2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "host-utils.h"
26 #ifndef CONFIG_USER_ONLY
27 static inline void cpu_mips_tlb_flush (CPUState
*env
, int flush_global
);
30 /*****************************************************************************/
31 /* Exceptions processing helpers */
33 void helper_raise_exception_err (uint32_t exception
, int error_code
)
36 if (exception
< 0x100)
37 qemu_log("%s: %d %d\n", __func__
, exception
, error_code
);
39 env
->exception_index
= exception
;
40 env
->error_code
= error_code
;
44 void helper_raise_exception (uint32_t exception
)
46 helper_raise_exception_err(exception
, 0);
49 #if !defined(CONFIG_USER_ONLY)
50 static void do_restore_state (void *pc_ptr
)
53 unsigned long pc
= (unsigned long) pc_ptr
;
57 cpu_restore_state (tb
, env
, pc
, NULL
);
62 #if defined(CONFIG_USER_ONLY)
63 #define HELPER_LD(name, insn, type) \
64 static inline type do_##name(target_ulong addr, int mem_idx) \
66 return (type) insn##_raw(addr); \
69 #define HELPER_LD(name, insn, type) \
70 static inline type do_##name(target_ulong addr, int mem_idx) \
74 case 0: return (type) insn##_kernel(addr); break; \
75 case 1: return (type) insn##_super(addr); break; \
77 case 2: return (type) insn##_user(addr); break; \
81 HELPER_LD(lbu
, ldub
, uint8_t)
82 HELPER_LD(lw
, ldl
, int32_t)
84 HELPER_LD(ld
, ldq
, int64_t)
88 #if defined(CONFIG_USER_ONLY)
89 #define HELPER_ST(name, insn, type) \
90 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
92 insn##_raw(addr, val); \
95 #define HELPER_ST(name, insn, type) \
96 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
100 case 0: insn##_kernel(addr, val); break; \
101 case 1: insn##_super(addr, val); break; \
103 case 2: insn##_user(addr, val); break; \
107 HELPER_ST(sb
, stb
, uint8_t)
108 HELPER_ST(sw
, stl
, uint32_t)
110 HELPER_ST(sd
, stq
, uint64_t)
114 target_ulong
helper_clo (target_ulong arg1
)
119 target_ulong
helper_clz (target_ulong arg1
)
124 #if defined(TARGET_MIPS64)
125 target_ulong
helper_dclo (target_ulong arg1
)
130 target_ulong
helper_dclz (target_ulong arg1
)
134 #endif /* TARGET_MIPS64 */
136 /* 64 bits arithmetic for 32 bits hosts */
137 static inline uint64_t get_HILO (void)
139 return ((uint64_t)(env
->active_tc
.HI
[0]) << 32) | (uint32_t)env
->active_tc
.LO
[0];
142 static inline void set_HILO (uint64_t HILO
)
144 env
->active_tc
.LO
[0] = (int32_t)HILO
;
145 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
148 static inline void set_HIT0_LO (target_ulong arg1
, uint64_t HILO
)
150 env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
151 arg1
= env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
154 static inline void set_HI_LOT0 (target_ulong arg1
, uint64_t HILO
)
156 arg1
= env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
157 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
160 /* Multiplication variants of the vr54xx. */
161 target_ulong
helper_muls (target_ulong arg1
, target_ulong arg2
)
163 set_HI_LOT0(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
168 target_ulong
helper_mulsu (target_ulong arg1
, target_ulong arg2
)
170 set_HI_LOT0(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
175 target_ulong
helper_macc (target_ulong arg1
, target_ulong arg2
)
177 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
182 target_ulong
helper_macchi (target_ulong arg1
, target_ulong arg2
)
184 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
189 target_ulong
helper_maccu (target_ulong arg1
, target_ulong arg2
)
191 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
196 target_ulong
helper_macchiu (target_ulong arg1
, target_ulong arg2
)
198 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
203 target_ulong
helper_msac (target_ulong arg1
, target_ulong arg2
)
205 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
210 target_ulong
helper_msachi (target_ulong arg1
, target_ulong arg2
)
212 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
217 target_ulong
helper_msacu (target_ulong arg1
, target_ulong arg2
)
219 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
224 target_ulong
helper_msachiu (target_ulong arg1
, target_ulong arg2
)
226 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
231 target_ulong
helper_mulhi (target_ulong arg1
, target_ulong arg2
)
233 set_HIT0_LO(arg1
, (int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
);
238 target_ulong
helper_mulhiu (target_ulong arg1
, target_ulong arg2
)
240 set_HIT0_LO(arg1
, (uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
);
245 target_ulong
helper_mulshi (target_ulong arg1
, target_ulong arg2
)
247 set_HIT0_LO(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
252 target_ulong
helper_mulshiu (target_ulong arg1
, target_ulong arg2
)
254 set_HIT0_LO(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
260 void helper_dmult (target_ulong arg1
, target_ulong arg2
)
262 muls64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
265 void helper_dmultu (target_ulong arg1
, target_ulong arg2
)
267 mulu64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
271 #ifndef CONFIG_USER_ONLY
273 static inline target_phys_addr_t
do_translate_address(target_ulong address
, int rw
)
275 target_phys_addr_t lladdr
;
277 lladdr
= cpu_mips_translate_address(env
, address
, rw
);
279 if (lladdr
== -1LL) {
286 #define HELPER_LD_ATOMIC(name, insn) \
287 target_ulong helper_##name(target_ulong arg, int mem_idx) \
289 env->lladdr = do_translate_address(arg, 0); \
290 env->llval = do_##insn(arg, mem_idx); \
293 HELPER_LD_ATOMIC(ll
, lw
)
295 HELPER_LD_ATOMIC(lld
, ld
)
297 #undef HELPER_LD_ATOMIC
299 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
300 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
304 if (arg2 & almask) { \
305 env->CP0_BadVAddr = arg2; \
306 helper_raise_exception(EXCP_AdES); \
308 if (do_translate_address(arg2, 1) == env->lladdr) { \
309 tmp = do_##ld_insn(arg2, mem_idx); \
310 if (tmp == env->llval) { \
311 do_##st_insn(arg2, arg1, mem_idx); \
317 HELPER_ST_ATOMIC(sc
, lw
, sw
, 0x3)
319 HELPER_ST_ATOMIC(scd
, ld
, sd
, 0x7)
321 #undef HELPER_ST_ATOMIC
324 #ifdef TARGET_WORDS_BIGENDIAN
325 #define GET_LMASK(v) ((v) & 3)
326 #define GET_OFFSET(addr, offset) (addr + (offset))
328 #define GET_LMASK(v) (((v) & 3) ^ 3)
329 #define GET_OFFSET(addr, offset) (addr - (offset))
332 target_ulong
helper_lwl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
336 tmp
= do_lbu(arg2
, mem_idx
);
337 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
339 if (GET_LMASK(arg2
) <= 2) {
340 tmp
= do_lbu(GET_OFFSET(arg2
, 1), mem_idx
);
341 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
344 if (GET_LMASK(arg2
) <= 1) {
345 tmp
= do_lbu(GET_OFFSET(arg2
, 2), mem_idx
);
346 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
349 if (GET_LMASK(arg2
) == 0) {
350 tmp
= do_lbu(GET_OFFSET(arg2
, 3), mem_idx
);
351 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
353 return (int32_t)arg1
;
356 target_ulong
helper_lwr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
360 tmp
= do_lbu(arg2
, mem_idx
);
361 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
363 if (GET_LMASK(arg2
) >= 1) {
364 tmp
= do_lbu(GET_OFFSET(arg2
, -1), mem_idx
);
365 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
368 if (GET_LMASK(arg2
) >= 2) {
369 tmp
= do_lbu(GET_OFFSET(arg2
, -2), mem_idx
);
370 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
373 if (GET_LMASK(arg2
) == 3) {
374 tmp
= do_lbu(GET_OFFSET(arg2
, -3), mem_idx
);
375 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
377 return (int32_t)arg1
;
380 void helper_swl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
382 do_sb(arg2
, (uint8_t)(arg1
>> 24), mem_idx
);
384 if (GET_LMASK(arg2
) <= 2)
385 do_sb(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 16), mem_idx
);
387 if (GET_LMASK(arg2
) <= 1)
388 do_sb(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 8), mem_idx
);
390 if (GET_LMASK(arg2
) == 0)
391 do_sb(GET_OFFSET(arg2
, 3), (uint8_t)arg1
, mem_idx
);
394 void helper_swr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
396 do_sb(arg2
, (uint8_t)arg1
, mem_idx
);
398 if (GET_LMASK(arg2
) >= 1)
399 do_sb(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8), mem_idx
);
401 if (GET_LMASK(arg2
) >= 2)
402 do_sb(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16), mem_idx
);
404 if (GET_LMASK(arg2
) == 3)
405 do_sb(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24), mem_idx
);
408 #if defined(TARGET_MIPS64)
409 /* "half" load and stores. We must do the memory access inline,
410 or fault handling won't work. */
412 #ifdef TARGET_WORDS_BIGENDIAN
413 #define GET_LMASK64(v) ((v) & 7)
415 #define GET_LMASK64(v) (((v) & 7) ^ 7)
418 target_ulong
helper_ldl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
422 tmp
= do_lbu(arg2
, mem_idx
);
423 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
425 if (GET_LMASK64(arg2
) <= 6) {
426 tmp
= do_lbu(GET_OFFSET(arg2
, 1), mem_idx
);
427 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
430 if (GET_LMASK64(arg2
) <= 5) {
431 tmp
= do_lbu(GET_OFFSET(arg2
, 2), mem_idx
);
432 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
435 if (GET_LMASK64(arg2
) <= 4) {
436 tmp
= do_lbu(GET_OFFSET(arg2
, 3), mem_idx
);
437 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
440 if (GET_LMASK64(arg2
) <= 3) {
441 tmp
= do_lbu(GET_OFFSET(arg2
, 4), mem_idx
);
442 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
445 if (GET_LMASK64(arg2
) <= 2) {
446 tmp
= do_lbu(GET_OFFSET(arg2
, 5), mem_idx
);
447 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
450 if (GET_LMASK64(arg2
) <= 1) {
451 tmp
= do_lbu(GET_OFFSET(arg2
, 6), mem_idx
);
452 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
455 if (GET_LMASK64(arg2
) == 0) {
456 tmp
= do_lbu(GET_OFFSET(arg2
, 7), mem_idx
);
457 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
463 target_ulong
helper_ldr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
467 tmp
= do_lbu(arg2
, mem_idx
);
468 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
470 if (GET_LMASK64(arg2
) >= 1) {
471 tmp
= do_lbu(GET_OFFSET(arg2
, -1), mem_idx
);
472 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
475 if (GET_LMASK64(arg2
) >= 2) {
476 tmp
= do_lbu(GET_OFFSET(arg2
, -2), mem_idx
);
477 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
480 if (GET_LMASK64(arg2
) >= 3) {
481 tmp
= do_lbu(GET_OFFSET(arg2
, -3), mem_idx
);
482 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
485 if (GET_LMASK64(arg2
) >= 4) {
486 tmp
= do_lbu(GET_OFFSET(arg2
, -4), mem_idx
);
487 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
490 if (GET_LMASK64(arg2
) >= 5) {
491 tmp
= do_lbu(GET_OFFSET(arg2
, -5), mem_idx
);
492 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
495 if (GET_LMASK64(arg2
) >= 6) {
496 tmp
= do_lbu(GET_OFFSET(arg2
, -6), mem_idx
);
497 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
500 if (GET_LMASK64(arg2
) == 7) {
501 tmp
= do_lbu(GET_OFFSET(arg2
, -7), mem_idx
);
502 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
508 void helper_sdl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
510 do_sb(arg2
, (uint8_t)(arg1
>> 56), mem_idx
);
512 if (GET_LMASK64(arg2
) <= 6)
513 do_sb(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 48), mem_idx
);
515 if (GET_LMASK64(arg2
) <= 5)
516 do_sb(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 40), mem_idx
);
518 if (GET_LMASK64(arg2
) <= 4)
519 do_sb(GET_OFFSET(arg2
, 3), (uint8_t)(arg1
>> 32), mem_idx
);
521 if (GET_LMASK64(arg2
) <= 3)
522 do_sb(GET_OFFSET(arg2
, 4), (uint8_t)(arg1
>> 24), mem_idx
);
524 if (GET_LMASK64(arg2
) <= 2)
525 do_sb(GET_OFFSET(arg2
, 5), (uint8_t)(arg1
>> 16), mem_idx
);
527 if (GET_LMASK64(arg2
) <= 1)
528 do_sb(GET_OFFSET(arg2
, 6), (uint8_t)(arg1
>> 8), mem_idx
);
530 if (GET_LMASK64(arg2
) <= 0)
531 do_sb(GET_OFFSET(arg2
, 7), (uint8_t)arg1
, mem_idx
);
534 void helper_sdr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
536 do_sb(arg2
, (uint8_t)arg1
, mem_idx
);
538 if (GET_LMASK64(arg2
) >= 1)
539 do_sb(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8), mem_idx
);
541 if (GET_LMASK64(arg2
) >= 2)
542 do_sb(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16), mem_idx
);
544 if (GET_LMASK64(arg2
) >= 3)
545 do_sb(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24), mem_idx
);
547 if (GET_LMASK64(arg2
) >= 4)
548 do_sb(GET_OFFSET(arg2
, -4), (uint8_t)(arg1
>> 32), mem_idx
);
550 if (GET_LMASK64(arg2
) >= 5)
551 do_sb(GET_OFFSET(arg2
, -5), (uint8_t)(arg1
>> 40), mem_idx
);
553 if (GET_LMASK64(arg2
) >= 6)
554 do_sb(GET_OFFSET(arg2
, -6), (uint8_t)(arg1
>> 48), mem_idx
);
556 if (GET_LMASK64(arg2
) == 7)
557 do_sb(GET_OFFSET(arg2
, -7), (uint8_t)(arg1
>> 56), mem_idx
);
559 #endif /* TARGET_MIPS64 */
561 static const int multiple_regs
[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
563 void helper_lwm (target_ulong addr
, target_ulong reglist
, uint32_t mem_idx
)
565 target_ulong base_reglist
= reglist
& 0xf;
566 target_ulong do_r31
= reglist
& 0x10;
567 #ifdef CONFIG_USER_ONLY
569 #define ldfun ldl_raw
571 uint32_t (*ldfun
)(target_ulong
);
575 case 0: ldfun
= ldl_kernel
; break;
576 case 1: ldfun
= ldl_super
; break;
578 case 2: ldfun
= ldl_user
; break;
582 if (base_reglist
> 0 && base_reglist
<= ARRAY_SIZE (multiple_regs
)) {
585 for (i
= 0; i
< base_reglist
; i
++) {
586 env
->active_tc
.gpr
[multiple_regs
[i
]] = (target_long
) ldfun(addr
);
592 env
->active_tc
.gpr
[31] = (target_long
) ldfun(addr
);
596 void helper_swm (target_ulong addr
, target_ulong reglist
, uint32_t mem_idx
)
598 target_ulong base_reglist
= reglist
& 0xf;
599 target_ulong do_r31
= reglist
& 0x10;
600 #ifdef CONFIG_USER_ONLY
602 #define stfun stl_raw
604 void (*stfun
)(target_ulong
, uint32_t);
608 case 0: stfun
= stl_kernel
; break;
609 case 1: stfun
= stl_super
; break;
611 case 2: stfun
= stl_user
; break;
615 if (base_reglist
> 0 && base_reglist
<= ARRAY_SIZE (multiple_regs
)) {
618 for (i
= 0; i
< base_reglist
; i
++) {
619 stfun(addr
, env
->active_tc
.gpr
[multiple_regs
[i
]]);
625 stfun(addr
, env
->active_tc
.gpr
[31]);
629 #if defined(TARGET_MIPS64)
630 void helper_ldm (target_ulong addr
, target_ulong reglist
, uint32_t mem_idx
)
632 target_ulong base_reglist
= reglist
& 0xf;
633 target_ulong do_r31
= reglist
& 0x10;
634 #ifdef CONFIG_USER_ONLY
636 #define ldfun ldq_raw
638 uint64_t (*ldfun
)(target_ulong
);
642 case 0: ldfun
= ldq_kernel
; break;
643 case 1: ldfun
= ldq_super
; break;
645 case 2: ldfun
= ldq_user
; break;
649 if (base_reglist
> 0 && base_reglist
<= ARRAY_SIZE (multiple_regs
)) {
652 for (i
= 0; i
< base_reglist
; i
++) {
653 env
->active_tc
.gpr
[multiple_regs
[i
]] = ldfun(addr
);
659 env
->active_tc
.gpr
[31] = ldfun(addr
);
663 void helper_sdm (target_ulong addr
, target_ulong reglist
, uint32_t mem_idx
)
665 target_ulong base_reglist
= reglist
& 0xf;
666 target_ulong do_r31
= reglist
& 0x10;
667 #ifdef CONFIG_USER_ONLY
669 #define stfun stq_raw
671 void (*stfun
)(target_ulong
, uint64_t);
675 case 0: stfun
= stq_kernel
; break;
676 case 1: stfun
= stq_super
; break;
678 case 2: stfun
= stq_user
; break;
682 if (base_reglist
> 0 && base_reglist
<= ARRAY_SIZE (multiple_regs
)) {
685 for (i
= 0; i
< base_reglist
; i
++) {
686 stfun(addr
, env
->active_tc
.gpr
[multiple_regs
[i
]]);
692 stfun(addr
, env
->active_tc
.gpr
[31]);
697 #ifndef CONFIG_USER_ONLY
699 target_ulong
helper_mfc0_mvpcontrol (void)
701 return env
->mvp
->CP0_MVPControl
;
704 target_ulong
helper_mfc0_mvpconf0 (void)
706 return env
->mvp
->CP0_MVPConf0
;
709 target_ulong
helper_mfc0_mvpconf1 (void)
711 return env
->mvp
->CP0_MVPConf1
;
714 target_ulong
helper_mfc0_random (void)
716 return (int32_t)cpu_mips_get_random(env
);
719 target_ulong
helper_mfc0_tcstatus (void)
721 return env
->active_tc
.CP0_TCStatus
;
724 target_ulong
helper_mftc0_tcstatus(void)
726 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
728 if (other_tc
== env
->current_tc
)
729 return env
->active_tc
.CP0_TCStatus
;
731 return env
->tcs
[other_tc
].CP0_TCStatus
;
734 target_ulong
helper_mfc0_tcbind (void)
736 return env
->active_tc
.CP0_TCBind
;
739 target_ulong
helper_mftc0_tcbind(void)
741 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
743 if (other_tc
== env
->current_tc
)
744 return env
->active_tc
.CP0_TCBind
;
746 return env
->tcs
[other_tc
].CP0_TCBind
;
749 target_ulong
helper_mfc0_tcrestart (void)
751 return env
->active_tc
.PC
;
754 target_ulong
helper_mftc0_tcrestart(void)
756 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
758 if (other_tc
== env
->current_tc
)
759 return env
->active_tc
.PC
;
761 return env
->tcs
[other_tc
].PC
;
764 target_ulong
helper_mfc0_tchalt (void)
766 return env
->active_tc
.CP0_TCHalt
;
769 target_ulong
helper_mftc0_tchalt(void)
771 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
773 if (other_tc
== env
->current_tc
)
774 return env
->active_tc
.CP0_TCHalt
;
776 return env
->tcs
[other_tc
].CP0_TCHalt
;
779 target_ulong
helper_mfc0_tccontext (void)
781 return env
->active_tc
.CP0_TCContext
;
784 target_ulong
helper_mftc0_tccontext(void)
786 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
788 if (other_tc
== env
->current_tc
)
789 return env
->active_tc
.CP0_TCContext
;
791 return env
->tcs
[other_tc
].CP0_TCContext
;
794 target_ulong
helper_mfc0_tcschedule (void)
796 return env
->active_tc
.CP0_TCSchedule
;
799 target_ulong
helper_mftc0_tcschedule(void)
801 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
803 if (other_tc
== env
->current_tc
)
804 return env
->active_tc
.CP0_TCSchedule
;
806 return env
->tcs
[other_tc
].CP0_TCSchedule
;
809 target_ulong
helper_mfc0_tcschefback (void)
811 return env
->active_tc
.CP0_TCScheFBack
;
814 target_ulong
helper_mftc0_tcschefback(void)
816 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
818 if (other_tc
== env
->current_tc
)
819 return env
->active_tc
.CP0_TCScheFBack
;
821 return env
->tcs
[other_tc
].CP0_TCScheFBack
;
824 target_ulong
helper_mfc0_count (void)
826 return (int32_t)cpu_mips_get_count(env
);
829 target_ulong
helper_mftc0_entryhi(void)
831 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
834 if (other_tc
== env
->current_tc
)
835 tcstatus
= env
->active_tc
.CP0_TCStatus
;
837 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
839 return (env
->CP0_EntryHi
& ~0xff) | (tcstatus
& 0xff);
842 target_ulong
helper_mftc0_status(void)
844 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
848 if (other_tc
== env
->current_tc
)
849 tcstatus
= env
->active_tc
.CP0_TCStatus
;
851 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
853 t0
= env
->CP0_Status
& ~0xf1000018;
854 t0
|= tcstatus
& (0xf << CP0TCSt_TCU0
);
855 t0
|= (tcstatus
& (1 << CP0TCSt_TMX
)) >> (CP0TCSt_TMX
- CP0St_MX
);
856 t0
|= (tcstatus
& (0x3 << CP0TCSt_TKSU
)) >> (CP0TCSt_TKSU
- CP0St_KSU
);
861 target_ulong
helper_mfc0_lladdr (void)
863 return (int32_t)(env
->lladdr
>> env
->CP0_LLAddr_shift
);
866 target_ulong
helper_mfc0_watchlo (uint32_t sel
)
868 return (int32_t)env
->CP0_WatchLo
[sel
];
871 target_ulong
helper_mfc0_watchhi (uint32_t sel
)
873 return env
->CP0_WatchHi
[sel
];
876 target_ulong
helper_mfc0_debug (void)
878 target_ulong t0
= env
->CP0_Debug
;
879 if (env
->hflags
& MIPS_HFLAG_DM
)
885 target_ulong
helper_mftc0_debug(void)
887 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
890 if (other_tc
== env
->current_tc
)
891 tcstatus
= env
->active_tc
.CP0_Debug_tcstatus
;
893 tcstatus
= env
->tcs
[other_tc
].CP0_Debug_tcstatus
;
895 /* XXX: Might be wrong, check with EJTAG spec. */
896 return (env
->CP0_Debug
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
897 (tcstatus
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
900 #if defined(TARGET_MIPS64)
901 target_ulong
helper_dmfc0_tcrestart (void)
903 return env
->active_tc
.PC
;
906 target_ulong
helper_dmfc0_tchalt (void)
908 return env
->active_tc
.CP0_TCHalt
;
911 target_ulong
helper_dmfc0_tccontext (void)
913 return env
->active_tc
.CP0_TCContext
;
916 target_ulong
helper_dmfc0_tcschedule (void)
918 return env
->active_tc
.CP0_TCSchedule
;
921 target_ulong
helper_dmfc0_tcschefback (void)
923 return env
->active_tc
.CP0_TCScheFBack
;
926 target_ulong
helper_dmfc0_lladdr (void)
928 return env
->lladdr
>> env
->CP0_LLAddr_shift
;
931 target_ulong
helper_dmfc0_watchlo (uint32_t sel
)
933 return env
->CP0_WatchLo
[sel
];
935 #endif /* TARGET_MIPS64 */
937 void helper_mtc0_index (target_ulong arg1
)
940 unsigned int tmp
= env
->tlb
->nb_tlb
;
946 env
->CP0_Index
= (env
->CP0_Index
& 0x80000000) | (arg1
& (num
- 1));
949 void helper_mtc0_mvpcontrol (target_ulong arg1
)
954 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
))
955 mask
|= (1 << CP0MVPCo_CPA
) | (1 << CP0MVPCo_VPC
) |
957 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
958 mask
|= (1 << CP0MVPCo_STLB
);
959 newval
= (env
->mvp
->CP0_MVPControl
& ~mask
) | (arg1
& mask
);
961 // TODO: Enable/disable shared TLB, enable/disable VPEs.
963 env
->mvp
->CP0_MVPControl
= newval
;
966 void helper_mtc0_vpecontrol (target_ulong arg1
)
971 mask
= (1 << CP0VPECo_YSI
) | (1 << CP0VPECo_GSI
) |
972 (1 << CP0VPECo_TE
) | (0xff << CP0VPECo_TargTC
);
973 newval
= (env
->CP0_VPEControl
& ~mask
) | (arg1
& mask
);
975 /* Yield scheduler intercept not implemented. */
976 /* Gating storage scheduler intercept not implemented. */
978 // TODO: Enable/disable TCs.
980 env
->CP0_VPEControl
= newval
;
983 void helper_mtc0_vpeconf0 (target_ulong arg1
)
988 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
)) {
989 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))
990 mask
|= (0xff << CP0VPEC0_XTC
);
991 mask
|= (1 << CP0VPEC0_MVP
) | (1 << CP0VPEC0_VPA
);
993 newval
= (env
->CP0_VPEConf0
& ~mask
) | (arg1
& mask
);
995 // TODO: TC exclusive handling due to ERL/EXL.
997 env
->CP0_VPEConf0
= newval
;
1000 void helper_mtc0_vpeconf1 (target_ulong arg1
)
1005 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
1006 mask
|= (0xff << CP0VPEC1_NCX
) | (0xff << CP0VPEC1_NCP2
) |
1007 (0xff << CP0VPEC1_NCP1
);
1008 newval
= (env
->CP0_VPEConf1
& ~mask
) | (arg1
& mask
);
1010 /* UDI not implemented. */
1011 /* CP2 not implemented. */
1013 // TODO: Handle FPU (CP1) binding.
1015 env
->CP0_VPEConf1
= newval
;
1018 void helper_mtc0_yqmask (target_ulong arg1
)
1020 /* Yield qualifier inputs not implemented. */
1021 env
->CP0_YQMask
= 0x00000000;
1024 void helper_mtc0_vpeopt (target_ulong arg1
)
1026 env
->CP0_VPEOpt
= arg1
& 0x0000ffff;
1029 void helper_mtc0_entrylo0 (target_ulong arg1
)
1031 /* Large physaddr (PABITS) not implemented */
1032 /* 1k pages not implemented */
1033 env
->CP0_EntryLo0
= arg1
& 0x3FFFFFFF;
1036 void helper_mtc0_tcstatus (target_ulong arg1
)
1038 uint32_t mask
= env
->CP0_TCStatus_rw_bitmask
;
1041 newval
= (env
->active_tc
.CP0_TCStatus
& ~mask
) | (arg1
& mask
);
1043 // TODO: Sync with CP0_Status.
1045 env
->active_tc
.CP0_TCStatus
= newval
;
1048 void helper_mttc0_tcstatus (target_ulong arg1
)
1050 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1052 // TODO: Sync with CP0_Status.
1054 if (other_tc
== env
->current_tc
)
1055 env
->active_tc
.CP0_TCStatus
= arg1
;
1057 env
->tcs
[other_tc
].CP0_TCStatus
= arg1
;
1060 void helper_mtc0_tcbind (target_ulong arg1
)
1062 uint32_t mask
= (1 << CP0TCBd_TBE
);
1065 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
1066 mask
|= (1 << CP0TCBd_CurVPE
);
1067 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
1068 env
->active_tc
.CP0_TCBind
= newval
;
1071 void helper_mttc0_tcbind (target_ulong arg1
)
1073 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1074 uint32_t mask
= (1 << CP0TCBd_TBE
);
1077 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
1078 mask
|= (1 << CP0TCBd_CurVPE
);
1079 if (other_tc
== env
->current_tc
) {
1080 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
1081 env
->active_tc
.CP0_TCBind
= newval
;
1083 newval
= (env
->tcs
[other_tc
].CP0_TCBind
& ~mask
) | (arg1
& mask
);
1084 env
->tcs
[other_tc
].CP0_TCBind
= newval
;
1088 void helper_mtc0_tcrestart (target_ulong arg1
)
1090 env
->active_tc
.PC
= arg1
;
1091 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
1093 /* MIPS16 not implemented. */
1096 void helper_mttc0_tcrestart (target_ulong arg1
)
1098 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1100 if (other_tc
== env
->current_tc
) {
1101 env
->active_tc
.PC
= arg1
;
1102 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
1104 /* MIPS16 not implemented. */
1106 env
->tcs
[other_tc
].PC
= arg1
;
1107 env
->tcs
[other_tc
].CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
1109 /* MIPS16 not implemented. */
1113 void helper_mtc0_tchalt (target_ulong arg1
)
1115 env
->active_tc
.CP0_TCHalt
= arg1
& 0x1;
1117 // TODO: Halt TC / Restart (if allocated+active) TC.
1120 void helper_mttc0_tchalt (target_ulong arg1
)
1122 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1124 // TODO: Halt TC / Restart (if allocated+active) TC.
1126 if (other_tc
== env
->current_tc
)
1127 env
->active_tc
.CP0_TCHalt
= arg1
;
1129 env
->tcs
[other_tc
].CP0_TCHalt
= arg1
;
1132 void helper_mtc0_tccontext (target_ulong arg1
)
1134 env
->active_tc
.CP0_TCContext
= arg1
;
1137 void helper_mttc0_tccontext (target_ulong arg1
)
1139 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1141 if (other_tc
== env
->current_tc
)
1142 env
->active_tc
.CP0_TCContext
= arg1
;
1144 env
->tcs
[other_tc
].CP0_TCContext
= arg1
;
1147 void helper_mtc0_tcschedule (target_ulong arg1
)
1149 env
->active_tc
.CP0_TCSchedule
= arg1
;
1152 void helper_mttc0_tcschedule (target_ulong arg1
)
1154 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1156 if (other_tc
== env
->current_tc
)
1157 env
->active_tc
.CP0_TCSchedule
= arg1
;
1159 env
->tcs
[other_tc
].CP0_TCSchedule
= arg1
;
1162 void helper_mtc0_tcschefback (target_ulong arg1
)
1164 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1167 void helper_mttc0_tcschefback (target_ulong arg1
)
1169 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1171 if (other_tc
== env
->current_tc
)
1172 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1174 env
->tcs
[other_tc
].CP0_TCScheFBack
= arg1
;
1177 void helper_mtc0_entrylo1 (target_ulong arg1
)
1179 /* Large physaddr (PABITS) not implemented */
1180 /* 1k pages not implemented */
1181 env
->CP0_EntryLo1
= arg1
& 0x3FFFFFFF;
1184 void helper_mtc0_context (target_ulong arg1
)
1186 env
->CP0_Context
= (env
->CP0_Context
& 0x007FFFFF) | (arg1
& ~0x007FFFFF);
1189 void helper_mtc0_pagemask (target_ulong arg1
)
1191 /* 1k pages not implemented */
1192 env
->CP0_PageMask
= arg1
& (0x1FFFFFFF & (TARGET_PAGE_MASK
<< 1));
1195 void helper_mtc0_pagegrain (target_ulong arg1
)
1197 /* SmartMIPS not implemented */
1198 /* Large physaddr (PABITS) not implemented */
1199 /* 1k pages not implemented */
1200 env
->CP0_PageGrain
= 0;
1203 void helper_mtc0_wired (target_ulong arg1
)
1205 env
->CP0_Wired
= arg1
% env
->tlb
->nb_tlb
;
1208 void helper_mtc0_srsconf0 (target_ulong arg1
)
1210 env
->CP0_SRSConf0
|= arg1
& env
->CP0_SRSConf0_rw_bitmask
;
1213 void helper_mtc0_srsconf1 (target_ulong arg1
)
1215 env
->CP0_SRSConf1
|= arg1
& env
->CP0_SRSConf1_rw_bitmask
;
1218 void helper_mtc0_srsconf2 (target_ulong arg1
)
1220 env
->CP0_SRSConf2
|= arg1
& env
->CP0_SRSConf2_rw_bitmask
;
1223 void helper_mtc0_srsconf3 (target_ulong arg1
)
1225 env
->CP0_SRSConf3
|= arg1
& env
->CP0_SRSConf3_rw_bitmask
;
1228 void helper_mtc0_srsconf4 (target_ulong arg1
)
1230 env
->CP0_SRSConf4
|= arg1
& env
->CP0_SRSConf4_rw_bitmask
;
1233 void helper_mtc0_hwrena (target_ulong arg1
)
1235 env
->CP0_HWREna
= arg1
& 0x0000000F;
1238 void helper_mtc0_count (target_ulong arg1
)
1240 cpu_mips_store_count(env
, arg1
);
1243 void helper_mtc0_entryhi (target_ulong arg1
)
1245 target_ulong old
, val
;
1247 /* 1k pages not implemented */
1248 val
= arg1
& ((TARGET_PAGE_MASK
<< 1) | 0xFF);
1249 #if defined(TARGET_MIPS64)
1250 val
&= env
->SEGMask
;
1252 old
= env
->CP0_EntryHi
;
1253 env
->CP0_EntryHi
= val
;
1254 if (env
->CP0_Config3
& (1 << CP0C3_MT
)) {
1255 uint32_t tcst
= env
->active_tc
.CP0_TCStatus
& ~0xff;
1256 env
->active_tc
.CP0_TCStatus
= tcst
| (val
& 0xff);
1258 /* If the ASID changes, flush qemu's TLB. */
1259 if ((old
& 0xFF) != (val
& 0xFF))
1260 cpu_mips_tlb_flush(env
, 1);
1263 void helper_mttc0_entryhi(target_ulong arg1
)
1265 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1268 env
->CP0_EntryHi
= (env
->CP0_EntryHi
& 0xff) | (arg1
& ~0xff);
1269 if (other_tc
== env
->current_tc
) {
1270 tcstatus
= (env
->active_tc
.CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1271 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1273 tcstatus
= (env
->tcs
[other_tc
].CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1274 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1278 void helper_mtc0_compare (target_ulong arg1
)
1280 cpu_mips_store_compare(env
, arg1
);
1283 void helper_mtc0_status (target_ulong arg1
)
1286 uint32_t mask
= env
->CP0_Status_rw_bitmask
;
1289 old
= env
->CP0_Status
;
1290 env
->CP0_Status
= (env
->CP0_Status
& ~mask
) | val
;
1291 compute_hflags(env
);
1292 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1293 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1294 old
, old
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1295 val
, val
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1297 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1298 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1299 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1300 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1301 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1306 void helper_mttc0_status(target_ulong arg1
)
1308 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1309 int32_t tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
1311 env
->CP0_Status
= arg1
& ~0xf1000018;
1312 tcstatus
= (tcstatus
& ~(0xf << CP0TCSt_TCU0
)) | (arg1
& (0xf << CP0St_CU0
));
1313 tcstatus
= (tcstatus
& ~(1 << CP0TCSt_TMX
)) | ((arg1
& (1 << CP0St_MX
)) << (CP0TCSt_TMX
- CP0St_MX
));
1314 tcstatus
= (tcstatus
& ~(0x3 << CP0TCSt_TKSU
)) | ((arg1
& (0x3 << CP0St_KSU
)) << (CP0TCSt_TKSU
- CP0St_KSU
));
1315 if (other_tc
== env
->current_tc
)
1316 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1318 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1321 void helper_mtc0_intctl (target_ulong arg1
)
1323 /* vectored interrupts not implemented, no performance counters. */
1324 env
->CP0_IntCtl
= (env
->CP0_IntCtl
& ~0x000002e0) | (arg1
& 0x000002e0);
1327 void helper_mtc0_srsctl (target_ulong arg1
)
1329 uint32_t mask
= (0xf << CP0SRSCtl_ESS
) | (0xf << CP0SRSCtl_PSS
);
1330 env
->CP0_SRSCtl
= (env
->CP0_SRSCtl
& ~mask
) | (arg1
& mask
);
1333 void helper_mtc0_cause (target_ulong arg1
)
1335 uint32_t mask
= 0x00C00300;
1336 uint32_t old
= env
->CP0_Cause
;
1339 if (env
->insn_flags
& ISA_MIPS32R2
)
1340 mask
|= 1 << CP0Ca_DC
;
1342 env
->CP0_Cause
= (env
->CP0_Cause
& ~mask
) | (arg1
& mask
);
1344 if ((old
^ env
->CP0_Cause
) & (1 << CP0Ca_DC
)) {
1345 if (env
->CP0_Cause
& (1 << CP0Ca_DC
))
1346 cpu_mips_stop_count(env
);
1348 cpu_mips_start_count(env
);
1351 /* Set/reset software interrupts */
1352 for (i
= 0 ; i
< 2 ; i
++) {
1353 if ((old
^ env
->CP0_Cause
) & (1 << (CP0Ca_IP
+ i
))) {
1354 cpu_mips_soft_irq(env
, i
, env
->CP0_Cause
& (1 << (CP0Ca_IP
+ i
)));
1359 void helper_mtc0_ebase (target_ulong arg1
)
1361 /* vectored interrupts not implemented */
1362 env
->CP0_EBase
= (env
->CP0_EBase
& ~0x3FFFF000) | (arg1
& 0x3FFFF000);
1365 void helper_mtc0_config0 (target_ulong arg1
)
1367 env
->CP0_Config0
= (env
->CP0_Config0
& 0x81FFFFF8) | (arg1
& 0x00000007);
1370 void helper_mtc0_config2 (target_ulong arg1
)
1372 /* tertiary/secondary caches not implemented */
1373 env
->CP0_Config2
= (env
->CP0_Config2
& 0x8FFF0FFF);
1376 void helper_mtc0_lladdr (target_ulong arg1
)
1378 target_long mask
= env
->CP0_LLAddr_rw_bitmask
;
1379 arg1
= arg1
<< env
->CP0_LLAddr_shift
;
1380 env
->lladdr
= (env
->lladdr
& ~mask
) | (arg1
& mask
);
1383 void helper_mtc0_watchlo (target_ulong arg1
, uint32_t sel
)
1385 /* Watch exceptions for instructions, data loads, data stores
1387 env
->CP0_WatchLo
[sel
] = (arg1
& ~0x7);
1390 void helper_mtc0_watchhi (target_ulong arg1
, uint32_t sel
)
1392 env
->CP0_WatchHi
[sel
] = (arg1
& 0x40FF0FF8);
1393 env
->CP0_WatchHi
[sel
] &= ~(env
->CP0_WatchHi
[sel
] & arg1
& 0x7);
1396 void helper_mtc0_xcontext (target_ulong arg1
)
1398 target_ulong mask
= (1ULL << (env
->SEGBITS
- 7)) - 1;
1399 env
->CP0_XContext
= (env
->CP0_XContext
& mask
) | (arg1
& ~mask
);
1402 void helper_mtc0_framemask (target_ulong arg1
)
1404 env
->CP0_Framemask
= arg1
; /* XXX */
1407 void helper_mtc0_debug (target_ulong arg1
)
1409 env
->CP0_Debug
= (env
->CP0_Debug
& 0x8C03FC1F) | (arg1
& 0x13300120);
1410 if (arg1
& (1 << CP0DB_DM
))
1411 env
->hflags
|= MIPS_HFLAG_DM
;
1413 env
->hflags
&= ~MIPS_HFLAG_DM
;
1416 void helper_mttc0_debug(target_ulong arg1
)
1418 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1419 uint32_t val
= arg1
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
));
1421 /* XXX: Might be wrong, check with EJTAG spec. */
1422 if (other_tc
== env
->current_tc
)
1423 env
->active_tc
.CP0_Debug_tcstatus
= val
;
1425 env
->tcs
[other_tc
].CP0_Debug_tcstatus
= val
;
1426 env
->CP0_Debug
= (env
->CP0_Debug
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
1427 (arg1
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
1430 void helper_mtc0_performance0 (target_ulong arg1
)
1432 env
->CP0_Performance0
= arg1
& 0x000007ff;
1435 void helper_mtc0_taglo (target_ulong arg1
)
1437 env
->CP0_TagLo
= arg1
& 0xFFFFFCF6;
1440 void helper_mtc0_datalo (target_ulong arg1
)
1442 env
->CP0_DataLo
= arg1
; /* XXX */
1445 void helper_mtc0_taghi (target_ulong arg1
)
1447 env
->CP0_TagHi
= arg1
; /* XXX */
1450 void helper_mtc0_datahi (target_ulong arg1
)
1452 env
->CP0_DataHi
= arg1
; /* XXX */
1455 /* MIPS MT functions */
1456 target_ulong
helper_mftgpr(uint32_t sel
)
1458 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1460 if (other_tc
== env
->current_tc
)
1461 return env
->active_tc
.gpr
[sel
];
1463 return env
->tcs
[other_tc
].gpr
[sel
];
1466 target_ulong
helper_mftlo(uint32_t sel
)
1468 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1470 if (other_tc
== env
->current_tc
)
1471 return env
->active_tc
.LO
[sel
];
1473 return env
->tcs
[other_tc
].LO
[sel
];
1476 target_ulong
helper_mfthi(uint32_t sel
)
1478 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1480 if (other_tc
== env
->current_tc
)
1481 return env
->active_tc
.HI
[sel
];
1483 return env
->tcs
[other_tc
].HI
[sel
];
1486 target_ulong
helper_mftacx(uint32_t sel
)
1488 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1490 if (other_tc
== env
->current_tc
)
1491 return env
->active_tc
.ACX
[sel
];
1493 return env
->tcs
[other_tc
].ACX
[sel
];
1496 target_ulong
helper_mftdsp(void)
1498 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1500 if (other_tc
== env
->current_tc
)
1501 return env
->active_tc
.DSPControl
;
1503 return env
->tcs
[other_tc
].DSPControl
;
1506 void helper_mttgpr(target_ulong arg1
, uint32_t sel
)
1508 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1510 if (other_tc
== env
->current_tc
)
1511 env
->active_tc
.gpr
[sel
] = arg1
;
1513 env
->tcs
[other_tc
].gpr
[sel
] = arg1
;
1516 void helper_mttlo(target_ulong arg1
, uint32_t sel
)
1518 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1520 if (other_tc
== env
->current_tc
)
1521 env
->active_tc
.LO
[sel
] = arg1
;
1523 env
->tcs
[other_tc
].LO
[sel
] = arg1
;
1526 void helper_mtthi(target_ulong arg1
, uint32_t sel
)
1528 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1530 if (other_tc
== env
->current_tc
)
1531 env
->active_tc
.HI
[sel
] = arg1
;
1533 env
->tcs
[other_tc
].HI
[sel
] = arg1
;
1536 void helper_mttacx(target_ulong arg1
, uint32_t sel
)
1538 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1540 if (other_tc
== env
->current_tc
)
1541 env
->active_tc
.ACX
[sel
] = arg1
;
1543 env
->tcs
[other_tc
].ACX
[sel
] = arg1
;
1546 void helper_mttdsp(target_ulong arg1
)
1548 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1550 if (other_tc
== env
->current_tc
)
1551 env
->active_tc
.DSPControl
= arg1
;
1553 env
->tcs
[other_tc
].DSPControl
= arg1
;
1556 /* MIPS MT functions */
1557 target_ulong
helper_dmt(target_ulong arg1
)
1566 target_ulong
helper_emt(target_ulong arg1
)
1575 target_ulong
helper_dvpe(target_ulong arg1
)
1584 target_ulong
helper_evpe(target_ulong arg1
)
1592 #endif /* !CONFIG_USER_ONLY */
1594 void helper_fork(target_ulong arg1
, target_ulong arg2
)
1596 // arg1 = rt, arg2 = rs
1598 // TODO: store to TC register
1601 target_ulong
helper_yield(target_ulong arg
)
1603 target_long arg1
= arg
;
1606 /* No scheduling policy implemented. */
1608 if (env
->CP0_VPEControl
& (1 << CP0VPECo_YSI
) &&
1609 env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_DT
)) {
1610 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1611 env
->CP0_VPEControl
|= 4 << CP0VPECo_EXCPT
;
1612 helper_raise_exception(EXCP_THREAD
);
1615 } else if (arg1
== 0) {
1616 if (0 /* TODO: TC underflow */) {
1617 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1618 helper_raise_exception(EXCP_THREAD
);
1620 // TODO: Deallocate TC
1622 } else if (arg1
> 0) {
1623 /* Yield qualifier inputs not implemented. */
1624 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1625 env
->CP0_VPEControl
|= 2 << CP0VPECo_EXCPT
;
1626 helper_raise_exception(EXCP_THREAD
);
1628 return env
->CP0_YQMask
;
1631 #ifndef CONFIG_USER_ONLY
1632 /* TLB management */
1633 static void cpu_mips_tlb_flush (CPUState
*env
, int flush_global
)
1635 /* Flush qemu's TLB and discard all shadowed entries. */
1636 tlb_flush (env
, flush_global
);
1637 env
->tlb
->tlb_in_use
= env
->tlb
->nb_tlb
;
1640 static void r4k_mips_tlb_flush_extra (CPUState
*env
, int first
)
1642 /* Discard entries from env->tlb[first] onwards. */
1643 while (env
->tlb
->tlb_in_use
> first
) {
1644 r4k_invalidate_tlb(env
, --env
->tlb
->tlb_in_use
, 0);
1648 static void r4k_fill_tlb (int idx
)
1652 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1653 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1654 tlb
->VPN
= env
->CP0_EntryHi
& (TARGET_PAGE_MASK
<< 1);
1655 #if defined(TARGET_MIPS64)
1656 tlb
->VPN
&= env
->SEGMask
;
1658 tlb
->ASID
= env
->CP0_EntryHi
& 0xFF;
1659 tlb
->PageMask
= env
->CP0_PageMask
;
1660 tlb
->G
= env
->CP0_EntryLo0
& env
->CP0_EntryLo1
& 1;
1661 tlb
->V0
= (env
->CP0_EntryLo0
& 2) != 0;
1662 tlb
->D0
= (env
->CP0_EntryLo0
& 4) != 0;
1663 tlb
->C0
= (env
->CP0_EntryLo0
>> 3) & 0x7;
1664 tlb
->PFN
[0] = (env
->CP0_EntryLo0
>> 6) << 12;
1665 tlb
->V1
= (env
->CP0_EntryLo1
& 2) != 0;
1666 tlb
->D1
= (env
->CP0_EntryLo1
& 4) != 0;
1667 tlb
->C1
= (env
->CP0_EntryLo1
>> 3) & 0x7;
1668 tlb
->PFN
[1] = (env
->CP0_EntryLo1
>> 6) << 12;
1671 void r4k_helper_tlbwi (void)
1675 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1677 /* Discard cached TLB entries. We could avoid doing this if the
1678 tlbwi is just upgrading access permissions on the current entry;
1679 that might be a further win. */
1680 r4k_mips_tlb_flush_extra (env
, env
->tlb
->nb_tlb
);
1682 r4k_invalidate_tlb(env
, idx
, 0);
1686 void r4k_helper_tlbwr (void)
1688 int r
= cpu_mips_get_random(env
);
1690 r4k_invalidate_tlb(env
, r
, 1);
1694 void r4k_helper_tlbp (void)
1703 ASID
= env
->CP0_EntryHi
& 0xFF;
1704 for (i
= 0; i
< env
->tlb
->nb_tlb
; i
++) {
1705 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1706 /* 1k pages are not supported. */
1707 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1708 tag
= env
->CP0_EntryHi
& ~mask
;
1709 VPN
= tlb
->VPN
& ~mask
;
1710 /* Check ASID, virtual page number & size */
1711 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1717 if (i
== env
->tlb
->nb_tlb
) {
1718 /* No match. Discard any shadow entries, if any of them match. */
1719 for (i
= env
->tlb
->nb_tlb
; i
< env
->tlb
->tlb_in_use
; i
++) {
1720 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1721 /* 1k pages are not supported. */
1722 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1723 tag
= env
->CP0_EntryHi
& ~mask
;
1724 VPN
= tlb
->VPN
& ~mask
;
1725 /* Check ASID, virtual page number & size */
1726 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1727 r4k_mips_tlb_flush_extra (env
, i
);
1732 env
->CP0_Index
|= 0x80000000;
1736 void r4k_helper_tlbr (void)
1742 ASID
= env
->CP0_EntryHi
& 0xFF;
1743 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1744 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1746 /* If this will change the current ASID, flush qemu's TLB. */
1747 if (ASID
!= tlb
->ASID
)
1748 cpu_mips_tlb_flush (env
, 1);
1750 r4k_mips_tlb_flush_extra(env
, env
->tlb
->nb_tlb
);
1752 env
->CP0_EntryHi
= tlb
->VPN
| tlb
->ASID
;
1753 env
->CP0_PageMask
= tlb
->PageMask
;
1754 env
->CP0_EntryLo0
= tlb
->G
| (tlb
->V0
<< 1) | (tlb
->D0
<< 2) |
1755 (tlb
->C0
<< 3) | (tlb
->PFN
[0] >> 6);
1756 env
->CP0_EntryLo1
= tlb
->G
| (tlb
->V1
<< 1) | (tlb
->D1
<< 2) |
1757 (tlb
->C1
<< 3) | (tlb
->PFN
[1] >> 6);
1760 void helper_tlbwi(void)
1762 env
->tlb
->helper_tlbwi();
1765 void helper_tlbwr(void)
1767 env
->tlb
->helper_tlbwr();
1770 void helper_tlbp(void)
1772 env
->tlb
->helper_tlbp();
1775 void helper_tlbr(void)
1777 env
->tlb
->helper_tlbr();
1781 target_ulong
helper_di (void)
1783 target_ulong t0
= env
->CP0_Status
;
1785 env
->CP0_Status
= t0
& ~(1 << CP0St_IE
);
1789 target_ulong
helper_ei (void)
1791 target_ulong t0
= env
->CP0_Status
;
1793 env
->CP0_Status
= t0
| (1 << CP0St_IE
);
1797 static void debug_pre_eret (void)
1799 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1800 qemu_log("ERET: PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1801 env
->active_tc
.PC
, env
->CP0_EPC
);
1802 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1803 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1804 if (env
->hflags
& MIPS_HFLAG_DM
)
1805 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1810 static void debug_post_eret (void)
1812 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1813 qemu_log(" => PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1814 env
->active_tc
.PC
, env
->CP0_EPC
);
1815 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1816 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1817 if (env
->hflags
& MIPS_HFLAG_DM
)
1818 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1819 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1820 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1821 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1822 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1823 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1828 static void set_pc (target_ulong error_pc
)
1830 env
->active_tc
.PC
= error_pc
& ~(target_ulong
)1;
1832 env
->hflags
|= MIPS_HFLAG_M16
;
1834 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1838 void helper_eret (void)
1841 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
1842 set_pc(env
->CP0_ErrorEPC
);
1843 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1845 set_pc(env
->CP0_EPC
);
1846 env
->CP0_Status
&= ~(1 << CP0St_EXL
);
1848 compute_hflags(env
);
1853 void helper_deret (void)
1856 set_pc(env
->CP0_DEPC
);
1858 env
->hflags
&= MIPS_HFLAG_DM
;
1859 compute_hflags(env
);
1863 #endif /* !CONFIG_USER_ONLY */
1865 target_ulong
helper_rdhwr_cpunum(void)
1867 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1868 (env
->CP0_HWREna
& (1 << 0)))
1869 return env
->CP0_EBase
& 0x3ff;
1871 helper_raise_exception(EXCP_RI
);
1876 target_ulong
helper_rdhwr_synci_step(void)
1878 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1879 (env
->CP0_HWREna
& (1 << 1)))
1880 return env
->SYNCI_Step
;
1882 helper_raise_exception(EXCP_RI
);
1887 target_ulong
helper_rdhwr_cc(void)
1889 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1890 (env
->CP0_HWREna
& (1 << 2)))
1891 return env
->CP0_Count
;
1893 helper_raise_exception(EXCP_RI
);
1898 target_ulong
helper_rdhwr_ccres(void)
1900 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1901 (env
->CP0_HWREna
& (1 << 3)))
1904 helper_raise_exception(EXCP_RI
);
1909 void helper_pmon (int function
)
1913 case 2: /* TODO: char inbyte(int waitflag); */
1914 if (env
->active_tc
.gpr
[4] == 0)
1915 env
->active_tc
.gpr
[2] = -1;
1917 case 11: /* TODO: char inbyte (void); */
1918 env
->active_tc
.gpr
[2] = -1;
1922 printf("%c", (char)(env
->active_tc
.gpr
[4] & 0xFF));
1928 unsigned char *fmt
= (void *)(unsigned long)env
->active_tc
.gpr
[4];
1935 void helper_wait (void)
1938 helper_raise_exception(EXCP_HLT
);
1941 #if !defined(CONFIG_USER_ONLY)
1943 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
);
1945 #define MMUSUFFIX _mmu
1946 #define ALIGNED_ONLY
1949 #include "softmmu_template.h"
1952 #include "softmmu_template.h"
1955 #include "softmmu_template.h"
1958 #include "softmmu_template.h"
1960 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
)
1962 env
->CP0_BadVAddr
= addr
;
1963 do_restore_state (retaddr
);
1964 helper_raise_exception ((is_write
== 1) ? EXCP_AdES
: EXCP_AdEL
);
1967 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
1969 TranslationBlock
*tb
;
1970 CPUState
*saved_env
;
1974 /* XXX: hack to restore env in all cases, even if not called from
1977 env
= cpu_single_env
;
1978 ret
= cpu_mips_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
1981 /* now we have a real cpu fault */
1982 pc
= (unsigned long)retaddr
;
1983 tb
= tb_find_pc(pc
);
1985 /* the PC is inside the translated code. It means that we have
1986 a virtual CPU fault */
1987 cpu_restore_state(tb
, env
, pc
, NULL
);
1990 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
1995 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
1996 int unused
, int size
)
1999 helper_raise_exception(EXCP_IBE
);
2001 helper_raise_exception(EXCP_DBE
);
2003 #endif /* !CONFIG_USER_ONLY */
2005 /* Complex FPU operations which may need stack space. */
2007 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
2008 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
2009 #define FLOAT_TWO32 make_float32(1 << 30)
2010 #define FLOAT_TWO64 make_float64(1ULL << 62)
2011 #define FLOAT_QNAN32 0x7fbfffff
2012 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2013 #define FLOAT_SNAN32 0x7fffffff
2014 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2016 /* convert MIPS rounding mode in FCR31 to IEEE library */
2017 static unsigned int ieee_rm
[] = {
2018 float_round_nearest_even
,
2019 float_round_to_zero
,
2024 #define RESTORE_ROUNDING_MODE \
2025 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2027 #define RESTORE_FLUSH_MODE \
2028 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2030 target_ulong
helper_cfc1 (uint32_t reg
)
2036 arg1
= (int32_t)env
->active_fpu
.fcr0
;
2039 arg1
= ((env
->active_fpu
.fcr31
>> 24) & 0xfe) | ((env
->active_fpu
.fcr31
>> 23) & 0x1);
2042 arg1
= env
->active_fpu
.fcr31
& 0x0003f07c;
2045 arg1
= (env
->active_fpu
.fcr31
& 0x00000f83) | ((env
->active_fpu
.fcr31
>> 22) & 0x4);
2048 arg1
= (int32_t)env
->active_fpu
.fcr31
;
2055 void helper_ctc1 (target_ulong arg1
, uint32_t reg
)
2059 if (arg1
& 0xffffff00)
2061 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0x017fffff) | ((arg1
& 0xfe) << 24) |
2062 ((arg1
& 0x1) << 23);
2065 if (arg1
& 0x007c0000)
2067 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfffc0f83) | (arg1
& 0x0003f07c);
2070 if (arg1
& 0x007c0000)
2072 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfefff07c) | (arg1
& 0x00000f83) |
2073 ((arg1
& 0x4) << 22);
2076 if (arg1
& 0x007c0000)
2078 env
->active_fpu
.fcr31
= arg1
;
2083 /* set rounding mode */
2084 RESTORE_ROUNDING_MODE
;
2085 /* set flush-to-zero mode */
2087 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2088 if ((GET_FP_ENABLE(env
->active_fpu
.fcr31
) | 0x20) & GET_FP_CAUSE(env
->active_fpu
.fcr31
))
2089 helper_raise_exception(EXCP_FPE
);
2092 static inline char ieee_ex_to_mips(char xcpt
)
2094 return (xcpt
& float_flag_inexact
) >> 5 |
2095 (xcpt
& float_flag_underflow
) >> 3 |
2096 (xcpt
& float_flag_overflow
) >> 1 |
2097 (xcpt
& float_flag_divbyzero
) << 1 |
2098 (xcpt
& float_flag_invalid
) << 4;
2101 static inline char mips_ex_to_ieee(char xcpt
)
2103 return (xcpt
& FP_INEXACT
) << 5 |
2104 (xcpt
& FP_UNDERFLOW
) << 3 |
2105 (xcpt
& FP_OVERFLOW
) << 1 |
2106 (xcpt
& FP_DIV0
) >> 1 |
2107 (xcpt
& FP_INVALID
) >> 4;
2110 static inline void update_fcr31(void)
2112 int tmp
= ieee_ex_to_mips(get_float_exception_flags(&env
->active_fpu
.fp_status
));
2114 SET_FP_CAUSE(env
->active_fpu
.fcr31
, tmp
);
2115 if (GET_FP_ENABLE(env
->active_fpu
.fcr31
) & tmp
)
2116 helper_raise_exception(EXCP_FPE
);
2118 UPDATE_FP_FLAGS(env
->active_fpu
.fcr31
, tmp
);
2122 Single precition routines have a "s" suffix, double precision a
2123 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2124 paired single lower "pl", paired single upper "pu". */
2126 /* unary operations, modifying fp status */
2127 uint64_t helper_float_sqrt_d(uint64_t fdt0
)
2129 return float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2132 uint32_t helper_float_sqrt_s(uint32_t fst0
)
2134 return float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2137 uint64_t helper_float_cvtd_s(uint32_t fst0
)
2141 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2142 fdt2
= float32_to_float64(fst0
, &env
->active_fpu
.fp_status
);
2147 uint64_t helper_float_cvtd_w(uint32_t wt0
)
2151 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2152 fdt2
= int32_to_float64(wt0
, &env
->active_fpu
.fp_status
);
2157 uint64_t helper_float_cvtd_l(uint64_t dt0
)
2161 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2162 fdt2
= int64_to_float64(dt0
, &env
->active_fpu
.fp_status
);
2167 uint64_t helper_float_cvtl_d(uint64_t fdt0
)
2171 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2172 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2174 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2179 uint64_t helper_float_cvtl_s(uint32_t fst0
)
2183 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2184 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2186 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2191 uint64_t helper_float_cvtps_pw(uint64_t dt0
)
2196 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2197 fst2
= int32_to_float32(dt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2198 fsth2
= int32_to_float32(dt0
>> 32, &env
->active_fpu
.fp_status
);
2200 return ((uint64_t)fsth2
<< 32) | fst2
;
2203 uint64_t helper_float_cvtpw_ps(uint64_t fdt0
)
2208 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2209 wt2
= float32_to_int32(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2210 wth2
= float32_to_int32(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2212 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
)) {
2214 wth2
= FLOAT_SNAN32
;
2216 return ((uint64_t)wth2
<< 32) | wt2
;
2219 uint32_t helper_float_cvts_d(uint64_t fdt0
)
2223 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2224 fst2
= float64_to_float32(fdt0
, &env
->active_fpu
.fp_status
);
2229 uint32_t helper_float_cvts_w(uint32_t wt0
)
2233 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2234 fst2
= int32_to_float32(wt0
, &env
->active_fpu
.fp_status
);
2239 uint32_t helper_float_cvts_l(uint64_t dt0
)
2243 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2244 fst2
= int64_to_float32(dt0
, &env
->active_fpu
.fp_status
);
2249 uint32_t helper_float_cvts_pl(uint32_t wt0
)
2253 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2259 uint32_t helper_float_cvts_pu(uint32_t wth0
)
2263 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2269 uint32_t helper_float_cvtw_s(uint32_t fst0
)
2273 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2274 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2276 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2281 uint32_t helper_float_cvtw_d(uint64_t fdt0
)
2285 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2286 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2288 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2293 uint64_t helper_float_roundl_d(uint64_t fdt0
)
2297 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2298 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2299 RESTORE_ROUNDING_MODE
;
2301 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2306 uint64_t helper_float_roundl_s(uint32_t fst0
)
2310 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2311 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2312 RESTORE_ROUNDING_MODE
;
2314 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2319 uint32_t helper_float_roundw_d(uint64_t fdt0
)
2323 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2324 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2325 RESTORE_ROUNDING_MODE
;
2327 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2332 uint32_t helper_float_roundw_s(uint32_t fst0
)
2336 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2337 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2338 RESTORE_ROUNDING_MODE
;
2340 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2345 uint64_t helper_float_truncl_d(uint64_t fdt0
)
2349 dt2
= float64_to_int64_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2351 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2356 uint64_t helper_float_truncl_s(uint32_t fst0
)
2360 dt2
= float32_to_int64_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2362 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2367 uint32_t helper_float_truncw_d(uint64_t fdt0
)
2371 wt2
= float64_to_int32_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2373 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2378 uint32_t helper_float_truncw_s(uint32_t fst0
)
2382 wt2
= float32_to_int32_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2384 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2389 uint64_t helper_float_ceill_d(uint64_t fdt0
)
2393 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2394 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2395 RESTORE_ROUNDING_MODE
;
2397 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2402 uint64_t helper_float_ceill_s(uint32_t fst0
)
2406 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2407 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2408 RESTORE_ROUNDING_MODE
;
2410 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2415 uint32_t helper_float_ceilw_d(uint64_t fdt0
)
2419 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2420 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2421 RESTORE_ROUNDING_MODE
;
2423 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2428 uint32_t helper_float_ceilw_s(uint32_t fst0
)
2432 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2433 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2434 RESTORE_ROUNDING_MODE
;
2436 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2441 uint64_t helper_float_floorl_d(uint64_t fdt0
)
2445 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2446 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2447 RESTORE_ROUNDING_MODE
;
2449 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2454 uint64_t helper_float_floorl_s(uint32_t fst0
)
2458 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2459 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2460 RESTORE_ROUNDING_MODE
;
2462 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2467 uint32_t helper_float_floorw_d(uint64_t fdt0
)
2471 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2472 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2473 RESTORE_ROUNDING_MODE
;
2475 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2480 uint32_t helper_float_floorw_s(uint32_t fst0
)
2484 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2485 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2486 RESTORE_ROUNDING_MODE
;
2488 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2493 /* unary operations, not modifying fp status */
2494 #define FLOAT_UNOP(name) \
2495 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2497 return float64_ ## name(fdt0); \
2499 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2501 return float32_ ## name(fst0); \
2503 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2508 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2509 wth0 = float32_ ## name(fdt0 >> 32); \
2510 return ((uint64_t)wth0 << 32) | wt0; \
2516 /* MIPS specific unary operations */
2517 uint64_t helper_float_recip_d(uint64_t fdt0
)
2521 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2522 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2527 uint32_t helper_float_recip_s(uint32_t fst0
)
2531 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2532 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2537 uint64_t helper_float_rsqrt_d(uint64_t fdt0
)
2541 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2542 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2543 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2548 uint32_t helper_float_rsqrt_s(uint32_t fst0
)
2552 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2553 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2554 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2559 uint64_t helper_float_recip1_d(uint64_t fdt0
)
2563 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2564 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2569 uint32_t helper_float_recip1_s(uint32_t fst0
)
2573 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2574 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2579 uint64_t helper_float_recip1_ps(uint64_t fdt0
)
2584 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2585 fst2
= float32_div(FLOAT_ONE32
, fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2586 fsth2
= float32_div(FLOAT_ONE32
, fdt0
>> 32, &env
->active_fpu
.fp_status
);
2588 return ((uint64_t)fsth2
<< 32) | fst2
;
2591 uint64_t helper_float_rsqrt1_d(uint64_t fdt0
)
2595 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2596 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2597 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2602 uint32_t helper_float_rsqrt1_s(uint32_t fst0
)
2606 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2607 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2608 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2613 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0
)
2618 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2619 fst2
= float32_sqrt(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2620 fsth2
= float32_sqrt(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2621 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2622 fsth2
= float32_div(FLOAT_ONE32
, fsth2
, &env
->active_fpu
.fp_status
);
2624 return ((uint64_t)fsth2
<< 32) | fst2
;
2627 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2629 /* binary operations */
2630 #define FLOAT_BINOP(name) \
2631 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2635 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2636 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2638 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2639 dt2 = FLOAT_QNAN64; \
2643 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2647 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2648 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2650 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2651 wt2 = FLOAT_QNAN32; \
2655 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2657 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2658 uint32_t fsth0 = fdt0 >> 32; \
2659 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2660 uint32_t fsth1 = fdt1 >> 32; \
2664 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2665 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2666 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2668 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2669 wt2 = FLOAT_QNAN32; \
2670 wth2 = FLOAT_QNAN32; \
2672 return ((uint64_t)wth2 << 32) | wt2; \
2681 /* ternary operations */
2682 #define FLOAT_TERNOP(name1, name2) \
2683 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2686 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2687 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2690 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2693 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2694 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2697 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2700 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2701 uint32_t fsth0 = fdt0 >> 32; \
2702 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2703 uint32_t fsth1 = fdt1 >> 32; \
2704 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2705 uint32_t fsth2 = fdt2 >> 32; \
2707 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2708 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2709 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2710 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2711 return ((uint64_t)fsth2 << 32) | fst2; \
2714 FLOAT_TERNOP(mul
, add
)
2715 FLOAT_TERNOP(mul
, sub
)
2718 /* negated ternary operations */
2719 #define FLOAT_NTERNOP(name1, name2) \
2720 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2723 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2724 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2725 return float64_chs(fdt2); \
2728 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2731 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2732 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2733 return float32_chs(fst2); \
2736 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2739 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2740 uint32_t fsth0 = fdt0 >> 32; \
2741 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2742 uint32_t fsth1 = fdt1 >> 32; \
2743 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2744 uint32_t fsth2 = fdt2 >> 32; \
2746 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2747 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2748 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2749 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2750 fst2 = float32_chs(fst2); \
2751 fsth2 = float32_chs(fsth2); \
2752 return ((uint64_t)fsth2 << 32) | fst2; \
2755 FLOAT_NTERNOP(mul
, add
)
2756 FLOAT_NTERNOP(mul
, sub
)
2757 #undef FLOAT_NTERNOP
2759 /* MIPS specific binary operations */
2760 uint64_t helper_float_recip2_d(uint64_t fdt0
, uint64_t fdt2
)
2762 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2763 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2764 fdt2
= float64_chs(float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
));
2769 uint32_t helper_float_recip2_s(uint32_t fst0
, uint32_t fst2
)
2771 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2772 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2773 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2778 uint64_t helper_float_recip2_ps(uint64_t fdt0
, uint64_t fdt2
)
2780 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2781 uint32_t fsth0
= fdt0
>> 32;
2782 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2783 uint32_t fsth2
= fdt2
>> 32;
2785 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2786 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2787 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2788 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2789 fsth2
= float32_chs(float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2791 return ((uint64_t)fsth2
<< 32) | fst2
;
2794 uint64_t helper_float_rsqrt2_d(uint64_t fdt0
, uint64_t fdt2
)
2796 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2797 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2798 fdt2
= float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
);
2799 fdt2
= float64_chs(float64_div(fdt2
, FLOAT_TWO64
, &env
->active_fpu
.fp_status
));
2804 uint32_t helper_float_rsqrt2_s(uint32_t fst0
, uint32_t fst2
)
2806 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2807 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2808 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2809 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2814 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0
, uint64_t fdt2
)
2816 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2817 uint32_t fsth0
= fdt0
>> 32;
2818 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2819 uint32_t fsth2
= fdt2
>> 32;
2821 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2822 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2823 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2824 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2825 fsth2
= float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2826 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2827 fsth2
= float32_chs(float32_div(fsth2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2829 return ((uint64_t)fsth2
<< 32) | fst2
;
2832 uint64_t helper_float_addr_ps(uint64_t fdt0
, uint64_t fdt1
)
2834 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2835 uint32_t fsth0
= fdt0
>> 32;
2836 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2837 uint32_t fsth1
= fdt1
>> 32;
2841 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2842 fst2
= float32_add (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2843 fsth2
= float32_add (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2845 return ((uint64_t)fsth2
<< 32) | fst2
;
2848 uint64_t helper_float_mulr_ps(uint64_t fdt0
, uint64_t fdt1
)
2850 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2851 uint32_t fsth0
= fdt0
>> 32;
2852 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2853 uint32_t fsth1
= fdt1
>> 32;
2857 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2858 fst2
= float32_mul (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2859 fsth2
= float32_mul (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2861 return ((uint64_t)fsth2
<< 32) | fst2
;
2864 /* compare operations */
2865 #define FOP_COND_D(op, cond) \
2866 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2871 SET_FP_COND(cc, env->active_fpu); \
2873 CLEAR_FP_COND(cc, env->active_fpu); \
2875 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2878 fdt0 = float64_abs(fdt0); \
2879 fdt1 = float64_abs(fdt1); \
2883 SET_FP_COND(cc, env->active_fpu); \
2885 CLEAR_FP_COND(cc, env->active_fpu); \
2888 static int float64_is_unordered(int sig
, float64 a
, float64 b STATUS_PARAM
)
2890 if (float64_is_signaling_nan(a
) ||
2891 float64_is_signaling_nan(b
) ||
2892 (sig
&& (float64_is_nan(a
) || float64_is_nan(b
)))) {
2893 float_raise(float_flag_invalid
, status
);
2895 } else if (float64_is_nan(a
) || float64_is_nan(b
)) {
2902 /* NOTE: the comma operator will make "cond" to eval to false,
2903 * but float*_is_unordered() is still called. */
2904 FOP_COND_D(f
, (float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2905 FOP_COND_D(un
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2906 FOP_COND_D(eq
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2907 FOP_COND_D(ueq
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2908 FOP_COND_D(olt
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2909 FOP_COND_D(ult
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2910 FOP_COND_D(ole
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2911 FOP_COND_D(ule
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2912 /* NOTE: the comma operator will make "cond" to eval to false,
2913 * but float*_is_unordered() is still called. */
2914 FOP_COND_D(sf
, (float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2915 FOP_COND_D(ngle
,float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2916 FOP_COND_D(seq
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2917 FOP_COND_D(ngl
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2918 FOP_COND_D(lt
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2919 FOP_COND_D(nge
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2920 FOP_COND_D(le
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2921 FOP_COND_D(ngt
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2923 #define FOP_COND_S(op, cond) \
2924 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2929 SET_FP_COND(cc, env->active_fpu); \
2931 CLEAR_FP_COND(cc, env->active_fpu); \
2933 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2936 fst0 = float32_abs(fst0); \
2937 fst1 = float32_abs(fst1); \
2941 SET_FP_COND(cc, env->active_fpu); \
2943 CLEAR_FP_COND(cc, env->active_fpu); \
2946 static flag
float32_is_unordered(int sig
, float32 a
, float32 b STATUS_PARAM
)
2948 if (float32_is_signaling_nan(a
) ||
2949 float32_is_signaling_nan(b
) ||
2950 (sig
&& (float32_is_nan(a
) || float32_is_nan(b
)))) {
2951 float_raise(float_flag_invalid
, status
);
2953 } else if (float32_is_nan(a
) || float32_is_nan(b
)) {
2960 /* NOTE: the comma operator will make "cond" to eval to false,
2961 * but float*_is_unordered() is still called. */
2962 FOP_COND_S(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2963 FOP_COND_S(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2964 FOP_COND_S(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2965 FOP_COND_S(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2966 FOP_COND_S(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2967 FOP_COND_S(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2968 FOP_COND_S(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2969 FOP_COND_S(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2970 /* NOTE: the comma operator will make "cond" to eval to false,
2971 * but float*_is_unordered() is still called. */
2972 FOP_COND_S(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2973 FOP_COND_S(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2974 FOP_COND_S(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2975 FOP_COND_S(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2976 FOP_COND_S(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2977 FOP_COND_S(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2978 FOP_COND_S(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2979 FOP_COND_S(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2981 #define FOP_COND_PS(op, condl, condh) \
2982 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2984 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2985 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2986 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2987 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2993 SET_FP_COND(cc, env->active_fpu); \
2995 CLEAR_FP_COND(cc, env->active_fpu); \
2997 SET_FP_COND(cc + 1, env->active_fpu); \
2999 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3001 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3003 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3004 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
3005 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3006 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
3012 SET_FP_COND(cc, env->active_fpu); \
3014 CLEAR_FP_COND(cc, env->active_fpu); \
3016 SET_FP_COND(cc + 1, env->active_fpu); \
3018 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3021 /* NOTE: the comma operator will make "cond" to eval to false,
3022 * but float*_is_unordered() is still called. */
3023 FOP_COND_PS(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
3024 (float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
3025 FOP_COND_PS(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
),
3026 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
3027 FOP_COND_PS(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3028 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3029 FOP_COND_PS(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3030 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3031 FOP_COND_PS(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3032 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3033 FOP_COND_PS(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3034 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3035 FOP_COND_PS(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3036 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3037 FOP_COND_PS(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3038 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3039 /* NOTE: the comma operator will make "cond" to eval to false,
3040 * but float*_is_unordered() is still called. */
3041 FOP_COND_PS(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
3042 (float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
3043 FOP_COND_PS(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
),
3044 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
3045 FOP_COND_PS(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3046 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3047 FOP_COND_PS(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3048 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3049 FOP_COND_PS(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3050 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3051 FOP_COND_PS(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3052 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3053 FOP_COND_PS(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3054 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3055 FOP_COND_PS(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3056 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))