rtl8139: fix Pointer to local outside scope
[qemu.git] / kvm-all.c
blob596e7ce6c3e02719caf9955eb6193d41381678d1
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
72 typedef struct kvm_dirty_log KVMDirtyLog;
74 struct KVMState
76 AccelState parent_obj;
78 KVMSlot *slots;
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
86 int migration_log;
87 int vcpu_events;
88 int robust_singlestep;
89 int debugregs;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
92 #endif
93 int pit_state2;
94 int xsave, xcrs;
95 int many_ioeventfds;
96 int intx_set_mask;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing *irq_routes;
104 int nr_allocated_irq_routes;
105 uint32_t *used_gsi_bitmap;
106 unsigned int gsi_count;
107 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
108 bool direct_msi;
109 #endif
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
117 KVMState *kvm_state;
118 bool kvm_kernel_irqchip;
119 bool kvm_async_interrupts_allowed;
120 bool kvm_halt_in_kernel_allowed;
121 bool kvm_eventfds_allowed;
122 bool kvm_irqfds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
126 bool kvm_allowed;
127 bool kvm_readonly_mem_allowed;
129 static const KVMCapabilityInfo kvm_required_capabilites[] = {
130 KVM_CAP_INFO(USER_MEMORY),
131 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
132 KVM_CAP_LAST_INFO
135 static KVMSlot *kvm_alloc_slot(KVMState *s)
137 int i;
139 for (i = 0; i < s->nr_slots; i++) {
140 if (s->slots[i].memory_size == 0) {
141 return &s->slots[i];
145 fprintf(stderr, "%s: no free slot available\n", __func__);
146 abort();
149 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
150 hwaddr start_addr,
151 hwaddr end_addr)
153 int i;
155 for (i = 0; i < s->nr_slots; i++) {
156 KVMSlot *mem = &s->slots[i];
158 if (start_addr == mem->start_addr &&
159 end_addr == mem->start_addr + mem->memory_size) {
160 return mem;
164 return NULL;
168 * Find overlapping slot with lowest start address
170 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
171 hwaddr start_addr,
172 hwaddr end_addr)
174 KVMSlot *found = NULL;
175 int i;
177 for (i = 0; i < s->nr_slots; i++) {
178 KVMSlot *mem = &s->slots[i];
180 if (mem->memory_size == 0 ||
181 (found && found->start_addr < mem->start_addr)) {
182 continue;
185 if (end_addr > mem->start_addr &&
186 start_addr < mem->start_addr + mem->memory_size) {
187 found = mem;
191 return found;
194 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
195 hwaddr *phys_addr)
197 int i;
199 for (i = 0; i < s->nr_slots; i++) {
200 KVMSlot *mem = &s->slots[i];
202 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
203 *phys_addr = mem->start_addr + (ram - mem->ram);
204 return 1;
208 return 0;
211 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
213 struct kvm_userspace_memory_region mem;
215 mem.slot = slot->slot;
216 mem.guest_phys_addr = slot->start_addr;
217 mem.userspace_addr = (unsigned long)slot->ram;
218 mem.flags = slot->flags;
219 if (s->migration_log) {
220 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
223 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
224 /* Set the slot size to 0 before setting the slot to the desired
225 * value. This is needed based on KVM commit 75d61fbc. */
226 mem.memory_size = 0;
227 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
229 mem.memory_size = slot->memory_size;
230 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
233 int kvm_init_vcpu(CPUState *cpu)
235 KVMState *s = kvm_state;
236 long mmap_size;
237 int ret;
239 DPRINTF("kvm_init_vcpu\n");
241 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
242 if (ret < 0) {
243 DPRINTF("kvm_create_vcpu failed\n");
244 goto err;
247 cpu->kvm_fd = ret;
248 cpu->kvm_state = s;
249 cpu->kvm_vcpu_dirty = true;
251 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
252 if (mmap_size < 0) {
253 ret = mmap_size;
254 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
255 goto err;
258 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
259 cpu->kvm_fd, 0);
260 if (cpu->kvm_run == MAP_FAILED) {
261 ret = -errno;
262 DPRINTF("mmap'ing vcpu state failed\n");
263 goto err;
266 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
267 s->coalesced_mmio_ring =
268 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
271 ret = kvm_arch_init_vcpu(cpu);
272 err:
273 return ret;
277 * dirty pages logging control
280 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
282 int flags = 0;
283 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
284 if (readonly && kvm_readonly_mem_allowed) {
285 flags |= KVM_MEM_READONLY;
287 return flags;
290 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
292 KVMState *s = kvm_state;
293 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
294 int old_flags;
296 old_flags = mem->flags;
298 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
299 mem->flags = flags;
301 /* If nothing changed effectively, no need to issue ioctl */
302 if (s->migration_log) {
303 flags |= KVM_MEM_LOG_DIRTY_PAGES;
306 if (flags == old_flags) {
307 return 0;
310 return kvm_set_user_memory_region(s, mem);
313 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
314 ram_addr_t size, bool log_dirty)
316 KVMState *s = kvm_state;
317 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
319 if (mem == NULL) {
320 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
321 TARGET_FMT_plx "\n", __func__, phys_addr,
322 (hwaddr)(phys_addr + size - 1));
323 return -EINVAL;
325 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
328 static void kvm_log_start(MemoryListener *listener,
329 MemoryRegionSection *section)
331 int r;
333 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
334 int128_get64(section->size), true);
335 if (r < 0) {
336 abort();
340 static void kvm_log_stop(MemoryListener *listener,
341 MemoryRegionSection *section)
343 int r;
345 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
346 int128_get64(section->size), false);
347 if (r < 0) {
348 abort();
352 static int kvm_set_migration_log(int enable)
354 KVMState *s = kvm_state;
355 KVMSlot *mem;
356 int i, err;
358 s->migration_log = enable;
360 for (i = 0; i < s->nr_slots; i++) {
361 mem = &s->slots[i];
363 if (!mem->memory_size) {
364 continue;
366 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
367 continue;
369 err = kvm_set_user_memory_region(s, mem);
370 if (err) {
371 return err;
374 return 0;
377 /* get kvm's dirty pages bitmap and update qemu's */
378 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
379 unsigned long *bitmap)
381 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
382 ram_addr_t pages = int128_get64(section->size) / getpagesize();
384 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
385 return 0;
388 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
391 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
392 * This function updates qemu's dirty bitmap using
393 * memory_region_set_dirty(). This means all bits are set
394 * to dirty.
396 * @start_add: start of logged region.
397 * @end_addr: end of logged region.
399 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
401 KVMState *s = kvm_state;
402 unsigned long size, allocated_size = 0;
403 KVMDirtyLog d;
404 KVMSlot *mem;
405 int ret = 0;
406 hwaddr start_addr = section->offset_within_address_space;
407 hwaddr end_addr = start_addr + int128_get64(section->size);
409 d.dirty_bitmap = NULL;
410 while (start_addr < end_addr) {
411 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
412 if (mem == NULL) {
413 break;
416 /* XXX bad kernel interface alert
417 * For dirty bitmap, kernel allocates array of size aligned to
418 * bits-per-long. But for case when the kernel is 64bits and
419 * the userspace is 32bits, userspace can't align to the same
420 * bits-per-long, since sizeof(long) is different between kernel
421 * and user space. This way, userspace will provide buffer which
422 * may be 4 bytes less than the kernel will use, resulting in
423 * userspace memory corruption (which is not detectable by valgrind
424 * too, in most cases).
425 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
426 * a hope that sizeof(long) wont become >8 any time soon.
428 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
429 /*HOST_LONG_BITS*/ 64) / 8;
430 if (!d.dirty_bitmap) {
431 d.dirty_bitmap = g_malloc(size);
432 } else if (size > allocated_size) {
433 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
435 allocated_size = size;
436 memset(d.dirty_bitmap, 0, allocated_size);
438 d.slot = mem->slot;
440 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
441 DPRINTF("ioctl failed %d\n", errno);
442 ret = -1;
443 break;
446 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
447 start_addr = mem->start_addr + mem->memory_size;
449 g_free(d.dirty_bitmap);
451 return ret;
454 static void kvm_coalesce_mmio_region(MemoryListener *listener,
455 MemoryRegionSection *secion,
456 hwaddr start, hwaddr size)
458 KVMState *s = kvm_state;
460 if (s->coalesced_mmio) {
461 struct kvm_coalesced_mmio_zone zone;
463 zone.addr = start;
464 zone.size = size;
465 zone.pad = 0;
467 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
471 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
472 MemoryRegionSection *secion,
473 hwaddr start, hwaddr size)
475 KVMState *s = kvm_state;
477 if (s->coalesced_mmio) {
478 struct kvm_coalesced_mmio_zone zone;
480 zone.addr = start;
481 zone.size = size;
482 zone.pad = 0;
484 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488 int kvm_check_extension(KVMState *s, unsigned int extension)
490 int ret;
492 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
493 if (ret < 0) {
494 ret = 0;
497 return ret;
500 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
502 int ret;
504 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
505 if (ret < 0) {
506 /* VM wide version not implemented, use global one instead */
507 ret = kvm_check_extension(s, extension);
510 return ret;
513 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
514 bool assign, uint32_t size, bool datamatch)
516 int ret;
517 struct kvm_ioeventfd iofd;
519 iofd.datamatch = datamatch ? val : 0;
520 iofd.addr = addr;
521 iofd.len = size;
522 iofd.flags = 0;
523 iofd.fd = fd;
525 if (!kvm_enabled()) {
526 return -ENOSYS;
529 if (datamatch) {
530 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
532 if (!assign) {
533 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
536 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
538 if (ret < 0) {
539 return -errno;
542 return 0;
545 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
546 bool assign, uint32_t size, bool datamatch)
548 struct kvm_ioeventfd kick = {
549 .datamatch = datamatch ? val : 0,
550 .addr = addr,
551 .flags = KVM_IOEVENTFD_FLAG_PIO,
552 .len = size,
553 .fd = fd,
555 int r;
556 if (!kvm_enabled()) {
557 return -ENOSYS;
559 if (datamatch) {
560 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
562 if (!assign) {
563 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
565 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
566 if (r < 0) {
567 return r;
569 return 0;
573 static int kvm_check_many_ioeventfds(void)
575 /* Userspace can use ioeventfd for io notification. This requires a host
576 * that supports eventfd(2) and an I/O thread; since eventfd does not
577 * support SIGIO it cannot interrupt the vcpu.
579 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
580 * can avoid creating too many ioeventfds.
582 #if defined(CONFIG_EVENTFD)
583 int ioeventfds[7];
584 int i, ret = 0;
585 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
586 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
587 if (ioeventfds[i] < 0) {
588 break;
590 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
591 if (ret < 0) {
592 close(ioeventfds[i]);
593 break;
597 /* Decide whether many devices are supported or not */
598 ret = i == ARRAY_SIZE(ioeventfds);
600 while (i-- > 0) {
601 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
602 close(ioeventfds[i]);
604 return ret;
605 #else
606 return 0;
607 #endif
610 static const KVMCapabilityInfo *
611 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
613 while (list->name) {
614 if (!kvm_check_extension(s, list->value)) {
615 return list;
617 list++;
619 return NULL;
622 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
624 KVMState *s = kvm_state;
625 KVMSlot *mem, old;
626 int err;
627 MemoryRegion *mr = section->mr;
628 bool log_dirty = memory_region_is_logging(mr);
629 bool writeable = !mr->readonly && !mr->rom_device;
630 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
631 hwaddr start_addr = section->offset_within_address_space;
632 ram_addr_t size = int128_get64(section->size);
633 void *ram = NULL;
634 unsigned delta;
636 /* kvm works in page size chunks, but the function may be called
637 with sub-page size and unaligned start address. Pad the start
638 address to next and truncate size to previous page boundary. */
639 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
640 delta &= ~TARGET_PAGE_MASK;
641 if (delta > size) {
642 return;
644 start_addr += delta;
645 size -= delta;
646 size &= TARGET_PAGE_MASK;
647 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
648 return;
651 if (!memory_region_is_ram(mr)) {
652 if (writeable || !kvm_readonly_mem_allowed) {
653 return;
654 } else if (!mr->romd_mode) {
655 /* If the memory device is not in romd_mode, then we actually want
656 * to remove the kvm memory slot so all accesses will trap. */
657 add = false;
661 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
663 while (1) {
664 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
665 if (!mem) {
666 break;
669 if (add && start_addr >= mem->start_addr &&
670 (start_addr + size <= mem->start_addr + mem->memory_size) &&
671 (ram - start_addr == mem->ram - mem->start_addr)) {
672 /* The new slot fits into the existing one and comes with
673 * identical parameters - update flags and done. */
674 kvm_slot_dirty_pages_log_change(mem, log_dirty);
675 return;
678 old = *mem;
680 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
681 kvm_physical_sync_dirty_bitmap(section);
684 /* unregister the overlapping slot */
685 mem->memory_size = 0;
686 err = kvm_set_user_memory_region(s, mem);
687 if (err) {
688 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
689 __func__, strerror(-err));
690 abort();
693 /* Workaround for older KVM versions: we can't join slots, even not by
694 * unregistering the previous ones and then registering the larger
695 * slot. We have to maintain the existing fragmentation. Sigh.
697 * This workaround assumes that the new slot starts at the same
698 * address as the first existing one. If not or if some overlapping
699 * slot comes around later, we will fail (not seen in practice so far)
700 * - and actually require a recent KVM version. */
701 if (s->broken_set_mem_region &&
702 old.start_addr == start_addr && old.memory_size < size && add) {
703 mem = kvm_alloc_slot(s);
704 mem->memory_size = old.memory_size;
705 mem->start_addr = old.start_addr;
706 mem->ram = old.ram;
707 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
709 err = kvm_set_user_memory_region(s, mem);
710 if (err) {
711 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
712 strerror(-err));
713 abort();
716 start_addr += old.memory_size;
717 ram += old.memory_size;
718 size -= old.memory_size;
719 continue;
722 /* register prefix slot */
723 if (old.start_addr < start_addr) {
724 mem = kvm_alloc_slot(s);
725 mem->memory_size = start_addr - old.start_addr;
726 mem->start_addr = old.start_addr;
727 mem->ram = old.ram;
728 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
730 err = kvm_set_user_memory_region(s, mem);
731 if (err) {
732 fprintf(stderr, "%s: error registering prefix slot: %s\n",
733 __func__, strerror(-err));
734 #ifdef TARGET_PPC
735 fprintf(stderr, "%s: This is probably because your kernel's " \
736 "PAGE_SIZE is too big. Please try to use 4k " \
737 "PAGE_SIZE!\n", __func__);
738 #endif
739 abort();
743 /* register suffix slot */
744 if (old.start_addr + old.memory_size > start_addr + size) {
745 ram_addr_t size_delta;
747 mem = kvm_alloc_slot(s);
748 mem->start_addr = start_addr + size;
749 size_delta = mem->start_addr - old.start_addr;
750 mem->memory_size = old.memory_size - size_delta;
751 mem->ram = old.ram + size_delta;
752 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
754 err = kvm_set_user_memory_region(s, mem);
755 if (err) {
756 fprintf(stderr, "%s: error registering suffix slot: %s\n",
757 __func__, strerror(-err));
758 abort();
763 /* in case the KVM bug workaround already "consumed" the new slot */
764 if (!size) {
765 return;
767 if (!add) {
768 return;
770 mem = kvm_alloc_slot(s);
771 mem->memory_size = size;
772 mem->start_addr = start_addr;
773 mem->ram = ram;
774 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
776 err = kvm_set_user_memory_region(s, mem);
777 if (err) {
778 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
779 strerror(-err));
780 abort();
784 static void kvm_region_add(MemoryListener *listener,
785 MemoryRegionSection *section)
787 memory_region_ref(section->mr);
788 kvm_set_phys_mem(section, true);
791 static void kvm_region_del(MemoryListener *listener,
792 MemoryRegionSection *section)
794 kvm_set_phys_mem(section, false);
795 memory_region_unref(section->mr);
798 static void kvm_log_sync(MemoryListener *listener,
799 MemoryRegionSection *section)
801 int r;
803 r = kvm_physical_sync_dirty_bitmap(section);
804 if (r < 0) {
805 abort();
809 static void kvm_log_global_start(struct MemoryListener *listener)
811 int r;
813 r = kvm_set_migration_log(1);
814 assert(r >= 0);
817 static void kvm_log_global_stop(struct MemoryListener *listener)
819 int r;
821 r = kvm_set_migration_log(0);
822 assert(r >= 0);
825 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
826 MemoryRegionSection *section,
827 bool match_data, uint64_t data,
828 EventNotifier *e)
830 int fd = event_notifier_get_fd(e);
831 int r;
833 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
834 data, true, int128_get64(section->size),
835 match_data);
836 if (r < 0) {
837 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
838 __func__, strerror(-r));
839 abort();
843 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
844 MemoryRegionSection *section,
845 bool match_data, uint64_t data,
846 EventNotifier *e)
848 int fd = event_notifier_get_fd(e);
849 int r;
851 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
852 data, false, int128_get64(section->size),
853 match_data);
854 if (r < 0) {
855 abort();
859 static void kvm_io_ioeventfd_add(MemoryListener *listener,
860 MemoryRegionSection *section,
861 bool match_data, uint64_t data,
862 EventNotifier *e)
864 int fd = event_notifier_get_fd(e);
865 int r;
867 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
868 data, true, int128_get64(section->size),
869 match_data);
870 if (r < 0) {
871 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
872 __func__, strerror(-r));
873 abort();
877 static void kvm_io_ioeventfd_del(MemoryListener *listener,
878 MemoryRegionSection *section,
879 bool match_data, uint64_t data,
880 EventNotifier *e)
883 int fd = event_notifier_get_fd(e);
884 int r;
886 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
887 data, false, int128_get64(section->size),
888 match_data);
889 if (r < 0) {
890 abort();
894 static MemoryListener kvm_memory_listener = {
895 .region_add = kvm_region_add,
896 .region_del = kvm_region_del,
897 .log_start = kvm_log_start,
898 .log_stop = kvm_log_stop,
899 .log_sync = kvm_log_sync,
900 .log_global_start = kvm_log_global_start,
901 .log_global_stop = kvm_log_global_stop,
902 .eventfd_add = kvm_mem_ioeventfd_add,
903 .eventfd_del = kvm_mem_ioeventfd_del,
904 .coalesced_mmio_add = kvm_coalesce_mmio_region,
905 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
906 .priority = 10,
909 static MemoryListener kvm_io_listener = {
910 .eventfd_add = kvm_io_ioeventfd_add,
911 .eventfd_del = kvm_io_ioeventfd_del,
912 .priority = 10,
915 static void kvm_handle_interrupt(CPUState *cpu, int mask)
917 cpu->interrupt_request |= mask;
919 if (!qemu_cpu_is_self(cpu)) {
920 qemu_cpu_kick(cpu);
924 int kvm_set_irq(KVMState *s, int irq, int level)
926 struct kvm_irq_level event;
927 int ret;
929 assert(kvm_async_interrupts_enabled());
931 event.level = level;
932 event.irq = irq;
933 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
934 if (ret < 0) {
935 perror("kvm_set_irq");
936 abort();
939 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
942 #ifdef KVM_CAP_IRQ_ROUTING
943 typedef struct KVMMSIRoute {
944 struct kvm_irq_routing_entry kroute;
945 QTAILQ_ENTRY(KVMMSIRoute) entry;
946 } KVMMSIRoute;
948 static void set_gsi(KVMState *s, unsigned int gsi)
950 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
953 static void clear_gsi(KVMState *s, unsigned int gsi)
955 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
958 void kvm_init_irq_routing(KVMState *s)
960 int gsi_count, i;
962 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
963 if (gsi_count > 0) {
964 unsigned int gsi_bits, i;
966 /* Round up so we can search ints using ffs */
967 gsi_bits = ALIGN(gsi_count, 32);
968 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
969 s->gsi_count = gsi_count;
971 /* Mark any over-allocated bits as already in use */
972 for (i = gsi_count; i < gsi_bits; i++) {
973 set_gsi(s, i);
977 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
978 s->nr_allocated_irq_routes = 0;
980 if (!s->direct_msi) {
981 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
982 QTAILQ_INIT(&s->msi_hashtab[i]);
986 kvm_arch_init_irq_routing(s);
989 void kvm_irqchip_commit_routes(KVMState *s)
991 int ret;
993 s->irq_routes->flags = 0;
994 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
995 assert(ret == 0);
998 static void kvm_add_routing_entry(KVMState *s,
999 struct kvm_irq_routing_entry *entry)
1001 struct kvm_irq_routing_entry *new;
1002 int n, size;
1004 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1005 n = s->nr_allocated_irq_routes * 2;
1006 if (n < 64) {
1007 n = 64;
1009 size = sizeof(struct kvm_irq_routing);
1010 size += n * sizeof(*new);
1011 s->irq_routes = g_realloc(s->irq_routes, size);
1012 s->nr_allocated_irq_routes = n;
1014 n = s->irq_routes->nr++;
1015 new = &s->irq_routes->entries[n];
1017 *new = *entry;
1019 set_gsi(s, entry->gsi);
1022 static int kvm_update_routing_entry(KVMState *s,
1023 struct kvm_irq_routing_entry *new_entry)
1025 struct kvm_irq_routing_entry *entry;
1026 int n;
1028 for (n = 0; n < s->irq_routes->nr; n++) {
1029 entry = &s->irq_routes->entries[n];
1030 if (entry->gsi != new_entry->gsi) {
1031 continue;
1034 if(!memcmp(entry, new_entry, sizeof *entry)) {
1035 return 0;
1038 *entry = *new_entry;
1040 kvm_irqchip_commit_routes(s);
1042 return 0;
1045 return -ESRCH;
1048 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1050 struct kvm_irq_routing_entry e = {};
1052 assert(pin < s->gsi_count);
1054 e.gsi = irq;
1055 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1056 e.flags = 0;
1057 e.u.irqchip.irqchip = irqchip;
1058 e.u.irqchip.pin = pin;
1059 kvm_add_routing_entry(s, &e);
1062 void kvm_irqchip_release_virq(KVMState *s, int virq)
1064 struct kvm_irq_routing_entry *e;
1065 int i;
1067 if (kvm_gsi_direct_mapping()) {
1068 return;
1071 for (i = 0; i < s->irq_routes->nr; i++) {
1072 e = &s->irq_routes->entries[i];
1073 if (e->gsi == virq) {
1074 s->irq_routes->nr--;
1075 *e = s->irq_routes->entries[s->irq_routes->nr];
1078 clear_gsi(s, virq);
1081 static unsigned int kvm_hash_msi(uint32_t data)
1083 /* This is optimized for IA32 MSI layout. However, no other arch shall
1084 * repeat the mistake of not providing a direct MSI injection API. */
1085 return data & 0xff;
1088 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1090 KVMMSIRoute *route, *next;
1091 unsigned int hash;
1093 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1094 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1095 kvm_irqchip_release_virq(s, route->kroute.gsi);
1096 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1097 g_free(route);
1102 static int kvm_irqchip_get_virq(KVMState *s)
1104 uint32_t *word = s->used_gsi_bitmap;
1105 int max_words = ALIGN(s->gsi_count, 32) / 32;
1106 int i, bit;
1107 bool retry = true;
1109 again:
1110 /* Return the lowest unused GSI in the bitmap */
1111 for (i = 0; i < max_words; i++) {
1112 bit = ffs(~word[i]);
1113 if (!bit) {
1114 continue;
1117 return bit - 1 + i * 32;
1119 if (!s->direct_msi && retry) {
1120 retry = false;
1121 kvm_flush_dynamic_msi_routes(s);
1122 goto again;
1124 return -ENOSPC;
1128 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1130 unsigned int hash = kvm_hash_msi(msg.data);
1131 KVMMSIRoute *route;
1133 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1134 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1135 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1136 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1137 return route;
1140 return NULL;
1143 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1145 struct kvm_msi msi;
1146 KVMMSIRoute *route;
1148 if (s->direct_msi) {
1149 msi.address_lo = (uint32_t)msg.address;
1150 msi.address_hi = msg.address >> 32;
1151 msi.data = le32_to_cpu(msg.data);
1152 msi.flags = 0;
1153 memset(msi.pad, 0, sizeof(msi.pad));
1155 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1158 route = kvm_lookup_msi_route(s, msg);
1159 if (!route) {
1160 int virq;
1162 virq = kvm_irqchip_get_virq(s);
1163 if (virq < 0) {
1164 return virq;
1167 route = g_malloc0(sizeof(KVMMSIRoute));
1168 route->kroute.gsi = virq;
1169 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1170 route->kroute.flags = 0;
1171 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1172 route->kroute.u.msi.address_hi = msg.address >> 32;
1173 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1175 kvm_add_routing_entry(s, &route->kroute);
1176 kvm_irqchip_commit_routes(s);
1178 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1179 entry);
1182 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1184 return kvm_set_irq(s, route->kroute.gsi, 1);
1187 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1189 struct kvm_irq_routing_entry kroute = {};
1190 int virq;
1192 if (kvm_gsi_direct_mapping()) {
1193 return msg.data & 0xffff;
1196 if (!kvm_gsi_routing_enabled()) {
1197 return -ENOSYS;
1200 virq = kvm_irqchip_get_virq(s);
1201 if (virq < 0) {
1202 return virq;
1205 kroute.gsi = virq;
1206 kroute.type = KVM_IRQ_ROUTING_MSI;
1207 kroute.flags = 0;
1208 kroute.u.msi.address_lo = (uint32_t)msg.address;
1209 kroute.u.msi.address_hi = msg.address >> 32;
1210 kroute.u.msi.data = le32_to_cpu(msg.data);
1212 kvm_add_routing_entry(s, &kroute);
1213 kvm_irqchip_commit_routes(s);
1215 return virq;
1218 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1220 struct kvm_irq_routing_entry kroute = {};
1222 if (kvm_gsi_direct_mapping()) {
1223 return 0;
1226 if (!kvm_irqchip_in_kernel()) {
1227 return -ENOSYS;
1230 kroute.gsi = virq;
1231 kroute.type = KVM_IRQ_ROUTING_MSI;
1232 kroute.flags = 0;
1233 kroute.u.msi.address_lo = (uint32_t)msg.address;
1234 kroute.u.msi.address_hi = msg.address >> 32;
1235 kroute.u.msi.data = le32_to_cpu(msg.data);
1237 return kvm_update_routing_entry(s, &kroute);
1240 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1241 bool assign)
1243 struct kvm_irqfd irqfd = {
1244 .fd = fd,
1245 .gsi = virq,
1246 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1249 if (rfd != -1) {
1250 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1251 irqfd.resamplefd = rfd;
1254 if (!kvm_irqfds_enabled()) {
1255 return -ENOSYS;
1258 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1261 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1263 struct kvm_irq_routing_entry kroute;
1264 int virq;
1266 if (!kvm_gsi_routing_enabled()) {
1267 return -ENOSYS;
1270 virq = kvm_irqchip_get_virq(s);
1271 if (virq < 0) {
1272 return virq;
1275 kroute.gsi = virq;
1276 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1277 kroute.flags = 0;
1278 kroute.u.adapter.summary_addr = adapter->summary_addr;
1279 kroute.u.adapter.ind_addr = adapter->ind_addr;
1280 kroute.u.adapter.summary_offset = adapter->summary_offset;
1281 kroute.u.adapter.ind_offset = adapter->ind_offset;
1282 kroute.u.adapter.adapter_id = adapter->adapter_id;
1284 kvm_add_routing_entry(s, &kroute);
1285 kvm_irqchip_commit_routes(s);
1287 return virq;
1290 #else /* !KVM_CAP_IRQ_ROUTING */
1292 void kvm_init_irq_routing(KVMState *s)
1296 void kvm_irqchip_release_virq(KVMState *s, int virq)
1300 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1302 abort();
1305 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1307 return -ENOSYS;
1310 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1312 return -ENOSYS;
1315 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1317 abort();
1320 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1322 return -ENOSYS;
1324 #endif /* !KVM_CAP_IRQ_ROUTING */
1326 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1327 EventNotifier *rn, int virq)
1329 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1330 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1333 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1335 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1336 false);
1339 static int kvm_irqchip_create(KVMState *s)
1341 int ret;
1343 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1344 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1345 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1346 return 0;
1349 /* First probe and see if there's a arch-specific hook to create the
1350 * in-kernel irqchip for us */
1351 ret = kvm_arch_irqchip_create(s);
1352 if (ret < 0) {
1353 return ret;
1354 } else if (ret == 0) {
1355 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1356 if (ret < 0) {
1357 fprintf(stderr, "Create kernel irqchip failed\n");
1358 return ret;
1362 kvm_kernel_irqchip = true;
1363 /* If we have an in-kernel IRQ chip then we must have asynchronous
1364 * interrupt delivery (though the reverse is not necessarily true)
1366 kvm_async_interrupts_allowed = true;
1367 kvm_halt_in_kernel_allowed = true;
1369 kvm_init_irq_routing(s);
1371 return 0;
1374 /* Find number of supported CPUs using the recommended
1375 * procedure from the kernel API documentation to cope with
1376 * older kernels that may be missing capabilities.
1378 static int kvm_recommended_vcpus(KVMState *s)
1380 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1381 return (ret) ? ret : 4;
1384 static int kvm_max_vcpus(KVMState *s)
1386 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1387 return (ret) ? ret : kvm_recommended_vcpus(s);
1390 static int kvm_init(MachineState *ms)
1392 MachineClass *mc = MACHINE_GET_CLASS(ms);
1393 static const char upgrade_note[] =
1394 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1395 "(see http://sourceforge.net/projects/kvm).\n";
1396 struct {
1397 const char *name;
1398 int num;
1399 } num_cpus[] = {
1400 { "SMP", smp_cpus },
1401 { "hotpluggable", max_cpus },
1402 { NULL, }
1403 }, *nc = num_cpus;
1404 int soft_vcpus_limit, hard_vcpus_limit;
1405 KVMState *s;
1406 const KVMCapabilityInfo *missing_cap;
1407 int ret;
1408 int i, type = 0;
1409 const char *kvm_type;
1411 s = KVM_STATE(ms->accelerator);
1414 * On systems where the kernel can support different base page
1415 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1416 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1417 * page size for the system though.
1419 assert(TARGET_PAGE_SIZE <= getpagesize());
1420 page_size_init();
1422 s->sigmask_len = 8;
1424 #ifdef KVM_CAP_SET_GUEST_DEBUG
1425 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1426 #endif
1427 s->vmfd = -1;
1428 s->fd = qemu_open("/dev/kvm", O_RDWR);
1429 if (s->fd == -1) {
1430 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1431 ret = -errno;
1432 goto err;
1435 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1436 if (ret < KVM_API_VERSION) {
1437 if (ret >= 0) {
1438 ret = -EINVAL;
1440 fprintf(stderr, "kvm version too old\n");
1441 goto err;
1444 if (ret > KVM_API_VERSION) {
1445 ret = -EINVAL;
1446 fprintf(stderr, "kvm version not supported\n");
1447 goto err;
1450 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1452 /* If unspecified, use the default value */
1453 if (!s->nr_slots) {
1454 s->nr_slots = 32;
1457 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1459 for (i = 0; i < s->nr_slots; i++) {
1460 s->slots[i].slot = i;
1463 /* check the vcpu limits */
1464 soft_vcpus_limit = kvm_recommended_vcpus(s);
1465 hard_vcpus_limit = kvm_max_vcpus(s);
1467 while (nc->name) {
1468 if (nc->num > soft_vcpus_limit) {
1469 fprintf(stderr,
1470 "Warning: Number of %s cpus requested (%d) exceeds "
1471 "the recommended cpus supported by KVM (%d)\n",
1472 nc->name, nc->num, soft_vcpus_limit);
1474 if (nc->num > hard_vcpus_limit) {
1475 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1476 "the maximum cpus supported by KVM (%d)\n",
1477 nc->name, nc->num, hard_vcpus_limit);
1478 exit(1);
1481 nc++;
1484 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1485 if (mc->kvm_type) {
1486 type = mc->kvm_type(kvm_type);
1487 } else if (kvm_type) {
1488 ret = -EINVAL;
1489 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1490 goto err;
1493 do {
1494 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1495 } while (ret == -EINTR);
1497 if (ret < 0) {
1498 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1499 strerror(-ret));
1501 #ifdef TARGET_S390X
1502 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1503 "your host kernel command line\n");
1504 #endif
1505 goto err;
1508 s->vmfd = ret;
1509 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1510 if (!missing_cap) {
1511 missing_cap =
1512 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1514 if (missing_cap) {
1515 ret = -EINVAL;
1516 fprintf(stderr, "kvm does not support %s\n%s",
1517 missing_cap->name, upgrade_note);
1518 goto err;
1521 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1523 s->broken_set_mem_region = 1;
1524 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1525 if (ret > 0) {
1526 s->broken_set_mem_region = 0;
1529 #ifdef KVM_CAP_VCPU_EVENTS
1530 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1531 #endif
1533 s->robust_singlestep =
1534 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1536 #ifdef KVM_CAP_DEBUGREGS
1537 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1538 #endif
1540 #ifdef KVM_CAP_XSAVE
1541 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1542 #endif
1544 #ifdef KVM_CAP_XCRS
1545 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1546 #endif
1548 #ifdef KVM_CAP_PIT_STATE2
1549 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1550 #endif
1552 #ifdef KVM_CAP_IRQ_ROUTING
1553 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1554 #endif
1556 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1558 s->irq_set_ioctl = KVM_IRQ_LINE;
1559 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1560 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1563 #ifdef KVM_CAP_READONLY_MEM
1564 kvm_readonly_mem_allowed =
1565 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1566 #endif
1568 kvm_eventfds_allowed =
1569 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1571 ret = kvm_arch_init(s);
1572 if (ret < 0) {
1573 goto err;
1576 ret = kvm_irqchip_create(s);
1577 if (ret < 0) {
1578 goto err;
1581 kvm_state = s;
1582 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1583 memory_listener_register(&kvm_io_listener, &address_space_io);
1585 s->many_ioeventfds = kvm_check_many_ioeventfds();
1587 cpu_interrupt_handler = kvm_handle_interrupt;
1589 return 0;
1591 err:
1592 assert(ret < 0);
1593 if (s->vmfd >= 0) {
1594 close(s->vmfd);
1596 if (s->fd != -1) {
1597 close(s->fd);
1599 g_free(s->slots);
1601 return ret;
1604 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1606 s->sigmask_len = sigmask_len;
1609 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1610 uint32_t count)
1612 int i;
1613 uint8_t *ptr = data;
1615 for (i = 0; i < count; i++) {
1616 address_space_rw(&address_space_io, port, ptr, size,
1617 direction == KVM_EXIT_IO_OUT);
1618 ptr += size;
1622 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1624 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1625 run->internal.suberror);
1627 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1628 int i;
1630 for (i = 0; i < run->internal.ndata; ++i) {
1631 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1632 i, (uint64_t)run->internal.data[i]);
1635 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1636 fprintf(stderr, "emulation failure\n");
1637 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1638 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1639 return EXCP_INTERRUPT;
1642 /* FIXME: Should trigger a qmp message to let management know
1643 * something went wrong.
1645 return -1;
1648 void kvm_flush_coalesced_mmio_buffer(void)
1650 KVMState *s = kvm_state;
1652 if (s->coalesced_flush_in_progress) {
1653 return;
1656 s->coalesced_flush_in_progress = true;
1658 if (s->coalesced_mmio_ring) {
1659 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1660 while (ring->first != ring->last) {
1661 struct kvm_coalesced_mmio *ent;
1663 ent = &ring->coalesced_mmio[ring->first];
1665 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1666 smp_wmb();
1667 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1671 s->coalesced_flush_in_progress = false;
1674 static void do_kvm_cpu_synchronize_state(void *arg)
1676 CPUState *cpu = arg;
1678 if (!cpu->kvm_vcpu_dirty) {
1679 kvm_arch_get_registers(cpu);
1680 cpu->kvm_vcpu_dirty = true;
1684 void kvm_cpu_synchronize_state(CPUState *cpu)
1686 if (!cpu->kvm_vcpu_dirty) {
1687 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1691 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1693 CPUState *cpu = arg;
1695 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1696 cpu->kvm_vcpu_dirty = false;
1699 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1701 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1704 static void do_kvm_cpu_synchronize_post_init(void *arg)
1706 CPUState *cpu = arg;
1708 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1709 cpu->kvm_vcpu_dirty = false;
1712 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1714 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1717 void kvm_cpu_clean_state(CPUState *cpu)
1719 cpu->kvm_vcpu_dirty = false;
1722 int kvm_cpu_exec(CPUState *cpu)
1724 struct kvm_run *run = cpu->kvm_run;
1725 int ret, run_ret;
1727 DPRINTF("kvm_cpu_exec()\n");
1729 if (kvm_arch_process_async_events(cpu)) {
1730 cpu->exit_request = 0;
1731 return EXCP_HLT;
1734 do {
1735 if (cpu->kvm_vcpu_dirty) {
1736 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1737 cpu->kvm_vcpu_dirty = false;
1740 kvm_arch_pre_run(cpu, run);
1741 if (cpu->exit_request) {
1742 DPRINTF("interrupt exit requested\n");
1744 * KVM requires us to reenter the kernel after IO exits to complete
1745 * instruction emulation. This self-signal will ensure that we
1746 * leave ASAP again.
1748 qemu_cpu_kick_self();
1750 qemu_mutex_unlock_iothread();
1752 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1754 qemu_mutex_lock_iothread();
1755 kvm_arch_post_run(cpu, run);
1757 if (run_ret < 0) {
1758 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1759 DPRINTF("io window exit\n");
1760 ret = EXCP_INTERRUPT;
1761 break;
1763 fprintf(stderr, "error: kvm run failed %s\n",
1764 strerror(-run_ret));
1765 ret = -1;
1766 break;
1769 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1770 switch (run->exit_reason) {
1771 case KVM_EXIT_IO:
1772 DPRINTF("handle_io\n");
1773 kvm_handle_io(run->io.port,
1774 (uint8_t *)run + run->io.data_offset,
1775 run->io.direction,
1776 run->io.size,
1777 run->io.count);
1778 ret = 0;
1779 break;
1780 case KVM_EXIT_MMIO:
1781 DPRINTF("handle_mmio\n");
1782 cpu_physical_memory_rw(run->mmio.phys_addr,
1783 run->mmio.data,
1784 run->mmio.len,
1785 run->mmio.is_write);
1786 ret = 0;
1787 break;
1788 case KVM_EXIT_IRQ_WINDOW_OPEN:
1789 DPRINTF("irq_window_open\n");
1790 ret = EXCP_INTERRUPT;
1791 break;
1792 case KVM_EXIT_SHUTDOWN:
1793 DPRINTF("shutdown\n");
1794 qemu_system_reset_request();
1795 ret = EXCP_INTERRUPT;
1796 break;
1797 case KVM_EXIT_UNKNOWN:
1798 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1799 (uint64_t)run->hw.hardware_exit_reason);
1800 ret = -1;
1801 break;
1802 case KVM_EXIT_INTERNAL_ERROR:
1803 ret = kvm_handle_internal_error(cpu, run);
1804 break;
1805 case KVM_EXIT_SYSTEM_EVENT:
1806 switch (run->system_event.type) {
1807 case KVM_SYSTEM_EVENT_SHUTDOWN:
1808 qemu_system_shutdown_request();
1809 ret = EXCP_INTERRUPT;
1810 break;
1811 case KVM_SYSTEM_EVENT_RESET:
1812 qemu_system_reset_request();
1813 ret = EXCP_INTERRUPT;
1814 break;
1815 default:
1816 DPRINTF("kvm_arch_handle_exit\n");
1817 ret = kvm_arch_handle_exit(cpu, run);
1818 break;
1820 break;
1821 default:
1822 DPRINTF("kvm_arch_handle_exit\n");
1823 ret = kvm_arch_handle_exit(cpu, run);
1824 break;
1826 } while (ret == 0);
1828 if (ret < 0) {
1829 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1830 vm_stop(RUN_STATE_INTERNAL_ERROR);
1833 cpu->exit_request = 0;
1834 return ret;
1837 int kvm_ioctl(KVMState *s, int type, ...)
1839 int ret;
1840 void *arg;
1841 va_list ap;
1843 va_start(ap, type);
1844 arg = va_arg(ap, void *);
1845 va_end(ap);
1847 trace_kvm_ioctl(type, arg);
1848 ret = ioctl(s->fd, type, arg);
1849 if (ret == -1) {
1850 ret = -errno;
1852 return ret;
1855 int kvm_vm_ioctl(KVMState *s, int type, ...)
1857 int ret;
1858 void *arg;
1859 va_list ap;
1861 va_start(ap, type);
1862 arg = va_arg(ap, void *);
1863 va_end(ap);
1865 trace_kvm_vm_ioctl(type, arg);
1866 ret = ioctl(s->vmfd, type, arg);
1867 if (ret == -1) {
1868 ret = -errno;
1870 return ret;
1873 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1875 int ret;
1876 void *arg;
1877 va_list ap;
1879 va_start(ap, type);
1880 arg = va_arg(ap, void *);
1881 va_end(ap);
1883 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1884 ret = ioctl(cpu->kvm_fd, type, arg);
1885 if (ret == -1) {
1886 ret = -errno;
1888 return ret;
1891 int kvm_device_ioctl(int fd, int type, ...)
1893 int ret;
1894 void *arg;
1895 va_list ap;
1897 va_start(ap, type);
1898 arg = va_arg(ap, void *);
1899 va_end(ap);
1901 trace_kvm_device_ioctl(fd, type, arg);
1902 ret = ioctl(fd, type, arg);
1903 if (ret == -1) {
1904 ret = -errno;
1906 return ret;
1909 int kvm_has_sync_mmu(void)
1911 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1914 int kvm_has_vcpu_events(void)
1916 return kvm_state->vcpu_events;
1919 int kvm_has_robust_singlestep(void)
1921 return kvm_state->robust_singlestep;
1924 int kvm_has_debugregs(void)
1926 return kvm_state->debugregs;
1929 int kvm_has_xsave(void)
1931 return kvm_state->xsave;
1934 int kvm_has_xcrs(void)
1936 return kvm_state->xcrs;
1939 int kvm_has_pit_state2(void)
1941 return kvm_state->pit_state2;
1944 int kvm_has_many_ioeventfds(void)
1946 if (!kvm_enabled()) {
1947 return 0;
1949 return kvm_state->many_ioeventfds;
1952 int kvm_has_gsi_routing(void)
1954 #ifdef KVM_CAP_IRQ_ROUTING
1955 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1956 #else
1957 return false;
1958 #endif
1961 int kvm_has_intx_set_mask(void)
1963 return kvm_state->intx_set_mask;
1966 void kvm_setup_guest_memory(void *start, size_t size)
1968 if (!kvm_has_sync_mmu()) {
1969 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1971 if (ret) {
1972 perror("qemu_madvise");
1973 fprintf(stderr,
1974 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1975 exit(1);
1980 #ifdef KVM_CAP_SET_GUEST_DEBUG
1981 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1982 target_ulong pc)
1984 struct kvm_sw_breakpoint *bp;
1986 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1987 if (bp->pc == pc) {
1988 return bp;
1991 return NULL;
1994 int kvm_sw_breakpoints_active(CPUState *cpu)
1996 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1999 struct kvm_set_guest_debug_data {
2000 struct kvm_guest_debug dbg;
2001 CPUState *cpu;
2002 int err;
2005 static void kvm_invoke_set_guest_debug(void *data)
2007 struct kvm_set_guest_debug_data *dbg_data = data;
2009 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2010 &dbg_data->dbg);
2013 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2015 struct kvm_set_guest_debug_data data;
2017 data.dbg.control = reinject_trap;
2019 if (cpu->singlestep_enabled) {
2020 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2022 kvm_arch_update_guest_debug(cpu, &data.dbg);
2023 data.cpu = cpu;
2025 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2026 return data.err;
2029 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2030 target_ulong len, int type)
2032 struct kvm_sw_breakpoint *bp;
2033 int err;
2035 if (type == GDB_BREAKPOINT_SW) {
2036 bp = kvm_find_sw_breakpoint(cpu, addr);
2037 if (bp) {
2038 bp->use_count++;
2039 return 0;
2042 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2043 if (!bp) {
2044 return -ENOMEM;
2047 bp->pc = addr;
2048 bp->use_count = 1;
2049 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2050 if (err) {
2051 g_free(bp);
2052 return err;
2055 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2056 } else {
2057 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2058 if (err) {
2059 return err;
2063 CPU_FOREACH(cpu) {
2064 err = kvm_update_guest_debug(cpu, 0);
2065 if (err) {
2066 return err;
2069 return 0;
2072 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2073 target_ulong len, int type)
2075 struct kvm_sw_breakpoint *bp;
2076 int err;
2078 if (type == GDB_BREAKPOINT_SW) {
2079 bp = kvm_find_sw_breakpoint(cpu, addr);
2080 if (!bp) {
2081 return -ENOENT;
2084 if (bp->use_count > 1) {
2085 bp->use_count--;
2086 return 0;
2089 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2090 if (err) {
2091 return err;
2094 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2095 g_free(bp);
2096 } else {
2097 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2098 if (err) {
2099 return err;
2103 CPU_FOREACH(cpu) {
2104 err = kvm_update_guest_debug(cpu, 0);
2105 if (err) {
2106 return err;
2109 return 0;
2112 void kvm_remove_all_breakpoints(CPUState *cpu)
2114 struct kvm_sw_breakpoint *bp, *next;
2115 KVMState *s = cpu->kvm_state;
2116 CPUState *tmpcpu;
2118 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2119 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2120 /* Try harder to find a CPU that currently sees the breakpoint. */
2121 CPU_FOREACH(tmpcpu) {
2122 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2123 break;
2127 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2128 g_free(bp);
2130 kvm_arch_remove_all_hw_breakpoints();
2132 CPU_FOREACH(cpu) {
2133 kvm_update_guest_debug(cpu, 0);
2137 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2139 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2141 return -EINVAL;
2144 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2145 target_ulong len, int type)
2147 return -EINVAL;
2150 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2151 target_ulong len, int type)
2153 return -EINVAL;
2156 void kvm_remove_all_breakpoints(CPUState *cpu)
2159 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2161 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2163 KVMState *s = kvm_state;
2164 struct kvm_signal_mask *sigmask;
2165 int r;
2167 if (!sigset) {
2168 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2171 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2173 sigmask->len = s->sigmask_len;
2174 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2175 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2176 g_free(sigmask);
2178 return r;
2180 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2182 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2185 int kvm_on_sigbus(int code, void *addr)
2187 return kvm_arch_on_sigbus(code, addr);
2190 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2192 int ret;
2193 struct kvm_create_device create_dev;
2195 create_dev.type = type;
2196 create_dev.fd = -1;
2197 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2199 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2200 return -ENOTSUP;
2203 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2204 if (ret) {
2205 return ret;
2208 return test ? 0 : create_dev.fd;
2211 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2213 struct kvm_one_reg reg;
2214 int r;
2216 reg.id = id;
2217 reg.addr = (uintptr_t) source;
2218 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2219 if (r) {
2220 trace_kvm_failed_reg_set(id, strerror(r));
2222 return r;
2225 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2227 struct kvm_one_reg reg;
2228 int r;
2230 reg.id = id;
2231 reg.addr = (uintptr_t) target;
2232 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2233 if (r) {
2234 trace_kvm_failed_reg_get(id, strerror(r));
2236 return r;
2239 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2241 AccelClass *ac = ACCEL_CLASS(oc);
2242 ac->name = "KVM";
2243 ac->init_machine = kvm_init;
2244 ac->allowed = &kvm_allowed;
2247 static const TypeInfo kvm_accel_type = {
2248 .name = TYPE_KVM_ACCEL,
2249 .parent = TYPE_ACCEL,
2250 .class_init = kvm_accel_class_init,
2251 .instance_size = sizeof(KVMState),
2254 static void kvm_type_init(void)
2256 type_register_static(&kvm_accel_type);
2259 type_init(kvm_type_init);