block/qapi: Factor out bdrv_query_bds_stats()
[qemu.git] / migration / rdma.c
blobbcae1e81b3e34fcd8cff3c41341ff92993b3a4cf
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "migration/migration.h"
17 #include "migration/qemu-file.h"
18 #include "exec/cpu-common.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/sockets.h"
22 #include "qemu/bitmap.h"
23 #include "qemu/coroutine.h"
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <rdma/rdma_cma.h>
28 #include "trace.h"
31 * Print and error on both the Monitor and the Log file.
33 #define ERROR(errp, fmt, ...) \
34 do { \
35 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
36 if (errp && (*(errp) == NULL)) { \
37 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
38 } \
39 } while (0)
41 #define RDMA_RESOLVE_TIMEOUT_MS 10000
43 /* Do not merge data if larger than this. */
44 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
45 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
47 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
50 * This is only for non-live state being migrated.
51 * Instead of RDMA_WRITE messages, we use RDMA_SEND
52 * messages for that state, which requires a different
53 * delivery design than main memory.
55 #define RDMA_SEND_INCREMENT 32768
58 * Maximum size infiniband SEND message
60 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
61 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
63 #define RDMA_CONTROL_VERSION_CURRENT 1
65 * Capabilities for negotiation.
67 #define RDMA_CAPABILITY_PIN_ALL 0x01
70 * Add the other flags above to this list of known capabilities
71 * as they are introduced.
73 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
75 #define CHECK_ERROR_STATE() \
76 do { \
77 if (rdma->error_state) { \
78 if (!rdma->error_reported) { \
79 error_report("RDMA is in an error state waiting migration" \
80 " to abort!"); \
81 rdma->error_reported = 1; \
82 } \
83 return rdma->error_state; \
84 } \
85 } while (0);
88 * A work request ID is 64-bits and we split up these bits
89 * into 3 parts:
91 * bits 0-15 : type of control message, 2^16
92 * bits 16-29: ram block index, 2^14
93 * bits 30-63: ram block chunk number, 2^34
95 * The last two bit ranges are only used for RDMA writes,
96 * in order to track their completion and potentially
97 * also track unregistration status of the message.
99 #define RDMA_WRID_TYPE_SHIFT 0UL
100 #define RDMA_WRID_BLOCK_SHIFT 16UL
101 #define RDMA_WRID_CHUNK_SHIFT 30UL
103 #define RDMA_WRID_TYPE_MASK \
104 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
106 #define RDMA_WRID_BLOCK_MASK \
107 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
109 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
112 * RDMA migration protocol:
113 * 1. RDMA Writes (data messages, i.e. RAM)
114 * 2. IB Send/Recv (control channel messages)
116 enum {
117 RDMA_WRID_NONE = 0,
118 RDMA_WRID_RDMA_WRITE = 1,
119 RDMA_WRID_SEND_CONTROL = 2000,
120 RDMA_WRID_RECV_CONTROL = 4000,
123 static const char *wrid_desc[] = {
124 [RDMA_WRID_NONE] = "NONE",
125 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
126 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
127 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
131 * Work request IDs for IB SEND messages only (not RDMA writes).
132 * This is used by the migration protocol to transmit
133 * control messages (such as device state and registration commands)
135 * We could use more WRs, but we have enough for now.
137 enum {
138 RDMA_WRID_READY = 0,
139 RDMA_WRID_DATA,
140 RDMA_WRID_CONTROL,
141 RDMA_WRID_MAX,
145 * SEND/RECV IB Control Messages.
147 enum {
148 RDMA_CONTROL_NONE = 0,
149 RDMA_CONTROL_ERROR,
150 RDMA_CONTROL_READY, /* ready to receive */
151 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
152 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
153 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
154 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
155 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
156 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
157 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
158 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
159 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
162 static const char *control_desc[] = {
163 [RDMA_CONTROL_NONE] = "NONE",
164 [RDMA_CONTROL_ERROR] = "ERROR",
165 [RDMA_CONTROL_READY] = "READY",
166 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
167 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
168 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
169 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
170 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
171 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
172 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
173 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
174 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
178 * Memory and MR structures used to represent an IB Send/Recv work request.
179 * This is *not* used for RDMA writes, only IB Send/Recv.
181 typedef struct {
182 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
183 struct ibv_mr *control_mr; /* registration metadata */
184 size_t control_len; /* length of the message */
185 uint8_t *control_curr; /* start of unconsumed bytes */
186 } RDMAWorkRequestData;
189 * Negotiate RDMA capabilities during connection-setup time.
191 typedef struct {
192 uint32_t version;
193 uint32_t flags;
194 } RDMACapabilities;
196 static void caps_to_network(RDMACapabilities *cap)
198 cap->version = htonl(cap->version);
199 cap->flags = htonl(cap->flags);
202 static void network_to_caps(RDMACapabilities *cap)
204 cap->version = ntohl(cap->version);
205 cap->flags = ntohl(cap->flags);
209 * Representation of a RAMBlock from an RDMA perspective.
210 * This is not transmitted, only local.
211 * This and subsequent structures cannot be linked lists
212 * because we're using a single IB message to transmit
213 * the information. It's small anyway, so a list is overkill.
215 typedef struct RDMALocalBlock {
216 char *block_name;
217 uint8_t *local_host_addr; /* local virtual address */
218 uint64_t remote_host_addr; /* remote virtual address */
219 uint64_t offset;
220 uint64_t length;
221 struct ibv_mr **pmr; /* MRs for chunk-level registration */
222 struct ibv_mr *mr; /* MR for non-chunk-level registration */
223 uint32_t *remote_keys; /* rkeys for chunk-level registration */
224 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
225 int index; /* which block are we */
226 unsigned int src_index; /* (Only used on dest) */
227 bool is_ram_block;
228 int nb_chunks;
229 unsigned long *transit_bitmap;
230 unsigned long *unregister_bitmap;
231 } RDMALocalBlock;
234 * Also represents a RAMblock, but only on the dest.
235 * This gets transmitted by the dest during connection-time
236 * to the source VM and then is used to populate the
237 * corresponding RDMALocalBlock with
238 * the information needed to perform the actual RDMA.
240 typedef struct QEMU_PACKED RDMADestBlock {
241 uint64_t remote_host_addr;
242 uint64_t offset;
243 uint64_t length;
244 uint32_t remote_rkey;
245 uint32_t padding;
246 } RDMADestBlock;
248 static uint64_t htonll(uint64_t v)
250 union { uint32_t lv[2]; uint64_t llv; } u;
251 u.lv[0] = htonl(v >> 32);
252 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
253 return u.llv;
256 static uint64_t ntohll(uint64_t v) {
257 union { uint32_t lv[2]; uint64_t llv; } u;
258 u.llv = v;
259 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
262 static void dest_block_to_network(RDMADestBlock *db)
264 db->remote_host_addr = htonll(db->remote_host_addr);
265 db->offset = htonll(db->offset);
266 db->length = htonll(db->length);
267 db->remote_rkey = htonl(db->remote_rkey);
270 static void network_to_dest_block(RDMADestBlock *db)
272 db->remote_host_addr = ntohll(db->remote_host_addr);
273 db->offset = ntohll(db->offset);
274 db->length = ntohll(db->length);
275 db->remote_rkey = ntohl(db->remote_rkey);
279 * Virtual address of the above structures used for transmitting
280 * the RAMBlock descriptions at connection-time.
281 * This structure is *not* transmitted.
283 typedef struct RDMALocalBlocks {
284 int nb_blocks;
285 bool init; /* main memory init complete */
286 RDMALocalBlock *block;
287 } RDMALocalBlocks;
290 * Main data structure for RDMA state.
291 * While there is only one copy of this structure being allocated right now,
292 * this is the place where one would start if you wanted to consider
293 * having more than one RDMA connection open at the same time.
295 typedef struct RDMAContext {
296 char *host;
297 int port;
299 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
302 * This is used by *_exchange_send() to figure out whether or not
303 * the initial "READY" message has already been received or not.
304 * This is because other functions may potentially poll() and detect
305 * the READY message before send() does, in which case we need to
306 * know if it completed.
308 int control_ready_expected;
310 /* number of outstanding writes */
311 int nb_sent;
313 /* store info about current buffer so that we can
314 merge it with future sends */
315 uint64_t current_addr;
316 uint64_t current_length;
317 /* index of ram block the current buffer belongs to */
318 int current_index;
319 /* index of the chunk in the current ram block */
320 int current_chunk;
322 bool pin_all;
325 * infiniband-specific variables for opening the device
326 * and maintaining connection state and so forth.
328 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
329 * cm_id->verbs, cm_id->channel, and cm_id->qp.
331 struct rdma_cm_id *cm_id; /* connection manager ID */
332 struct rdma_cm_id *listen_id;
333 bool connected;
335 struct ibv_context *verbs;
336 struct rdma_event_channel *channel;
337 struct ibv_qp *qp; /* queue pair */
338 struct ibv_comp_channel *comp_channel; /* completion channel */
339 struct ibv_pd *pd; /* protection domain */
340 struct ibv_cq *cq; /* completion queue */
343 * If a previous write failed (perhaps because of a failed
344 * memory registration, then do not attempt any future work
345 * and remember the error state.
347 int error_state;
348 int error_reported;
351 * Description of ram blocks used throughout the code.
353 RDMALocalBlocks local_ram_blocks;
354 RDMADestBlock *dest_blocks;
356 /* Index of the next RAMBlock received during block registration */
357 unsigned int next_src_index;
360 * Migration on *destination* started.
361 * Then use coroutine yield function.
362 * Source runs in a thread, so we don't care.
364 int migration_started_on_destination;
366 int total_registrations;
367 int total_writes;
369 int unregister_current, unregister_next;
370 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
372 GHashTable *blockmap;
373 } RDMAContext;
376 * Interface to the rest of the migration call stack.
378 typedef struct QEMUFileRDMA {
379 RDMAContext *rdma;
380 size_t len;
381 void *file;
382 } QEMUFileRDMA;
385 * Main structure for IB Send/Recv control messages.
386 * This gets prepended at the beginning of every Send/Recv.
388 typedef struct QEMU_PACKED {
389 uint32_t len; /* Total length of data portion */
390 uint32_t type; /* which control command to perform */
391 uint32_t repeat; /* number of commands in data portion of same type */
392 uint32_t padding;
393 } RDMAControlHeader;
395 static void control_to_network(RDMAControlHeader *control)
397 control->type = htonl(control->type);
398 control->len = htonl(control->len);
399 control->repeat = htonl(control->repeat);
402 static void network_to_control(RDMAControlHeader *control)
404 control->type = ntohl(control->type);
405 control->len = ntohl(control->len);
406 control->repeat = ntohl(control->repeat);
410 * Register a single Chunk.
411 * Information sent by the source VM to inform the dest
412 * to register an single chunk of memory before we can perform
413 * the actual RDMA operation.
415 typedef struct QEMU_PACKED {
416 union QEMU_PACKED {
417 uint64_t current_addr; /* offset into the ram_addr_t space */
418 uint64_t chunk; /* chunk to lookup if unregistering */
419 } key;
420 uint32_t current_index; /* which ramblock the chunk belongs to */
421 uint32_t padding;
422 uint64_t chunks; /* how many sequential chunks to register */
423 } RDMARegister;
425 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
427 RDMALocalBlock *local_block;
428 local_block = &rdma->local_ram_blocks.block[reg->current_index];
430 if (local_block->is_ram_block) {
432 * current_addr as passed in is an address in the local ram_addr_t
433 * space, we need to translate this for the destination
435 reg->key.current_addr -= local_block->offset;
436 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
438 reg->key.current_addr = htonll(reg->key.current_addr);
439 reg->current_index = htonl(reg->current_index);
440 reg->chunks = htonll(reg->chunks);
443 static void network_to_register(RDMARegister *reg)
445 reg->key.current_addr = ntohll(reg->key.current_addr);
446 reg->current_index = ntohl(reg->current_index);
447 reg->chunks = ntohll(reg->chunks);
450 typedef struct QEMU_PACKED {
451 uint32_t value; /* if zero, we will madvise() */
452 uint32_t block_idx; /* which ram block index */
453 uint64_t offset; /* Address in remote ram_addr_t space */
454 uint64_t length; /* length of the chunk */
455 } RDMACompress;
457 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
459 comp->value = htonl(comp->value);
461 * comp->offset as passed in is an address in the local ram_addr_t
462 * space, we need to translate this for the destination
464 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
465 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
466 comp->block_idx = htonl(comp->block_idx);
467 comp->offset = htonll(comp->offset);
468 comp->length = htonll(comp->length);
471 static void network_to_compress(RDMACompress *comp)
473 comp->value = ntohl(comp->value);
474 comp->block_idx = ntohl(comp->block_idx);
475 comp->offset = ntohll(comp->offset);
476 comp->length = ntohll(comp->length);
480 * The result of the dest's memory registration produces an "rkey"
481 * which the source VM must reference in order to perform
482 * the RDMA operation.
484 typedef struct QEMU_PACKED {
485 uint32_t rkey;
486 uint32_t padding;
487 uint64_t host_addr;
488 } RDMARegisterResult;
490 static void result_to_network(RDMARegisterResult *result)
492 result->rkey = htonl(result->rkey);
493 result->host_addr = htonll(result->host_addr);
496 static void network_to_result(RDMARegisterResult *result)
498 result->rkey = ntohl(result->rkey);
499 result->host_addr = ntohll(result->host_addr);
502 const char *print_wrid(int wrid);
503 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
504 uint8_t *data, RDMAControlHeader *resp,
505 int *resp_idx,
506 int (*callback)(RDMAContext *rdma));
508 static inline uint64_t ram_chunk_index(const uint8_t *start,
509 const uint8_t *host)
511 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
514 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
515 uint64_t i)
517 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
518 (i << RDMA_REG_CHUNK_SHIFT));
521 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
522 uint64_t i)
524 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
525 (1UL << RDMA_REG_CHUNK_SHIFT);
527 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
528 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
531 return result;
534 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
535 void *host_addr,
536 ram_addr_t block_offset, uint64_t length)
538 RDMALocalBlocks *local = &rdma->local_ram_blocks;
539 RDMALocalBlock *block;
540 RDMALocalBlock *old = local->block;
542 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
544 if (local->nb_blocks) {
545 int x;
547 if (rdma->blockmap) {
548 for (x = 0; x < local->nb_blocks; x++) {
549 g_hash_table_remove(rdma->blockmap,
550 (void *)(uintptr_t)old[x].offset);
551 g_hash_table_insert(rdma->blockmap,
552 (void *)(uintptr_t)old[x].offset,
553 &local->block[x]);
556 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
557 g_free(old);
560 block = &local->block[local->nb_blocks];
562 block->block_name = g_strdup(block_name);
563 block->local_host_addr = host_addr;
564 block->offset = block_offset;
565 block->length = length;
566 block->index = local->nb_blocks;
567 block->src_index = ~0U; /* Filled in by the receipt of the block list */
568 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
569 block->transit_bitmap = bitmap_new(block->nb_chunks);
570 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
571 block->unregister_bitmap = bitmap_new(block->nb_chunks);
572 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
573 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
575 block->is_ram_block = local->init ? false : true;
577 if (rdma->blockmap) {
578 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
581 trace_rdma_add_block(block_name, local->nb_blocks,
582 (uintptr_t) block->local_host_addr,
583 block->offset, block->length,
584 (uintptr_t) (block->local_host_addr + block->length),
585 BITS_TO_LONGS(block->nb_chunks) *
586 sizeof(unsigned long) * 8,
587 block->nb_chunks);
589 local->nb_blocks++;
591 return 0;
595 * Memory regions need to be registered with the device and queue pairs setup
596 * in advanced before the migration starts. This tells us where the RAM blocks
597 * are so that we can register them individually.
599 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
600 ram_addr_t block_offset, ram_addr_t length, void *opaque)
602 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
606 * Identify the RAMBlocks and their quantity. They will be references to
607 * identify chunk boundaries inside each RAMBlock and also be referenced
608 * during dynamic page registration.
610 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
612 RDMALocalBlocks *local = &rdma->local_ram_blocks;
614 assert(rdma->blockmap == NULL);
615 memset(local, 0, sizeof *local);
616 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
617 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
618 rdma->dest_blocks = g_new0(RDMADestBlock,
619 rdma->local_ram_blocks.nb_blocks);
620 local->init = true;
621 return 0;
625 * Note: If used outside of cleanup, the caller must ensure that the destination
626 * block structures are also updated
628 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
630 RDMALocalBlocks *local = &rdma->local_ram_blocks;
631 RDMALocalBlock *old = local->block;
632 int x;
634 if (rdma->blockmap) {
635 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
637 if (block->pmr) {
638 int j;
640 for (j = 0; j < block->nb_chunks; j++) {
641 if (!block->pmr[j]) {
642 continue;
644 ibv_dereg_mr(block->pmr[j]);
645 rdma->total_registrations--;
647 g_free(block->pmr);
648 block->pmr = NULL;
651 if (block->mr) {
652 ibv_dereg_mr(block->mr);
653 rdma->total_registrations--;
654 block->mr = NULL;
657 g_free(block->transit_bitmap);
658 block->transit_bitmap = NULL;
660 g_free(block->unregister_bitmap);
661 block->unregister_bitmap = NULL;
663 g_free(block->remote_keys);
664 block->remote_keys = NULL;
666 g_free(block->block_name);
667 block->block_name = NULL;
669 if (rdma->blockmap) {
670 for (x = 0; x < local->nb_blocks; x++) {
671 g_hash_table_remove(rdma->blockmap,
672 (void *)(uintptr_t)old[x].offset);
676 if (local->nb_blocks > 1) {
678 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
680 if (block->index) {
681 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
684 if (block->index < (local->nb_blocks - 1)) {
685 memcpy(local->block + block->index, old + (block->index + 1),
686 sizeof(RDMALocalBlock) *
687 (local->nb_blocks - (block->index + 1)));
689 } else {
690 assert(block == local->block);
691 local->block = NULL;
694 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
695 block->offset, block->length,
696 (uintptr_t)(block->local_host_addr + block->length),
697 BITS_TO_LONGS(block->nb_chunks) *
698 sizeof(unsigned long) * 8, block->nb_chunks);
700 g_free(old);
702 local->nb_blocks--;
704 if (local->nb_blocks && rdma->blockmap) {
705 for (x = 0; x < local->nb_blocks; x++) {
706 g_hash_table_insert(rdma->blockmap,
707 (void *)(uintptr_t)local->block[x].offset,
708 &local->block[x]);
712 return 0;
716 * Put in the log file which RDMA device was opened and the details
717 * associated with that device.
719 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
721 struct ibv_port_attr port;
723 if (ibv_query_port(verbs, 1, &port)) {
724 error_report("Failed to query port information");
725 return;
728 printf("%s RDMA Device opened: kernel name %s "
729 "uverbs device name %s, "
730 "infiniband_verbs class device path %s, "
731 "infiniband class device path %s, "
732 "transport: (%d) %s\n",
733 who,
734 verbs->device->name,
735 verbs->device->dev_name,
736 verbs->device->dev_path,
737 verbs->device->ibdev_path,
738 port.link_layer,
739 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
740 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
741 ? "Ethernet" : "Unknown"));
745 * Put in the log file the RDMA gid addressing information,
746 * useful for folks who have trouble understanding the
747 * RDMA device hierarchy in the kernel.
749 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
751 char sgid[33];
752 char dgid[33];
753 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
754 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
755 trace_qemu_rdma_dump_gid(who, sgid, dgid);
759 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
760 * We will try the next addrinfo struct, and fail if there are
761 * no other valid addresses to bind against.
763 * If user is listening on '[::]', then we will not have a opened a device
764 * yet and have no way of verifying if the device is RoCE or not.
766 * In this case, the source VM will throw an error for ALL types of
767 * connections (both IPv4 and IPv6) if the destination machine does not have
768 * a regular infiniband network available for use.
770 * The only way to guarantee that an error is thrown for broken kernels is
771 * for the management software to choose a *specific* interface at bind time
772 * and validate what time of hardware it is.
774 * Unfortunately, this puts the user in a fix:
776 * If the source VM connects with an IPv4 address without knowing that the
777 * destination has bound to '[::]' the migration will unconditionally fail
778 * unless the management software is explicitly listening on the IPv4
779 * address while using a RoCE-based device.
781 * If the source VM connects with an IPv6 address, then we're OK because we can
782 * throw an error on the source (and similarly on the destination).
784 * But in mixed environments, this will be broken for a while until it is fixed
785 * inside linux.
787 * We do provide a *tiny* bit of help in this function: We can list all of the
788 * devices in the system and check to see if all the devices are RoCE or
789 * Infiniband.
791 * If we detect that we have a *pure* RoCE environment, then we can safely
792 * thrown an error even if the management software has specified '[::]' as the
793 * bind address.
795 * However, if there is are multiple hetergeneous devices, then we cannot make
796 * this assumption and the user just has to be sure they know what they are
797 * doing.
799 * Patches are being reviewed on linux-rdma.
801 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
803 struct ibv_port_attr port_attr;
805 /* This bug only exists in linux, to our knowledge. */
806 #ifdef CONFIG_LINUX
809 * Verbs are only NULL if management has bound to '[::]'.
811 * Let's iterate through all the devices and see if there any pure IB
812 * devices (non-ethernet).
814 * If not, then we can safely proceed with the migration.
815 * Otherwise, there are no guarantees until the bug is fixed in linux.
817 if (!verbs) {
818 int num_devices, x;
819 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
820 bool roce_found = false;
821 bool ib_found = false;
823 for (x = 0; x < num_devices; x++) {
824 verbs = ibv_open_device(dev_list[x]);
825 if (!verbs) {
826 if (errno == EPERM) {
827 continue;
828 } else {
829 return -EINVAL;
833 if (ibv_query_port(verbs, 1, &port_attr)) {
834 ibv_close_device(verbs);
835 ERROR(errp, "Could not query initial IB port");
836 return -EINVAL;
839 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
840 ib_found = true;
841 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
842 roce_found = true;
845 ibv_close_device(verbs);
849 if (roce_found) {
850 if (ib_found) {
851 fprintf(stderr, "WARN: migrations may fail:"
852 " IPv6 over RoCE / iWARP in linux"
853 " is broken. But since you appear to have a"
854 " mixed RoCE / IB environment, be sure to only"
855 " migrate over the IB fabric until the kernel "
856 " fixes the bug.\n");
857 } else {
858 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
859 " and your management software has specified '[::]'"
860 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
861 return -ENONET;
865 return 0;
869 * If we have a verbs context, that means that some other than '[::]' was
870 * used by the management software for binding. In which case we can
871 * actually warn the user about a potentially broken kernel.
874 /* IB ports start with 1, not 0 */
875 if (ibv_query_port(verbs, 1, &port_attr)) {
876 ERROR(errp, "Could not query initial IB port");
877 return -EINVAL;
880 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
881 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
882 "(but patches on linux-rdma in progress)");
883 return -ENONET;
886 #endif
888 return 0;
892 * Figure out which RDMA device corresponds to the requested IP hostname
893 * Also create the initial connection manager identifiers for opening
894 * the connection.
896 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
898 int ret;
899 struct rdma_addrinfo *res;
900 char port_str[16];
901 struct rdma_cm_event *cm_event;
902 char ip[40] = "unknown";
903 struct rdma_addrinfo *e;
905 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
906 ERROR(errp, "RDMA hostname has not been set");
907 return -EINVAL;
910 /* create CM channel */
911 rdma->channel = rdma_create_event_channel();
912 if (!rdma->channel) {
913 ERROR(errp, "could not create CM channel");
914 return -EINVAL;
917 /* create CM id */
918 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
919 if (ret) {
920 ERROR(errp, "could not create channel id");
921 goto err_resolve_create_id;
924 snprintf(port_str, 16, "%d", rdma->port);
925 port_str[15] = '\0';
927 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
928 if (ret < 0) {
929 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
930 goto err_resolve_get_addr;
933 for (e = res; e != NULL; e = e->ai_next) {
934 inet_ntop(e->ai_family,
935 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
936 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
938 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
939 RDMA_RESOLVE_TIMEOUT_MS);
940 if (!ret) {
941 if (e->ai_family == AF_INET6) {
942 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
943 if (ret) {
944 continue;
947 goto route;
951 ERROR(errp, "could not resolve address %s", rdma->host);
952 goto err_resolve_get_addr;
954 route:
955 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
957 ret = rdma_get_cm_event(rdma->channel, &cm_event);
958 if (ret) {
959 ERROR(errp, "could not perform event_addr_resolved");
960 goto err_resolve_get_addr;
963 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
964 ERROR(errp, "result not equal to event_addr_resolved %s",
965 rdma_event_str(cm_event->event));
966 perror("rdma_resolve_addr");
967 rdma_ack_cm_event(cm_event);
968 ret = -EINVAL;
969 goto err_resolve_get_addr;
971 rdma_ack_cm_event(cm_event);
973 /* resolve route */
974 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
975 if (ret) {
976 ERROR(errp, "could not resolve rdma route");
977 goto err_resolve_get_addr;
980 ret = rdma_get_cm_event(rdma->channel, &cm_event);
981 if (ret) {
982 ERROR(errp, "could not perform event_route_resolved");
983 goto err_resolve_get_addr;
985 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
986 ERROR(errp, "result not equal to event_route_resolved: %s",
987 rdma_event_str(cm_event->event));
988 rdma_ack_cm_event(cm_event);
989 ret = -EINVAL;
990 goto err_resolve_get_addr;
992 rdma_ack_cm_event(cm_event);
993 rdma->verbs = rdma->cm_id->verbs;
994 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
995 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
996 return 0;
998 err_resolve_get_addr:
999 rdma_destroy_id(rdma->cm_id);
1000 rdma->cm_id = NULL;
1001 err_resolve_create_id:
1002 rdma_destroy_event_channel(rdma->channel);
1003 rdma->channel = NULL;
1004 return ret;
1008 * Create protection domain and completion queues
1010 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1012 /* allocate pd */
1013 rdma->pd = ibv_alloc_pd(rdma->verbs);
1014 if (!rdma->pd) {
1015 error_report("failed to allocate protection domain");
1016 return -1;
1019 /* create completion channel */
1020 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1021 if (!rdma->comp_channel) {
1022 error_report("failed to allocate completion channel");
1023 goto err_alloc_pd_cq;
1027 * Completion queue can be filled by both read and write work requests,
1028 * so must reflect the sum of both possible queue sizes.
1030 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1031 NULL, rdma->comp_channel, 0);
1032 if (!rdma->cq) {
1033 error_report("failed to allocate completion queue");
1034 goto err_alloc_pd_cq;
1037 return 0;
1039 err_alloc_pd_cq:
1040 if (rdma->pd) {
1041 ibv_dealloc_pd(rdma->pd);
1043 if (rdma->comp_channel) {
1044 ibv_destroy_comp_channel(rdma->comp_channel);
1046 rdma->pd = NULL;
1047 rdma->comp_channel = NULL;
1048 return -1;
1053 * Create queue pairs.
1055 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1057 struct ibv_qp_init_attr attr = { 0 };
1058 int ret;
1060 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1061 attr.cap.max_recv_wr = 3;
1062 attr.cap.max_send_sge = 1;
1063 attr.cap.max_recv_sge = 1;
1064 attr.send_cq = rdma->cq;
1065 attr.recv_cq = rdma->cq;
1066 attr.qp_type = IBV_QPT_RC;
1068 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1069 if (ret) {
1070 return -1;
1073 rdma->qp = rdma->cm_id->qp;
1074 return 0;
1077 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1079 int i;
1080 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1082 for (i = 0; i < local->nb_blocks; i++) {
1083 local->block[i].mr =
1084 ibv_reg_mr(rdma->pd,
1085 local->block[i].local_host_addr,
1086 local->block[i].length,
1087 IBV_ACCESS_LOCAL_WRITE |
1088 IBV_ACCESS_REMOTE_WRITE
1090 if (!local->block[i].mr) {
1091 perror("Failed to register local dest ram block!\n");
1092 break;
1094 rdma->total_registrations++;
1097 if (i >= local->nb_blocks) {
1098 return 0;
1101 for (i--; i >= 0; i--) {
1102 ibv_dereg_mr(local->block[i].mr);
1103 rdma->total_registrations--;
1106 return -1;
1111 * Find the ram block that corresponds to the page requested to be
1112 * transmitted by QEMU.
1114 * Once the block is found, also identify which 'chunk' within that
1115 * block that the page belongs to.
1117 * This search cannot fail or the migration will fail.
1119 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1120 uintptr_t block_offset,
1121 uint64_t offset,
1122 uint64_t length,
1123 uint64_t *block_index,
1124 uint64_t *chunk_index)
1126 uint64_t current_addr = block_offset + offset;
1127 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1128 (void *) block_offset);
1129 assert(block);
1130 assert(current_addr >= block->offset);
1131 assert((current_addr + length) <= (block->offset + block->length));
1133 *block_index = block->index;
1134 *chunk_index = ram_chunk_index(block->local_host_addr,
1135 block->local_host_addr + (current_addr - block->offset));
1137 return 0;
1141 * Register a chunk with IB. If the chunk was already registered
1142 * previously, then skip.
1144 * Also return the keys associated with the registration needed
1145 * to perform the actual RDMA operation.
1147 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1148 RDMALocalBlock *block, uintptr_t host_addr,
1149 uint32_t *lkey, uint32_t *rkey, int chunk,
1150 uint8_t *chunk_start, uint8_t *chunk_end)
1152 if (block->mr) {
1153 if (lkey) {
1154 *lkey = block->mr->lkey;
1156 if (rkey) {
1157 *rkey = block->mr->rkey;
1159 return 0;
1162 /* allocate memory to store chunk MRs */
1163 if (!block->pmr) {
1164 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1168 * If 'rkey', then we're the destination, so grant access to the source.
1170 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1172 if (!block->pmr[chunk]) {
1173 uint64_t len = chunk_end - chunk_start;
1175 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1177 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1178 chunk_start, len,
1179 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1180 IBV_ACCESS_REMOTE_WRITE) : 0));
1182 if (!block->pmr[chunk]) {
1183 perror("Failed to register chunk!");
1184 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1185 " start %" PRIuPTR " end %" PRIuPTR
1186 " host %" PRIuPTR
1187 " local %" PRIuPTR " registrations: %d\n",
1188 block->index, chunk, (uintptr_t)chunk_start,
1189 (uintptr_t)chunk_end, host_addr,
1190 (uintptr_t)block->local_host_addr,
1191 rdma->total_registrations);
1192 return -1;
1194 rdma->total_registrations++;
1197 if (lkey) {
1198 *lkey = block->pmr[chunk]->lkey;
1200 if (rkey) {
1201 *rkey = block->pmr[chunk]->rkey;
1203 return 0;
1207 * Register (at connection time) the memory used for control
1208 * channel messages.
1210 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1212 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1213 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1214 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1215 if (rdma->wr_data[idx].control_mr) {
1216 rdma->total_registrations++;
1217 return 0;
1219 error_report("qemu_rdma_reg_control failed");
1220 return -1;
1223 const char *print_wrid(int wrid)
1225 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1226 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1228 return wrid_desc[wrid];
1232 * RDMA requires memory registration (mlock/pinning), but this is not good for
1233 * overcommitment.
1235 * In preparation for the future where LRU information or workload-specific
1236 * writable writable working set memory access behavior is available to QEMU
1237 * it would be nice to have in place the ability to UN-register/UN-pin
1238 * particular memory regions from the RDMA hardware when it is determine that
1239 * those regions of memory will likely not be accessed again in the near future.
1241 * While we do not yet have such information right now, the following
1242 * compile-time option allows us to perform a non-optimized version of this
1243 * behavior.
1245 * By uncommenting this option, you will cause *all* RDMA transfers to be
1246 * unregistered immediately after the transfer completes on both sides of the
1247 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1249 * This will have a terrible impact on migration performance, so until future
1250 * workload information or LRU information is available, do not attempt to use
1251 * this feature except for basic testing.
1253 //#define RDMA_UNREGISTRATION_EXAMPLE
1256 * Perform a non-optimized memory unregistration after every transfer
1257 * for demonstration purposes, only if pin-all is not requested.
1259 * Potential optimizations:
1260 * 1. Start a new thread to run this function continuously
1261 - for bit clearing
1262 - and for receipt of unregister messages
1263 * 2. Use an LRU.
1264 * 3. Use workload hints.
1266 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1268 while (rdma->unregistrations[rdma->unregister_current]) {
1269 int ret;
1270 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1271 uint64_t chunk =
1272 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1273 uint64_t index =
1274 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1275 RDMALocalBlock *block =
1276 &(rdma->local_ram_blocks.block[index]);
1277 RDMARegister reg = { .current_index = index };
1278 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1280 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1281 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1282 .repeat = 1,
1285 trace_qemu_rdma_unregister_waiting_proc(chunk,
1286 rdma->unregister_current);
1288 rdma->unregistrations[rdma->unregister_current] = 0;
1289 rdma->unregister_current++;
1291 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1292 rdma->unregister_current = 0;
1297 * Unregistration is speculative (because migration is single-threaded
1298 * and we cannot break the protocol's inifinband message ordering).
1299 * Thus, if the memory is currently being used for transmission,
1300 * then abort the attempt to unregister and try again
1301 * later the next time a completion is received for this memory.
1303 clear_bit(chunk, block->unregister_bitmap);
1305 if (test_bit(chunk, block->transit_bitmap)) {
1306 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1307 continue;
1310 trace_qemu_rdma_unregister_waiting_send(chunk);
1312 ret = ibv_dereg_mr(block->pmr[chunk]);
1313 block->pmr[chunk] = NULL;
1314 block->remote_keys[chunk] = 0;
1316 if (ret != 0) {
1317 perror("unregistration chunk failed");
1318 return -ret;
1320 rdma->total_registrations--;
1322 reg.key.chunk = chunk;
1323 register_to_network(rdma, &reg);
1324 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1325 &resp, NULL, NULL);
1326 if (ret < 0) {
1327 return ret;
1330 trace_qemu_rdma_unregister_waiting_complete(chunk);
1333 return 0;
1336 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1337 uint64_t chunk)
1339 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1341 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1342 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1344 return result;
1348 * Set bit for unregistration in the next iteration.
1349 * We cannot transmit right here, but will unpin later.
1351 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1352 uint64_t chunk, uint64_t wr_id)
1354 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1355 error_report("rdma migration: queue is full");
1356 } else {
1357 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1359 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1360 trace_qemu_rdma_signal_unregister_append(chunk,
1361 rdma->unregister_next);
1363 rdma->unregistrations[rdma->unregister_next++] =
1364 qemu_rdma_make_wrid(wr_id, index, chunk);
1366 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1367 rdma->unregister_next = 0;
1369 } else {
1370 trace_qemu_rdma_signal_unregister_already(chunk);
1376 * Consult the connection manager to see a work request
1377 * (of any kind) has completed.
1378 * Return the work request ID that completed.
1380 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1381 uint32_t *byte_len)
1383 int ret;
1384 struct ibv_wc wc;
1385 uint64_t wr_id;
1387 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1389 if (!ret) {
1390 *wr_id_out = RDMA_WRID_NONE;
1391 return 0;
1394 if (ret < 0) {
1395 error_report("ibv_poll_cq return %d", ret);
1396 return ret;
1399 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1401 if (wc.status != IBV_WC_SUCCESS) {
1402 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1403 wc.status, ibv_wc_status_str(wc.status));
1404 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1406 return -1;
1409 if (rdma->control_ready_expected &&
1410 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1411 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1412 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1413 rdma->control_ready_expected = 0;
1416 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1417 uint64_t chunk =
1418 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1419 uint64_t index =
1420 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1421 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1423 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1424 index, chunk, block->local_host_addr,
1425 (void *)(uintptr_t)block->remote_host_addr);
1427 clear_bit(chunk, block->transit_bitmap);
1429 if (rdma->nb_sent > 0) {
1430 rdma->nb_sent--;
1433 if (!rdma->pin_all) {
1435 * FYI: If one wanted to signal a specific chunk to be unregistered
1436 * using LRU or workload-specific information, this is the function
1437 * you would call to do so. That chunk would then get asynchronously
1438 * unregistered later.
1440 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1441 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1442 #endif
1444 } else {
1445 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1448 *wr_id_out = wc.wr_id;
1449 if (byte_len) {
1450 *byte_len = wc.byte_len;
1453 return 0;
1457 * Block until the next work request has completed.
1459 * First poll to see if a work request has already completed,
1460 * otherwise block.
1462 * If we encounter completed work requests for IDs other than
1463 * the one we're interested in, then that's generally an error.
1465 * The only exception is actual RDMA Write completions. These
1466 * completions only need to be recorded, but do not actually
1467 * need further processing.
1469 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1470 uint32_t *byte_len)
1472 int num_cq_events = 0, ret = 0;
1473 struct ibv_cq *cq;
1474 void *cq_ctx;
1475 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1477 if (ibv_req_notify_cq(rdma->cq, 0)) {
1478 return -1;
1480 /* poll cq first */
1481 while (wr_id != wrid_requested) {
1482 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1483 if (ret < 0) {
1484 return ret;
1487 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1489 if (wr_id == RDMA_WRID_NONE) {
1490 break;
1492 if (wr_id != wrid_requested) {
1493 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1494 wrid_requested, print_wrid(wr_id), wr_id);
1498 if (wr_id == wrid_requested) {
1499 return 0;
1502 while (1) {
1504 * Coroutine doesn't start until process_incoming_migration()
1505 * so don't yield unless we know we're running inside of a coroutine.
1507 if (rdma->migration_started_on_destination) {
1508 yield_until_fd_readable(rdma->comp_channel->fd);
1511 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1512 perror("ibv_get_cq_event");
1513 goto err_block_for_wrid;
1516 num_cq_events++;
1518 if (ibv_req_notify_cq(cq, 0)) {
1519 goto err_block_for_wrid;
1522 while (wr_id != wrid_requested) {
1523 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1524 if (ret < 0) {
1525 goto err_block_for_wrid;
1528 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1530 if (wr_id == RDMA_WRID_NONE) {
1531 break;
1533 if (wr_id != wrid_requested) {
1534 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1535 wrid_requested, print_wrid(wr_id), wr_id);
1539 if (wr_id == wrid_requested) {
1540 goto success_block_for_wrid;
1544 success_block_for_wrid:
1545 if (num_cq_events) {
1546 ibv_ack_cq_events(cq, num_cq_events);
1548 return 0;
1550 err_block_for_wrid:
1551 if (num_cq_events) {
1552 ibv_ack_cq_events(cq, num_cq_events);
1554 return ret;
1558 * Post a SEND message work request for the control channel
1559 * containing some data and block until the post completes.
1561 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1562 RDMAControlHeader *head)
1564 int ret = 0;
1565 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1566 struct ibv_send_wr *bad_wr;
1567 struct ibv_sge sge = {
1568 .addr = (uintptr_t)(wr->control),
1569 .length = head->len + sizeof(RDMAControlHeader),
1570 .lkey = wr->control_mr->lkey,
1572 struct ibv_send_wr send_wr = {
1573 .wr_id = RDMA_WRID_SEND_CONTROL,
1574 .opcode = IBV_WR_SEND,
1575 .send_flags = IBV_SEND_SIGNALED,
1576 .sg_list = &sge,
1577 .num_sge = 1,
1580 trace_qemu_rdma_post_send_control(control_desc[head->type]);
1583 * We don't actually need to do a memcpy() in here if we used
1584 * the "sge" properly, but since we're only sending control messages
1585 * (not RAM in a performance-critical path), then its OK for now.
1587 * The copy makes the RDMAControlHeader simpler to manipulate
1588 * for the time being.
1590 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1591 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1592 control_to_network((void *) wr->control);
1594 if (buf) {
1595 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1599 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1601 if (ret > 0) {
1602 error_report("Failed to use post IB SEND for control");
1603 return -ret;
1606 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1607 if (ret < 0) {
1608 error_report("rdma migration: send polling control error");
1611 return ret;
1615 * Post a RECV work request in anticipation of some future receipt
1616 * of data on the control channel.
1618 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1620 struct ibv_recv_wr *bad_wr;
1621 struct ibv_sge sge = {
1622 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1623 .length = RDMA_CONTROL_MAX_BUFFER,
1624 .lkey = rdma->wr_data[idx].control_mr->lkey,
1627 struct ibv_recv_wr recv_wr = {
1628 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1629 .sg_list = &sge,
1630 .num_sge = 1,
1634 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1635 return -1;
1638 return 0;
1642 * Block and wait for a RECV control channel message to arrive.
1644 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1645 RDMAControlHeader *head, int expecting, int idx)
1647 uint32_t byte_len;
1648 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1649 &byte_len);
1651 if (ret < 0) {
1652 error_report("rdma migration: recv polling control error!");
1653 return ret;
1656 network_to_control((void *) rdma->wr_data[idx].control);
1657 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1659 trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1661 if (expecting == RDMA_CONTROL_NONE) {
1662 trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1663 head->type);
1664 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1665 error_report("Was expecting a %s (%d) control message"
1666 ", but got: %s (%d), length: %d",
1667 control_desc[expecting], expecting,
1668 control_desc[head->type], head->type, head->len);
1669 return -EIO;
1671 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1672 error_report("too long length: %d", head->len);
1673 return -EINVAL;
1675 if (sizeof(*head) + head->len != byte_len) {
1676 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1677 return -EINVAL;
1680 return 0;
1684 * When a RECV work request has completed, the work request's
1685 * buffer is pointed at the header.
1687 * This will advance the pointer to the data portion
1688 * of the control message of the work request's buffer that
1689 * was populated after the work request finished.
1691 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1692 RDMAControlHeader *head)
1694 rdma->wr_data[idx].control_len = head->len;
1695 rdma->wr_data[idx].control_curr =
1696 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1700 * This is an 'atomic' high-level operation to deliver a single, unified
1701 * control-channel message.
1703 * Additionally, if the user is expecting some kind of reply to this message,
1704 * they can request a 'resp' response message be filled in by posting an
1705 * additional work request on behalf of the user and waiting for an additional
1706 * completion.
1708 * The extra (optional) response is used during registration to us from having
1709 * to perform an *additional* exchange of message just to provide a response by
1710 * instead piggy-backing on the acknowledgement.
1712 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1713 uint8_t *data, RDMAControlHeader *resp,
1714 int *resp_idx,
1715 int (*callback)(RDMAContext *rdma))
1717 int ret = 0;
1720 * Wait until the dest is ready before attempting to deliver the message
1721 * by waiting for a READY message.
1723 if (rdma->control_ready_expected) {
1724 RDMAControlHeader resp;
1725 ret = qemu_rdma_exchange_get_response(rdma,
1726 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1727 if (ret < 0) {
1728 return ret;
1733 * If the user is expecting a response, post a WR in anticipation of it.
1735 if (resp) {
1736 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1737 if (ret) {
1738 error_report("rdma migration: error posting"
1739 " extra control recv for anticipated result!");
1740 return ret;
1745 * Post a WR to replace the one we just consumed for the READY message.
1747 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1748 if (ret) {
1749 error_report("rdma migration: error posting first control recv!");
1750 return ret;
1754 * Deliver the control message that was requested.
1756 ret = qemu_rdma_post_send_control(rdma, data, head);
1758 if (ret < 0) {
1759 error_report("Failed to send control buffer!");
1760 return ret;
1764 * If we're expecting a response, block and wait for it.
1766 if (resp) {
1767 if (callback) {
1768 trace_qemu_rdma_exchange_send_issue_callback();
1769 ret = callback(rdma);
1770 if (ret < 0) {
1771 return ret;
1775 trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1776 ret = qemu_rdma_exchange_get_response(rdma, resp,
1777 resp->type, RDMA_WRID_DATA);
1779 if (ret < 0) {
1780 return ret;
1783 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1784 if (resp_idx) {
1785 *resp_idx = RDMA_WRID_DATA;
1787 trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1790 rdma->control_ready_expected = 1;
1792 return 0;
1796 * This is an 'atomic' high-level operation to receive a single, unified
1797 * control-channel message.
1799 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1800 int expecting)
1802 RDMAControlHeader ready = {
1803 .len = 0,
1804 .type = RDMA_CONTROL_READY,
1805 .repeat = 1,
1807 int ret;
1810 * Inform the source that we're ready to receive a message.
1812 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1814 if (ret < 0) {
1815 error_report("Failed to send control buffer!");
1816 return ret;
1820 * Block and wait for the message.
1822 ret = qemu_rdma_exchange_get_response(rdma, head,
1823 expecting, RDMA_WRID_READY);
1825 if (ret < 0) {
1826 return ret;
1829 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1832 * Post a new RECV work request to replace the one we just consumed.
1834 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1835 if (ret) {
1836 error_report("rdma migration: error posting second control recv!");
1837 return ret;
1840 return 0;
1844 * Write an actual chunk of memory using RDMA.
1846 * If we're using dynamic registration on the dest-side, we have to
1847 * send a registration command first.
1849 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1850 int current_index, uint64_t current_addr,
1851 uint64_t length)
1853 struct ibv_sge sge;
1854 struct ibv_send_wr send_wr = { 0 };
1855 struct ibv_send_wr *bad_wr;
1856 int reg_result_idx, ret, count = 0;
1857 uint64_t chunk, chunks;
1858 uint8_t *chunk_start, *chunk_end;
1859 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1860 RDMARegister reg;
1861 RDMARegisterResult *reg_result;
1862 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1863 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1864 .type = RDMA_CONTROL_REGISTER_REQUEST,
1865 .repeat = 1,
1868 retry:
1869 sge.addr = (uintptr_t)(block->local_host_addr +
1870 (current_addr - block->offset));
1871 sge.length = length;
1873 chunk = ram_chunk_index(block->local_host_addr,
1874 (uint8_t *)(uintptr_t)sge.addr);
1875 chunk_start = ram_chunk_start(block, chunk);
1877 if (block->is_ram_block) {
1878 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1880 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1881 chunks--;
1883 } else {
1884 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1886 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1887 chunks--;
1891 trace_qemu_rdma_write_one_top(chunks + 1,
1892 (chunks + 1) *
1893 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1895 chunk_end = ram_chunk_end(block, chunk + chunks);
1897 if (!rdma->pin_all) {
1898 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1899 qemu_rdma_unregister_waiting(rdma);
1900 #endif
1903 while (test_bit(chunk, block->transit_bitmap)) {
1904 (void)count;
1905 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1906 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1908 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1910 if (ret < 0) {
1911 error_report("Failed to Wait for previous write to complete "
1912 "block %d chunk %" PRIu64
1913 " current %" PRIu64 " len %" PRIu64 " %d",
1914 current_index, chunk, sge.addr, length, rdma->nb_sent);
1915 return ret;
1919 if (!rdma->pin_all || !block->is_ram_block) {
1920 if (!block->remote_keys[chunk]) {
1922 * This chunk has not yet been registered, so first check to see
1923 * if the entire chunk is zero. If so, tell the other size to
1924 * memset() + madvise() the entire chunk without RDMA.
1927 if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1928 length)
1929 && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1930 length) == length) {
1931 RDMACompress comp = {
1932 .offset = current_addr,
1933 .value = 0,
1934 .block_idx = current_index,
1935 .length = length,
1938 head.len = sizeof(comp);
1939 head.type = RDMA_CONTROL_COMPRESS;
1941 trace_qemu_rdma_write_one_zero(chunk, sge.length,
1942 current_index, current_addr);
1944 compress_to_network(rdma, &comp);
1945 ret = qemu_rdma_exchange_send(rdma, &head,
1946 (uint8_t *) &comp, NULL, NULL, NULL);
1948 if (ret < 0) {
1949 return -EIO;
1952 acct_update_position(f, sge.length, true);
1954 return 1;
1958 * Otherwise, tell other side to register.
1960 reg.current_index = current_index;
1961 if (block->is_ram_block) {
1962 reg.key.current_addr = current_addr;
1963 } else {
1964 reg.key.chunk = chunk;
1966 reg.chunks = chunks;
1968 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1969 current_addr);
1971 register_to_network(rdma, &reg);
1972 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1973 &resp, &reg_result_idx, NULL);
1974 if (ret < 0) {
1975 return ret;
1978 /* try to overlap this single registration with the one we sent. */
1979 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1980 &sge.lkey, NULL, chunk,
1981 chunk_start, chunk_end)) {
1982 error_report("cannot get lkey");
1983 return -EINVAL;
1986 reg_result = (RDMARegisterResult *)
1987 rdma->wr_data[reg_result_idx].control_curr;
1989 network_to_result(reg_result);
1991 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
1992 reg_result->rkey, chunk);
1994 block->remote_keys[chunk] = reg_result->rkey;
1995 block->remote_host_addr = reg_result->host_addr;
1996 } else {
1997 /* already registered before */
1998 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1999 &sge.lkey, NULL, chunk,
2000 chunk_start, chunk_end)) {
2001 error_report("cannot get lkey!");
2002 return -EINVAL;
2006 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2007 } else {
2008 send_wr.wr.rdma.rkey = block->remote_rkey;
2010 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2011 &sge.lkey, NULL, chunk,
2012 chunk_start, chunk_end)) {
2013 error_report("cannot get lkey!");
2014 return -EINVAL;
2019 * Encode the ram block index and chunk within this wrid.
2020 * We will use this information at the time of completion
2021 * to figure out which bitmap to check against and then which
2022 * chunk in the bitmap to look for.
2024 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2025 current_index, chunk);
2027 send_wr.opcode = IBV_WR_RDMA_WRITE;
2028 send_wr.send_flags = IBV_SEND_SIGNALED;
2029 send_wr.sg_list = &sge;
2030 send_wr.num_sge = 1;
2031 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2032 (current_addr - block->offset);
2034 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2035 sge.length);
2038 * ibv_post_send() does not return negative error numbers,
2039 * per the specification they are positive - no idea why.
2041 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2043 if (ret == ENOMEM) {
2044 trace_qemu_rdma_write_one_queue_full();
2045 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2046 if (ret < 0) {
2047 error_report("rdma migration: failed to make "
2048 "room in full send queue! %d", ret);
2049 return ret;
2052 goto retry;
2054 } else if (ret > 0) {
2055 perror("rdma migration: post rdma write failed");
2056 return -ret;
2059 set_bit(chunk, block->transit_bitmap);
2060 acct_update_position(f, sge.length, false);
2061 rdma->total_writes++;
2063 return 0;
2067 * Push out any unwritten RDMA operations.
2069 * We support sending out multiple chunks at the same time.
2070 * Not all of them need to get signaled in the completion queue.
2072 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2074 int ret;
2076 if (!rdma->current_length) {
2077 return 0;
2080 ret = qemu_rdma_write_one(f, rdma,
2081 rdma->current_index, rdma->current_addr, rdma->current_length);
2083 if (ret < 0) {
2084 return ret;
2087 if (ret == 0) {
2088 rdma->nb_sent++;
2089 trace_qemu_rdma_write_flush(rdma->nb_sent);
2092 rdma->current_length = 0;
2093 rdma->current_addr = 0;
2095 return 0;
2098 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2099 uint64_t offset, uint64_t len)
2101 RDMALocalBlock *block;
2102 uint8_t *host_addr;
2103 uint8_t *chunk_end;
2105 if (rdma->current_index < 0) {
2106 return 0;
2109 if (rdma->current_chunk < 0) {
2110 return 0;
2113 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2114 host_addr = block->local_host_addr + (offset - block->offset);
2115 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2117 if (rdma->current_length == 0) {
2118 return 0;
2122 * Only merge into chunk sequentially.
2124 if (offset != (rdma->current_addr + rdma->current_length)) {
2125 return 0;
2128 if (offset < block->offset) {
2129 return 0;
2132 if ((offset + len) > (block->offset + block->length)) {
2133 return 0;
2136 if ((host_addr + len) > chunk_end) {
2137 return 0;
2140 return 1;
2144 * We're not actually writing here, but doing three things:
2146 * 1. Identify the chunk the buffer belongs to.
2147 * 2. If the chunk is full or the buffer doesn't belong to the current
2148 * chunk, then start a new chunk and flush() the old chunk.
2149 * 3. To keep the hardware busy, we also group chunks into batches
2150 * and only require that a batch gets acknowledged in the completion
2151 * qeueue instead of each individual chunk.
2153 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2154 uint64_t block_offset, uint64_t offset,
2155 uint64_t len)
2157 uint64_t current_addr = block_offset + offset;
2158 uint64_t index = rdma->current_index;
2159 uint64_t chunk = rdma->current_chunk;
2160 int ret;
2162 /* If we cannot merge it, we flush the current buffer first. */
2163 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2164 ret = qemu_rdma_write_flush(f, rdma);
2165 if (ret) {
2166 return ret;
2168 rdma->current_length = 0;
2169 rdma->current_addr = current_addr;
2171 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2172 offset, len, &index, &chunk);
2173 if (ret) {
2174 error_report("ram block search failed");
2175 return ret;
2177 rdma->current_index = index;
2178 rdma->current_chunk = chunk;
2181 /* merge it */
2182 rdma->current_length += len;
2184 /* flush it if buffer is too large */
2185 if (rdma->current_length >= RDMA_MERGE_MAX) {
2186 return qemu_rdma_write_flush(f, rdma);
2189 return 0;
2192 static void qemu_rdma_cleanup(RDMAContext *rdma)
2194 struct rdma_cm_event *cm_event;
2195 int ret, idx;
2197 if (rdma->cm_id && rdma->connected) {
2198 if (rdma->error_state) {
2199 RDMAControlHeader head = { .len = 0,
2200 .type = RDMA_CONTROL_ERROR,
2201 .repeat = 1,
2203 error_report("Early error. Sending error.");
2204 qemu_rdma_post_send_control(rdma, NULL, &head);
2207 ret = rdma_disconnect(rdma->cm_id);
2208 if (!ret) {
2209 trace_qemu_rdma_cleanup_waiting_for_disconnect();
2210 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2211 if (!ret) {
2212 rdma_ack_cm_event(cm_event);
2215 trace_qemu_rdma_cleanup_disconnect();
2216 rdma->connected = false;
2219 g_free(rdma->dest_blocks);
2220 rdma->dest_blocks = NULL;
2222 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2223 if (rdma->wr_data[idx].control_mr) {
2224 rdma->total_registrations--;
2225 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2227 rdma->wr_data[idx].control_mr = NULL;
2230 if (rdma->local_ram_blocks.block) {
2231 while (rdma->local_ram_blocks.nb_blocks) {
2232 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2236 if (rdma->qp) {
2237 rdma_destroy_qp(rdma->cm_id);
2238 rdma->qp = NULL;
2240 if (rdma->cq) {
2241 ibv_destroy_cq(rdma->cq);
2242 rdma->cq = NULL;
2244 if (rdma->comp_channel) {
2245 ibv_destroy_comp_channel(rdma->comp_channel);
2246 rdma->comp_channel = NULL;
2248 if (rdma->pd) {
2249 ibv_dealloc_pd(rdma->pd);
2250 rdma->pd = NULL;
2252 if (rdma->cm_id) {
2253 rdma_destroy_id(rdma->cm_id);
2254 rdma->cm_id = NULL;
2256 if (rdma->listen_id) {
2257 rdma_destroy_id(rdma->listen_id);
2258 rdma->listen_id = NULL;
2260 if (rdma->channel) {
2261 rdma_destroy_event_channel(rdma->channel);
2262 rdma->channel = NULL;
2264 g_free(rdma->host);
2265 rdma->host = NULL;
2269 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2271 int ret, idx;
2272 Error *local_err = NULL, **temp = &local_err;
2275 * Will be validated against destination's actual capabilities
2276 * after the connect() completes.
2278 rdma->pin_all = pin_all;
2280 ret = qemu_rdma_resolve_host(rdma, temp);
2281 if (ret) {
2282 goto err_rdma_source_init;
2285 ret = qemu_rdma_alloc_pd_cq(rdma);
2286 if (ret) {
2287 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2288 " limits may be too low. Please check $ ulimit -a # and "
2289 "search for 'ulimit -l' in the output");
2290 goto err_rdma_source_init;
2293 ret = qemu_rdma_alloc_qp(rdma);
2294 if (ret) {
2295 ERROR(temp, "rdma migration: error allocating qp!");
2296 goto err_rdma_source_init;
2299 ret = qemu_rdma_init_ram_blocks(rdma);
2300 if (ret) {
2301 ERROR(temp, "rdma migration: error initializing ram blocks!");
2302 goto err_rdma_source_init;
2305 /* Build the hash that maps from offset to RAMBlock */
2306 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2307 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2308 g_hash_table_insert(rdma->blockmap,
2309 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2310 &rdma->local_ram_blocks.block[idx]);
2313 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2314 ret = qemu_rdma_reg_control(rdma, idx);
2315 if (ret) {
2316 ERROR(temp, "rdma migration: error registering %d control!",
2317 idx);
2318 goto err_rdma_source_init;
2322 return 0;
2324 err_rdma_source_init:
2325 error_propagate(errp, local_err);
2326 qemu_rdma_cleanup(rdma);
2327 return -1;
2330 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2332 RDMACapabilities cap = {
2333 .version = RDMA_CONTROL_VERSION_CURRENT,
2334 .flags = 0,
2336 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2337 .retry_count = 5,
2338 .private_data = &cap,
2339 .private_data_len = sizeof(cap),
2341 struct rdma_cm_event *cm_event;
2342 int ret;
2345 * Only negotiate the capability with destination if the user
2346 * on the source first requested the capability.
2348 if (rdma->pin_all) {
2349 trace_qemu_rdma_connect_pin_all_requested();
2350 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2353 caps_to_network(&cap);
2355 ret = rdma_connect(rdma->cm_id, &conn_param);
2356 if (ret) {
2357 perror("rdma_connect");
2358 ERROR(errp, "connecting to destination!");
2359 goto err_rdma_source_connect;
2362 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2363 if (ret) {
2364 perror("rdma_get_cm_event after rdma_connect");
2365 ERROR(errp, "connecting to destination!");
2366 rdma_ack_cm_event(cm_event);
2367 goto err_rdma_source_connect;
2370 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2371 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2372 ERROR(errp, "connecting to destination!");
2373 rdma_ack_cm_event(cm_event);
2374 goto err_rdma_source_connect;
2376 rdma->connected = true;
2378 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2379 network_to_caps(&cap);
2382 * Verify that the *requested* capabilities are supported by the destination
2383 * and disable them otherwise.
2385 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2386 ERROR(errp, "Server cannot support pinning all memory. "
2387 "Will register memory dynamically.");
2388 rdma->pin_all = false;
2391 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2393 rdma_ack_cm_event(cm_event);
2395 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2396 if (ret) {
2397 ERROR(errp, "posting second control recv!");
2398 goto err_rdma_source_connect;
2401 rdma->control_ready_expected = 1;
2402 rdma->nb_sent = 0;
2403 return 0;
2405 err_rdma_source_connect:
2406 qemu_rdma_cleanup(rdma);
2407 return -1;
2410 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2412 int ret, idx;
2413 struct rdma_cm_id *listen_id;
2414 char ip[40] = "unknown";
2415 struct rdma_addrinfo *res, *e;
2416 char port_str[16];
2418 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2419 rdma->wr_data[idx].control_len = 0;
2420 rdma->wr_data[idx].control_curr = NULL;
2423 if (!rdma->host || !rdma->host[0]) {
2424 ERROR(errp, "RDMA host is not set!");
2425 rdma->error_state = -EINVAL;
2426 return -1;
2428 /* create CM channel */
2429 rdma->channel = rdma_create_event_channel();
2430 if (!rdma->channel) {
2431 ERROR(errp, "could not create rdma event channel");
2432 rdma->error_state = -EINVAL;
2433 return -1;
2436 /* create CM id */
2437 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2438 if (ret) {
2439 ERROR(errp, "could not create cm_id!");
2440 goto err_dest_init_create_listen_id;
2443 snprintf(port_str, 16, "%d", rdma->port);
2444 port_str[15] = '\0';
2446 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2447 if (ret < 0) {
2448 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2449 goto err_dest_init_bind_addr;
2452 for (e = res; e != NULL; e = e->ai_next) {
2453 inet_ntop(e->ai_family,
2454 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2455 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2456 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2457 if (ret) {
2458 continue;
2460 if (e->ai_family == AF_INET6) {
2461 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2462 if (ret) {
2463 continue;
2466 break;
2469 if (!e) {
2470 ERROR(errp, "Error: could not rdma_bind_addr!");
2471 goto err_dest_init_bind_addr;
2474 rdma->listen_id = listen_id;
2475 qemu_rdma_dump_gid("dest_init", listen_id);
2476 return 0;
2478 err_dest_init_bind_addr:
2479 rdma_destroy_id(listen_id);
2480 err_dest_init_create_listen_id:
2481 rdma_destroy_event_channel(rdma->channel);
2482 rdma->channel = NULL;
2483 rdma->error_state = ret;
2484 return ret;
2488 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2490 RDMAContext *rdma = NULL;
2491 InetSocketAddress *addr;
2493 if (host_port) {
2494 rdma = g_new0(RDMAContext, 1);
2495 rdma->current_index = -1;
2496 rdma->current_chunk = -1;
2498 addr = inet_parse(host_port, NULL);
2499 if (addr != NULL) {
2500 rdma->port = atoi(addr->port);
2501 rdma->host = g_strdup(addr->host);
2502 } else {
2503 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2504 g_free(rdma);
2505 rdma = NULL;
2508 qapi_free_InetSocketAddress(addr);
2511 return rdma;
2515 * QEMUFile interface to the control channel.
2516 * SEND messages for control only.
2517 * VM's ram is handled with regular RDMA messages.
2519 static ssize_t qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2520 int64_t pos, size_t size)
2522 QEMUFileRDMA *r = opaque;
2523 QEMUFile *f = r->file;
2524 RDMAContext *rdma = r->rdma;
2525 size_t remaining = size;
2526 uint8_t * data = (void *) buf;
2527 int ret;
2529 CHECK_ERROR_STATE();
2532 * Push out any writes that
2533 * we're queued up for VM's ram.
2535 ret = qemu_rdma_write_flush(f, rdma);
2536 if (ret < 0) {
2537 rdma->error_state = ret;
2538 return ret;
2541 while (remaining) {
2542 RDMAControlHeader head;
2544 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2545 remaining -= r->len;
2547 /* Guaranteed to fit due to RDMA_SEND_INCREMENT MIN above */
2548 head.len = (uint32_t)r->len;
2549 head.type = RDMA_CONTROL_QEMU_FILE;
2551 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2553 if (ret < 0) {
2554 rdma->error_state = ret;
2555 return ret;
2558 data += r->len;
2561 return size;
2564 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2565 size_t size, int idx)
2567 size_t len = 0;
2569 if (rdma->wr_data[idx].control_len) {
2570 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2572 len = MIN(size, rdma->wr_data[idx].control_len);
2573 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2574 rdma->wr_data[idx].control_curr += len;
2575 rdma->wr_data[idx].control_len -= len;
2578 return len;
2582 * QEMUFile interface to the control channel.
2583 * RDMA links don't use bytestreams, so we have to
2584 * return bytes to QEMUFile opportunistically.
2586 static ssize_t qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2587 int64_t pos, size_t size)
2589 QEMUFileRDMA *r = opaque;
2590 RDMAContext *rdma = r->rdma;
2591 RDMAControlHeader head;
2592 int ret = 0;
2594 CHECK_ERROR_STATE();
2597 * First, we hold on to the last SEND message we
2598 * were given and dish out the bytes until we run
2599 * out of bytes.
2601 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2602 if (r->len) {
2603 return r->len;
2607 * Once we run out, we block and wait for another
2608 * SEND message to arrive.
2610 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2612 if (ret < 0) {
2613 rdma->error_state = ret;
2614 return ret;
2618 * SEND was received with new bytes, now try again.
2620 return qemu_rdma_fill(r->rdma, buf, size, 0);
2624 * Block until all the outstanding chunks have been delivered by the hardware.
2626 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2628 int ret;
2630 if (qemu_rdma_write_flush(f, rdma) < 0) {
2631 return -EIO;
2634 while (rdma->nb_sent) {
2635 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2636 if (ret < 0) {
2637 error_report("rdma migration: complete polling error!");
2638 return -EIO;
2642 qemu_rdma_unregister_waiting(rdma);
2644 return 0;
2647 static int qemu_rdma_close(void *opaque)
2649 trace_qemu_rdma_close();
2650 QEMUFileRDMA *r = opaque;
2651 if (r->rdma) {
2652 qemu_rdma_cleanup(r->rdma);
2653 g_free(r->rdma);
2655 g_free(r);
2656 return 0;
2660 * Parameters:
2661 * @offset == 0 :
2662 * This means that 'block_offset' is a full virtual address that does not
2663 * belong to a RAMBlock of the virtual machine and instead
2664 * represents a private malloc'd memory area that the caller wishes to
2665 * transfer.
2667 * @offset != 0 :
2668 * Offset is an offset to be added to block_offset and used
2669 * to also lookup the corresponding RAMBlock.
2671 * @size > 0 :
2672 * Initiate an transfer this size.
2674 * @size == 0 :
2675 * A 'hint' or 'advice' that means that we wish to speculatively
2676 * and asynchronously unregister this memory. In this case, there is no
2677 * guarantee that the unregister will actually happen, for example,
2678 * if the memory is being actively transmitted. Additionally, the memory
2679 * may be re-registered at any future time if a write within the same
2680 * chunk was requested again, even if you attempted to unregister it
2681 * here.
2683 * @size < 0 : TODO, not yet supported
2684 * Unregister the memory NOW. This means that the caller does not
2685 * expect there to be any future RDMA transfers and we just want to clean
2686 * things up. This is used in case the upper layer owns the memory and
2687 * cannot wait for qemu_fclose() to occur.
2689 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2690 * sent. Usually, this will not be more than a few bytes of
2691 * the protocol because most transfers are sent asynchronously.
2693 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2694 ram_addr_t block_offset, ram_addr_t offset,
2695 size_t size, uint64_t *bytes_sent)
2697 QEMUFileRDMA *rfile = opaque;
2698 RDMAContext *rdma = rfile->rdma;
2699 int ret;
2701 CHECK_ERROR_STATE();
2703 qemu_fflush(f);
2705 if (size > 0) {
2707 * Add this page to the current 'chunk'. If the chunk
2708 * is full, or the page doen't belong to the current chunk,
2709 * an actual RDMA write will occur and a new chunk will be formed.
2711 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2712 if (ret < 0) {
2713 error_report("rdma migration: write error! %d", ret);
2714 goto err;
2718 * We always return 1 bytes because the RDMA
2719 * protocol is completely asynchronous. We do not yet know
2720 * whether an identified chunk is zero or not because we're
2721 * waiting for other pages to potentially be merged with
2722 * the current chunk. So, we have to call qemu_update_position()
2723 * later on when the actual write occurs.
2725 if (bytes_sent) {
2726 *bytes_sent = 1;
2728 } else {
2729 uint64_t index, chunk;
2731 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2732 if (size < 0) {
2733 ret = qemu_rdma_drain_cq(f, rdma);
2734 if (ret < 0) {
2735 fprintf(stderr, "rdma: failed to synchronously drain"
2736 " completion queue before unregistration.\n");
2737 goto err;
2742 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2743 offset, size, &index, &chunk);
2745 if (ret) {
2746 error_report("ram block search failed");
2747 goto err;
2750 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2753 * TODO: Synchronous, guaranteed unregistration (should not occur during
2754 * fast-path). Otherwise, unregisters will process on the next call to
2755 * qemu_rdma_drain_cq()
2756 if (size < 0) {
2757 qemu_rdma_unregister_waiting(rdma);
2763 * Drain the Completion Queue if possible, but do not block,
2764 * just poll.
2766 * If nothing to poll, the end of the iteration will do this
2767 * again to make sure we don't overflow the request queue.
2769 while (1) {
2770 uint64_t wr_id, wr_id_in;
2771 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2772 if (ret < 0) {
2773 error_report("rdma migration: polling error! %d", ret);
2774 goto err;
2777 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2779 if (wr_id == RDMA_WRID_NONE) {
2780 break;
2784 return RAM_SAVE_CONTROL_DELAYED;
2785 err:
2786 rdma->error_state = ret;
2787 return ret;
2790 static int qemu_rdma_accept(RDMAContext *rdma)
2792 RDMACapabilities cap;
2793 struct rdma_conn_param conn_param = {
2794 .responder_resources = 2,
2795 .private_data = &cap,
2796 .private_data_len = sizeof(cap),
2798 struct rdma_cm_event *cm_event;
2799 struct ibv_context *verbs;
2800 int ret = -EINVAL;
2801 int idx;
2803 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2804 if (ret) {
2805 goto err_rdma_dest_wait;
2808 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2809 rdma_ack_cm_event(cm_event);
2810 goto err_rdma_dest_wait;
2813 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2815 network_to_caps(&cap);
2817 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2818 error_report("Unknown source RDMA version: %d, bailing...",
2819 cap.version);
2820 rdma_ack_cm_event(cm_event);
2821 goto err_rdma_dest_wait;
2825 * Respond with only the capabilities this version of QEMU knows about.
2827 cap.flags &= known_capabilities;
2830 * Enable the ones that we do know about.
2831 * Add other checks here as new ones are introduced.
2833 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2834 rdma->pin_all = true;
2837 rdma->cm_id = cm_event->id;
2838 verbs = cm_event->id->verbs;
2840 rdma_ack_cm_event(cm_event);
2842 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
2844 caps_to_network(&cap);
2846 trace_qemu_rdma_accept_pin_verbsc(verbs);
2848 if (!rdma->verbs) {
2849 rdma->verbs = verbs;
2850 } else if (rdma->verbs != verbs) {
2851 error_report("ibv context not matching %p, %p!", rdma->verbs,
2852 verbs);
2853 goto err_rdma_dest_wait;
2856 qemu_rdma_dump_id("dest_init", verbs);
2858 ret = qemu_rdma_alloc_pd_cq(rdma);
2859 if (ret) {
2860 error_report("rdma migration: error allocating pd and cq!");
2861 goto err_rdma_dest_wait;
2864 ret = qemu_rdma_alloc_qp(rdma);
2865 if (ret) {
2866 error_report("rdma migration: error allocating qp!");
2867 goto err_rdma_dest_wait;
2870 ret = qemu_rdma_init_ram_blocks(rdma);
2871 if (ret) {
2872 error_report("rdma migration: error initializing ram blocks!");
2873 goto err_rdma_dest_wait;
2876 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2877 ret = qemu_rdma_reg_control(rdma, idx);
2878 if (ret) {
2879 error_report("rdma: error registering %d control", idx);
2880 goto err_rdma_dest_wait;
2884 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2886 ret = rdma_accept(rdma->cm_id, &conn_param);
2887 if (ret) {
2888 error_report("rdma_accept returns %d", ret);
2889 goto err_rdma_dest_wait;
2892 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2893 if (ret) {
2894 error_report("rdma_accept get_cm_event failed %d", ret);
2895 goto err_rdma_dest_wait;
2898 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2899 error_report("rdma_accept not event established");
2900 rdma_ack_cm_event(cm_event);
2901 goto err_rdma_dest_wait;
2904 rdma_ack_cm_event(cm_event);
2905 rdma->connected = true;
2907 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2908 if (ret) {
2909 error_report("rdma migration: error posting second control recv");
2910 goto err_rdma_dest_wait;
2913 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2915 return 0;
2917 err_rdma_dest_wait:
2918 rdma->error_state = ret;
2919 qemu_rdma_cleanup(rdma);
2920 return ret;
2923 static int dest_ram_sort_func(const void *a, const void *b)
2925 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
2926 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
2928 return (a_index < b_index) ? -1 : (a_index != b_index);
2932 * During each iteration of the migration, we listen for instructions
2933 * by the source VM to perform dynamic page registrations before they
2934 * can perform RDMA operations.
2936 * We respond with the 'rkey'.
2938 * Keep doing this until the source tells us to stop.
2940 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
2942 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2943 .type = RDMA_CONTROL_REGISTER_RESULT,
2944 .repeat = 0,
2946 RDMAControlHeader unreg_resp = { .len = 0,
2947 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2948 .repeat = 0,
2950 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2951 .repeat = 1 };
2952 QEMUFileRDMA *rfile = opaque;
2953 RDMAContext *rdma = rfile->rdma;
2954 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2955 RDMAControlHeader head;
2956 RDMARegister *reg, *registers;
2957 RDMACompress *comp;
2958 RDMARegisterResult *reg_result;
2959 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2960 RDMALocalBlock *block;
2961 void *host_addr;
2962 int ret = 0;
2963 int idx = 0;
2964 int count = 0;
2965 int i = 0;
2967 CHECK_ERROR_STATE();
2969 do {
2970 trace_qemu_rdma_registration_handle_wait();
2972 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2974 if (ret < 0) {
2975 break;
2978 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2979 error_report("rdma: Too many requests in this message (%d)."
2980 "Bailing.", head.repeat);
2981 ret = -EIO;
2982 break;
2985 switch (head.type) {
2986 case RDMA_CONTROL_COMPRESS:
2987 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2988 network_to_compress(comp);
2990 trace_qemu_rdma_registration_handle_compress(comp->length,
2991 comp->block_idx,
2992 comp->offset);
2993 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
2994 error_report("rdma: 'compress' bad block index %u (vs %d)",
2995 (unsigned int)comp->block_idx,
2996 rdma->local_ram_blocks.nb_blocks);
2997 ret = -EIO;
2998 goto out;
3000 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3002 host_addr = block->local_host_addr +
3003 (comp->offset - block->offset);
3005 ram_handle_compressed(host_addr, comp->value, comp->length);
3006 break;
3008 case RDMA_CONTROL_REGISTER_FINISHED:
3009 trace_qemu_rdma_registration_handle_finished();
3010 goto out;
3012 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3013 trace_qemu_rdma_registration_handle_ram_blocks();
3015 /* Sort our local RAM Block list so it's the same as the source,
3016 * we can do this since we've filled in a src_index in the list
3017 * as we received the RAMBlock list earlier.
3019 qsort(rdma->local_ram_blocks.block,
3020 rdma->local_ram_blocks.nb_blocks,
3021 sizeof(RDMALocalBlock), dest_ram_sort_func);
3022 if (rdma->pin_all) {
3023 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3024 if (ret) {
3025 error_report("rdma migration: error dest "
3026 "registering ram blocks");
3027 goto out;
3032 * Dest uses this to prepare to transmit the RAMBlock descriptions
3033 * to the source VM after connection setup.
3034 * Both sides use the "remote" structure to communicate and update
3035 * their "local" descriptions with what was sent.
3037 for (i = 0; i < local->nb_blocks; i++) {
3038 rdma->dest_blocks[i].remote_host_addr =
3039 (uintptr_t)(local->block[i].local_host_addr);
3041 if (rdma->pin_all) {
3042 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3045 rdma->dest_blocks[i].offset = local->block[i].offset;
3046 rdma->dest_blocks[i].length = local->block[i].length;
3048 dest_block_to_network(&rdma->dest_blocks[i]);
3049 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3050 local->block[i].block_name,
3051 local->block[i].offset,
3052 local->block[i].length,
3053 local->block[i].local_host_addr,
3054 local->block[i].src_index);
3057 blocks.len = rdma->local_ram_blocks.nb_blocks
3058 * sizeof(RDMADestBlock);
3061 ret = qemu_rdma_post_send_control(rdma,
3062 (uint8_t *) rdma->dest_blocks, &blocks);
3064 if (ret < 0) {
3065 error_report("rdma migration: error sending remote info");
3066 goto out;
3069 break;
3070 case RDMA_CONTROL_REGISTER_REQUEST:
3071 trace_qemu_rdma_registration_handle_register(head.repeat);
3073 reg_resp.repeat = head.repeat;
3074 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3076 for (count = 0; count < head.repeat; count++) {
3077 uint64_t chunk;
3078 uint8_t *chunk_start, *chunk_end;
3080 reg = &registers[count];
3081 network_to_register(reg);
3083 reg_result = &results[count];
3085 trace_qemu_rdma_registration_handle_register_loop(count,
3086 reg->current_index, reg->key.current_addr, reg->chunks);
3088 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3089 error_report("rdma: 'register' bad block index %u (vs %d)",
3090 (unsigned int)reg->current_index,
3091 rdma->local_ram_blocks.nb_blocks);
3092 ret = -ENOENT;
3093 goto out;
3095 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3096 if (block->is_ram_block) {
3097 if (block->offset > reg->key.current_addr) {
3098 error_report("rdma: bad register address for block %s"
3099 " offset: %" PRIx64 " current_addr: %" PRIx64,
3100 block->block_name, block->offset,
3101 reg->key.current_addr);
3102 ret = -ERANGE;
3103 goto out;
3105 host_addr = (block->local_host_addr +
3106 (reg->key.current_addr - block->offset));
3107 chunk = ram_chunk_index(block->local_host_addr,
3108 (uint8_t *) host_addr);
3109 } else {
3110 chunk = reg->key.chunk;
3111 host_addr = block->local_host_addr +
3112 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3113 /* Check for particularly bad chunk value */
3114 if (host_addr < (void *)block->local_host_addr) {
3115 error_report("rdma: bad chunk for block %s"
3116 " chunk: %" PRIx64,
3117 block->block_name, reg->key.chunk);
3118 ret = -ERANGE;
3119 goto out;
3122 chunk_start = ram_chunk_start(block, chunk);
3123 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3124 if (qemu_rdma_register_and_get_keys(rdma, block,
3125 (uintptr_t)host_addr, NULL, &reg_result->rkey,
3126 chunk, chunk_start, chunk_end)) {
3127 error_report("cannot get rkey");
3128 ret = -EINVAL;
3129 goto out;
3132 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3134 trace_qemu_rdma_registration_handle_register_rkey(
3135 reg_result->rkey);
3137 result_to_network(reg_result);
3140 ret = qemu_rdma_post_send_control(rdma,
3141 (uint8_t *) results, &reg_resp);
3143 if (ret < 0) {
3144 error_report("Failed to send control buffer");
3145 goto out;
3147 break;
3148 case RDMA_CONTROL_UNREGISTER_REQUEST:
3149 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3150 unreg_resp.repeat = head.repeat;
3151 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3153 for (count = 0; count < head.repeat; count++) {
3154 reg = &registers[count];
3155 network_to_register(reg);
3157 trace_qemu_rdma_registration_handle_unregister_loop(count,
3158 reg->current_index, reg->key.chunk);
3160 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3162 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3163 block->pmr[reg->key.chunk] = NULL;
3165 if (ret != 0) {
3166 perror("rdma unregistration chunk failed");
3167 ret = -ret;
3168 goto out;
3171 rdma->total_registrations--;
3173 trace_qemu_rdma_registration_handle_unregister_success(
3174 reg->key.chunk);
3177 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3179 if (ret < 0) {
3180 error_report("Failed to send control buffer");
3181 goto out;
3183 break;
3184 case RDMA_CONTROL_REGISTER_RESULT:
3185 error_report("Invalid RESULT message at dest.");
3186 ret = -EIO;
3187 goto out;
3188 default:
3189 error_report("Unknown control message %s", control_desc[head.type]);
3190 ret = -EIO;
3191 goto out;
3193 } while (1);
3194 out:
3195 if (ret < 0) {
3196 rdma->error_state = ret;
3198 return ret;
3201 /* Destination:
3202 * Called via a ram_control_load_hook during the initial RAM load section which
3203 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3204 * on the source.
3205 * We've already built our local RAMBlock list, but not yet sent the list to
3206 * the source.
3208 static int rdma_block_notification_handle(QEMUFileRDMA *rfile, const char *name)
3210 RDMAContext *rdma = rfile->rdma;
3211 int curr;
3212 int found = -1;
3214 /* Find the matching RAMBlock in our local list */
3215 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3216 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3217 found = curr;
3218 break;
3222 if (found == -1) {
3223 error_report("RAMBlock '%s' not found on destination", name);
3224 return -ENOENT;
3227 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3228 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3229 rdma->next_src_index++;
3231 return 0;
3234 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3236 switch (flags) {
3237 case RAM_CONTROL_BLOCK_REG:
3238 return rdma_block_notification_handle(opaque, data);
3240 case RAM_CONTROL_HOOK:
3241 return qemu_rdma_registration_handle(f, opaque);
3243 default:
3244 /* Shouldn't be called with any other values */
3245 abort();
3249 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3250 uint64_t flags, void *data)
3252 QEMUFileRDMA *rfile = opaque;
3253 RDMAContext *rdma = rfile->rdma;
3255 CHECK_ERROR_STATE();
3257 trace_qemu_rdma_registration_start(flags);
3258 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3259 qemu_fflush(f);
3261 return 0;
3265 * Inform dest that dynamic registrations are done for now.
3266 * First, flush writes, if any.
3268 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3269 uint64_t flags, void *data)
3271 Error *local_err = NULL, **errp = &local_err;
3272 QEMUFileRDMA *rfile = opaque;
3273 RDMAContext *rdma = rfile->rdma;
3274 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3275 int ret = 0;
3277 CHECK_ERROR_STATE();
3279 qemu_fflush(f);
3280 ret = qemu_rdma_drain_cq(f, rdma);
3282 if (ret < 0) {
3283 goto err;
3286 if (flags == RAM_CONTROL_SETUP) {
3287 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3288 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3289 int reg_result_idx, i, nb_dest_blocks;
3291 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3292 trace_qemu_rdma_registration_stop_ram();
3295 * Make sure that we parallelize the pinning on both sides.
3296 * For very large guests, doing this serially takes a really
3297 * long time, so we have to 'interleave' the pinning locally
3298 * with the control messages by performing the pinning on this
3299 * side before we receive the control response from the other
3300 * side that the pinning has completed.
3302 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3303 &reg_result_idx, rdma->pin_all ?
3304 qemu_rdma_reg_whole_ram_blocks : NULL);
3305 if (ret < 0) {
3306 ERROR(errp, "receiving remote info!");
3307 return ret;
3310 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3313 * The protocol uses two different sets of rkeys (mutually exclusive):
3314 * 1. One key to represent the virtual address of the entire ram block.
3315 * (dynamic chunk registration disabled - pin everything with one rkey.)
3316 * 2. One to represent individual chunks within a ram block.
3317 * (dynamic chunk registration enabled - pin individual chunks.)
3319 * Once the capability is successfully negotiated, the destination transmits
3320 * the keys to use (or sends them later) including the virtual addresses
3321 * and then propagates the remote ram block descriptions to his local copy.
3324 if (local->nb_blocks != nb_dest_blocks) {
3325 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3326 "Your QEMU command line parameters are probably "
3327 "not identical on both the source and destination.",
3328 local->nb_blocks, nb_dest_blocks);
3329 rdma->error_state = -EINVAL;
3330 return -EINVAL;
3333 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3334 memcpy(rdma->dest_blocks,
3335 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3336 for (i = 0; i < nb_dest_blocks; i++) {
3337 network_to_dest_block(&rdma->dest_blocks[i]);
3339 /* We require that the blocks are in the same order */
3340 if (rdma->dest_blocks[i].length != local->block[i].length) {
3341 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3342 "vs %" PRIu64, local->block[i].block_name, i,
3343 local->block[i].length,
3344 rdma->dest_blocks[i].length);
3345 rdma->error_state = -EINVAL;
3346 return -EINVAL;
3348 local->block[i].remote_host_addr =
3349 rdma->dest_blocks[i].remote_host_addr;
3350 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3354 trace_qemu_rdma_registration_stop(flags);
3356 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3357 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3359 if (ret < 0) {
3360 goto err;
3363 return 0;
3364 err:
3365 rdma->error_state = ret;
3366 return ret;
3369 static int qemu_rdma_get_fd(void *opaque)
3371 QEMUFileRDMA *rfile = opaque;
3372 RDMAContext *rdma = rfile->rdma;
3374 return rdma->comp_channel->fd;
3377 static const QEMUFileOps rdma_read_ops = {
3378 .get_buffer = qemu_rdma_get_buffer,
3379 .get_fd = qemu_rdma_get_fd,
3380 .close = qemu_rdma_close,
3381 .hook_ram_load = rdma_load_hook,
3384 static const QEMUFileOps rdma_write_ops = {
3385 .put_buffer = qemu_rdma_put_buffer,
3386 .close = qemu_rdma_close,
3387 .before_ram_iterate = qemu_rdma_registration_start,
3388 .after_ram_iterate = qemu_rdma_registration_stop,
3389 .save_page = qemu_rdma_save_page,
3392 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3394 QEMUFileRDMA *r;
3396 if (qemu_file_mode_is_not_valid(mode)) {
3397 return NULL;
3400 r = g_new0(QEMUFileRDMA, 1);
3401 r->rdma = rdma;
3403 if (mode[0] == 'w') {
3404 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3405 } else {
3406 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3409 return r->file;
3412 static void rdma_accept_incoming_migration(void *opaque)
3414 RDMAContext *rdma = opaque;
3415 int ret;
3416 QEMUFile *f;
3417 Error *local_err = NULL, **errp = &local_err;
3419 trace_qemu_rdma_accept_incoming_migration();
3420 ret = qemu_rdma_accept(rdma);
3422 if (ret) {
3423 ERROR(errp, "RDMA Migration initialization failed!");
3424 return;
3427 trace_qemu_rdma_accept_incoming_migration_accepted();
3429 f = qemu_fopen_rdma(rdma, "rb");
3430 if (f == NULL) {
3431 ERROR(errp, "could not qemu_fopen_rdma!");
3432 qemu_rdma_cleanup(rdma);
3433 return;
3436 rdma->migration_started_on_destination = 1;
3437 process_incoming_migration(f);
3440 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3442 int ret;
3443 RDMAContext *rdma;
3444 Error *local_err = NULL;
3446 trace_rdma_start_incoming_migration();
3447 rdma = qemu_rdma_data_init(host_port, &local_err);
3449 if (rdma == NULL) {
3450 goto err;
3453 ret = qemu_rdma_dest_init(rdma, &local_err);
3455 if (ret) {
3456 goto err;
3459 trace_rdma_start_incoming_migration_after_dest_init();
3461 ret = rdma_listen(rdma->listen_id, 5);
3463 if (ret) {
3464 ERROR(errp, "listening on socket!");
3465 goto err;
3468 trace_rdma_start_incoming_migration_after_rdma_listen();
3470 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3471 NULL, (void *)(intptr_t)rdma);
3472 return;
3473 err:
3474 error_propagate(errp, local_err);
3475 g_free(rdma);
3478 void rdma_start_outgoing_migration(void *opaque,
3479 const char *host_port, Error **errp)
3481 MigrationState *s = opaque;
3482 Error *local_err = NULL, **temp = &local_err;
3483 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3484 int ret = 0;
3486 if (rdma == NULL) {
3487 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3488 goto err;
3491 ret = qemu_rdma_source_init(rdma, &local_err,
3492 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3494 if (ret) {
3495 goto err;
3498 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3499 ret = qemu_rdma_connect(rdma, &local_err);
3501 if (ret) {
3502 goto err;
3505 trace_rdma_start_outgoing_migration_after_rdma_connect();
3507 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
3508 migrate_fd_connect(s);
3509 return;
3510 err:
3511 error_propagate(errp, local_err);
3512 g_free(rdma);
3513 migrate_fd_error(s);