->env
;
929 uint32_t limit
, i
, j
, cpuid_i
;
931 struct kvm_cpuid_entry2
*c
;
932 uint32_t signature
[3];
933 int kvm_base
= KVM_CPUID_SIGNATURE
;
935 Error
*local_err
= NULL
;
937 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
941 r
= kvm_arch_set_tsc_khz(cs
);
946 /* vcpu's TSC frequency is either specified by user, or following
947 * the value used by KVM if the former is not present. In the
948 * latter case, we query it from KVM and record in env->tsc_khz,
949 * so that vcpu's TSC frequency can be migrated later via this field.
952 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
953 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
960 /* Paravirtualization CPUIDs */
961 if (hyperv_enabled(cpu
)) {
962 c
= &cpuid_data
.entries
[cpuid_i
++];
963 c
->function
= HV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
964 if (!cpu
->hyperv_vendor_id
) {
965 memcpy(signature
, "Microsoft Hv", 12);
967 size_t len
= strlen(cpu
->hyperv_vendor_id
);
970 error_report("hv-vendor-id truncated to 12 characters");
973 memset(signature
, 0, 12);
974 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
976 c
->eax
= cpu
->hyperv_evmcs
?
977 HV_CPUID_NESTED_FEATURES
: HV_CPUID_IMPLEMENT_LIMITS
;
978 c
->ebx
= signature
[0];
979 c
->ecx
= signature
[1];
980 c
->edx
= signature
[2];
982 c
= &cpuid_data
.entries
[cpuid_i
++];
983 c
->function
= HV_CPUID_INTERFACE
;
984 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
985 c
->eax
= signature
[0];
990 c
= &cpuid_data
.entries
[cpuid_i
++];
991 c
->function
= HV_CPUID_VERSION
;
995 c
= &cpuid_data
.entries
[cpuid_i
++];
996 c
->function
= HV_CPUID_FEATURES
;
997 r
= hyperv_handle_properties(cs
);
1001 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
1002 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
1003 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
1005 c
= &cpuid_data
.entries
[cpuid_i
++];
1006 c
->function
= HV_CPUID_ENLIGHTMENT_INFO
;
1008 c
->eax
= env
->features
[FEAT_HV_RECOMM_EAX
];
1009 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
1011 c
= &cpuid_data
.entries
[cpuid_i
++];
1012 c
->function
= HV_CPUID_IMPLEMENT_LIMITS
;
1014 c
->eax
= cpu
->hv_max_vps
;
1017 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
1018 has_msr_hv_hypercall
= true;
1020 if (cpu
->hyperv_evmcs
) {
1023 /* Create zeroed 0x40000006..0x40000009 leaves */
1024 for (function
= HV_CPUID_IMPLEMENT_LIMITS
+ 1;
1025 function
< HV_CPUID_NESTED_FEATURES
; function
++) {
1026 c
= &cpuid_data
.entries
[cpuid_i
++];
1027 c
->function
= function
;
1030 c
= &cpuid_data
.entries
[cpuid_i
++];
1031 c
->function
= HV_CPUID_NESTED_FEATURES
;
1032 c
->eax
= env
->features
[FEAT_HV_NESTED_EAX
];
1036 if (cpu
->expose_kvm
) {
1037 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
1038 c
= &cpuid_data
.entries
[cpuid_i
++];
1039 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
1040 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
1041 c
->ebx
= signature
[0];
1042 c
->ecx
= signature
[1];
1043 c
->edx
= signature
[2];
1045 c
= &cpuid_data
.entries
[cpuid_i
++];
1046 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
1047 c
->eax
= env
->features
[FEAT_KVM
];
1048 c
->edx
= env
->features
[FEAT_KVM_HINTS
];
1051 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
1053 for (i
= 0; i
<= limit
; i
++) {
1054 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1055 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
1058 c
= &cpuid_data
.entries
[cpuid_i
++];
1062 /* Keep reading function 2 till all the input is received */
1066 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
1067 KVM_CPUID_FLAG_STATE_READ_NEXT
;
1068 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1069 times
= c
->eax
& 0xff;
1071 for (j
= 1; j
< times
; ++j
) {
1072 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1073 fprintf(stderr
, "cpuid_data is full, no space for "
1074 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
1077 c
= &cpuid_data
.entries
[cpuid_i
++];
1079 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1080 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1087 for (j
= 0; ; j
++) {
1088 if (i
== 0xd && j
== 64) {
1092 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1094 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1096 if (i
== 4 && c
->eax
== 0) {
1099 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
1102 if (i
== 0xd && c
->eax
== 0) {
1105 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1106 fprintf(stderr
, "cpuid_data is full, no space for "
1107 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
1110 c
= &cpuid_data
.entries
[cpuid_i
++];
1118 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1119 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1122 for (j
= 1; j
<= times
; ++j
) {
1123 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1124 fprintf(stderr
, "cpuid_data is full, no space for "
1125 "cpuid(eax:0x14,ecx:0x%x)\n", j
);
1128 c
= &cpuid_data
.entries
[cpuid_i
++];
1131 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1132 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1139 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1144 if (limit
>= 0x0a) {
1147 cpu_x86_cpuid(env
, 0x0a, 0, &eax
, &unused
, &unused
, &edx
);
1149 has_architectural_pmu_version
= eax
& 0xff;
1150 if (has_architectural_pmu_version
> 0) {
1151 num_architectural_pmu_gp_counters
= (eax
& 0xff00) >> 8;
1153 /* Shouldn't be more than 32, since that's the number of bits
1154 * available in EBX to tell us _which_ counters are available.
1157 if (num_architectural_pmu_gp_counters
> MAX_GP_COUNTERS
) {
1158 num_architectural_pmu_gp_counters
= MAX_GP_COUNTERS
;
1161 if (has_architectural_pmu_version
> 1) {
1162 num_architectural_pmu_fixed_counters
= edx
& 0x1f;
1164 if (num_architectural_pmu_fixed_counters
> MAX_FIXED_COUNTERS
) {
1165 num_architectural_pmu_fixed_counters
= MAX_FIXED_COUNTERS
;
1171 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
1173 for (i
= 0x80000000; i
<= limit
; i
++) {
1174 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1175 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
1178 c
= &cpuid_data
.entries
[cpuid_i
++];
1182 /* Query for all AMD cache information leaves */
1183 for (j
= 0; ; j
++) {
1185 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1187 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1192 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1193 fprintf(stderr
, "cpuid_data is full, no space for "
1194 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
1197 c
= &cpuid_data
.entries
[cpuid_i
++];
1203 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1208 /* Call Centaur's CPUID instructions they are supported. */
1209 if (env
->cpuid_xlevel2
> 0) {
1210 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
1212 for (i
= 0xC0000000; i
<= limit
; i
++) {
1213 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1214 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
1217 c
= &cpuid_data
.entries
[cpuid_i
++];
1221 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1225 cpuid_data
.cpuid
.nent
= cpuid_i
;
1227 if (((env
->cpuid_version
>> 8)&0xF) >= 6
1228 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
1229 (CPUID_MCE
| CPUID_MCA
)
1230 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
1231 uint64_t mcg_cap
, unsupported_caps
;
1235 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
1237 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
1241 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
1242 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1243 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
1247 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
1248 if (unsupported_caps
) {
1249 if (unsupported_caps
& MCG_LMCE_P
) {
1250 error_report("kvm: LMCE not supported");
1253 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64
,
1257 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
1258 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
1260 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
1265 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
1267 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
1269 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
1270 !!(c
->ecx
& CPUID_EXT_SMX
);
1273 if ((env
->features
[FEAT_1_ECX
] & CPUID_EXT_VMX
) && !vmx_mig_blocker
) {
1274 error_setg(&vmx_mig_blocker
,
1275 "Nested VMX virtualization does not support live migration yet");
1276 r
= migrate_add_blocker(vmx_mig_blocker
, &local_err
);
1278 error_report_err(local_err
);
1279 error_free(vmx_mig_blocker
);
1284 if (env
->mcg_cap
& MCG_LMCE_P
) {
1285 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
1288 if (!env
->user_tsc_khz
) {
1289 if ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
) &&
1290 invtsc_mig_blocker
== NULL
) {
1291 error_setg(&invtsc_mig_blocker
,
1292 "State blocked by non-migratable CPU device"
1294 r
= migrate_add_blocker(invtsc_mig_blocker
, &local_err
);
1296 error_report_err(local_err
);
1297 error_free(invtsc_mig_blocker
);
1303 if (cpu
->vmware_cpuid_freq
1304 /* Guests depend on 0x40000000 to detect this feature, so only expose
1305 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1307 && kvm_base
== KVM_CPUID_SIGNATURE
1308 /* TSC clock must be stable and known for this feature. */
1309 && tsc_is_stable_and_known(env
)) {
1311 c
= &cpuid_data
.entries
[cpuid_i
++];
1312 c
->function
= KVM_CPUID_SIGNATURE
| 0x10;
1313 c
->eax
= env
->tsc_khz
;
1314 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1315 * APIC_BUS_CYCLE_NS */
1317 c
->ecx
= c
->edx
= 0;
1319 c
= cpuid_find_entry(&cpuid_data
.cpuid
, kvm_base
, 0);
1320 c
->eax
= MAX(c
->eax
, KVM_CPUID_SIGNATURE
| 0x10);
1323 cpuid_data
.cpuid
.nent
= cpuid_i
;
1325 cpuid_data
.cpuid
.padding
= 0;
1326 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
1332 env
->xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
1334 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
1336 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
1337 has_msr_tsc_aux
= false;
1340 r
= hyperv_init_vcpu(cpu
);
1348 migrate_del_blocker(invtsc_mig_blocker
);
1352 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1354 CPUX86State
*env
= &cpu
->env
;
1357 if (kvm_irqchip_in_kernel()) {
1358 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1359 KVM_MP_STATE_UNINITIALIZED
;
1361 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1364 if (cpu
->hyperv_synic
) {
1366 for (i
= 0; i
< ARRAY_SIZE(env
->msr_hv_synic_sint
); i
++) {
1367 env
->msr_hv_synic_sint
[i
] = HV_SINT_MASKED
;
1370 hyperv_x86_synic_reset(cpu
);
1374 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1376 CPUX86State
*env
= &cpu
->env
;
1378 /* APs get directly into wait-for-SIPI state. */
1379 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1380 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1384 static int kvm_get_supported_feature_msrs(KVMState
*s
)
1388 if (kvm_feature_msrs
!= NULL
) {
1392 if (!kvm_check_extension(s
, KVM_CAP_GET_MSR_FEATURES
)) {
1396 struct kvm_msr_list msr_list
;
1399 ret
= kvm_ioctl(s
, KVM_GET_MSR_FEATURE_INDEX_LIST
, &msr_list
);
1400 if (ret
< 0 && ret
!= -E2BIG
) {
1401 error_report("Fetch KVM feature MSR list failed: %s",
1406 assert(msr_list
.nmsrs
> 0);
1407 kvm_feature_msrs
= (struct kvm_msr_list
*) \
1408 g_malloc0(sizeof(msr_list
) +
1409 msr_list
.nmsrs
* sizeof(msr_list
.indices
[0]));
1411 kvm_feature_msrs
->nmsrs
= msr_list
.nmsrs
;
1412 ret
= kvm_ioctl(s
, KVM_GET_MSR_FEATURE_INDEX_LIST
, kvm_feature_msrs
);
1415 error_report("Fetch KVM feature MSR list failed: %s",
1417 g_free(kvm_feature_msrs
);
1418 kvm_feature_msrs
= NULL
;
1425 static int kvm_get_supported_msrs(KVMState
*s
)
1427 static int kvm_supported_msrs
;
1431 if (kvm_supported_msrs
== 0) {
1432 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1434 kvm_supported_msrs
= -1;
1436 /* Obtain MSR list from KVM. These are the MSRs that we must
1439 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1440 if (ret
< 0 && ret
!= -E2BIG
) {
1443 /* Old kernel modules had a bug and could write beyond the provided
1444 memory. Allocate at least a safe amount of 1K. */
1445 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1447 sizeof(msr_list
.indices
[0])));
1449 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1450 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1454 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1455 switch (kvm_msr_list
->indices
[i
]) {
1457 has_msr_star
= true;
1459 case MSR_VM_HSAVE_PA
:
1460 has_msr_hsave_pa
= true;
1463 has_msr_tsc_aux
= true;
1465 case MSR_TSC_ADJUST
:
1466 has_msr_tsc_adjust
= true;
1468 case MSR_IA32_TSCDEADLINE
:
1469 has_msr_tsc_deadline
= true;
1471 case MSR_IA32_SMBASE
:
1472 has_msr_smbase
= true;
1475 has_msr_smi_count
= true;
1477 case MSR_IA32_MISC_ENABLE
:
1478 has_msr_misc_enable
= true;
1480 case MSR_IA32_BNDCFGS
:
1481 has_msr_bndcfgs
= true;
1486 case HV_X64_MSR_CRASH_CTL
:
1487 has_msr_hv_crash
= true;
1489 case HV_X64_MSR_RESET
:
1490 has_msr_hv_reset
= true;
1492 case HV_X64_MSR_VP_INDEX
:
1493 has_msr_hv_vpindex
= true;
1495 case HV_X64_MSR_VP_RUNTIME
:
1496 has_msr_hv_runtime
= true;
1498 case HV_X64_MSR_SCONTROL
:
1499 has_msr_hv_synic
= true;
1501 case HV_X64_MSR_STIMER0_CONFIG
:
1502 has_msr_hv_stimer
= true;
1504 case HV_X64_MSR_TSC_FREQUENCY
:
1505 has_msr_hv_frequencies
= true;
1507 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
1508 has_msr_hv_reenlightenment
= true;
1510 case MSR_IA32_SPEC_CTRL
:
1511 has_msr_spec_ctrl
= true;
1514 has_msr_virt_ssbd
= true;
1516 case MSR_IA32_ARCH_CAPABILITIES
:
1517 has_msr_arch_capabs
= true;
1523 g_free(kvm_msr_list
);
1529 static Notifier smram_machine_done
;
1530 static KVMMemoryListener smram_listener
;
1531 static AddressSpace smram_address_space
;
1532 static MemoryRegion smram_as_root
;
1533 static MemoryRegion smram_as_mem
;
1535 static void register_smram_listener(Notifier
*n
, void *unused
)
1537 MemoryRegion
*smram
=
1538 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1540 /* Outer container... */
1541 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1542 memory_region_set_enabled(&smram_as_root
, true);
1544 /* ... with two regions inside: normal system memory with low
1547 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1548 get_system_memory(), 0, ~0ull);
1549 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1550 memory_region_set_enabled(&smram_as_mem
, true);
1553 /* ... SMRAM with higher priority */
1554 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1555 memory_region_set_enabled(smram
, true);
1558 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1559 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1560 &smram_address_space
, 1);
1563 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1565 uint64_t identity_base
= 0xfffbc000;
1566 uint64_t shadow_mem
;
1568 struct utsname utsname
;
1570 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1571 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1572 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1574 hv_vpindex_settable
= kvm_check_extension(s
, KVM_CAP_HYPERV_VP_INDEX
);
1576 ret
= kvm_get_supported_msrs(s
);
1581 kvm_get_supported_feature_msrs(s
);
1584 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1587 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1588 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1589 * Since these must be part of guest physical memory, we need to allocate
1590 * them, both by setting their start addresses in the kernel and by
1591 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1593 * Older KVM versions may not support setting the identity map base. In
1594 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1597 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1598 /* Allows up to 16M BIOSes. */
1599 identity_base
= 0xfeffc000;
1601 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1607 /* Set TSS base one page after EPT identity map. */
1608 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1613 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1614 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1616 fprintf(stderr
, "e820_add_entry() table is full\n");
1619 qemu_register_reset(kvm_unpoison_all
, NULL
);
1621 shadow_mem
= machine_kvm_shadow_mem(ms
);
1622 if (shadow_mem
!= -1) {
1624 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1630 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
) &&
1631 object_dynamic_cast(OBJECT(ms
), TYPE_PC_MACHINE
) &&
1632 pc_machine_is_smm_enabled(PC_MACHINE(ms
))) {
1633 smram_machine_done
.notify
= register_smram_listener
;
1634 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1637 if (enable_cpu_pm
) {
1638 int disable_exits
= kvm_check_extension(s
, KVM_CAP_X86_DISABLE_EXITS
);
1641 /* Work around for kernel header with a typo. TODO: fix header and drop. */
1642 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
1643 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
1645 if (disable_exits
) {
1646 disable_exits
&= (KVM_X86_DISABLE_EXITS_MWAIT
|
1647 KVM_X86_DISABLE_EXITS_HLT
|
1648 KVM_X86_DISABLE_EXITS_PAUSE
);
1651 ret
= kvm_vm_enable_cap(s
, KVM_CAP_X86_DISABLE_EXITS
, 0,
1654 error_report("kvm: guest stopping CPU not supported: %s",
1662 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1664 lhs
->selector
= rhs
->selector
;
1665 lhs
->base
= rhs
->base
;
1666 lhs
->limit
= rhs
->limit
;
1678 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1680 unsigned flags
= rhs
->flags
;
1681 lhs
->selector
= rhs
->selector
;
1682 lhs
->base
= rhs
->base
;
1683 lhs
->limit
= rhs
->limit
;
1684 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1685 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1686 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1687 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1688 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1689 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1690 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1691 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1692 lhs
->unusable
= !lhs
->present
;
1696 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1698 lhs
->selector
= rhs
->selector
;
1699 lhs
->base
= rhs
->base
;
1700 lhs
->limit
= rhs
->limit
;
1701 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1702 ((rhs
->present
&& !rhs
->unusable
) * DESC_P_MASK
) |
1703 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1704 (rhs
->db
<< DESC_B_SHIFT
) |
1705 (rhs
->s
* DESC_S_MASK
) |
1706 (rhs
->l
<< DESC_L_SHIFT
) |
1707 (rhs
->g
* DESC_G_MASK
) |
1708 (rhs
->avl
* DESC_AVL_MASK
);
1711 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1714 *kvm_reg
= *qemu_reg
;
1716 *qemu_reg
= *kvm_reg
;
1720 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1722 CPUX86State
*env
= &cpu
->env
;
1723 struct kvm_regs regs
;
1727 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1733 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1734 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1735 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1736 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1737 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1738 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1739 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1740 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1741 #ifdef TARGET_X86_64
1742 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1743 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1744 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1745 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1746 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1747 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1748 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1749 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1752 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1753 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1756 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1762 static int kvm_put_fpu(X86CPU
*cpu
)
1764 CPUX86State
*env
= &cpu
->env
;
1768 memset(&fpu
, 0, sizeof fpu
);
1769 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1770 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1771 fpu
.fcw
= env
->fpuc
;
1772 fpu
.last_opcode
= env
->fpop
;
1773 fpu
.last_ip
= env
->fpip
;
1774 fpu
.last_dp
= env
->fpdp
;
1775 for (i
= 0; i
< 8; ++i
) {
1776 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1778 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1779 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1780 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1781 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1783 fpu
.mxcsr
= env
->mxcsr
;
1785 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1788 #define XSAVE_FCW_FSW 0
1789 #define XSAVE_FTW_FOP 1
1790 #define XSAVE_CWD_RIP 2
1791 #define XSAVE_CWD_RDP 4
1792 #define XSAVE_MXCSR 6
1793 #define XSAVE_ST_SPACE 8
1794 #define XSAVE_XMM_SPACE 40
1795 #define XSAVE_XSTATE_BV 128
1796 #define XSAVE_YMMH_SPACE 144
1797 #define XSAVE_BNDREGS 240
1798 #define XSAVE_BNDCSR 256
1799 #define XSAVE_OPMASK 272
1800 #define XSAVE_ZMM_Hi256 288
1801 #define XSAVE_Hi16_ZMM 416
1802 #define XSAVE_PKRU 672
1804 #define XSAVE_BYTE_OFFSET(word_offset) \
1805 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
1807 #define ASSERT_OFFSET(word_offset, field) \
1808 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1809 offsetof(X86XSaveArea, field))
1811 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1812 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1813 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1814 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1815 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1816 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1817 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1818 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1819 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1820 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1821 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1822 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1823 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1824 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1825 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1827 static int kvm_put_xsave(X86CPU
*cpu
)
1829 CPUX86State
*env
= &cpu
->env
;
1830 X86XSaveArea
*xsave
= env
->xsave_buf
;
1833 return kvm_put_fpu(cpu
);
1835 x86_cpu_xsave_all_areas(cpu
, xsave
);
1837 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1840 static int kvm_put_xcrs(X86CPU
*cpu
)
1842 CPUX86State
*env
= &cpu
->env
;
1843 struct kvm_xcrs xcrs
= {};
1851 xcrs
.xcrs
[0].xcr
= 0;
1852 xcrs
.xcrs
[0].value
= env
->xcr0
;
1853 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1856 static int kvm_put_sregs(X86CPU
*cpu
)
1858 CPUX86State
*env
= &cpu
->env
;
1859 struct kvm_sregs sregs
;
1861 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1862 if (env
->interrupt_injected
>= 0) {
1863 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1864 (uint64_t)1 << (env
->interrupt_injected
% 64);
1867 if ((env
->eflags
& VM_MASK
)) {
1868 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1869 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1870 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1871 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1872 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1873 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1875 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1876 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1877 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1878 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1879 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1880 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1883 set_seg(&sregs
.tr
, &env
->tr
);
1884 set_seg(&sregs
.ldt
, &env
->ldt
);
1886 sregs
.idt
.limit
= env
->idt
.limit
;
1887 sregs
.idt
.base
= env
->idt
.base
;
1888 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1889 sregs
.gdt
.limit
= env
->gdt
.limit
;
1890 sregs
.gdt
.base
= env
->gdt
.base
;
1891 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1893 sregs
.cr0
= env
->cr
[0];
1894 sregs
.cr2
= env
->cr
[2];
1895 sregs
.cr3
= env
->cr
[3];
1896 sregs
.cr4
= env
->cr
[4];
1898 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1899 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1901 sregs
.efer
= env
->efer
;
1903 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1906 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1908 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1911 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1913 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1914 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1915 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1917 assert((void *)(entry
+ 1) <= limit
);
1919 entry
->index
= index
;
1920 entry
->reserved
= 0;
1921 entry
->data
= value
;
1925 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
1927 kvm_msr_buf_reset(cpu
);
1928 kvm_msr_entry_add(cpu
, index
, value
);
1930 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1933 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
1937 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
1941 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1943 CPUX86State
*env
= &cpu
->env
;
1946 if (!has_msr_tsc_deadline
) {
1950 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1960 * Provide a separate write service for the feature control MSR in order to
1961 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1962 * before writing any other state because forcibly leaving nested mode
1963 * invalidates the VCPU state.
1965 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1969 if (!has_msr_feature_control
) {
1973 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
1974 cpu
->env
.msr_ia32_feature_control
);
1983 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1985 CPUX86State
*env
= &cpu
->env
;
1989 kvm_msr_buf_reset(cpu
);
1991 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1992 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1993 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1994 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1996 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1998 if (has_msr_hsave_pa
) {
1999 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
2001 if (has_msr_tsc_aux
) {
2002 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
2004 if (has_msr_tsc_adjust
) {
2005 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
2007 if (has_msr_misc_enable
) {
2008 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
2009 env
->msr_ia32_misc_enable
);
2011 if (has_msr_smbase
) {
2012 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
2014 if (has_msr_smi_count
) {
2015 kvm_msr_entry_add(cpu
, MSR_SMI_COUNT
, env
->msr_smi_count
);
2017 if (has_msr_bndcfgs
) {
2018 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
2021 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
2023 if (has_msr_spec_ctrl
) {
2024 kvm_msr_entry_add(cpu
, MSR_IA32_SPEC_CTRL
, env
->spec_ctrl
);
2026 if (has_msr_virt_ssbd
) {
2027 kvm_msr_entry_add(cpu
, MSR_VIRT_SSBD
, env
->virt_ssbd
);
2030 #ifdef TARGET_X86_64
2031 if (lm_capable_kernel
) {
2032 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
2033 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
2034 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
2035 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
2039 /* If host supports feature MSR, write down. */
2040 if (has_msr_arch_capabs
) {
2041 kvm_msr_entry_add(cpu
, MSR_IA32_ARCH_CAPABILITIES
,
2042 env
->features
[FEAT_ARCH_CAPABILITIES
]);
2046 * The following MSRs have side effects on the guest or are too heavy
2047 * for normal writeback. Limit them to reset or full state updates.
2049 if (level
>= KVM_PUT_RESET_STATE
) {
2050 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
2051 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
2052 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
2053 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2054 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
2056 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2057 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
2059 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2060 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
2062 if (has_architectural_pmu_version
> 0) {
2063 if (has_architectural_pmu_version
> 1) {
2064 /* Stop the counter. */
2065 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2066 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2069 /* Set the counter values. */
2070 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
2071 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
2072 env
->msr_fixed_counters
[i
]);
2074 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
2075 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
2076 env
->msr_gp_counters
[i
]);
2077 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
2078 env
->msr_gp_evtsel
[i
]);
2080 if (has_architectural_pmu_version
> 1) {
2081 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
2082 env
->msr_global_status
);
2083 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
2084 env
->msr_global_ovf_ctrl
);
2086 /* Now start the PMU. */
2087 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
2088 env
->msr_fixed_ctr_ctrl
);
2089 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
2090 env
->msr_global_ctrl
);
2094 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2095 * only sync them to KVM on the first cpu
2097 if (current_cpu
== first_cpu
) {
2098 if (has_msr_hv_hypercall
) {
2099 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
2100 env
->msr_hv_guest_os_id
);
2101 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
2102 env
->msr_hv_hypercall
);
2104 if (cpu
->hyperv_time
) {
2105 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
,
2108 if (cpu
->hyperv_reenlightenment
) {
2109 kvm_msr_entry_add(cpu
, HV_X64_MSR_REENLIGHTENMENT_CONTROL
,
2110 env
->msr_hv_reenlightenment_control
);
2111 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_CONTROL
,
2112 env
->msr_hv_tsc_emulation_control
);
2113 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_STATUS
,
2114 env
->msr_hv_tsc_emulation_status
);
2117 if (cpu
->hyperv_vapic
) {
2118 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
2121 if (has_msr_hv_crash
) {
2124 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++)
2125 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
2126 env
->msr_hv_crash_params
[j
]);
2128 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
, HV_CRASH_CTL_NOTIFY
);
2130 if (has_msr_hv_runtime
) {
2131 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
2133 if (cpu
->hyperv_vpindex
&& hv_vpindex_settable
) {
2134 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_INDEX
,
2135 hyperv_vp_index(CPU(cpu
)));
2137 if (cpu
->hyperv_synic
) {
2140 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, HV_SYNIC_VERSION
);
2142 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
2143 env
->msr_hv_synic_control
);
2144 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
2145 env
->msr_hv_synic_evt_page
);
2146 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
2147 env
->msr_hv_synic_msg_page
);
2149 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
2150 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
2151 env
->msr_hv_synic_sint
[j
]);
2154 if (has_msr_hv_stimer
) {
2157 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
2158 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
2159 env
->msr_hv_stimer_config
[j
]);
2162 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
2163 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
2164 env
->msr_hv_stimer_count
[j
]);
2167 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2168 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
2170 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
2171 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
2172 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
2173 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
2174 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
2175 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
2176 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
2177 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
2178 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
2179 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
2180 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
2181 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
2182 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2183 /* The CPU GPs if we write to a bit above the physical limit of
2184 * the host CPU (and KVM emulates that)
2186 uint64_t mask
= env
->mtrr_var
[i
].mask
;
2189 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
2190 env
->mtrr_var
[i
].base
);
2191 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
2194 if (env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_INTEL_PT
) {
2195 int addr_num
= kvm_arch_get_supported_cpuid(kvm_state
,
2196 0x14, 1, R_EAX
) & 0x7;
2198 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CTL
,
2199 env
->msr_rtit_ctrl
);
2200 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_STATUS
,
2201 env
->msr_rtit_status
);
2202 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_BASE
,
2203 env
->msr_rtit_output_base
);
2204 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_MASK
,
2205 env
->msr_rtit_output_mask
);
2206 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CR3_MATCH
,
2207 env
->msr_rtit_cr3_match
);
2208 for (i
= 0; i
< addr_num
; i
++) {
2209 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_ADDR0_A
+ i
,
2210 env
->msr_rtit_addrs
[i
]);
2214 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2215 * kvm_put_msr_feature_control. */
2220 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
2221 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
2222 if (has_msr_mcg_ext_ctl
) {
2223 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
2225 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2226 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
2230 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
2235 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2236 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2237 error_report("error: failed to set MSR 0x%" PRIx32
" to 0x%" PRIx64
,
2238 (uint32_t)e
->index
, (uint64_t)e
->data
);
2241 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2246 static int kvm_get_fpu(X86CPU
*cpu
)
2248 CPUX86State
*env
= &cpu
->env
;
2252 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
2257 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
2258 env
->fpus
= fpu
.fsw
;
2259 env
->fpuc
= fpu
.fcw
;
2260 env
->fpop
= fpu
.last_opcode
;
2261 env
->fpip
= fpu
.last_ip
;
2262 env
->fpdp
= fpu
.last_dp
;
2263 for (i
= 0; i
< 8; ++i
) {
2264 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
2266 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
2267 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
2268 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
2269 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
2271 env
->mxcsr
= fpu
.mxcsr
;
2276 static int kvm_get_xsave(X86CPU
*cpu
)
2278 CPUX86State
*env
= &cpu
->env
;
2279 X86XSaveArea
*xsave
= env
->xsave_buf
;
2283 return kvm_get_fpu(cpu
);
2286 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
2290 x86_cpu_xrstor_all_areas(cpu
, xsave
);
2295 static int kvm_get_xcrs(X86CPU
*cpu
)
2297 CPUX86State
*env
= &cpu
->env
;
2299 struct kvm_xcrs xcrs
;
2305 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
2310 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
2311 /* Only support xcr0 now */
2312 if (xcrs
.xcrs
[i
].xcr
== 0) {
2313 env
->xcr0
= xcrs
.xcrs
[i
].value
;
2320 static int kvm_get_sregs(X86CPU
*cpu
)
2322 CPUX86State
*env
= &cpu
->env
;
2323 struct kvm_sregs sregs
;
2326 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
2331 /* There can only be one pending IRQ set in the bitmap at a time, so try
2332 to find it and save its number instead (-1 for none). */
2333 env
->interrupt_injected
= -1;
2334 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
2335 if (sregs
.interrupt_bitmap
[i
]) {
2336 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
2337 env
->interrupt_injected
= i
* 64 + bit
;
2342 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
2343 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
2344 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
2345 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
2346 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
2347 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
2349 get_seg(&env
->tr
, &sregs
.tr
);
2350 get_seg(&env
->ldt
, &sregs
.ldt
);
2352 env
->idt
.limit
= sregs
.idt
.limit
;
2353 env
->idt
.base
= sregs
.idt
.base
;
2354 env
->gdt
.limit
= sregs
.gdt
.limit
;
2355 env
->gdt
.base
= sregs
.gdt
.base
;
2357 env
->cr
[0] = sregs
.cr0
;
2358 env
->cr
[2] = sregs
.cr2
;
2359 env
->cr
[3] = sregs
.cr3
;
2360 env
->cr
[4] = sregs
.cr4
;
2362 env
->efer
= sregs
.efer
;
2364 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2365 x86_update_hflags(env
);
2370 static int kvm_get_msrs(X86CPU
*cpu
)
2372 CPUX86State
*env
= &cpu
->env
;
2373 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
2375 uint64_t mtrr_top_bits
;
2377 kvm_msr_buf_reset(cpu
);
2379 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
2380 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
2381 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
2382 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
2384 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
2386 if (has_msr_hsave_pa
) {
2387 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
2389 if (has_msr_tsc_aux
) {
2390 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
2392 if (has_msr_tsc_adjust
) {
2393 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
2395 if (has_msr_tsc_deadline
) {
2396 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
2398 if (has_msr_misc_enable
) {
2399 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2401 if (has_msr_smbase
) {
2402 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2404 if (has_msr_smi_count
) {
2405 kvm_msr_entry_add(cpu
, MSR_SMI_COUNT
, 0);
2407 if (has_msr_feature_control
) {
2408 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2410 if (has_msr_bndcfgs
) {
2411 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2414 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2416 if (has_msr_spec_ctrl
) {
2417 kvm_msr_entry_add(cpu
, MSR_IA32_SPEC_CTRL
, 0);
2419 if (has_msr_virt_ssbd
) {
2420 kvm_msr_entry_add(cpu
, MSR_VIRT_SSBD
, 0);
2422 if (!env
->tsc_valid
) {
2423 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2424 env
->tsc_valid
= !runstate_is_running();
2427 #ifdef TARGET_X86_64
2428 if (lm_capable_kernel
) {
2429 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2430 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2431 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2432 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2435 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2436 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2437 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2438 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2440 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2441 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2443 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2444 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2446 if (has_architectural_pmu_version
> 0) {
2447 if (has_architectural_pmu_version
> 1) {
2448 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2449 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2450 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2451 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2453 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
2454 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2456 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
2457 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2458 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2463 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2464 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2465 if (has_msr_mcg_ext_ctl
) {
2466 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2468 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2469 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2473 if (has_msr_hv_hypercall
) {
2474 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2475 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2477 if (cpu
->hyperv_vapic
) {
2478 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2480 if (cpu
->hyperv_time
) {
2481 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2483 if (cpu
->hyperv_reenlightenment
) {
2484 kvm_msr_entry_add(cpu
, HV_X64_MSR_REENLIGHTENMENT_CONTROL
, 0);
2485 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_CONTROL
, 0);
2486 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_STATUS
, 0);
2488 if (has_msr_hv_crash
) {
2491 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++) {
2492 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2495 if (has_msr_hv_runtime
) {
2496 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2498 if (cpu
->hyperv_synic
) {
2501 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2502 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2503 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2504 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2505 kvm_msr_entry_add(cpu
, msr
, 0);
2508 if (has_msr_hv_stimer
) {
2511 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2513 kvm_msr_entry_add(cpu
, msr
, 0);
2516 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2517 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2518 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2519 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2520 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2521 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2522 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2523 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2524 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2525 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2526 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2527 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2528 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2529 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2530 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2531 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2535 if (env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_INTEL_PT
) {
2537 kvm_arch_get_supported_cpuid(kvm_state
, 0x14, 1, R_EAX
) & 0x7;
2539 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CTL
, 0);
2540 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_STATUS
, 0);
2541 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_BASE
, 0);
2542 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_MASK
, 0);
2543 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CR3_MATCH
, 0);
2544 for (i
= 0; i
< addr_num
; i
++) {
2545 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_ADDR0_A
+ i
, 0);
2549 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2554 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2555 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2556 error_report("error: failed to get MSR 0x%" PRIx32
,
2557 (uint32_t)e
->index
);
2560 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2562 * MTRR masks: Each mask consists of 5 parts
2563 * a 10..0: must be zero
2565 * c n-1.12: actual mask bits
2566 * d 51..n: reserved must be zero
2567 * e 63.52: reserved must be zero
2569 * 'n' is the number of physical bits supported by the CPU and is
2570 * apparently always <= 52. We know our 'n' but don't know what
2571 * the destinations 'n' is; it might be smaller, in which case
2572 * it masks (c) on loading. It might be larger, in which case
2573 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2574 * we're migrating to.
2577 if (cpu
->fill_mtrr_mask
) {
2578 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
2579 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
2580 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
2585 for (i
= 0; i
< ret
; i
++) {
2586 uint32_t index
= msrs
[i
].index
;
2588 case MSR_IA32_SYSENTER_CS
:
2589 env
->sysenter_cs
= msrs
[i
].data
;
2591 case MSR_IA32_SYSENTER_ESP
:
2592 env
->sysenter_esp
= msrs
[i
].data
;
2594 case MSR_IA32_SYSENTER_EIP
:
2595 env
->sysenter_eip
= msrs
[i
].data
;
2598 env
->pat
= msrs
[i
].data
;
2601 env
->star
= msrs
[i
].data
;
2603 #ifdef TARGET_X86_64
2605 env
->cstar
= msrs
[i
].data
;
2607 case MSR_KERNELGSBASE
:
2608 env
->kernelgsbase
= msrs
[i
].data
;
2611 env
->fmask
= msrs
[i
].data
;
2614 env
->lstar
= msrs
[i
].data
;
2618 env
->tsc
= msrs
[i
].data
;
2621 env
->tsc_aux
= msrs
[i
].data
;
2623 case MSR_TSC_ADJUST
:
2624 env
->tsc_adjust
= msrs
[i
].data
;
2626 case MSR_IA32_TSCDEADLINE
:
2627 env
->tsc_deadline
= msrs
[i
].data
;
2629 case MSR_VM_HSAVE_PA
:
2630 env
->vm_hsave
= msrs
[i
].data
;
2632 case MSR_KVM_SYSTEM_TIME
:
2633 env
->system_time_msr
= msrs
[i
].data
;
2635 case MSR_KVM_WALL_CLOCK
:
2636 env
->wall_clock_msr
= msrs
[i
].data
;
2638 case MSR_MCG_STATUS
:
2639 env
->mcg_status
= msrs
[i
].data
;
2642 env
->mcg_ctl
= msrs
[i
].data
;
2644 case MSR_MCG_EXT_CTL
:
2645 env
->mcg_ext_ctl
= msrs
[i
].data
;
2647 case MSR_IA32_MISC_ENABLE
:
2648 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2650 case MSR_IA32_SMBASE
:
2651 env
->smbase
= msrs
[i
].data
;
2654 env
->msr_smi_count
= msrs
[i
].data
;
2656 case MSR_IA32_FEATURE_CONTROL
:
2657 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2659 case MSR_IA32_BNDCFGS
:
2660 env
->msr_bndcfgs
= msrs
[i
].data
;
2663 env
->xss
= msrs
[i
].data
;
2666 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2667 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2668 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2671 case MSR_KVM_ASYNC_PF_EN
:
2672 env
->async_pf_en_msr
= msrs
[i
].data
;
2674 case MSR_KVM_PV_EOI_EN
:
2675 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2677 case MSR_KVM_STEAL_TIME
:
2678 env
->steal_time_msr
= msrs
[i
].data
;
2680 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2681 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2683 case MSR_CORE_PERF_GLOBAL_CTRL
:
2684 env
->msr_global_ctrl
= msrs
[i
].data
;
2686 case MSR_CORE_PERF_GLOBAL_STATUS
:
2687 env
->msr_global_status
= msrs
[i
].data
;
2689 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2690 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2692 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2693 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2695 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2696 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2698 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2699 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2701 case HV_X64_MSR_HYPERCALL
:
2702 env
->msr_hv_hypercall
= msrs
[i
].data
;
2704 case HV_X64_MSR_GUEST_OS_ID
:
2705 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2707 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2708 env
->msr_hv_vapic
= msrs
[i
].data
;
2710 case HV_X64_MSR_REFERENCE_TSC
:
2711 env
->msr_hv_tsc
= msrs
[i
].data
;
2713 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2714 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2716 case HV_X64_MSR_VP_RUNTIME
:
2717 env
->msr_hv_runtime
= msrs
[i
].data
;
2719 case HV_X64_MSR_SCONTROL
:
2720 env
->msr_hv_synic_control
= msrs
[i
].data
;
2722 case HV_X64_MSR_SIEFP
:
2723 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2725 case HV_X64_MSR_SIMP
:
2726 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2728 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2729 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2731 case HV_X64_MSR_STIMER0_CONFIG
:
2732 case HV_X64_MSR_STIMER1_CONFIG
:
2733 case HV_X64_MSR_STIMER2_CONFIG
:
2734 case HV_X64_MSR_STIMER3_CONFIG
:
2735 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2738 case HV_X64_MSR_STIMER0_COUNT
:
2739 case HV_X64_MSR_STIMER1_COUNT
:
2740 case HV_X64_MSR_STIMER2_COUNT
:
2741 case HV_X64_MSR_STIMER3_COUNT
:
2742 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2745 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
2746 env
->msr_hv_reenlightenment_control
= msrs
[i
].data
;
2748 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
2749 env
->msr_hv_tsc_emulation_control
= msrs
[i
].data
;
2751 case HV_X64_MSR_TSC_EMULATION_STATUS
:
2752 env
->msr_hv_tsc_emulation_status
= msrs
[i
].data
;
2754 case MSR_MTRRdefType
:
2755 env
->mtrr_deftype
= msrs
[i
].data
;
2757 case MSR_MTRRfix64K_00000
:
2758 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2760 case MSR_MTRRfix16K_80000
:
2761 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2763 case MSR_MTRRfix16K_A0000
:
2764 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2766 case MSR_MTRRfix4K_C0000
:
2767 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2769 case MSR_MTRRfix4K_C8000
:
2770 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2772 case MSR_MTRRfix4K_D0000
:
2773 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2775 case MSR_MTRRfix4K_D8000
:
2776 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2778 case MSR_MTRRfix4K_E0000
:
2779 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2781 case MSR_MTRRfix4K_E8000
:
2782 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2784 case MSR_MTRRfix4K_F0000
:
2785 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2787 case MSR_MTRRfix4K_F8000
:
2788 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2790 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2792 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
2795 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2798 case MSR_IA32_SPEC_CTRL
:
2799 env
->spec_ctrl
= msrs
[i
].data
;
2802 env
->virt_ssbd
= msrs
[i
].data
;
2804 case MSR_IA32_RTIT_CTL
:
2805 env
->msr_rtit_ctrl
= msrs
[i
].data
;
2807 case MSR_IA32_RTIT_STATUS
:
2808 env
->msr_rtit_status
= msrs
[i
].data
;
2810 case MSR_IA32_RTIT_OUTPUT_BASE
:
2811 env
->msr_rtit_output_base
= msrs
[i
].data
;
2813 case MSR_IA32_RTIT_OUTPUT_MASK
:
2814 env
->msr_rtit_output_mask
= msrs
[i
].data
;
2816 case MSR_IA32_RTIT_CR3_MATCH
:
2817 env
->msr_rtit_cr3_match
= msrs
[i
].data
;
2819 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
:
2820 env
->msr_rtit_addrs
[index
- MSR_IA32_RTIT_ADDR0_A
] = msrs
[i
].data
;
2828 static int kvm_put_mp_state(X86CPU
*cpu
)
2830 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2832 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2835 static int kvm_get_mp_state(X86CPU
*cpu
)
2837 CPUState
*cs
= CPU(cpu
);
2838 CPUX86State
*env
= &cpu
->env
;
2839 struct kvm_mp_state mp_state
;
2842 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2846 env
->mp_state
= mp_state
.mp_state
;
2847 if (kvm_irqchip_in_kernel()) {
2848 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2853 static int kvm_get_apic(X86CPU
*cpu
)
2855 DeviceState
*apic
= cpu
->apic_state
;
2856 struct kvm_lapic_state kapic
;
2859 if (apic
&& kvm_irqchip_in_kernel()) {
2860 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2865 kvm_get_apic_state(apic
, &kapic
);
2870 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2872 CPUState
*cs
= CPU(cpu
);
2873 CPUX86State
*env
= &cpu
->env
;
2874 struct kvm_vcpu_events events
= {};
2876 if (!kvm_has_vcpu_events()) {
2880 events
.exception
.injected
= (env
->exception_injected
>= 0);
2881 events
.exception
.nr
= env
->exception_injected
;
2882 events
.exception
.has_error_code
= env
->has_error_code
;
2883 events
.exception
.error_code
= env
->error_code
;
2885 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2886 events
.interrupt
.nr
= env
->interrupt_injected
;
2887 events
.interrupt
.soft
= env
->soft_interrupt
;
2889 events
.nmi
.injected
= env
->nmi_injected
;
2890 events
.nmi
.pending
= env
->nmi_pending
;
2891 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2893 events
.sipi_vector
= env
->sipi_vector
;
2896 if (has_msr_smbase
) {
2897 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2898 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2899 if (kvm_irqchip_in_kernel()) {
2900 /* As soon as these are moved to the kernel, remove them
2901 * from cs->interrupt_request.
2903 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2904 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2905 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2907 /* Keep these in cs->interrupt_request. */
2908 events
.smi
.pending
= 0;
2909 events
.smi
.latched_init
= 0;
2911 /* Stop SMI delivery on old machine types to avoid a reboot
2912 * on an inward migration of an old VM.
2914 if (!cpu
->kvm_no_smi_migration
) {
2915 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2919 if (level
>= KVM_PUT_RESET_STATE
) {
2920 events
.flags
|= KVM_VCPUEVENT_VALID_NMI_PENDING
;
2921 if (env
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
2922 events
.flags
|= KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2926 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2929 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2931 CPUX86State
*env
= &cpu
->env
;
2932 struct kvm_vcpu_events events
;
2935 if (!kvm_has_vcpu_events()) {
2939 memset(&events
, 0, sizeof(events
));
2940 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2944 env
->exception_injected
=
2945 events
.exception
.injected
? events
.exception
.nr
: -1;
2946 env
->has_error_code
= events
.exception
.has_error_code
;
2947 env
->error_code
= events
.exception
.error_code
;
2949 env
->interrupt_injected
=
2950 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2951 env
->soft_interrupt
= events
.interrupt
.soft
;
2953 env
->nmi_injected
= events
.nmi
.injected
;
2954 env
->nmi_pending
= events
.nmi
.pending
;
2955 if (events
.nmi
.masked
) {
2956 env
->hflags2
|= HF2_NMI_MASK
;
2958 env
->hflags2
&= ~HF2_NMI_MASK
;
2961 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2962 if (events
.smi
.smm
) {
2963 env
->hflags
|= HF_SMM_MASK
;
2965 env
->hflags
&= ~HF_SMM_MASK
;
2967 if (events
.smi
.pending
) {
2968 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2970 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2972 if (events
.smi
.smm_inside_nmi
) {
2973 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2975 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2977 if (events
.smi
.latched_init
) {
2978 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2980 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2984 env
->sipi_vector
= events
.sipi_vector
;
2989 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2991 CPUState
*cs
= CPU(cpu
);
2992 CPUX86State
*env
= &cpu
->env
;
2994 unsigned long reinject_trap
= 0;
2996 if (!kvm_has_vcpu_events()) {
2997 if (env
->exception_injected
== 1) {
2998 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2999 } else if (env
->exception_injected
== 3) {
3000 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
3002 env
->exception_injected
= -1;
3006 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3007 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3008 * by updating the debug state once again if single-stepping is on.
3009 * Another reason to call kvm_update_guest_debug here is a pending debug
3010 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3011 * reinject them via SET_GUEST_DEBUG.
3013 if (reinject_trap
||
3014 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
3015 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
3020 static int kvm_put_debugregs(X86CPU
*cpu
)
3022 CPUX86State
*env
= &cpu
->env
;
3023 struct kvm_debugregs dbgregs
;
3026 if (!kvm_has_debugregs()) {
3030 for (i
= 0; i
< 4; i
++) {
3031 dbgregs
.db
[i
] = env
->dr
[i
];
3033 dbgregs
.dr6
= env
->dr
[6];
3034 dbgregs
.dr7
= env
->dr
[7];
3037 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
3040 static int kvm_get_debugregs(X86CPU
*cpu
)
3042 CPUX86State
*env
= &cpu
->env
;
3043 struct kvm_debugregs dbgregs
;
3046 if (!kvm_has_debugregs()) {
3050 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
3054 for (i
= 0; i
< 4; i
++) {
3055 env
->dr
[i
] = dbgregs
.db
[i
];
3057 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
3058 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
3063 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
3065 X86CPU
*x86_cpu
= X86_CPU(cpu
);
3068 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
3070 if (level
>= KVM_PUT_RESET_STATE
) {
3071 ret
= kvm_put_msr_feature_control(x86_cpu
);
3077 if (level
== KVM_PUT_FULL_STATE
) {
3078 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3079 * because TSC frequency mismatch shouldn't abort migration,
3080 * unless the user explicitly asked for a more strict TSC
3081 * setting (e.g. using an explicit "tsc-freq" option).
3083 kvm_arch_set_tsc_khz(cpu
);
3086 ret
= kvm_getput_regs(x86_cpu
, 1);
3090 ret
= kvm_put_xsave(x86_cpu
);
3094 ret
= kvm_put_xcrs(x86_cpu
);
3098 ret
= kvm_put_sregs(x86_cpu
);
3102 /* must be before kvm_put_msrs */
3103 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
3107 ret
= kvm_put_msrs(x86_cpu
, level
);
3111 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
3115 if (level
>= KVM_PUT_RESET_STATE
) {
3116 ret
= kvm_put_mp_state(x86_cpu
);
3122 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
3126 ret
= kvm_put_debugregs(x86_cpu
);
3131 ret
= kvm_guest_debug_workarounds(x86_cpu
);
3138 int kvm_arch_get_registers(CPUState
*cs
)
3140 X86CPU
*cpu
= X86_CPU(cs
);
3143 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
3145 ret
= kvm_get_vcpu_events(cpu
);
3150 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3151 * KVM_GET_REGS and KVM_GET_SREGS.
3153 ret
= kvm_get_mp_state(cpu
);
3157 ret
= kvm_getput_regs(cpu
, 0);
3161 ret
= kvm_get_xsave(cpu
);
3165 ret
= kvm_get_xcrs(cpu
);
3169 ret
= kvm_get_sregs(cpu
);
3173 ret
= kvm_get_msrs(cpu
);
3177 ret
= kvm_get_apic(cpu
);
3181 ret
= kvm_get_debugregs(cpu
);
3187 cpu_sync_bndcs_hflags(&cpu
->env
);
3191 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
3193 X86CPU
*x86_cpu
= X86_CPU(cpu
);
3194 CPUX86State
*env
= &x86_cpu
->env
;
3198 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
3199 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
3200 qemu_mutex_lock_iothread();
3201 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
3202 qemu_mutex_unlock_iothread();
3203 DPRINTF("injected NMI\n");
3204 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
3206 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
3210 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
3211 qemu_mutex_lock_iothread();
3212 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
3213 qemu_mutex_unlock_iothread();
3214 DPRINTF("injected SMI\n");
3215 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
3217 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
3223 if (!kvm_pic_in_kernel()) {
3224 qemu_mutex_lock_iothread();
3227 /* Force the VCPU out of its inner loop to process any INIT requests
3228 * or (for userspace APIC, but it is cheap to combine the checks here)
3229 * pending TPR access reports.
3231 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
3232 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
3233 !(env
->hflags
& HF_SMM_MASK
)) {
3234 cpu
->exit_request
= 1;
3236 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
3237 cpu
->exit_request
= 1;
3241 if (!kvm_pic_in_kernel()) {
3242 /* Try to inject an interrupt if the guest can accept it */
3243 if (run
->ready_for_interrupt_injection
&&
3244 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
3245 (env
->eflags
& IF_MASK
)) {
3248 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
3249 irq
= cpu_get_pic_interrupt(env
);
3251 struct kvm_interrupt intr
;
3254 DPRINTF("injected interrupt %d\n", irq
);
3255 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
3258 "KVM: injection failed, interrupt lost (%s)\n",
3264 /* If we have an interrupt but the guest is not ready to receive an
3265 * interrupt, request an interrupt window exit. This will
3266 * cause a return to userspace as soon as the guest is ready to
3267 * receive interrupts. */
3268 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
3269 run
->request_interrupt_window
= 1;
3271 run
->request_interrupt_window
= 0;
3274 DPRINTF("setting tpr\n");
3275 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
3277 qemu_mutex_unlock_iothread();
3281 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
3283 X86CPU
*x86_cpu
= X86_CPU(cpu
);
3284 CPUX86State
*env
= &x86_cpu
->env
;
3286 if (run
->flags
& KVM_RUN_X86_SMM
) {
3287 env
->hflags
|= HF_SMM_MASK
;
3289 env
->hflags
&= ~HF_SMM_MASK
;
3292 env
->eflags
|= IF_MASK
;
3294 env
->eflags
&= ~IF_MASK
;
3297 /* We need to protect the apic state against concurrent accesses from
3298 * different threads in case the userspace irqchip is used. */
3299 if (!kvm_irqchip_in_kernel()) {
3300 qemu_mutex_lock_iothread();
3302 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
3303 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
3304 if (!kvm_irqchip_in_kernel()) {
3305 qemu_mutex_unlock_iothread();
3307 return cpu_get_mem_attrs(env
);
3310 int kvm_arch_process_async_events(CPUState
*cs
)
3312 X86CPU
*cpu
= X86_CPU(cs
);
3313 CPUX86State
*env
= &cpu
->env
;
3315 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
3316 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3317 assert(env
->mcg_cap
);
3319 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
3321 kvm_cpu_synchronize_state(cs
);
3323 if (env
->exception_injected
== EXCP08_DBLE
) {
3324 /* this means triple fault */
3325 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
3326 cs
->exit_request
= 1;
3329 env
->exception_injected
= EXCP12_MCHK
;
3330 env
->has_error_code
= 0;
3333 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
3334 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
3338 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
3339 !(env
->hflags
& HF_SMM_MASK
)) {
3340 kvm_cpu_synchronize_state(cs
);
3344 if (kvm_irqchip_in_kernel()) {
3348 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
3349 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
3350 apic_poll_irq(cpu
->apic_state
);
3352 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
3353 (env
->eflags
& IF_MASK
)) ||
3354 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
3357 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
3358 kvm_cpu_synchronize_state(cs
);
3361 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
3362 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
3363 kvm_cpu_synchronize_state(cs
);
3364 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
3365 env
->tpr_access_type
);
3371 static int kvm_handle_halt(X86CPU
*cpu
)
3373 CPUState
*cs
= CPU(cpu
);
3374 CPUX86State
*env
= &cpu
->env
;
3376 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
3377 (env
->eflags
& IF_MASK
)) &&
3378 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
3386 static int kvm_handle_tpr_access(X86CPU
*cpu
)
3388 CPUState
*cs
= CPU(cpu
);
3389 struct kvm_run
*run
= cs
->kvm_run
;
3391 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
3392 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
3397 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
3399 static const uint8_t int3
= 0xcc;
3401 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
3402 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
3408 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
3412 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
3413 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
3425 static int nb_hw_breakpoint
;
3427 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
3431 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3432 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
3433 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
3440 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
3441 target_ulong len
, int type
)
3444 case GDB_BREAKPOINT_HW
:
3447 case GDB_WATCHPOINT_WRITE
:
3448 case GDB_WATCHPOINT_ACCESS
:
3455 if (addr
& (len
- 1)) {
3467 if (nb_hw_breakpoint
== 4) {
3470 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3473 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3474 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3475 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3481 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3482 target_ulong len
, int type
)
3486 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3491 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3496 void kvm_arch_remove_all_hw_breakpoints(void)
3498 nb_hw_breakpoint
= 0;
3501 static CPUWatchpoint hw_watchpoint
;
3503 static int kvm_handle_debug(X86CPU
*cpu
,
3504 struct kvm_debug_exit_arch
*arch_info
)
3506 CPUState
*cs
= CPU(cpu
);
3507 CPUX86State
*env
= &cpu
->env
;
3511 if (arch_info
->exception
== 1) {
3512 if (arch_info
->dr6
& (1 << 14)) {
3513 if (cs
->singlestep_enabled
) {
3517 for (n
= 0; n
< 4; n
++) {
3518 if (arch_info
->dr6
& (1 << n
)) {
3519 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3525 cs
->watchpoint_hit
= &hw_watchpoint
;
3526 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3527 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3531 cs
->watchpoint_hit
= &hw_watchpoint
;
3532 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3533 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3539 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3543 cpu_synchronize_state(cs
);
3544 assert(env
->exception_injected
== -1);
3547 env
->exception_injected
= arch_info
->exception
;
3548 env
->has_error_code
= 0;
3554 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3556 const uint8_t type_code
[] = {
3557 [GDB_BREAKPOINT_HW
] = 0x0,
3558 [GDB_WATCHPOINT_WRITE
] = 0x1,
3559 [GDB_WATCHPOINT_ACCESS
] = 0x3
3561 const uint8_t len_code
[] = {
3562 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3566 if (kvm_sw_breakpoints_active(cpu
)) {
3567 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3569 if (nb_hw_breakpoint
> 0) {
3570 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3571 dbg
->arch
.debugreg
[7] = 0x0600;
3572 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3573 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3574 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3575 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3576 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3581 static bool host_supports_vmx(void)
3583 uint32_t ecx
, unused
;
3585 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3586 return ecx
& CPUID_EXT_VMX
;
3589 #define VMX_INVALID_GUEST_STATE 0x80000021
3591 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3593 X86CPU
*cpu
= X86_CPU(cs
);
3597 switch (run
->exit_reason
) {
3599 DPRINTF("handle_hlt\n");
3600 qemu_mutex_lock_iothread();
3601 ret
= kvm_handle_halt(cpu
);
3602 qemu_mutex_unlock_iothread();
3604 case KVM_EXIT_SET_TPR
:
3607 case KVM_EXIT_TPR_ACCESS
:
3608 qemu_mutex_lock_iothread();
3609 ret
= kvm_handle_tpr_access(cpu
);
3610 qemu_mutex_unlock_iothread();
3612 case KVM_EXIT_FAIL_ENTRY
:
3613 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3614 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3616 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3618 "\nIf you're running a guest on an Intel machine without "
3619 "unrestricted mode\n"
3620 "support, the failure can be most likely due to the guest "
3621 "entering an invalid\n"
3622 "state for Intel VT. For example, the guest maybe running "
3623 "in big real mode\n"
3624 "which is not supported on less recent Intel processors."
3629 case KVM_EXIT_EXCEPTION
:
3630 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3631 run
->ex
.exception
, run
->ex
.error_code
);
3634 case KVM_EXIT_DEBUG
:
3635 DPRINTF("kvm_exit_debug\n");
3636 qemu_mutex_lock_iothread();
3637 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3638 qemu_mutex_unlock_iothread();
3640 case KVM_EXIT_HYPERV
:
3641 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3643 case KVM_EXIT_IOAPIC_EOI
:
3644 ioapic_eoi_broadcast(run
->eoi
.vector
);
3648 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3656 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3658 X86CPU
*cpu
= X86_CPU(cs
);
3659 CPUX86State
*env
= &cpu
->env
;
3661 kvm_cpu_synchronize_state(cs
);
3662 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3663 ((env
->segs
[R_CS
].selector
& 3) != 3);
3666 void kvm_arch_init_irq_routing(KVMState
*s
)
3668 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3669 /* If kernel can't do irq routing, interrupt source
3670 * override 0->2 cannot be set up as required by HPET.
3671 * So we have to disable it.
3675 /* We know at this point that we're using the in-kernel
3676 * irqchip, so we can use irqfds, and on x86 we know
3677 * we can use msi via irqfd and GSI routing.
3679 kvm_msi_via_irqfd_allowed
= true;
3680 kvm_gsi_routing_allowed
= true;
3682 if (kvm_irqchip_is_split()) {
3685 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3686 MSI routes for signaling interrupts to the local apics. */
3687 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3688 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
3689 error_report("Could not enable split IRQ mode.");
3696 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3699 if (machine_kernel_irqchip_split(ms
)) {
3700 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3702 error_report("Could not enable split irqchip mode: %s",
3706 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3707 kvm_split_irqchip
= true;
3715 /* Classic KVM device assignment interface. Will remain x86 only. */
3716 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3717 uint32_t flags
, uint32_t *dev_id
)
3719 struct kvm_assigned_pci_dev dev_data
= {
3720 .segnr
= dev_addr
->domain
,
3721 .busnr
= dev_addr
->bus
,
3722 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3727 dev_data
.assigned_dev_id
=
3728 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3730 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3735 *dev_id
= dev_data
.assigned_dev_id
;
3740 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3742 struct kvm_assigned_pci_dev dev_data
= {
3743 .assigned_dev_id
= dev_id
,
3746 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3749 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3750 uint32_t irq_type
, uint32_t guest_irq
)
3752 struct kvm_assigned_irq assigned_irq
= {
3753 .assigned_dev_id
= dev_id
,
3754 .guest_irq
= guest_irq
,
3758 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3759 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3761 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3765 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3768 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3769 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3771 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3774 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3776 struct kvm_assigned_pci_dev dev_data
= {
3777 .assigned_dev_id
= dev_id
,
3778 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3781 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3784 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3787 struct kvm_assigned_irq assigned_irq
= {
3788 .assigned_dev_id
= dev_id
,
3792 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3795 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3797 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3798 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3801 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3803 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3804 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3807 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3809 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3810 KVM_DEV_IRQ_HOST_MSI
);
3813 bool kvm_device_msix_supported(KVMState
*s
)
3815 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3816 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3817 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3820 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3821 uint32_t nr_vectors
)
3823 struct kvm_assigned_msix_nr msix_nr
= {
3824 .assigned_dev_id
= dev_id
,
3825 .entry_nr
= nr_vectors
,
3828 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3831 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3834 struct kvm_assigned_msix_entry msix_entry
= {
3835 .assigned_dev_id
= dev_id
,
3840 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3843 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3845 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3846 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3849 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3851 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3852 KVM_DEV_IRQ_HOST_MSIX
);
3855 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3856 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3858 X86IOMMUState
*iommu
= x86_iommu_get_default();
3862 MSIMessage src
, dst
;
3863 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
3865 if (!class->int_remap
) {
3869 src
.address
= route
->u
.msi
.address_hi
;
3870 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
3871 src
.address
|= route
->u
.msi
.address_lo
;
3872 src
.data
= route
->u
.msi
.data
;
3874 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
3875 pci_requester_id(dev
) : \
3876 X86_IOMMU_SID_INVALID
);
3878 trace_kvm_x86_fixup_msi_error(route
->gsi
);
3882 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
3883 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
3884 route
->u
.msi
.data
= dst
.data
;
3890 typedef struct MSIRouteEntry MSIRouteEntry
;
3892 struct MSIRouteEntry
{
3893 PCIDevice
*dev
; /* Device pointer */
3894 int vector
; /* MSI/MSIX vector index */
3895 int virq
; /* Virtual IRQ index */
3896 QLIST_ENTRY(MSIRouteEntry
) list
;
3899 /* List of used GSI routes */
3900 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
3901 QLIST_HEAD_INITIALIZER(msi_route_list
);
3903 static void kvm_update_msi_routes_all(void *private, bool global
,
3904 uint32_t index
, uint32_t mask
)
3906 int cnt
= 0, vector
;
3907 MSIRouteEntry
*entry
;
3911 /* TODO: explicit route update */
3912 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
3914 vector
= entry
->vector
;
3916 if (msix_enabled(dev
) && !msix_is_masked(dev
, vector
)) {
3917 msg
= msix_get_message(dev
, vector
);
3918 } else if (msi_enabled(dev
) && !msi_is_masked(dev
, vector
)) {
3919 msg
= msi_get_message(dev
, vector
);
3922 * Either MSI/MSIX is disabled for the device, or the
3923 * specific message was masked out. Skip this one.
3927 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
, msg
, dev
);
3929 kvm_irqchip_commit_routes(kvm_state
);
3930 trace_kvm_x86_update_msi_routes(cnt
);
3933 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
3934 int vector
, PCIDevice
*dev
)
3936 static bool notify_list_inited
= false;
3937 MSIRouteEntry
*entry
;
3940 /* These are (possibly) IOAPIC routes only used for split
3941 * kernel irqchip mode, while what we are housekeeping are
3942 * PCI devices only. */
3946 entry
= g_new0(MSIRouteEntry
, 1);
3948 entry
->vector
= vector
;
3949 entry
->virq
= route
->gsi
;
3950 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
3952 trace_kvm_x86_add_msi_route(route
->gsi
);
3954 if (!notify_list_inited
) {
3955 /* For the first time we do add route, add ourselves into
3956 * IOMMU's IEC notify list if needed. */
3957 X86IOMMUState
*iommu
= x86_iommu_get_default();
3959 x86_iommu_iec_register_notifier(iommu
,
3960 kvm_update_msi_routes_all
,
3963 notify_list_inited
= true;
3968 int kvm_arch_release_virq_post(int virq
)
3970 MSIRouteEntry
*entry
, *next
;
3971 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
3972 if (entry
->virq
== virq
) {
3973 trace_kvm_x86_remove_msi_route(virq
);
3974 QLIST_REMOVE(entry
, list
);
3982 int kvm_arch_msi_data_to_gsi(uint32_t data
)