3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, int is_user
,
17 hwaddr
*phys_ptr
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 if (cpreg_field_is_64bit(ri
)) {
123 return CPREG_FIELD64(env
, ri
);
125 return CPREG_FIELD32(env
, ri
);
129 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
132 if (cpreg_field_is_64bit(ri
)) {
133 CPREG_FIELD64(env
, ri
) = value
;
135 CPREG_FIELD32(env
, ri
) = value
;
139 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
141 return (char *)env
+ ri
->fieldoffset
;
144 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
146 /* Raw read of a coprocessor register (as needed for migration, etc). */
147 if (ri
->type
& ARM_CP_CONST
) {
148 return ri
->resetvalue
;
149 } else if (ri
->raw_readfn
) {
150 return ri
->raw_readfn(env
, ri
);
151 } else if (ri
->readfn
) {
152 return ri
->readfn(env
, ri
);
154 return raw_read(env
, ri
);
158 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
161 /* Raw write of a coprocessor register (as needed for migration, etc).
162 * Note that constant registers are treated as write-ignored; the
163 * caller should check for success by whether a readback gives the
166 if (ri
->type
& ARM_CP_CONST
) {
168 } else if (ri
->raw_writefn
) {
169 ri
->raw_writefn(env
, ri
, v
);
170 } else if (ri
->writefn
) {
171 ri
->writefn(env
, ri
, v
);
173 raw_write(env
, ri
, v
);
177 bool write_cpustate_to_list(ARMCPU
*cpu
)
179 /* Write the coprocessor state from cpu->env to the (index,value) list. */
183 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
184 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
185 const ARMCPRegInfo
*ri
;
187 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
192 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
195 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
200 bool write_list_to_cpustate(ARMCPU
*cpu
)
205 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
206 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
207 uint64_t v
= cpu
->cpreg_values
[i
];
208 const ARMCPRegInfo
*ri
;
210 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
215 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
218 /* Write value and confirm it reads back as written
219 * (to catch read-only registers and partially read-only
220 * registers where the incoming migration value doesn't match)
222 write_raw_cp_reg(&cpu
->env
, ri
, v
);
223 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
230 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
232 ARMCPU
*cpu
= opaque
;
234 const ARMCPRegInfo
*ri
;
236 regidx
= *(uint32_t *)key
;
237 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
239 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
240 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
241 /* The value array need not be initialized at this point */
242 cpu
->cpreg_array_len
++;
246 static void count_cpreg(gpointer key
, gpointer opaque
)
248 ARMCPU
*cpu
= opaque
;
250 const ARMCPRegInfo
*ri
;
252 regidx
= *(uint32_t *)key
;
253 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
255 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
256 cpu
->cpreg_array_len
++;
260 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
262 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
263 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
274 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
276 GList
**plist
= udata
;
278 *plist
= g_list_prepend(*plist
, key
);
281 void init_cpreg_list(ARMCPU
*cpu
)
283 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
284 * Note that we require cpreg_tuples[] to be sorted by key ID.
289 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
291 keys
= g_list_sort(keys
, cpreg_key_compare
);
293 cpu
->cpreg_array_len
= 0;
295 g_list_foreach(keys
, count_cpreg
, cpu
);
297 arraylen
= cpu
->cpreg_array_len
;
298 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
299 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
300 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
301 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
302 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
303 cpu
->cpreg_array_len
= 0;
305 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
307 assert(cpu
->cpreg_array_len
== arraylen
);
312 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
314 ARMCPU
*cpu
= arm_env_get_cpu(env
);
316 raw_write(env
, ri
, value
);
317 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
320 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
322 ARMCPU
*cpu
= arm_env_get_cpu(env
);
324 if (raw_read(env
, ri
) != value
) {
325 /* Unlike real hardware the qemu TLB uses virtual addresses,
326 * not modified virtual addresses, so this causes a TLB flush.
328 tlb_flush(CPU(cpu
), 1);
329 raw_write(env
, ri
, value
);
333 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
336 ARMCPU
*cpu
= arm_env_get_cpu(env
);
338 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
339 && !extended_addresses_enabled(env
)) {
340 /* For VMSA (when not using the LPAE long descriptor page table
341 * format) this register includes the ASID, so do a TLB flush.
342 * For PMSA it is purely a process ID and no action is needed.
344 tlb_flush(CPU(cpu
), 1);
346 raw_write(env
, ri
, value
);
349 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
352 /* Invalidate all (TLBIALL) */
353 ARMCPU
*cpu
= arm_env_get_cpu(env
);
355 tlb_flush(CPU(cpu
), 1);
358 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
361 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
362 ARMCPU
*cpu
= arm_env_get_cpu(env
);
364 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
367 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
370 /* Invalidate by ASID (TLBIASID) */
371 ARMCPU
*cpu
= arm_env_get_cpu(env
);
373 tlb_flush(CPU(cpu
), value
== 0);
376 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
379 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
380 ARMCPU
*cpu
= arm_env_get_cpu(env
);
382 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
385 /* IS variants of TLB operations must affect all cores */
386 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
391 CPU_FOREACH(other_cs
) {
392 tlb_flush(other_cs
, 1);
396 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
401 CPU_FOREACH(other_cs
) {
402 tlb_flush(other_cs
, value
== 0);
406 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
411 CPU_FOREACH(other_cs
) {
412 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
416 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
421 CPU_FOREACH(other_cs
) {
422 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
426 static const ARMCPRegInfo cp_reginfo
[] = {
427 /* Define the secure and non-secure FCSE identifier CP registers
428 * separately because there is no secure bank in V8 (no _EL3). This allows
429 * the secure register to be properly reset and migrated. There is also no
430 * v8 EL1 version of the register so the non-secure instance stands alone.
432 { .name
= "FCSEIDR(NS)",
433 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
434 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
435 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
436 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
437 { .name
= "FCSEIDR(S)",
438 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
439 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
440 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
441 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
442 /* Define the secure and non-secure context identifier CP registers
443 * separately because there is no secure bank in V8 (no _EL3). This allows
444 * the secure register to be properly reset and migrated. In the
445 * non-secure case, the 32-bit register will have reset and migration
446 * disabled during registration as it is handled by the 64-bit instance.
448 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
449 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
450 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
451 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
452 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
453 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
454 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
455 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
456 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
457 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
461 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
462 /* NB: Some of these registers exist in v8 but with more precise
463 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
465 /* MMU Domain access control / MPU write buffer control */
467 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
468 .access
= PL1_RW
, .resetvalue
= 0,
469 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
470 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
471 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
472 /* ??? This covers not just the impdef TLB lockdown registers but also
473 * some v7VMSA registers relating to TEX remap, so it is overly broad.
475 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
476 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
477 /* Cache maintenance ops; some of this space may be overridden later. */
478 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
479 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
480 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
484 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
485 /* Not all pre-v6 cores implemented this WFI, so this is slightly
488 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
489 .access
= PL1_W
, .type
= ARM_CP_WFI
},
493 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
494 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
495 * is UNPREDICTABLE; we choose to NOP as most implementations do).
497 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
498 .access
= PL1_W
, .type
= ARM_CP_WFI
},
499 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
500 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
501 * OMAPCP will override this space.
503 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
504 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
506 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
507 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
509 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
510 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
511 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
513 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
514 * implementing it as RAZ means the "debug architecture version" bits
515 * will read as a reserved value, which should cause Linux to not try
516 * to use the debug hardware.
518 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
519 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
520 /* MMU TLB control. Note that the wildcarding means we cover not just
521 * the unified TLB ops but also the dside/iside/inner-shareable variants.
523 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
524 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
525 .type
= ARM_CP_NO_MIGRATE
},
526 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
527 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
528 .type
= ARM_CP_NO_MIGRATE
},
529 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
530 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
531 .type
= ARM_CP_NO_MIGRATE
},
532 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
533 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
534 .type
= ARM_CP_NO_MIGRATE
},
538 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
543 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
544 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
545 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
546 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
547 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
549 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
550 /* VFP coprocessor: cp10 & cp11 [23:20] */
551 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
553 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
554 /* ASEDIS [31] bit is RAO/WI */
558 /* VFPv3 and upwards with NEON implement 32 double precision
559 * registers (D0-D31).
561 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
562 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
563 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
569 env
->cp15
.c1_coproc
= value
;
572 static const ARMCPRegInfo v6_cp_reginfo
[] = {
573 /* prefetch by MVA in v6, NOP in v7 */
574 { .name
= "MVA_prefetch",
575 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
576 .access
= PL1_W
, .type
= ARM_CP_NOP
},
577 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
578 .access
= PL0_W
, .type
= ARM_CP_NOP
},
579 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
580 .access
= PL0_W
, .type
= ARM_CP_NOP
},
581 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
582 .access
= PL0_W
, .type
= ARM_CP_NOP
},
583 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
585 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
586 offsetof(CPUARMState
, cp15
.ifar_ns
) },
588 /* Watchpoint Fault Address Register : should actually only be present
589 * for 1136, 1176, 11MPCore.
591 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
592 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
593 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
594 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
595 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
596 .resetvalue
= 0, .writefn
= cpacr_write
},
600 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
602 /* Performance monitor registers user accessibility is controlled
605 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
606 return CP_ACCESS_TRAP
;
611 #ifndef CONFIG_USER_ONLY
613 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
615 /* This does not support checking PMCCFILTR_EL0 register */
617 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
624 void pmccntr_sync(CPUARMState
*env
)
628 temp_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
629 get_ticks_per_sec(), 1000000);
631 if (env
->cp15
.c9_pmcr
& PMCRD
) {
632 /* Increment once every 64 processor clock cycles */
636 if (arm_ccnt_enabled(env
)) {
637 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
641 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
647 /* The counter has been reset */
648 env
->cp15
.c15_ccnt
= 0;
651 /* only the DP, X, D and E bits are writable */
652 env
->cp15
.c9_pmcr
&= ~0x39;
653 env
->cp15
.c9_pmcr
|= (value
& 0x39);
658 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
660 uint64_t total_ticks
;
662 if (!arm_ccnt_enabled(env
)) {
663 /* Counter is disabled, do not change value */
664 return env
->cp15
.c15_ccnt
;
667 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
668 get_ticks_per_sec(), 1000000);
670 if (env
->cp15
.c9_pmcr
& PMCRD
) {
671 /* Increment once every 64 processor clock cycles */
674 return total_ticks
- env
->cp15
.c15_ccnt
;
677 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
680 uint64_t total_ticks
;
682 if (!arm_ccnt_enabled(env
)) {
683 /* Counter is disabled, set the absolute value */
684 env
->cp15
.c15_ccnt
= value
;
688 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
689 get_ticks_per_sec(), 1000000);
691 if (env
->cp15
.c9_pmcr
& PMCRD
) {
692 /* Increment once every 64 processor clock cycles */
695 env
->cp15
.c15_ccnt
= total_ticks
- value
;
698 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
701 uint64_t cur_val
= pmccntr_read(env
, NULL
);
703 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
706 #else /* CONFIG_USER_ONLY */
708 void pmccntr_sync(CPUARMState
*env
)
714 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
718 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
722 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
726 env
->cp15
.c9_pmcnten
|= value
;
729 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
733 env
->cp15
.c9_pmcnten
&= ~value
;
736 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
739 env
->cp15
.c9_pmovsr
&= ~value
;
742 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
745 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
748 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
751 env
->cp15
.c9_pmuserenr
= value
& 1;
754 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
757 /* We have no event counters so only the C bit can be changed */
759 env
->cp15
.c9_pminten
|= value
;
762 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
766 env
->cp15
.c9_pminten
&= ~value
;
769 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
772 /* Note that even though the AArch64 view of this register has bits
773 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
774 * architectural requirements for bits which are RES0 only in some
775 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
776 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
778 raw_write(env
, ri
, value
& ~0x1FULL
);
781 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
783 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
784 * For bits that vary between AArch32/64, code needs to check the
785 * current execution mode before directly using the feature bit.
787 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
789 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
790 valid_mask
&= ~SCR_HCE
;
792 /* On ARMv7, SMD (or SCD as it is called in v7) is only
793 * supported if EL2 exists. The bit is UNK/SBZP when
794 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
795 * when EL2 is unavailable.
797 if (arm_feature(env
, ARM_FEATURE_V7
)) {
798 valid_mask
&= ~SCR_SMD
;
802 /* Clear all-context RES0 bits. */
804 raw_write(env
, ri
, value
);
807 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
809 ARMCPU
*cpu
= arm_env_get_cpu(env
);
811 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
814 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
815 ri
->secure
& ARM_CP_SECSTATE_S
);
817 return cpu
->ccsidr
[index
];
820 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
823 raw_write(env
, ri
, value
& 0xf);
826 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
828 CPUState
*cs
= ENV_GET_CPU(env
);
831 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
834 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
837 /* External aborts are not possible in QEMU so A bit is always clear */
841 static const ARMCPRegInfo v7_cp_reginfo
[] = {
842 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
843 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
844 .access
= PL1_W
, .type
= ARM_CP_NOP
},
845 /* Performance monitors are implementation defined in v7,
846 * but with an ARM recommended set of registers, which we
847 * follow (although we don't actually implement any counters)
849 * Performance registers fall into three categories:
850 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
851 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
852 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
853 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
854 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
856 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
857 .access
= PL0_RW
, .type
= ARM_CP_NO_MIGRATE
,
858 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
859 .writefn
= pmcntenset_write
,
860 .accessfn
= pmreg_access
,
861 .raw_writefn
= raw_write
},
862 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
863 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
864 .access
= PL0_RW
, .accessfn
= pmreg_access
,
865 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
866 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
867 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
869 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
870 .accessfn
= pmreg_access
,
871 .writefn
= pmcntenclr_write
,
872 .type
= ARM_CP_NO_MIGRATE
},
873 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
874 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
875 .access
= PL0_RW
, .accessfn
= pmreg_access
,
876 .type
= ARM_CP_NO_MIGRATE
,
877 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
878 .writefn
= pmcntenclr_write
},
879 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
880 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
881 .accessfn
= pmreg_access
,
882 .writefn
= pmovsr_write
,
883 .raw_writefn
= raw_write
},
884 /* Unimplemented so WI. */
885 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
886 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
887 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
888 * We choose to RAZ/WI.
890 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
891 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
892 .accessfn
= pmreg_access
},
893 #ifndef CONFIG_USER_ONLY
894 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
895 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
896 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
897 .accessfn
= pmreg_access
},
898 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
899 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
900 .access
= PL0_RW
, .accessfn
= pmreg_access
,
902 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
904 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
905 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
906 .writefn
= pmccfiltr_write
,
907 .access
= PL0_RW
, .accessfn
= pmreg_access
,
909 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
911 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
913 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
914 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
915 .raw_writefn
= raw_write
},
916 /* Unimplemented, RAZ/WI. */
917 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
918 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
919 .accessfn
= pmreg_access
},
920 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
921 .access
= PL0_R
| PL1_RW
,
922 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
924 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
925 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
927 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
929 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
930 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
931 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
932 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
933 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
934 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
935 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
936 .access
= PL1_RW
, .writefn
= vbar_write
,
937 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
938 offsetof(CPUARMState
, cp15
.vbar_ns
) },
940 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
941 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
942 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
943 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
944 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
945 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
946 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
947 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
948 /* Auxiliary ID register: this actually has an IMPDEF value but for now
949 * just RAZ for all cores:
951 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
952 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
953 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
954 /* Auxiliary fault status registers: these also are IMPDEF, and we
955 * choose to RAZ/WI for all cores.
957 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
958 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
959 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
960 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
961 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
962 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
963 /* MAIR can just read-as-written because we don't implement caches
964 * and so don't need to care about memory attributes.
966 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
967 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
968 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
970 /* For non-long-descriptor page tables these are PRRR and NMRR;
971 * regardless they still act as reads-as-written for QEMU.
972 * The override is necessary because of the overly-broad TLB_LOCKDOWN
975 /* MAIR0/1 are defined separately from their 64-bit counterpart which
976 * allows them to assign the correct fieldoffset based on the endianness
977 * handled in the field definitions.
979 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
980 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
981 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
982 offsetof(CPUARMState
, cp15
.mair0_ns
) },
983 .resetfn
= arm_cp_reset_ignore
},
984 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
985 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
986 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
987 offsetof(CPUARMState
, cp15
.mair1_ns
) },
988 .resetfn
= arm_cp_reset_ignore
},
989 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
990 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
991 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_R
, .readfn
= isr_read
},
992 /* 32 bit ITLB invalidates */
993 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
994 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
995 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
996 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
997 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
998 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
999 /* 32 bit DTLB invalidates */
1000 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1001 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1002 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1003 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1004 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1005 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1006 /* 32 bit TLB invalidates */
1007 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1008 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1009 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1010 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1011 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1012 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1013 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1014 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1018 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1019 /* 32 bit TLB invalidates, Inner Shareable */
1020 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1021 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1022 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1023 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1024 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1025 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
,
1026 .writefn
= tlbiasid_is_write
},
1027 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1028 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
,
1029 .writefn
= tlbimvaa_is_write
},
1033 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1040 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1042 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1043 return CP_ACCESS_TRAP
;
1045 return CP_ACCESS_OK
;
1048 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1049 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1050 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1052 .writefn
= teecr_write
},
1053 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1054 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1055 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1059 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1060 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1061 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1063 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1064 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1066 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1067 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1068 .resetfn
= arm_cp_reset_ignore
},
1069 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1070 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1071 .access
= PL0_R
|PL1_W
,
1072 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1074 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1075 .access
= PL0_R
|PL1_W
,
1076 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1077 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1078 .resetfn
= arm_cp_reset_ignore
},
1079 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1080 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1082 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1083 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1085 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1086 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1091 #ifndef CONFIG_USER_ONLY
1093 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1095 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1096 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1097 return CP_ACCESS_TRAP
;
1099 return CP_ACCESS_OK
;
1102 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1104 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1105 if (arm_current_el(env
) == 0 &&
1106 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1107 return CP_ACCESS_TRAP
;
1109 return CP_ACCESS_OK
;
1112 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1114 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1115 * EL0[PV]TEN is zero.
1117 if (arm_current_el(env
) == 0 &&
1118 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1119 return CP_ACCESS_TRAP
;
1121 return CP_ACCESS_OK
;
1124 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1125 const ARMCPRegInfo
*ri
)
1127 return gt_counter_access(env
, GTIMER_PHYS
);
1130 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1131 const ARMCPRegInfo
*ri
)
1133 return gt_counter_access(env
, GTIMER_VIRT
);
1136 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1138 return gt_timer_access(env
, GTIMER_PHYS
);
1141 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1143 return gt_timer_access(env
, GTIMER_VIRT
);
1146 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1148 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1151 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1153 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1156 /* Timer enabled: calculate and set current ISTATUS, irq, and
1157 * reset timer to when ISTATUS next has to change
1159 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1160 /* Note that this must be unsigned 64 bit arithmetic: */
1161 int istatus
= count
>= gt
->cval
;
1164 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1165 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1166 (istatus
&& !(gt
->ctl
& 2)));
1168 /* Next transition is when count rolls back over to zero */
1169 nexttick
= UINT64_MAX
;
1171 /* Next transition is when we hit cval */
1172 nexttick
= gt
->cval
;
1174 /* Note that the desired next expiry time might be beyond the
1175 * signed-64-bit range of a QEMUTimer -- in this case we just
1176 * set the timer for as far in the future as possible. When the
1177 * timer expires we will reset the timer for any remaining period.
1179 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1180 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1182 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1184 /* Timer disabled: ISTATUS and timer output always clear */
1186 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1187 timer_del(cpu
->gt_timer
[timeridx
]);
1191 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1193 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1194 int timeridx
= ri
->opc1
& 1;
1196 timer_del(cpu
->gt_timer
[timeridx
]);
1199 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1201 return gt_get_countervalue(env
);
1204 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1207 int timeridx
= ri
->opc1
& 1;
1209 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1210 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1213 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1215 int timeridx
= ri
->crm
& 1;
1217 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1218 gt_get_countervalue(env
));
1221 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1224 int timeridx
= ri
->crm
& 1;
1226 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1227 + sextract64(value
, 0, 32);
1228 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1231 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1234 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1235 int timeridx
= ri
->crm
& 1;
1236 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1238 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1239 if ((oldval
^ value
) & 1) {
1240 /* Enable toggled */
1241 gt_recalc_timer(cpu
, timeridx
);
1242 } else if ((oldval
^ value
) & 2) {
1243 /* IMASK toggled: don't need to recalculate,
1244 * just set the interrupt line based on ISTATUS
1246 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1247 (oldval
& 4) && !(value
& 2));
1251 void arm_gt_ptimer_cb(void *opaque
)
1253 ARMCPU
*cpu
= opaque
;
1255 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1258 void arm_gt_vtimer_cb(void *opaque
)
1260 ARMCPU
*cpu
= opaque
;
1262 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1265 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1266 /* Note that CNTFRQ is purely reads-as-written for the benefit
1267 * of software; writing it doesn't actually change the timer frequency.
1268 * Our reset value matches the fixed frequency we implement the timer at.
1270 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1271 .type
= ARM_CP_NO_MIGRATE
,
1272 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1273 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1274 .resetfn
= arm_cp_reset_ignore
,
1276 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1277 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1278 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1279 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1280 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1282 /* overall control: mostly access permissions */
1283 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1284 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1286 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1289 /* per-timer control */
1290 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1291 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1292 .accessfn
= gt_ptimer_access
,
1293 .fieldoffset
= offsetoflow32(CPUARMState
,
1294 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1295 .resetfn
= arm_cp_reset_ignore
,
1296 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1298 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1299 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1300 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1301 .accessfn
= gt_ptimer_access
,
1302 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1304 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1306 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1307 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1308 .accessfn
= gt_vtimer_access
,
1309 .fieldoffset
= offsetoflow32(CPUARMState
,
1310 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1311 .resetfn
= arm_cp_reset_ignore
,
1312 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1314 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1315 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1316 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1317 .accessfn
= gt_vtimer_access
,
1318 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1320 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1322 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1323 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1324 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1325 .accessfn
= gt_ptimer_access
,
1326 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1328 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1329 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1330 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1331 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1333 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1334 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1335 .accessfn
= gt_vtimer_access
,
1336 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1338 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1339 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1340 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1341 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1343 /* The counter itself */
1344 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1345 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1346 .accessfn
= gt_pct_access
,
1347 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1349 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1350 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1351 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1352 .accessfn
= gt_pct_access
,
1353 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1355 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1356 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1357 .accessfn
= gt_vct_access
,
1358 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1360 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1361 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1362 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1363 .accessfn
= gt_vct_access
,
1364 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1366 /* Comparison value, indicating when the timer goes off */
1367 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1368 .access
= PL1_RW
| PL0_R
,
1369 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1370 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1371 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1372 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1374 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1375 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1376 .access
= PL1_RW
| PL0_R
,
1378 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1379 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1380 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1382 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1383 .access
= PL1_RW
| PL0_R
,
1384 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1385 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1386 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1387 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1389 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1390 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1391 .access
= PL1_RW
| PL0_R
,
1393 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1394 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1395 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1401 /* In user-mode none of the generic timer registers are accessible,
1402 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1403 * so instead just don't register any of them.
1405 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1411 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1413 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1414 raw_write(env
, ri
, value
);
1415 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1416 raw_write(env
, ri
, value
& 0xfffff6ff);
1418 raw_write(env
, ri
, value
& 0xfffff1ff);
1422 #ifndef CONFIG_USER_ONLY
1423 /* get_phys_addr() isn't present for user-mode-only targets */
1425 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1428 /* Other states are only available with TrustZone; in
1429 * a non-TZ implementation these registers don't exist
1430 * at all, which is an Uncategorized trap. This underdecoding
1431 * is safe because the reginfo is NO_MIGRATE.
1433 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1435 return CP_ACCESS_OK
;
1438 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1441 target_ulong page_size
;
1443 int ret
, is_user
= ri
->opc2
& 2;
1444 int access_type
= ri
->opc2
& 1;
1447 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
1448 &phys_addr
, &prot
, &page_size
);
1449 if (extended_addresses_enabled(env
)) {
1450 /* ret is a DFSR/IFSR value for the long descriptor
1451 * translation table format, but with WnR always clear.
1452 * Convert it to a 64-bit PAR.
1454 par64
= (1 << 11); /* LPAE bit always set */
1456 par64
|= phys_addr
& ~0xfffULL
;
1457 /* We don't set the ATTR or SH fields in the PAR. */
1460 par64
|= (ret
& 0x3f) << 1; /* FS */
1461 /* Note that S2WLK and FSTAGE are always zero, because we don't
1462 * implement virtualization and therefore there can't be a stage 2
1467 /* ret is a DFSR/IFSR value for the short descriptor
1468 * translation table format (with WnR always clear).
1469 * Convert it to a 32-bit PAR.
1472 /* We do not set any attribute bits in the PAR */
1473 if (page_size
== (1 << 24)
1474 && arm_feature(env
, ARM_FEATURE_V7
)) {
1475 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1477 par64
= phys_addr
& 0xfffff000;
1480 par64
= ((ret
& (1 << 10)) >> 5) | ((ret
& (1 << 12)) >> 6) |
1481 ((ret
& 0xf) << 1) | 1;
1485 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1489 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1490 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1491 .access
= PL1_RW
, .resetvalue
= 0,
1492 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1493 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1494 .writefn
= par_write
},
1495 #ifndef CONFIG_USER_ONLY
1496 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1497 .access
= PL1_W
, .accessfn
= ats_access
,
1498 .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1503 /* Return basic MPU access permission bits. */
1504 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1511 for (i
= 0; i
< 16; i
+= 2) {
1512 ret
|= (val
>> i
) & mask
;
1518 /* Pad basic MPU access permission bits to extended format. */
1519 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1526 for (i
= 0; i
< 16; i
+= 2) {
1527 ret
|= (val
& mask
) << i
;
1533 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1536 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1539 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1541 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1544 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1547 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1550 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1552 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1555 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1556 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1557 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1558 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1560 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1561 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1562 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1563 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1565 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1566 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1568 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1570 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1572 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1574 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1576 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1577 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1579 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1580 /* Protection region base and size registers */
1581 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1582 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1583 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1584 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1585 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1586 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1587 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1588 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1589 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1590 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1591 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1592 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1593 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1594 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1595 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1596 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1597 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1598 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1599 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1600 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1601 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1602 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1603 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1604 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1608 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1611 TCR
*tcr
= raw_ptr(env
, ri
);
1612 int maskshift
= extract32(value
, 0, 3);
1614 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1615 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
1616 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1617 * using Long-desciptor translation table format */
1618 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1619 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1620 /* In an implementation that includes the Security Extensions
1621 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1622 * Short-descriptor translation table format.
1624 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
1630 /* Update the masks corresponding to the the TCR bank being written
1631 * Note that we always calculate mask and base_mask, but
1632 * they are only used for short-descriptor tables (ie if EAE is 0);
1633 * for long-descriptor tables the TCR fields are used differently
1634 * and the mask and base_mask values are meaningless.
1636 tcr
->raw_tcr
= value
;
1637 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1638 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1641 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1644 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1646 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1647 /* With LPAE the TTBCR could result in a change of ASID
1648 * via the TTBCR.A1 bit, so do a TLB flush.
1650 tlb_flush(CPU(cpu
), 1);
1652 vmsa_ttbcr_raw_write(env
, ri
, value
);
1655 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1657 TCR
*tcr
= raw_ptr(env
, ri
);
1659 /* Reset both the TCR as well as the masks corresponding to the bank of
1660 * the TCR being reset.
1664 tcr
->base_mask
= 0xffffc000u
;
1667 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1670 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1671 TCR
*tcr
= raw_ptr(env
, ri
);
1673 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1674 tlb_flush(CPU(cpu
), 1);
1675 tcr
->raw_tcr
= value
;
1678 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1681 /* 64 bit accesses to the TTBRs can change the ASID and so we
1682 * must flush the TLB.
1684 if (cpreg_field_is_64bit(ri
)) {
1685 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1687 tlb_flush(CPU(cpu
), 1);
1689 raw_write(env
, ri
, value
);
1692 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1693 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1694 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1695 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
1696 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) },
1697 .resetfn
= arm_cp_reset_ignore
, },
1698 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1699 .access
= PL1_RW
, .resetvalue
= 0,
1700 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
1701 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
1702 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1703 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1705 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
1706 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1707 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
1708 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
1709 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
1710 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
1711 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1712 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
1713 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
1714 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
1715 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
1716 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1717 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1718 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1719 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1720 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
1721 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1722 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= vmsa_ttbcr_write
,
1723 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1724 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
1725 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
1726 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
1727 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1728 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
1730 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
1731 .access
= PL1_RW
, .resetvalue
= 0,
1732 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
1733 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
1737 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1740 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1741 /* The OS_TYPE bit in this register changes the reported CPUID! */
1742 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1743 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1746 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1749 env
->cp15
.c15_threadid
= value
& 0xffff;
1752 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1755 /* Wait-for-interrupt (deprecated) */
1756 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1759 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1762 /* On OMAP there are registers indicating the max/min index of dcache lines
1763 * containing a dirty line; cache flush operations have to reset these.
1765 env
->cp15
.c15_i_max
= 0x000;
1766 env
->cp15
.c15_i_min
= 0xff0;
1769 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1770 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1771 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1772 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1774 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1775 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1776 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1778 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1779 .writefn
= omap_ticonfig_write
},
1780 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1782 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1783 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1784 .access
= PL1_RW
, .resetvalue
= 0xff0,
1785 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1786 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1788 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1789 .writefn
= omap_threadid_write
},
1790 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1791 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1792 .type
= ARM_CP_NO_MIGRATE
,
1793 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1794 /* TODO: Peripheral port remap register:
1795 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1796 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1799 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1800 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1801 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1802 .writefn
= omap_cachemaint_write
},
1803 { .name
= "C9", .cp
= 15, .crn
= 9,
1804 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1805 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1809 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1812 env
->cp15
.c15_cpar
= value
& 0x3fff;
1815 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1816 { .name
= "XSCALE_CPAR",
1817 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1818 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1819 .writefn
= xscale_cpar_write
, },
1820 { .name
= "XSCALE_AUXCR",
1821 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1822 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1824 /* XScale specific cache-lockdown: since we have no cache we NOP these
1825 * and hope the guest does not really rely on cache behaviour.
1827 { .name
= "XSCALE_LOCK_ICACHE_LINE",
1828 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1829 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1830 { .name
= "XSCALE_UNLOCK_ICACHE",
1831 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1832 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1833 { .name
= "XSCALE_DCACHE_LOCK",
1834 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
1835 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1836 { .name
= "XSCALE_UNLOCK_DCACHE",
1837 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
1838 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1842 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1843 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1844 * implementation of this implementation-defined space.
1845 * Ideally this should eventually disappear in favour of actually
1846 * implementing the correct behaviour for all cores.
1848 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1849 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1851 .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
| ARM_CP_OVERRIDE
,
1856 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1857 /* Cache status: RAZ because we have no cache so it's always clean */
1858 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1859 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1864 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1865 /* We never have a a block transfer operation in progress */
1866 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1867 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1869 /* The cache ops themselves: these all NOP for QEMU */
1870 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1871 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1872 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1873 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1874 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1875 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1876 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1877 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1878 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1879 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1880 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1881 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1885 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1886 /* The cache test-and-clean instructions always return (1 << 30)
1887 * to indicate that there are no dirty cache lines.
1889 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1890 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1891 .resetvalue
= (1 << 30) },
1892 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1893 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1894 .resetvalue
= (1 << 30) },
1898 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1899 /* Ignore ReadBuffer accesses */
1900 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1901 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1902 .access
= PL1_RW
, .resetvalue
= 0,
1903 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1907 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1909 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1910 uint32_t mpidr
= cs
->cpu_index
;
1911 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1912 * in later ARM ARM versions), or any of the higher affinity level fields,
1913 * so these bits always RAZ.
1915 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1916 mpidr
|= (1U << 31);
1917 /* Cores which are uniprocessor (non-coherent)
1918 * but still implement the MP extensions set
1919 * bit 30. (For instance, A9UP.) However we do
1920 * not currently model any of those cores.
1926 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1927 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
1928 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1929 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1933 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1934 /* NOP AMAIR0/1: the override is because these clash with the rather
1935 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1937 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
1938 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1939 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1941 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1942 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1943 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1945 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1946 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
1947 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
1948 offsetof(CPUARMState
, cp15
.par_ns
)} },
1949 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1950 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1951 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
1952 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
1953 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1954 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1955 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1956 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
1957 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
1958 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1962 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1964 return vfp_get_fpcr(env
);
1967 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1970 vfp_set_fpcr(env
, value
);
1973 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1975 return vfp_get_fpsr(env
);
1978 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1981 vfp_set_fpsr(env
, value
);
1984 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1986 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
1987 return CP_ACCESS_TRAP
;
1989 return CP_ACCESS_OK
;
1992 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1995 env
->daif
= value
& PSTATE_DAIF
;
1998 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
1999 const ARMCPRegInfo
*ri
)
2001 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2002 * SCTLR_EL1.UCI is set.
2004 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2005 return CP_ACCESS_TRAP
;
2007 return CP_ACCESS_OK
;
2010 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2011 * Page D4-1736 (DDI0487A.b)
2014 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2017 /* Invalidate by VA (AArch64 version) */
2018 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2019 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2021 tlb_flush_page(CPU(cpu
), pageaddr
);
2024 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2027 /* Invalidate by VA, all ASIDs (AArch64 version) */
2028 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2029 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2031 tlb_flush_page(CPU(cpu
), pageaddr
);
2034 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2037 /* Invalidate by ASID (AArch64 version) */
2038 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2039 int asid
= extract64(value
, 48, 16);
2040 tlb_flush(CPU(cpu
), asid
== 0);
2043 static void tlbi_aa64_va_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2047 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2049 CPU_FOREACH(other_cs
) {
2050 tlb_flush_page(other_cs
, pageaddr
);
2054 static void tlbi_aa64_vaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2058 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2060 CPU_FOREACH(other_cs
) {
2061 tlb_flush_page(other_cs
, pageaddr
);
2065 static void tlbi_aa64_asid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2069 int asid
= extract64(value
, 48, 16);
2071 CPU_FOREACH(other_cs
) {
2072 tlb_flush(other_cs
, asid
== 0);
2076 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2078 /* We don't implement EL2, so the only control on DC ZVA is the
2079 * bit in the SCTLR which can prohibit access for EL0.
2081 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2082 return CP_ACCESS_TRAP
;
2084 return CP_ACCESS_OK
;
2087 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2089 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2090 int dzp_bit
= 1 << 4;
2092 /* DZP indicates whether DC ZVA access is allowed */
2093 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2096 return cpu
->dcz_blocksize
| dzp_bit
;
2099 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2101 if (!(env
->pstate
& PSTATE_SP
)) {
2102 /* Access to SP_EL0 is undefined if it's being used as
2103 * the stack pointer.
2105 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2107 return CP_ACCESS_OK
;
2110 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2112 return env
->pstate
& PSTATE_SP
;
2115 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2117 update_spsel(env
, val
);
2120 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2123 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2125 if (raw_read(env
, ri
) == value
) {
2126 /* Skip the TLB flush if nothing actually changed; Linux likes
2127 * to do a lot of pointless SCTLR writes.
2132 raw_write(env
, ri
, value
);
2133 /* ??? Lots of these bits are not implemented. */
2134 /* This may enable/disable the MMU, so do a TLB flush. */
2135 tlb_flush(CPU(cpu
), 1);
2138 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2139 /* Minimal set of EL0-visible registers. This will need to be expanded
2140 * significantly for system emulation of AArch64 CPUs.
2142 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2143 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2144 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2145 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2146 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2147 .type
= ARM_CP_NO_MIGRATE
,
2148 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2149 .fieldoffset
= offsetof(CPUARMState
, daif
),
2150 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2151 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2152 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2153 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2154 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2155 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2156 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2157 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2158 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2159 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
,
2160 .readfn
= aa64_dczid_read
},
2161 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2162 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2163 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2164 #ifndef CONFIG_USER_ONLY
2165 /* Avoid overhead of an access check that always passes in user-mode */
2166 .accessfn
= aa64_zva_access
,
2169 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2170 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2171 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2172 /* Cache ops: all NOPs since we don't emulate caches */
2173 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2174 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2175 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2176 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2177 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2178 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2179 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2180 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2181 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2182 .accessfn
= aa64_cacheop_access
},
2183 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2184 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2185 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2186 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2187 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2188 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2189 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2190 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2191 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2192 .accessfn
= aa64_cacheop_access
},
2193 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2194 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2195 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2196 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2197 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2198 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2199 .accessfn
= aa64_cacheop_access
},
2200 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2201 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2202 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2203 .accessfn
= aa64_cacheop_access
},
2204 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2205 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2206 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2207 /* TLBI operations */
2208 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2209 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2210 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2211 .writefn
= tlbiall_is_write
},
2212 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2213 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2214 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2215 .writefn
= tlbi_aa64_va_is_write
},
2216 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2217 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2218 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2219 .writefn
= tlbi_aa64_asid_is_write
},
2220 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2221 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2222 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2223 .writefn
= tlbi_aa64_vaa_is_write
},
2224 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2225 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2226 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2227 .writefn
= tlbi_aa64_va_is_write
},
2228 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2229 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2230 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2231 .writefn
= tlbi_aa64_vaa_is_write
},
2232 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2233 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2234 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2235 .writefn
= tlbiall_write
},
2236 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2237 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2238 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2239 .writefn
= tlbi_aa64_va_write
},
2240 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2241 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2242 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2243 .writefn
= tlbi_aa64_asid_write
},
2244 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2245 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2246 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2247 .writefn
= tlbi_aa64_vaa_write
},
2248 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2249 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2250 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2251 .writefn
= tlbi_aa64_va_write
},
2252 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2253 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2254 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2255 .writefn
= tlbi_aa64_vaa_write
},
2256 #ifndef CONFIG_USER_ONLY
2257 /* 64 bit address translation operations */
2258 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
2259 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
2260 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2261 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
2262 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
2263 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2264 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
2265 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
2266 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2267 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
2268 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
2269 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2271 /* TLB invalidate last level of translation table walk */
2272 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2273 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
2274 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2275 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
,
2276 .writefn
= tlbimvaa_is_write
},
2277 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2278 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2279 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2280 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2281 /* 32 bit cache operations */
2282 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2283 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2284 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2285 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2286 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2287 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2288 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2289 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2290 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2291 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2292 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2293 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2294 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2295 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2296 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2297 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2298 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2299 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2300 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2301 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2302 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2303 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2304 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2305 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2306 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2307 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2308 /* MMU Domain access control / MPU write buffer control */
2309 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2310 .access
= PL1_RW
, .resetvalue
= 0,
2311 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
2312 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
2313 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
2314 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2315 .type
= ARM_CP_NO_MIGRATE
,
2316 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2318 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
2319 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2320 .type
= ARM_CP_NO_MIGRATE
,
2321 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2322 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[0]) },
2323 /* We rely on the access checks not allowing the guest to write to the
2324 * state field when SPSel indicates that it's being used as the stack
2327 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2328 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2329 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2330 .type
= ARM_CP_NO_MIGRATE
,
2331 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2332 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2333 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2334 .type
= ARM_CP_NO_MIGRATE
,
2335 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2339 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2340 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo
[] = {
2341 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2342 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2344 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2345 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2346 .type
= ARM_CP_NO_MIGRATE
,
2347 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2349 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2353 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2355 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2356 uint64_t valid_mask
= HCR_MASK
;
2358 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2359 valid_mask
&= ~HCR_HCD
;
2361 valid_mask
&= ~HCR_TSC
;
2364 /* Clear RES0 bits. */
2365 value
&= valid_mask
;
2367 /* These bits change the MMU setup:
2368 * HCR_VM enables stage 2 translation
2369 * HCR_PTW forbids certain page-table setups
2370 * HCR_DC Disables stage1 and enables stage2 translation
2372 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
2373 tlb_flush(CPU(cpu
), 1);
2375 raw_write(env
, ri
, value
);
2378 static const ARMCPRegInfo v8_el2_cp_reginfo
[] = {
2379 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2380 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2381 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
2382 .writefn
= hcr_write
},
2383 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
2384 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
2385 .access
= PL2_RW
, .resetvalue
= 0,
2386 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
2387 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
2388 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
2389 .type
= ARM_CP_NO_MIGRATE
,
2390 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
2392 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
2393 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
2394 .type
= ARM_CP_NO_MIGRATE
,
2395 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
2396 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
2397 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
2398 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
2399 .access
= PL2_RW
, .resetvalue
= 0,
2400 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
2401 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
2402 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
2403 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
2404 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
2405 .type
= ARM_CP_NO_MIGRATE
,
2406 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
2407 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
2408 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2409 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2410 .access
= PL2_RW
, .writefn
= vbar_write
,
2411 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
2416 static const ARMCPRegInfo el3_cp_reginfo
[] = {
2417 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
2418 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
2419 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
2420 .resetvalue
= 0, .writefn
= scr_write
},
2421 { .name
= "SCR", .type
= ARM_CP_NO_MIGRATE
,
2422 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
2423 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
2424 .resetfn
= arm_cp_reset_ignore
, .writefn
= scr_write
},
2425 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
2426 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
2427 .access
= PL3_RW
, .resetvalue
= 0,
2428 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
2430 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
2431 .access
= PL3_RW
, .resetvalue
= 0,
2432 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
2433 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2434 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
2435 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
2436 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
2437 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
2438 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
2439 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
2440 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
2441 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
2442 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
2443 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
2444 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
2445 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
2446 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2447 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
2448 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
2449 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
2450 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
2451 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2452 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
2453 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
2454 .type
= ARM_CP_NO_MIGRATE
,
2455 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
2457 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
2458 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
2459 .type
= ARM_CP_NO_MIGRATE
,
2460 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
2461 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
2462 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
2463 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
2464 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
2465 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
2466 .type
= ARM_CP_NO_MIGRATE
,
2467 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
2468 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
2469 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
2470 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
2471 .access
= PL3_RW
, .writefn
= vbar_write
,
2472 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
2477 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2479 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2480 * but the AArch32 CTR has its own reginfo struct)
2482 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
2483 return CP_ACCESS_TRAP
;
2485 return CP_ACCESS_OK
;
2488 static const ARMCPRegInfo debug_cp_reginfo
[] = {
2489 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2490 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2491 * unlike DBGDRAR it is never accessible from EL0.
2492 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2495 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2496 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2497 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
2498 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
2499 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2500 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2501 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2502 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2503 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
2504 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2506 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2508 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2509 * We don't implement the configurable EL0 access.
2511 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
2512 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2513 .type
= ARM_CP_NO_MIGRATE
,
2515 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2516 .resetfn
= arm_cp_reset_ignore
},
2517 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2518 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
2519 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2520 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2521 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2522 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2523 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
2524 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2525 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2526 * implement vector catch debug events yet.
2529 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2530 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2534 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
2535 /* 64 bit access versions of the (dummy) debug registers */
2536 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
2537 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2538 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
2539 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2543 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
2545 CPUARMState
*env
= &cpu
->env
;
2547 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
2548 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
2550 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
2552 if (env
->cpu_watchpoint
[n
]) {
2553 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
2554 env
->cpu_watchpoint
[n
] = NULL
;
2557 if (!extract64(wcr
, 0, 1)) {
2558 /* E bit clear : watchpoint disabled */
2562 switch (extract64(wcr
, 3, 2)) {
2564 /* LSC 00 is reserved and must behave as if the wp is disabled */
2567 flags
|= BP_MEM_READ
;
2570 flags
|= BP_MEM_WRITE
;
2573 flags
|= BP_MEM_ACCESS
;
2577 /* Attempts to use both MASK and BAS fields simultaneously are
2578 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2579 * thus generating a watchpoint for every byte in the masked region.
2581 mask
= extract64(wcr
, 24, 4);
2582 if (mask
== 1 || mask
== 2) {
2583 /* Reserved values of MASK; we must act as if the mask value was
2584 * some non-reserved value, or as if the watchpoint were disabled.
2585 * We choose the latter.
2589 /* Watchpoint covers an aligned area up to 2GB in size */
2591 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2592 * whether the watchpoint fires when the unmasked bits match; we opt
2593 * to generate the exceptions.
2597 /* Watchpoint covers bytes defined by the byte address select bits */
2598 int bas
= extract64(wcr
, 5, 8);
2602 /* This must act as if the watchpoint is disabled */
2606 if (extract64(wvr
, 2, 1)) {
2607 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2608 * ignored, and BAS[3:0] define which bytes to watch.
2612 /* The BAS bits are supposed to be programmed to indicate a contiguous
2613 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2614 * we fire for each byte in the word/doubleword addressed by the WVR.
2615 * We choose to ignore any non-zero bits after the first range of 1s.
2617 basstart
= ctz32(bas
);
2618 len
= cto32(bas
>> basstart
);
2622 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
2623 &env
->cpu_watchpoint
[n
]);
2626 void hw_watchpoint_update_all(ARMCPU
*cpu
)
2629 CPUARMState
*env
= &cpu
->env
;
2631 /* Completely clear out existing QEMU watchpoints and our array, to
2632 * avoid possible stale entries following migration load.
2634 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
2635 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
2637 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
2638 hw_watchpoint_update(cpu
, i
);
2642 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2645 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2648 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2649 * register reads and behaves as if values written are sign extended.
2650 * Bits [1:0] are RES0.
2652 value
= sextract64(value
, 0, 49) & ~3ULL;
2654 raw_write(env
, ri
, value
);
2655 hw_watchpoint_update(cpu
, i
);
2658 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2661 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2664 raw_write(env
, ri
, value
);
2665 hw_watchpoint_update(cpu
, i
);
2668 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
2670 CPUARMState
*env
= &cpu
->env
;
2671 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
2672 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
2677 if (env
->cpu_breakpoint
[n
]) {
2678 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
2679 env
->cpu_breakpoint
[n
] = NULL
;
2682 if (!extract64(bcr
, 0, 1)) {
2683 /* E bit clear : watchpoint disabled */
2687 bt
= extract64(bcr
, 20, 4);
2690 case 4: /* unlinked address mismatch (reserved if AArch64) */
2691 case 5: /* linked address mismatch (reserved if AArch64) */
2692 qemu_log_mask(LOG_UNIMP
,
2693 "arm: address mismatch breakpoint types not implemented");
2695 case 0: /* unlinked address match */
2696 case 1: /* linked address match */
2698 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2699 * we behave as if the register was sign extended. Bits [1:0] are
2700 * RES0. The BAS field is used to allow setting breakpoints on 16
2701 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2702 * a bp will fire if the addresses covered by the bp and the addresses
2703 * covered by the insn overlap but the insn doesn't start at the
2704 * start of the bp address range. We choose to require the insn and
2705 * the bp to have the same address. The constraints on writing to
2706 * BAS enforced in dbgbcr_write mean we have only four cases:
2707 * 0b0000 => no breakpoint
2708 * 0b0011 => breakpoint on addr
2709 * 0b1100 => breakpoint on addr + 2
2710 * 0b1111 => breakpoint on addr
2711 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2713 int bas
= extract64(bcr
, 5, 4);
2714 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
2723 case 2: /* unlinked context ID match */
2724 case 8: /* unlinked VMID match (reserved if no EL2) */
2725 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2726 qemu_log_mask(LOG_UNIMP
,
2727 "arm: unlinked context breakpoint types not implemented");
2729 case 9: /* linked VMID match (reserved if no EL2) */
2730 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2731 case 3: /* linked context ID match */
2733 /* We must generate no events for Linked context matches (unless
2734 * they are linked to by some other bp/wp, which is handled in
2735 * updates for the linking bp/wp). We choose to also generate no events
2736 * for reserved values.
2741 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
2744 void hw_breakpoint_update_all(ARMCPU
*cpu
)
2747 CPUARMState
*env
= &cpu
->env
;
2749 /* Completely clear out existing QEMU breakpoints and our array, to
2750 * avoid possible stale entries following migration load.
2752 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
2753 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
2755 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
2756 hw_breakpoint_update(cpu
, i
);
2760 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2763 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2766 raw_write(env
, ri
, value
);
2767 hw_breakpoint_update(cpu
, i
);
2770 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2773 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2776 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2779 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
2780 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
2782 raw_write(env
, ri
, value
);
2783 hw_breakpoint_update(cpu
, i
);
2786 static void define_debug_regs(ARMCPU
*cpu
)
2788 /* Define v7 and v8 architectural debug registers.
2789 * These are just dummy implementations for now.
2792 int wrps
, brps
, ctx_cmps
;
2793 ARMCPRegInfo dbgdidr
= {
2794 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
2795 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
2798 /* Note that all these register fields hold "number of Xs minus 1". */
2799 brps
= extract32(cpu
->dbgdidr
, 24, 4);
2800 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
2801 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
2803 assert(ctx_cmps
<= brps
);
2805 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2806 * of the debug registers such as number of breakpoints;
2807 * check that if they both exist then they agree.
2809 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2810 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
2811 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
2812 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
2815 define_one_arm_cp_reg(cpu
, &dbgdidr
);
2816 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
2818 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
2819 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
2822 for (i
= 0; i
< brps
+ 1; i
++) {
2823 ARMCPRegInfo dbgregs
[] = {
2824 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
2825 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2827 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
2828 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
2830 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
2831 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2833 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
2834 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
2838 define_arm_cp_regs(cpu
, dbgregs
);
2841 for (i
= 0; i
< wrps
+ 1; i
++) {
2842 ARMCPRegInfo dbgregs
[] = {
2843 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
2844 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2846 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
2847 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
2849 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
2850 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2852 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
2853 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
2857 define_arm_cp_regs(cpu
, dbgregs
);
2861 void register_cp_regs_for_features(ARMCPU
*cpu
)
2863 /* Register all the coprocessor registers based on feature bits */
2864 CPUARMState
*env
= &cpu
->env
;
2865 if (arm_feature(env
, ARM_FEATURE_M
)) {
2866 /* M profile has no coprocessor registers */
2870 define_arm_cp_regs(cpu
, cp_reginfo
);
2871 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2872 /* Must go early as it is full of wildcards that may be
2873 * overridden by later definitions.
2875 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
2878 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2879 /* The ID registers all have impdef reset values */
2880 ARMCPRegInfo v6_idregs
[] = {
2881 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
2882 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2883 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2884 .resetvalue
= cpu
->id_pfr0
},
2885 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
2886 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
2887 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2888 .resetvalue
= cpu
->id_pfr1
},
2889 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
2890 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
2891 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2892 .resetvalue
= cpu
->id_dfr0
},
2893 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
2894 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
2895 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2896 .resetvalue
= cpu
->id_afr0
},
2897 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
2898 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
2899 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2900 .resetvalue
= cpu
->id_mmfr0
},
2901 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
2902 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
2903 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2904 .resetvalue
= cpu
->id_mmfr1
},
2905 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
2906 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
2907 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2908 .resetvalue
= cpu
->id_mmfr2
},
2909 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
2910 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
2911 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2912 .resetvalue
= cpu
->id_mmfr3
},
2913 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
2914 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
2915 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2916 .resetvalue
= cpu
->id_isar0
},
2917 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
2918 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
2919 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2920 .resetvalue
= cpu
->id_isar1
},
2921 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
2922 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2923 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2924 .resetvalue
= cpu
->id_isar2
},
2925 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
2926 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
2927 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2928 .resetvalue
= cpu
->id_isar3
},
2929 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
2930 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
2931 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2932 .resetvalue
= cpu
->id_isar4
},
2933 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
2934 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
2935 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2936 .resetvalue
= cpu
->id_isar5
},
2937 /* 6..7 are as yet unallocated and must RAZ */
2938 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
2939 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2941 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
2942 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2946 define_arm_cp_regs(cpu
, v6_idregs
);
2947 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
2949 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
2951 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
2952 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
2954 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2955 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
2957 if (arm_feature(env
, ARM_FEATURE_V7
)) {
2958 /* v7 performance monitor control register: same implementor
2959 * field as main ID register, and we implement only the cycle
2962 #ifndef CONFIG_USER_ONLY
2963 ARMCPRegInfo pmcr
= {
2964 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
2966 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
2967 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
2968 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
2969 .raw_writefn
= raw_write
,
2971 ARMCPRegInfo pmcr64
= {
2972 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
2973 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
2974 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2976 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
2977 .resetvalue
= cpu
->midr
& 0xff000000,
2978 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
2980 define_one_arm_cp_reg(cpu
, &pmcr
);
2981 define_one_arm_cp_reg(cpu
, &pmcr64
);
2983 ARMCPRegInfo clidr
= {
2984 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
2985 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
2986 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
2988 define_one_arm_cp_reg(cpu
, &clidr
);
2989 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
2990 define_debug_regs(cpu
);
2992 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
2994 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2995 /* AArch64 ID registers, which all have impdef reset values */
2996 ARMCPRegInfo v8_idregs
[] = {
2997 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2998 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
2999 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3000 .resetvalue
= cpu
->id_aa64pfr0
},
3001 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3002 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
3003 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3004 .resetvalue
= cpu
->id_aa64pfr1
},
3005 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3006 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
3007 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3008 /* We mask out the PMUVer field, because we don't currently
3009 * implement the PMU. Not advertising it prevents the guest
3010 * from trying to use it and getting UNDEFs on registers we
3013 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
3014 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3015 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
3016 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3017 .resetvalue
= cpu
->id_aa64dfr1
},
3018 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3019 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
3020 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3021 .resetvalue
= cpu
->id_aa64afr0
},
3022 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3023 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
3024 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3025 .resetvalue
= cpu
->id_aa64afr1
},
3026 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
3027 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
3028 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3029 .resetvalue
= cpu
->id_aa64isar0
},
3030 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
3031 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
3032 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3033 .resetvalue
= cpu
->id_aa64isar1
},
3034 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3035 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3036 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3037 .resetvalue
= cpu
->id_aa64mmfr0
},
3038 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3039 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
3040 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3041 .resetvalue
= cpu
->id_aa64mmfr1
},
3042 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3043 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
3044 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3045 .resetvalue
= cpu
->mvfr0
},
3046 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3047 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
3048 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3049 .resetvalue
= cpu
->mvfr1
},
3050 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
3051 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
3052 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3053 .resetvalue
= cpu
->mvfr2
},
3056 ARMCPRegInfo rvbar
= {
3057 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3058 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 2,
3059 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
3061 define_one_arm_cp_reg(cpu
, &rvbar
);
3062 define_arm_cp_regs(cpu
, v8_idregs
);
3063 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
3065 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3066 define_arm_cp_regs(cpu
, v8_el2_cp_reginfo
);
3068 /* If EL2 is missing but higher ELs are enabled, we need to
3069 * register the no_el2 reginfos.
3071 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3072 define_arm_cp_regs(cpu
, v8_el3_no_el2_cp_reginfo
);
3075 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3076 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
3078 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3079 /* These are the MPU registers prior to PMSAv6. Any new
3080 * PMSA core later than the ARM946 will require that we
3081 * implement the PMSAv6 or PMSAv7 registers, which are
3082 * completely different.
3084 assert(!arm_feature(env
, ARM_FEATURE_V6
));
3085 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
3087 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
3089 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
3090 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
3092 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
3093 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
3095 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
3096 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
3098 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
3099 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
3101 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
3102 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
3104 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
3105 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
3107 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
3108 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
3110 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3111 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
3113 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3114 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
3116 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
3117 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
3119 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3120 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
3122 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3123 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3124 * be read-only (ie write causes UNDEF exception).
3127 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
3128 /* Pre-v8 MIDR space.
3129 * Note that the MIDR isn't a simple constant register because
3130 * of the TI925 behaviour where writes to another register can
3131 * cause the MIDR value to change.
3133 * Unimplemented registers in the c15 0 0 0 space default to
3134 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3135 * and friends override accordingly.
3138 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
3139 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
3140 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
3141 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
3142 .type
= ARM_CP_OVERRIDE
},
3143 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3145 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
3146 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3148 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
3149 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3151 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
3152 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3154 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
3155 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3157 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
3158 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3161 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
3162 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3163 * variable-MIDR TI925 behaviour. Instead we have a single
3164 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3166 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3167 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
3168 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3169 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3170 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
3171 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3174 ARMCPRegInfo id_cp_reginfo
[] = {
3175 /* These are common to v8 and pre-v8 */
3177 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
3178 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3179 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
3180 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
3181 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
3182 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3183 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3185 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
3186 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3188 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
3189 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3192 ARMCPRegInfo crn0_wi_reginfo
= {
3193 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
3194 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
3195 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
3197 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
3198 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3200 /* Register the blanket "writes ignored" value first to cover the
3201 * whole space. Then update the specific ID registers to allow write
3202 * access, so that they ignore writes rather than causing them to
3205 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
3206 for (r
= id_pre_v8_midr_cp_reginfo
;
3207 r
->type
!= ARM_CP_SENTINEL
; r
++) {
3210 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3214 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3215 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
3217 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
3219 define_arm_cp_regs(cpu
, id_cp_reginfo
);
3222 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
3223 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
3226 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
3227 ARMCPRegInfo auxcr
= {
3228 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3229 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
3230 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3231 .resetvalue
= cpu
->reset_auxcr
3233 define_one_arm_cp_reg(cpu
, &auxcr
);
3236 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
3237 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3238 /* 32 bit view is [31:18] 0...0 [43:32]. */
3239 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
3240 | extract64(cpu
->reset_cbar
, 32, 12);
3241 ARMCPRegInfo cbar_reginfo
[] = {
3243 .type
= ARM_CP_CONST
,
3244 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3245 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
3246 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3247 .type
= ARM_CP_CONST
,
3248 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
3249 .access
= PL1_R
, .resetvalue
= cbar32
},
3252 /* We don't implement a r/w 64 bit CBAR currently */
3253 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
3254 define_arm_cp_regs(cpu
, cbar_reginfo
);
3256 ARMCPRegInfo cbar
= {
3258 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3259 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
3260 .fieldoffset
= offsetof(CPUARMState
,
3261 cp15
.c15_config_base_address
)
3263 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
3264 cbar
.access
= PL1_R
;
3265 cbar
.fieldoffset
= 0;
3266 cbar
.type
= ARM_CP_CONST
;
3268 define_one_arm_cp_reg(cpu
, &cbar
);
3272 /* Generic registers whose values depend on the implementation */
3274 ARMCPRegInfo sctlr
= {
3275 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
3276 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3278 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
3279 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
3280 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
3281 .raw_writefn
= raw_write
,
3283 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3284 /* Normally we would always end the TB on an SCTLR write, but Linux
3285 * arch/arm/mach-pxa/sleep.S expects two instructions following
3286 * an MMU enable to execute from cache. Imitate this behaviour.
3288 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
3290 define_one_arm_cp_reg(cpu
, &sctlr
);
3294 ARMCPU
*cpu_arm_init(const char *cpu_model
)
3296 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
3299 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
3301 CPUState
*cs
= CPU(cpu
);
3302 CPUARMState
*env
= &cpu
->env
;
3304 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3305 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
3306 aarch64_fpu_gdb_set_reg
,
3307 34, "aarch64-fpu.xml", 0);
3308 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
3309 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3310 51, "arm-neon.xml", 0);
3311 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
3312 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3313 35, "arm-vfp3.xml", 0);
3314 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
3315 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3316 19, "arm-vfp.xml", 0);
3320 /* Sort alphabetically by type name, except for "any". */
3321 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
3323 ObjectClass
*class_a
= (ObjectClass
*)a
;
3324 ObjectClass
*class_b
= (ObjectClass
*)b
;
3325 const char *name_a
, *name_b
;
3327 name_a
= object_class_get_name(class_a
);
3328 name_b
= object_class_get_name(class_b
);
3329 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
3331 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
3334 return strcmp(name_a
, name_b
);
3338 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
3340 ObjectClass
*oc
= data
;
3341 CPUListState
*s
= user_data
;
3342 const char *typename
;
3345 typename
= object_class_get_name(oc
);
3346 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3347 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
3352 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
3356 .cpu_fprintf
= cpu_fprintf
,
3360 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3361 list
= g_slist_sort(list
, arm_cpu_list_compare
);
3362 (*cpu_fprintf
)(f
, "Available CPUs:\n");
3363 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
3366 /* The 'host' CPU type is dynamically registered only if KVM is
3367 * enabled, so we have to special-case it here:
3369 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
3373 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
3375 ObjectClass
*oc
= data
;
3376 CpuDefinitionInfoList
**cpu_list
= user_data
;
3377 CpuDefinitionInfoList
*entry
;
3378 CpuDefinitionInfo
*info
;
3379 const char *typename
;
3381 typename
= object_class_get_name(oc
);
3382 info
= g_malloc0(sizeof(*info
));
3383 info
->name
= g_strndup(typename
,
3384 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3386 entry
= g_malloc0(sizeof(*entry
));
3387 entry
->value
= info
;
3388 entry
->next
= *cpu_list
;
3392 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
3394 CpuDefinitionInfoList
*cpu_list
= NULL
;
3397 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3398 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
3404 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
3405 void *opaque
, int state
, int secstate
,
3406 int crm
, int opc1
, int opc2
)
3408 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3409 * add a single reginfo struct to the hash table.
3411 uint32_t *key
= g_new(uint32_t, 1);
3412 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
3413 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
3414 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
3416 /* Reset the secure state to the specific incoming state. This is
3417 * necessary as the register may have been defined with both states.
3419 r2
->secure
= secstate
;
3421 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
3422 /* Register is banked (using both entries in array).
3423 * Overwriting fieldoffset as the array is only used to define
3424 * banked registers but later only fieldoffset is used.
3426 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
3429 if (state
== ARM_CP_STATE_AA32
) {
3430 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
3431 /* If the register is banked then we don't need to migrate or
3432 * reset the 32-bit instance in certain cases:
3434 * 1) If the register has both 32-bit and 64-bit instances then we
3435 * can count on the 64-bit instance taking care of the
3437 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3438 * taking care of the secure bank. This requires that separate
3439 * 32 and 64-bit definitions are provided.
3441 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
3442 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
3443 r2
->type
|= ARM_CP_NO_MIGRATE
;
3444 r2
->resetfn
= arm_cp_reset_ignore
;
3446 } else if ((secstate
!= r
->secure
) && !ns
) {
3447 /* The register is not banked so we only want to allow migration of
3448 * the non-secure instance.
3450 r2
->type
|= ARM_CP_NO_MIGRATE
;
3451 r2
->resetfn
= arm_cp_reset_ignore
;
3454 if (r
->state
== ARM_CP_STATE_BOTH
) {
3455 /* We assume it is a cp15 register if the .cp field is left unset.
3461 #ifdef HOST_WORDS_BIGENDIAN
3462 if (r2
->fieldoffset
) {
3463 r2
->fieldoffset
+= sizeof(uint32_t);
3468 if (state
== ARM_CP_STATE_AA64
) {
3469 /* To allow abbreviation of ARMCPRegInfo
3470 * definitions, we treat cp == 0 as equivalent to
3471 * the value for "standard guest-visible sysreg".
3472 * STATE_BOTH definitions are also always "standard
3473 * sysreg" in their AArch64 view (the .cp value may
3474 * be non-zero for the benefit of the AArch32 view).
3476 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
3477 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
3479 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
3480 r2
->opc0
, opc1
, opc2
);
3482 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
3485 r2
->opaque
= opaque
;
3487 /* reginfo passed to helpers is correct for the actual access,
3488 * and is never ARM_CP_STATE_BOTH:
3491 /* Make sure reginfo passed to helpers for wildcarded regs
3492 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3497 /* By convention, for wildcarded registers only the first
3498 * entry is used for migration; the others are marked as
3499 * NO_MIGRATE so we don't try to transfer the register
3500 * multiple times. Special registers (ie NOP/WFI) are
3503 if ((r
->type
& ARM_CP_SPECIAL
) ||
3504 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
3505 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
3506 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
3507 r2
->type
|= ARM_CP_NO_MIGRATE
;
3510 /* Overriding of an existing definition must be explicitly
3513 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
3514 ARMCPRegInfo
*oldreg
;
3515 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
3516 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
3517 fprintf(stderr
, "Register redefined: cp=%d %d bit "
3518 "crn=%d crm=%d opc1=%d opc2=%d, "
3519 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
3520 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
3521 oldreg
->name
, r2
->name
);
3522 g_assert_not_reached();
3525 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
3529 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
3530 const ARMCPRegInfo
*r
, void *opaque
)
3532 /* Define implementations of coprocessor registers.
3533 * We store these in a hashtable because typically
3534 * there are less than 150 registers in a space which
3535 * is 16*16*16*8*8 = 262144 in size.
3536 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3537 * If a register is defined twice then the second definition is
3538 * used, so this can be used to define some generic registers and
3539 * then override them with implementation specific variations.
3540 * At least one of the original and the second definition should
3541 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3542 * against accidental use.
3544 * The state field defines whether the register is to be
3545 * visible in the AArch32 or AArch64 execution state. If the
3546 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3547 * reginfo structure for the AArch32 view, which sees the lower
3548 * 32 bits of the 64 bit register.
3550 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3551 * be wildcarded. AArch64 registers are always considered to be 64
3552 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3553 * the register, if any.
3555 int crm
, opc1
, opc2
, state
;
3556 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
3557 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
3558 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
3559 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
3560 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
3561 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
3562 /* 64 bit registers have only CRm and Opc1 fields */
3563 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
3564 /* op0 only exists in the AArch64 encodings */
3565 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
3566 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3567 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
3568 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3569 * encodes a minimum access level for the register. We roll this
3570 * runtime check into our general permission check code, so check
3571 * here that the reginfo's specified permissions are strict enough
3572 * to encompass the generic architectural permission check.
3574 if (r
->state
!= ARM_CP_STATE_AA32
) {
3577 case 0: case 1: case 2:
3590 /* unallocated encoding, so not possible */
3598 /* min_EL EL1, secure mode only (we don't check the latter) */
3602 /* broken reginfo with out-of-range opc1 */
3606 /* assert our permissions are not too lax (stricter is fine) */
3607 assert((r
->access
& ~mask
) == 0);
3610 /* Check that the register definition has enough info to handle
3611 * reads and writes if they are permitted.
3613 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
3614 if (r
->access
& PL3_R
) {
3615 assert((r
->fieldoffset
||
3616 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
3619 if (r
->access
& PL3_W
) {
3620 assert((r
->fieldoffset
||
3621 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
3625 /* Bad type field probably means missing sentinel at end of reg list */
3626 assert(cptype_valid(r
->type
));
3627 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
3628 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
3629 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
3630 for (state
= ARM_CP_STATE_AA32
;
3631 state
<= ARM_CP_STATE_AA64
; state
++) {
3632 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
3635 if (state
== ARM_CP_STATE_AA32
) {
3636 /* Under AArch32 CP registers can be common
3637 * (same for secure and non-secure world) or banked.
3639 switch (r
->secure
) {
3640 case ARM_CP_SECSTATE_S
:
3641 case ARM_CP_SECSTATE_NS
:
3642 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3643 r
->secure
, crm
, opc1
, opc2
);
3646 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3649 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3655 /* AArch64 registers get mapped to non-secure instance
3657 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3667 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
3668 const ARMCPRegInfo
*regs
, void *opaque
)
3670 /* Define a whole list of registers */
3671 const ARMCPRegInfo
*r
;
3672 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3673 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
3677 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
3679 return g_hash_table_lookup(cpregs
, &encoded_cp
);
3682 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3685 /* Helper coprocessor write function for write-ignore registers */
3688 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3690 /* Helper coprocessor write function for read-as-zero registers */
3694 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
3696 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3699 static int bad_mode_switch(CPUARMState
*env
, int mode
)
3701 /* Return true if it is not valid for us to switch to
3702 * this CPU mode (ie all the UNPREDICTABLE cases in
3703 * the ARM ARM CPSRWriteByInstr pseudocode).
3706 case ARM_CPU_MODE_USR
:
3707 case ARM_CPU_MODE_SYS
:
3708 case ARM_CPU_MODE_SVC
:
3709 case ARM_CPU_MODE_ABT
:
3710 case ARM_CPU_MODE_UND
:
3711 case ARM_CPU_MODE_IRQ
:
3712 case ARM_CPU_MODE_FIQ
:
3714 case ARM_CPU_MODE_MON
:
3715 return !arm_is_secure(env
);
3721 uint32_t cpsr_read(CPUARMState
*env
)
3724 ZF
= (env
->ZF
== 0);
3725 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
3726 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
3727 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
3728 | ((env
->condexec_bits
& 0xfc) << 8)
3729 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
3732 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
3734 uint32_t changed_daif
;
3736 if (mask
& CPSR_NZCV
) {
3737 env
->ZF
= (~val
) & CPSR_Z
;
3739 env
->CF
= (val
>> 29) & 1;
3740 env
->VF
= (val
<< 3) & 0x80000000;
3743 env
->QF
= ((val
& CPSR_Q
) != 0);
3745 env
->thumb
= ((val
& CPSR_T
) != 0);
3746 if (mask
& CPSR_IT_0_1
) {
3747 env
->condexec_bits
&= ~3;
3748 env
->condexec_bits
|= (val
>> 25) & 3;
3750 if (mask
& CPSR_IT_2_7
) {
3751 env
->condexec_bits
&= 3;
3752 env
->condexec_bits
|= (val
>> 8) & 0xfc;
3754 if (mask
& CPSR_GE
) {
3755 env
->GE
= (val
>> 16) & 0xf;
3758 /* In a V7 implementation that includes the security extensions but does
3759 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
3760 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
3761 * bits respectively.
3763 * In a V8 implementation, it is permitted for privileged software to
3764 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
3766 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
3767 arm_feature(env
, ARM_FEATURE_EL3
) &&
3768 !arm_feature(env
, ARM_FEATURE_EL2
) &&
3769 !arm_is_secure(env
)) {
3771 changed_daif
= (env
->daif
^ val
) & mask
;
3773 if (changed_daif
& CPSR_A
) {
3774 /* Check to see if we are allowed to change the masking of async
3775 * abort exceptions from a non-secure state.
3777 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
3778 qemu_log_mask(LOG_GUEST_ERROR
,
3779 "Ignoring attempt to switch CPSR_A flag from "
3780 "non-secure world with SCR.AW bit clear\n");
3785 if (changed_daif
& CPSR_F
) {
3786 /* Check to see if we are allowed to change the masking of FIQ
3787 * exceptions from a non-secure state.
3789 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
3790 qemu_log_mask(LOG_GUEST_ERROR
,
3791 "Ignoring attempt to switch CPSR_F flag from "
3792 "non-secure world with SCR.FW bit clear\n");
3796 /* Check whether non-maskable FIQ (NMFI) support is enabled.
3797 * If this bit is set software is not allowed to mask
3798 * FIQs, but is allowed to set CPSR_F to 0.
3800 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
3802 qemu_log_mask(LOG_GUEST_ERROR
,
3803 "Ignoring attempt to enable CPSR_F flag "
3804 "(non-maskable FIQ [NMFI] support enabled)\n");
3810 env
->daif
&= ~(CPSR_AIF
& mask
);
3811 env
->daif
|= val
& CPSR_AIF
& mask
;
3813 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
3814 if (bad_mode_switch(env
, val
& CPSR_M
)) {
3815 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3816 * We choose to ignore the attempt and leave the CPSR M field
3821 switch_mode(env
, val
& CPSR_M
);
3824 mask
&= ~CACHED_CPSR_BITS
;
3825 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
3828 /* Sign/zero extend */
3829 uint32_t HELPER(sxtb16
)(uint32_t x
)
3832 res
= (uint16_t)(int8_t)x
;
3833 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
3837 uint32_t HELPER(uxtb16
)(uint32_t x
)
3840 res
= (uint16_t)(uint8_t)x
;
3841 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
3845 uint32_t HELPER(clz
)(uint32_t x
)
3850 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
3854 if (num
== INT_MIN
&& den
== -1)
3859 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
3866 uint32_t HELPER(rbit
)(uint32_t x
)
3868 x
= ((x
& 0xff000000) >> 24)
3869 | ((x
& 0x00ff0000) >> 8)
3870 | ((x
& 0x0000ff00) << 8)
3871 | ((x
& 0x000000ff) << 24);
3872 x
= ((x
& 0xf0f0f0f0) >> 4)
3873 | ((x
& 0x0f0f0f0f) << 4);
3874 x
= ((x
& 0x88888888) >> 3)
3875 | ((x
& 0x44444444) >> 1)
3876 | ((x
& 0x22222222) << 1)
3877 | ((x
& 0x11111111) << 3);
3881 #if defined(CONFIG_USER_ONLY)
3883 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
3886 ARMCPU
*cpu
= ARM_CPU(cs
);
3887 CPUARMState
*env
= &cpu
->env
;
3889 env
->exception
.vaddress
= address
;
3891 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
3893 cs
->exception_index
= EXCP_DATA_ABORT
;
3898 /* These should probably raise undefined insn exceptions. */
3899 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3901 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3903 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
3906 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3908 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3910 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
3914 void switch_mode(CPUARMState
*env
, int mode
)
3916 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3918 if (mode
!= ARM_CPU_MODE_USR
) {
3919 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
3923 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3925 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3927 cpu_abort(CPU(cpu
), "banked r13 write\n");
3930 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3932 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3934 cpu_abort(CPU(cpu
), "banked r13 read\n");
3938 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
)
3945 /* Map CPU modes onto saved register banks. */
3946 int bank_number(int mode
)
3949 case ARM_CPU_MODE_USR
:
3950 case ARM_CPU_MODE_SYS
:
3952 case ARM_CPU_MODE_SVC
:
3954 case ARM_CPU_MODE_ABT
:
3956 case ARM_CPU_MODE_UND
:
3958 case ARM_CPU_MODE_IRQ
:
3960 case ARM_CPU_MODE_FIQ
:
3962 case ARM_CPU_MODE_HYP
:
3964 case ARM_CPU_MODE_MON
:
3967 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
3970 void switch_mode(CPUARMState
*env
, int mode
)
3975 old_mode
= env
->uncached_cpsr
& CPSR_M
;
3976 if (mode
== old_mode
)
3979 if (old_mode
== ARM_CPU_MODE_FIQ
) {
3980 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3981 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
3982 } else if (mode
== ARM_CPU_MODE_FIQ
) {
3983 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3984 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
3987 i
= bank_number(old_mode
);
3988 env
->banked_r13
[i
] = env
->regs
[13];
3989 env
->banked_r14
[i
] = env
->regs
[14];
3990 env
->banked_spsr
[i
] = env
->spsr
;
3992 i
= bank_number(mode
);
3993 env
->regs
[13] = env
->banked_r13
[i
];
3994 env
->regs
[14] = env
->banked_r14
[i
];
3995 env
->spsr
= env
->banked_spsr
[i
];
3998 /* Physical Interrupt Target EL Lookup Table
4000 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4002 * The below multi-dimensional table is used for looking up the target
4003 * exception level given numerous condition criteria. Specifically, the
4004 * target EL is based on SCR and HCR routing controls as well as the
4005 * currently executing EL and secure state.
4008 * target_el_table[2][2][2][2][2][4]
4009 * | | | | | +--- Current EL
4010 * | | | | +------ Non-secure(0)/Secure(1)
4011 * | | | +--------- HCR mask override
4012 * | | +------------ SCR exec state control
4013 * | +--------------- SCR mask override
4014 * +------------------ 32-bit(0)/64-bit(1) EL3
4016 * The table values are as such:
4020 * The ARM ARM target EL table includes entries indicating that an "exception
4021 * is not taken". The two cases where this is applicable are:
4022 * 1) An exception is taken from EL3 but the SCR does not have the exception
4024 * 2) An exception is taken from EL2 but the HCR does not have the exception
4026 * In these two cases, the below table contain a target of EL1. This value is
4027 * returned as it is expected that the consumer of the table data will check
4028 * for "target EL >= current EL" to ensure the exception is not taken.
4032 * BIT IRQ IMO Non-secure Secure
4033 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4035 const int8_t target_el_table
[2][2][2][2][2][4] = {
4036 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4037 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4038 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4039 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4040 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4041 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4042 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4043 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4044 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4045 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4046 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4047 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4048 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4049 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4050 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4051 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4055 * Determine the target EL for physical exceptions
4057 static inline uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
4058 uint32_t cur_el
, bool secure
)
4060 CPUARMState
*env
= cs
->env_ptr
;
4061 int rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
4065 int is64
= arm_el_is_aa64(env
, 3);
4069 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
4070 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
4073 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
4074 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
4077 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
4078 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
4082 /* If HCR.TGE is set then HCR is treated as being 1 */
4083 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
4085 /* Perform a table-lookup for the target EL given the current state */
4086 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
4088 assert(target_el
> 0);
4094 * Determine the target EL for a given exception type.
4096 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
)
4098 ARMCPU
*cpu
= ARM_CPU(cs
);
4099 CPUARMState
*env
= &cpu
->env
;
4100 unsigned int cur_el
= arm_current_el(env
);
4101 unsigned int target_el
;
4102 bool secure
= arm_is_secure(env
);
4114 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
4121 target_el
= MAX(cur_el
, 1);
4127 static void v7m_push(CPUARMState
*env
, uint32_t val
)
4129 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4132 stl_phys(cs
->as
, env
->regs
[13], val
);
4135 static uint32_t v7m_pop(CPUARMState
*env
)
4137 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4140 val
= ldl_phys(cs
->as
, env
->regs
[13]);
4145 /* Switch to V7M main or process stack pointer. */
4146 static void switch_v7m_sp(CPUARMState
*env
, int process
)
4149 if (env
->v7m
.current_sp
!= process
) {
4150 tmp
= env
->v7m
.other_sp
;
4151 env
->v7m
.other_sp
= env
->regs
[13];
4152 env
->regs
[13] = tmp
;
4153 env
->v7m
.current_sp
= process
;
4157 static void do_v7m_exception_exit(CPUARMState
*env
)
4162 type
= env
->regs
[15];
4163 if (env
->v7m
.exception
!= 0)
4164 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
4166 /* Switch to the target stack. */
4167 switch_v7m_sp(env
, (type
& 4) != 0);
4168 /* Pop registers. */
4169 env
->regs
[0] = v7m_pop(env
);
4170 env
->regs
[1] = v7m_pop(env
);
4171 env
->regs
[2] = v7m_pop(env
);
4172 env
->regs
[3] = v7m_pop(env
);
4173 env
->regs
[12] = v7m_pop(env
);
4174 env
->regs
[14] = v7m_pop(env
);
4175 env
->regs
[15] = v7m_pop(env
);
4176 xpsr
= v7m_pop(env
);
4177 xpsr_write(env
, xpsr
, 0xfffffdff);
4178 /* Undo stack alignment. */
4181 /* ??? The exception return type specifies Thread/Handler mode. However
4182 this is also implied by the xPSR value. Not sure what to do
4183 if there is a mismatch. */
4184 /* ??? Likewise for mismatches between the CONTROL register and the stack
4188 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
4190 ARMCPU
*cpu
= ARM_CPU(cs
);
4191 CPUARMState
*env
= &cpu
->env
;
4192 uint32_t xpsr
= xpsr_read(env
);
4196 arm_log_exception(cs
->exception_index
);
4199 if (env
->v7m
.current_sp
)
4201 if (env
->v7m
.exception
== 0)
4204 /* For exceptions we just mark as pending on the NVIC, and let that
4206 /* TODO: Need to escalate if the current priority is higher than the
4207 one we're raising. */
4208 switch (cs
->exception_index
) {
4210 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
4213 /* The PC already points to the next instruction. */
4214 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
4216 case EXCP_PREFETCH_ABORT
:
4217 case EXCP_DATA_ABORT
:
4218 /* TODO: if we implemented the MPU registers, this is where we
4219 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4221 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
4224 if (semihosting_enabled
) {
4226 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
4229 env
->regs
[0] = do_arm_semihosting(env
);
4230 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4234 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
4237 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
4239 case EXCP_EXCEPTION_EXIT
:
4240 do_v7m_exception_exit(env
);
4243 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4244 return; /* Never happens. Keep compiler happy. */
4247 /* Align stack pointer. */
4248 /* ??? Should only do this if Configuration Control Register
4249 STACKALIGN bit is set. */
4250 if (env
->regs
[13] & 4) {
4254 /* Switch to the handler mode. */
4255 v7m_push(env
, xpsr
);
4256 v7m_push(env
, env
->regs
[15]);
4257 v7m_push(env
, env
->regs
[14]);
4258 v7m_push(env
, env
->regs
[12]);
4259 v7m_push(env
, env
->regs
[3]);
4260 v7m_push(env
, env
->regs
[2]);
4261 v7m_push(env
, env
->regs
[1]);
4262 v7m_push(env
, env
->regs
[0]);
4263 switch_v7m_sp(env
, 0);
4265 env
->condexec_bits
= 0;
4267 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
4268 env
->regs
[15] = addr
& 0xfffffffe;
4269 env
->thumb
= addr
& 1;
4272 /* Handle a CPU exception. */
4273 void arm_cpu_do_interrupt(CPUState
*cs
)
4275 ARMCPU
*cpu
= ARM_CPU(cs
);
4276 CPUARMState
*env
= &cpu
->env
;
4285 arm_log_exception(cs
->exception_index
);
4287 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
4288 arm_handle_psci_call(cpu
);
4289 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
4293 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4294 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
4296 case EC_BREAKPOINT_SAME_EL
:
4300 case EC_WATCHPOINT_SAME_EL
:
4306 case EC_VECTORCATCH
:
4315 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
4318 /* TODO: Vectored interrupt controller. */
4319 switch (cs
->exception_index
) {
4321 new_mode
= ARM_CPU_MODE_UND
;
4330 if (semihosting_enabled
) {
4331 /* Check for semihosting interrupt. */
4333 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
4336 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
4339 /* Only intercept calls from privileged modes, to provide some
4340 semblance of security. */
4341 if (((mask
== 0x123456 && !env
->thumb
)
4342 || (mask
== 0xab && env
->thumb
))
4343 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
4344 env
->regs
[0] = do_arm_semihosting(env
);
4345 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4349 new_mode
= ARM_CPU_MODE_SVC
;
4352 /* The PC already points to the next instruction. */
4356 /* See if this is a semihosting syscall. */
4357 if (env
->thumb
&& semihosting_enabled
) {
4358 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
4360 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
4362 env
->regs
[0] = do_arm_semihosting(env
);
4363 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4367 env
->exception
.fsr
= 2;
4368 /* Fall through to prefetch abort. */
4369 case EXCP_PREFETCH_ABORT
:
4370 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
4371 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
4372 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
4373 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
4374 new_mode
= ARM_CPU_MODE_ABT
;
4376 mask
= CPSR_A
| CPSR_I
;
4379 case EXCP_DATA_ABORT
:
4380 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
4381 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
4382 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
4384 (uint32_t)env
->exception
.vaddress
);
4385 new_mode
= ARM_CPU_MODE_ABT
;
4387 mask
= CPSR_A
| CPSR_I
;
4391 new_mode
= ARM_CPU_MODE_IRQ
;
4393 /* Disable IRQ and imprecise data aborts. */
4394 mask
= CPSR_A
| CPSR_I
;
4396 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
4397 /* IRQ routed to monitor mode */
4398 new_mode
= ARM_CPU_MODE_MON
;
4403 new_mode
= ARM_CPU_MODE_FIQ
;
4405 /* Disable FIQ, IRQ and imprecise data aborts. */
4406 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4407 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
4408 /* FIQ routed to monitor mode */
4409 new_mode
= ARM_CPU_MODE_MON
;
4414 new_mode
= ARM_CPU_MODE_MON
;
4416 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4420 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4421 return; /* Never happens. Keep compiler happy. */
4424 if (new_mode
== ARM_CPU_MODE_MON
) {
4425 addr
+= env
->cp15
.mvbar
;
4426 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
4427 /* High vectors. When enabled, base address cannot be remapped. */
4430 /* ARM v7 architectures provide a vector base address register to remap
4431 * the interrupt vector table.
4432 * This register is only followed in non-monitor mode, and is banked.
4433 * Note: only bits 31:5 are valid.
4435 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
4438 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
4439 env
->cp15
.scr_el3
&= ~SCR_NS
;
4442 switch_mode (env
, new_mode
);
4443 /* For exceptions taken to AArch32 we must clear the SS bit in both
4444 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4446 env
->uncached_cpsr
&= ~PSTATE_SS
;
4447 env
->spsr
= cpsr_read(env
);
4448 /* Clear IT bits. */
4449 env
->condexec_bits
= 0;
4450 /* Switch to the new mode, and to the correct instruction set. */
4451 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
4453 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4454 * and we should just guard the thumb mode on V4 */
4455 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
4456 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
4458 env
->regs
[14] = env
->regs
[15] + offset
;
4459 env
->regs
[15] = addr
;
4460 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
4463 /* Check section/page access permissions.
4464 Returns the page protection flags, or zero if the access is not
4466 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
4467 int access_type
, int is_user
)
4471 if (domain_prot
== 3) {
4472 return PAGE_READ
| PAGE_WRITE
;
4475 if (access_type
== 1)
4478 prot_ro
= PAGE_READ
;
4482 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4485 if (access_type
== 1)
4487 switch (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & (SCTLR_S
| SCTLR_R
)) {
4489 return is_user
? 0 : PAGE_READ
;
4496 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
4501 return PAGE_READ
| PAGE_WRITE
;
4503 return PAGE_READ
| PAGE_WRITE
;
4504 case 4: /* Reserved. */
4507 return is_user
? 0 : prot_ro
;
4511 if (!arm_feature (env
, ARM_FEATURE_V6K
))
4519 static bool get_level1_table_address(CPUARMState
*env
, uint32_t *table
,
4522 /* Get the TCR bank based on our security state */
4523 TCR
*tcr
= &env
->cp15
.tcr_el
[arm_is_secure(env
) ? 3 : 1];
4525 /* We only get here if EL1 is running in AArch32. If EL3 is running in
4526 * AArch32 there is a secure and non-secure instance of the translation
4529 if (address
& tcr
->mask
) {
4530 if (tcr
->raw_tcr
& TTBCR_PD1
) {
4531 /* Translation table walk disabled for TTBR1 */
4534 *table
= A32_BANKED_CURRENT_REG_GET(env
, ttbr1
) & 0xffffc000;
4536 if (tcr
->raw_tcr
& TTBCR_PD0
) {
4537 /* Translation table walk disabled for TTBR0 */
4540 *table
= A32_BANKED_CURRENT_REG_GET(env
, ttbr0
) & tcr
->base_mask
;
4542 *table
|= (address
>> 18) & 0x3ffc;
4546 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
4547 int is_user
, hwaddr
*phys_ptr
,
4548 int *prot
, target_ulong
*page_size
)
4550 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4560 /* Pagetable walk. */
4561 /* Lookup l1 descriptor. */
4562 if (!get_level1_table_address(env
, &table
, address
)) {
4563 /* Section translation fault if page walk is disabled by PD0 or PD1 */
4567 desc
= ldl_phys(cs
->as
, table
);
4569 domain
= (desc
>> 5) & 0x0f;
4570 domain_prot
= (A32_BANKED_CURRENT_REG_GET(env
, dacr
) >> (domain
* 2)) & 3;
4572 /* Section translation fault. */
4576 if (domain_prot
== 0 || domain_prot
== 2) {
4578 code
= 9; /* Section domain fault. */
4580 code
= 11; /* Page domain fault. */
4585 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
4586 ap
= (desc
>> 10) & 3;
4588 *page_size
= 1024 * 1024;
4590 /* Lookup l2 entry. */
4592 /* Coarse pagetable. */
4593 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
4595 /* Fine pagetable. */
4596 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
4598 desc
= ldl_phys(cs
->as
, table
);
4600 case 0: /* Page translation fault. */
4603 case 1: /* 64k page. */
4604 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
4605 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
4606 *page_size
= 0x10000;
4608 case 2: /* 4k page. */
4609 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
4610 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
4611 *page_size
= 0x1000;
4613 case 3: /* 1k page. */
4615 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4616 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
4618 /* Page translation fault. */
4623 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
4625 ap
= (desc
>> 4) & 3;
4629 /* Never happens, but compiler isn't smart enough to tell. */
4634 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
4636 /* Access permission fault. */
4640 *phys_ptr
= phys_addr
;
4643 return code
| (domain
<< 4);
4646 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
4647 int is_user
, hwaddr
*phys_ptr
,
4648 int *prot
, target_ulong
*page_size
)
4650 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4662 /* Pagetable walk. */
4663 /* Lookup l1 descriptor. */
4664 if (!get_level1_table_address(env
, &table
, address
)) {
4665 /* Section translation fault if page walk is disabled by PD0 or PD1 */
4669 desc
= ldl_phys(cs
->as
, table
);
4671 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
4672 /* Section translation fault, or attempt to use the encoding
4673 * which is Reserved on implementations without PXN.
4678 if ((type
== 1) || !(desc
& (1 << 18))) {
4679 /* Page or Section. */
4680 domain
= (desc
>> 5) & 0x0f;
4682 domain_prot
= (A32_BANKED_CURRENT_REG_GET(env
, dacr
) >> (domain
* 2)) & 3;
4683 if (domain_prot
== 0 || domain_prot
== 2) {
4685 code
= 9; /* Section domain fault. */
4687 code
= 11; /* Page domain fault. */
4692 if (desc
& (1 << 18)) {
4694 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
4695 *page_size
= 0x1000000;
4698 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
4699 *page_size
= 0x100000;
4701 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
4702 xn
= desc
& (1 << 4);
4706 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
4707 pxn
= (desc
>> 2) & 1;
4709 /* Lookup l2 entry. */
4710 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
4711 desc
= ldl_phys(cs
->as
, table
);
4712 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
4714 case 0: /* Page translation fault. */
4717 case 1: /* 64k page. */
4718 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
4719 xn
= desc
& (1 << 15);
4720 *page_size
= 0x10000;
4722 case 2: case 3: /* 4k page. */
4723 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
4725 *page_size
= 0x1000;
4728 /* Never happens, but compiler isn't smart enough to tell. */
4733 if (domain_prot
== 3) {
4734 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
4736 if (pxn
&& !is_user
) {
4739 if (xn
&& access_type
== 2)
4742 /* The simplified model uses AP[0] as an access control bit. */
4743 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_AFE
)
4745 /* Access flag fault. */
4746 code
= (code
== 15) ? 6 : 3;
4749 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
4751 /* Access permission fault. */
4758 *phys_ptr
= phys_addr
;
4761 return code
| (domain
<< 4);
4764 /* Fault type for long-descriptor MMU fault reporting; this corresponds
4765 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
4768 translation_fault
= 1,
4770 permission_fault
= 3,
4773 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
4774 int access_type
, int is_user
,
4775 hwaddr
*phys_ptr
, int *prot
,
4776 target_ulong
*page_size_ptr
)
4778 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4779 /* Read an LPAE long-descriptor translation table. */
4780 MMUFaultType fault_type
= translation_fault
;
4787 hwaddr descaddr
, descmask
;
4788 uint32_t tableattrs
;
4789 target_ulong page_size
;
4791 int32_t granule_sz
= 9;
4792 int32_t va_size
= 32;
4794 TCR
*tcr
= &env
->cp15
.tcr_el
[arm_is_secure(env
) ? 3 : 1];
4796 if (arm_el_is_aa64(env
, 1)) {
4798 if (extract64(address
, 55, 1))
4799 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
4801 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
4805 /* Determine whether this address is in the region controlled by
4806 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
4807 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
4808 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
4810 uint32_t t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
4811 if (arm_el_is_aa64(env
, 1)) {
4812 t0sz
= MIN(t0sz
, 39);
4813 t0sz
= MAX(t0sz
, 16);
4815 uint32_t t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
4816 if (arm_el_is_aa64(env
, 1)) {
4817 t1sz
= MIN(t1sz
, 39);
4818 t1sz
= MAX(t1sz
, 16);
4820 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
4821 /* there is a ttbr0 region and we are in it (high bits all zero) */
4823 } else if (t1sz
&& !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
4824 /* there is a ttbr1 region and we are in it (high bits all one) */
4827 /* ttbr0 region is "everything not in the ttbr1 region" */
4830 /* ttbr1 region is "everything not in the ttbr0 region" */
4833 /* in the gap between the two regions, this is a Translation fault */
4834 fault_type
= translation_fault
;
4838 /* Note that QEMU ignores shareability and cacheability attributes,
4839 * so we don't need to do anything with the SH, ORGN, IRGN fields
4840 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
4841 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
4842 * implement any ASID-like capability so we can ignore it (instead
4843 * we will always flush the TLB any time the ASID is changed).
4845 if (ttbr_select
== 0) {
4846 ttbr
= A32_BANKED_CURRENT_REG_GET(env
, ttbr0
);
4847 epd
= extract32(tcr
->raw_tcr
, 7, 1);
4850 tg
= extract32(tcr
->raw_tcr
, 14, 2);
4851 if (tg
== 1) { /* 64KB pages */
4854 if (tg
== 2) { /* 16KB pages */
4858 ttbr
= A32_BANKED_CURRENT_REG_GET(env
, ttbr1
);
4859 epd
= extract32(tcr
->raw_tcr
, 23, 1);
4862 tg
= extract32(tcr
->raw_tcr
, 30, 2);
4863 if (tg
== 3) { /* 64KB pages */
4866 if (tg
== 1) { /* 16KB pages */
4872 /* Translation table walk disabled => Translation fault on TLB miss */
4876 /* The starting level depends on the virtual address size (which can be
4877 * up to 48 bits) and the translation granule size. It indicates the number
4878 * of strides (granule_sz bits at a time) needed to consume the bits
4879 * of the input address. In the pseudocode this is:
4880 * level = 4 - RoundUp((inputsize - grainsize) / stride)
4881 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
4882 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
4883 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
4884 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
4885 * = 4 - (va_size - tsz - 4) / granule_sz;
4887 level
= 4 - (va_size
- tsz
- 4) / granule_sz
;
4889 /* Clear the vaddr bits which aren't part of the within-region address,
4890 * so that we don't have to special case things when calculating the
4891 * first descriptor address.
4894 address
&= (1ULL << (va_size
- tsz
)) - 1;
4897 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
4899 /* Now we can extract the actual base address from the TTBR */
4900 descaddr
= extract64(ttbr
, 0, 48);
4901 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
4905 uint64_t descriptor
;
4907 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
4909 descriptor
= ldq_phys(cs
->as
, descaddr
);
4910 if (!(descriptor
& 1) ||
4911 (!(descriptor
& 2) && (level
== 3))) {
4912 /* Invalid, or the Reserved level 3 encoding */
4915 descaddr
= descriptor
& 0xfffffff000ULL
;
4917 if ((descriptor
& 2) && (level
< 3)) {
4918 /* Table entry. The top five bits are attributes which may
4919 * propagate down through lower levels of the table (and
4920 * which are all arranged so that 0 means "no effect", so
4921 * we can gather them up by ORing in the bits at each level).
4923 tableattrs
|= extract64(descriptor
, 59, 5);
4927 /* Block entry at level 1 or 2, or page entry at level 3.
4928 * These are basically the same thing, although the number
4929 * of bits we pull in from the vaddr varies.
4931 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
4932 descaddr
|= (address
& (page_size
- 1));
4933 /* Extract attributes from the descriptor and merge with table attrs */
4934 attrs
= extract64(descriptor
, 2, 10)
4935 | (extract64(descriptor
, 52, 12) << 10);
4936 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
4937 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
4938 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
4939 * means "force PL1 access only", which means forcing AP[1] to 0.
4941 if (extract32(tableattrs
, 2, 1)) {
4944 /* Since we're always in the Non-secure state, NSTable is ignored. */
4947 /* Here descaddr is the final physical address, and attributes
4950 fault_type
= access_fault
;
4951 if ((attrs
& (1 << 8)) == 0) {
4955 fault_type
= permission_fault
;
4956 if (is_user
&& !(attrs
& (1 << 4))) {
4957 /* Unprivileged access not enabled */
4960 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
4961 if ((arm_feature(env
, ARM_FEATURE_V8
) && is_user
&& (attrs
& (1 << 12))) ||
4962 (!arm_feature(env
, ARM_FEATURE_V8
) && (attrs
& (1 << 12))) ||
4963 (!is_user
&& (attrs
& (1 << 11)))) {
4964 /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
4965 * treat XN/UXN as UXN for v8.
4967 if (access_type
== 2) {
4970 *prot
&= ~PAGE_EXEC
;
4972 if (attrs
& (1 << 5)) {
4973 /* Write access forbidden */
4974 if (access_type
== 1) {
4977 *prot
&= ~PAGE_WRITE
;
4980 *phys_ptr
= descaddr
;
4981 *page_size_ptr
= page_size
;
4985 /* Long-descriptor format IFSR/DFSR value */
4986 return (1 << 9) | (fault_type
<< 2) | level
;
4989 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
4990 int access_type
, int is_user
,
4991 hwaddr
*phys_ptr
, int *prot
)
4997 *phys_ptr
= address
;
4998 for (n
= 7; n
>= 0; n
--) {
4999 base
= env
->cp15
.c6_region
[n
];
5000 if ((base
& 1) == 0)
5002 mask
= 1 << ((base
>> 1) & 0x1f);
5003 /* Keep this shift separate from the above to avoid an
5004 (undefined) << 32. */
5005 mask
= (mask
<< 1) - 1;
5006 if (((base
^ address
) & ~mask
) == 0)
5012 if (access_type
== 2) {
5013 mask
= env
->cp15
.pmsav5_insn_ap
;
5015 mask
= env
->cp15
.pmsav5_data_ap
;
5017 mask
= (mask
>> (n
* 4)) & 0xf;
5024 *prot
= PAGE_READ
| PAGE_WRITE
;
5029 *prot
|= PAGE_WRITE
;
5032 *prot
= PAGE_READ
| PAGE_WRITE
;
5043 /* Bad permission. */
5050 /* get_phys_addr - get the physical address for this virtual address
5052 * Find the physical address corresponding to the given virtual address,
5053 * by doing a translation table walk on MMU based systems or using the
5054 * MPU state on MPU based systems.
5056 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
5057 * prot and page_size are not filled in, and the return value provides
5058 * information on why the translation aborted, in the format of a
5059 * DFSR/IFSR fault register, with the following caveats:
5060 * * we honour the short vs long DFSR format differences.
5061 * * the WnR bit is never set (the caller must do this).
5062 * * for MPU based systems we don't bother to return a full FSR format
5066 * @address: virtual address to get physical address for
5067 * @access_type: 0 for read, 1 for write, 2 for execute
5068 * @is_user: 0 for privileged access, 1 for user
5069 * @phys_ptr: set to the physical address corresponding to the virtual address
5070 * @prot: set to the permissions for the page containing phys_ptr
5071 * @page_size: set to the size of the page containing phys_ptr
5073 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
5074 int access_type
, int is_user
,
5075 hwaddr
*phys_ptr
, int *prot
,
5076 target_ulong
*page_size
)
5078 /* This is not entirely correct as get_phys_addr() can also be called
5079 * from ats_write() for an address translation of a specific regime.
5081 uint32_t sctlr
= A32_BANKED_CURRENT_REG_GET(env
, sctlr
);
5083 /* Fast Context Switch Extension. */
5084 if (address
< 0x02000000) {
5085 address
+= A32_BANKED_CURRENT_REG_GET(env
, fcseidr
);
5088 if ((sctlr
& SCTLR_M
) == 0) {
5089 /* MMU/MPU disabled. */
5090 *phys_ptr
= address
;
5091 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
5092 *page_size
= TARGET_PAGE_SIZE
;
5094 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
5095 *page_size
= TARGET_PAGE_SIZE
;
5096 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
5098 } else if (extended_addresses_enabled(env
)) {
5099 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
5101 } else if (sctlr
& SCTLR_XP
) {
5102 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
5105 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
5110 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
5111 int access_type
, int mmu_idx
)
5113 ARMCPU
*cpu
= ARM_CPU(cs
);
5114 CPUARMState
*env
= &cpu
->env
;
5116 target_ulong page_size
;
5120 bool same_el
= (arm_current_el(env
) != 0);
5122 is_user
= mmu_idx
== MMU_USER_IDX
;
5123 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
5126 /* Map a single [sub]page. */
5127 phys_addr
&= TARGET_PAGE_MASK
;
5128 address
&= TARGET_PAGE_MASK
;
5129 tlb_set_page(cs
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
5133 /* AArch64 syndrome does not have an LPAE bit */
5134 syn
= ret
& ~(1 << 9);
5136 /* For insn and data aborts we assume there is no instruction syndrome
5137 * information; this is always true for exceptions reported to EL1.
5139 if (access_type
== 2) {
5140 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
5141 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
5143 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
5144 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
5147 cs
->exception_index
= EXCP_DATA_ABORT
;
5150 env
->exception
.syndrome
= syn
;
5151 env
->exception
.vaddress
= address
;
5152 env
->exception
.fsr
= ret
;
5156 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
5158 ARMCPU
*cpu
= ARM_CPU(cs
);
5160 target_ulong page_size
;
5164 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
5173 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
5175 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
5176 env
->regs
[13] = val
;
5178 env
->banked_r13
[bank_number(mode
)] = val
;
5182 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
5184 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
5185 return env
->regs
[13];
5187 return env
->banked_r13
[bank_number(mode
)];
5191 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5193 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5197 return xpsr_read(env
) & 0xf8000000;
5199 return xpsr_read(env
) & 0xf80001ff;
5201 return xpsr_read(env
) & 0xff00fc00;
5203 return xpsr_read(env
) & 0xff00fdff;
5205 return xpsr_read(env
) & 0x000001ff;
5207 return xpsr_read(env
) & 0x0700fc00;
5209 return xpsr_read(env
) & 0x0700edff;
5211 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
5213 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
5214 case 16: /* PRIMASK */
5215 return (env
->daif
& PSTATE_I
) != 0;
5216 case 17: /* BASEPRI */
5217 case 18: /* BASEPRI_MAX */
5218 return env
->v7m
.basepri
;
5219 case 19: /* FAULTMASK */
5220 return (env
->daif
& PSTATE_F
) != 0;
5221 case 20: /* CONTROL */
5222 return env
->v7m
.control
;
5224 /* ??? For debugging only. */
5225 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
5230 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5232 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5236 xpsr_write(env
, val
, 0xf8000000);
5239 xpsr_write(env
, val
, 0xf8000000);
5242 xpsr_write(env
, val
, 0xfe00fc00);
5245 xpsr_write(env
, val
, 0xfe00fc00);
5248 /* IPSR bits are readonly. */
5251 xpsr_write(env
, val
, 0x0600fc00);
5254 xpsr_write(env
, val
, 0x0600fc00);
5257 if (env
->v7m
.current_sp
)
5258 env
->v7m
.other_sp
= val
;
5260 env
->regs
[13] = val
;
5263 if (env
->v7m
.current_sp
)
5264 env
->regs
[13] = val
;
5266 env
->v7m
.other_sp
= val
;
5268 case 16: /* PRIMASK */
5270 env
->daif
|= PSTATE_I
;
5272 env
->daif
&= ~PSTATE_I
;
5275 case 17: /* BASEPRI */
5276 env
->v7m
.basepri
= val
& 0xff;
5278 case 18: /* BASEPRI_MAX */
5280 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
5281 env
->v7m
.basepri
= val
;
5283 case 19: /* FAULTMASK */
5285 env
->daif
|= PSTATE_F
;
5287 env
->daif
&= ~PSTATE_F
;
5290 case 20: /* CONTROL */
5291 env
->v7m
.control
= val
& 3;
5292 switch_v7m_sp(env
, (val
& 2) != 0);
5295 /* ??? For debugging only. */
5296 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
5303 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
5305 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
5306 * Note that we do not implement the (architecturally mandated)
5307 * alignment fault for attempts to use this on Device memory
5308 * (which matches the usual QEMU behaviour of not implementing either
5309 * alignment faults or any memory attribute handling).
5312 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5313 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
5314 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
5316 #ifndef CONFIG_USER_ONLY
5318 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
5319 * the block size so we might have to do more than one TLB lookup.
5320 * We know that in fact for any v8 CPU the page size is at least 4K
5321 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
5322 * 1K as an artefact of legacy v5 subpage support being present in the
5323 * same QEMU executable.
5325 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
5326 void *hostaddr
[maxidx
];
5329 for (try = 0; try < 2; try++) {
5331 for (i
= 0; i
< maxidx
; i
++) {
5332 hostaddr
[i
] = tlb_vaddr_to_host(env
,
5333 vaddr
+ TARGET_PAGE_SIZE
* i
,
5334 1, cpu_mmu_index(env
));
5340 /* If it's all in the TLB it's fair game for just writing to;
5341 * we know we don't need to update dirty status, etc.
5343 for (i
= 0; i
< maxidx
- 1; i
++) {
5344 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
5346 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
5349 /* OK, try a store and see if we can populate the tlb. This
5350 * might cause an exception if the memory isn't writable,
5351 * in which case we will longjmp out of here. We must for
5352 * this purpose use the actual register value passed to us
5353 * so that we get the fault address right.
5355 helper_ret_stb_mmu(env
, vaddr_in
, 0, cpu_mmu_index(env
), GETRA());
5356 /* Now we can populate the other TLB entries, if any */
5357 for (i
= 0; i
< maxidx
; i
++) {
5358 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
5359 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
5360 helper_ret_stb_mmu(env
, va
, 0, cpu_mmu_index(env
), GETRA());
5365 /* Slow path (probably attempt to do this to an I/O device or
5366 * similar, or clearing of a block of code we have translations
5367 * cached for). Just do a series of byte writes as the architecture
5368 * demands. It's not worth trying to use a cpu_physical_memory_map(),
5369 * memset(), unmap() sequence here because:
5370 * + we'd need to account for the blocksize being larger than a page
5371 * + the direct-RAM access case is almost always going to be dealt
5372 * with in the fastpath code above, so there's no speed benefit
5373 * + we would have to deal with the map returning NULL because the
5374 * bounce buffer was in use
5376 for (i
= 0; i
< blocklen
; i
++) {
5377 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, cpu_mmu_index(env
), GETRA());
5381 memset(g2h(vaddr
), 0, blocklen
);
5385 /* Note that signed overflow is undefined in C. The following routines are
5386 careful to use unsigned types where modulo arithmetic is required.
5387 Failure to do so _will_ break on newer gcc. */
5389 /* Signed saturating arithmetic. */
5391 /* Perform 16-bit signed saturating addition. */
5392 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
5397 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
5406 /* Perform 8-bit signed saturating addition. */
5407 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
5412 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
5421 /* Perform 16-bit signed saturating subtraction. */
5422 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
5427 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
5436 /* Perform 8-bit signed saturating subtraction. */
5437 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
5442 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
5451 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
5452 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
5453 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
5454 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
5457 #include "op_addsub.h"
5459 /* Unsigned saturating arithmetic. */
5460 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
5469 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
5477 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
5486 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
5494 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
5495 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
5496 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
5497 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
5500 #include "op_addsub.h"
5502 /* Signed modulo arithmetic. */
5503 #define SARITH16(a, b, n, op) do { \
5505 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
5506 RESULT(sum, n, 16); \
5508 ge |= 3 << (n * 2); \
5511 #define SARITH8(a, b, n, op) do { \
5513 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
5514 RESULT(sum, n, 8); \
5520 #define ADD16(a, b, n) SARITH16(a, b, n, +)
5521 #define SUB16(a, b, n) SARITH16(a, b, n, -)
5522 #define ADD8(a, b, n) SARITH8(a, b, n, +)
5523 #define SUB8(a, b, n) SARITH8(a, b, n, -)
5527 #include "op_addsub.h"
5529 /* Unsigned modulo arithmetic. */
5530 #define ADD16(a, b, n) do { \
5532 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
5533 RESULT(sum, n, 16); \
5534 if ((sum >> 16) == 1) \
5535 ge |= 3 << (n * 2); \
5538 #define ADD8(a, b, n) do { \
5540 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
5541 RESULT(sum, n, 8); \
5542 if ((sum >> 8) == 1) \
5546 #define SUB16(a, b, n) do { \
5548 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
5549 RESULT(sum, n, 16); \
5550 if ((sum >> 16) == 0) \
5551 ge |= 3 << (n * 2); \
5554 #define SUB8(a, b, n) do { \
5556 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
5557 RESULT(sum, n, 8); \
5558 if ((sum >> 8) == 0) \
5565 #include "op_addsub.h"
5567 /* Halved signed arithmetic. */
5568 #define ADD16(a, b, n) \
5569 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
5570 #define SUB16(a, b, n) \
5571 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
5572 #define ADD8(a, b, n) \
5573 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
5574 #define SUB8(a, b, n) \
5575 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
5578 #include "op_addsub.h"
5580 /* Halved unsigned arithmetic. */
5581 #define ADD16(a, b, n) \
5582 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
5583 #define SUB16(a, b, n) \
5584 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
5585 #define ADD8(a, b, n) \
5586 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
5587 #define SUB8(a, b, n) \
5588 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
5591 #include "op_addsub.h"
5593 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
5601 /* Unsigned sum of absolute byte differences. */
5602 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
5605 sum
= do_usad(a
, b
);
5606 sum
+= do_usad(a
>> 8, b
>> 8);
5607 sum
+= do_usad(a
>> 16, b
>>16);
5608 sum
+= do_usad(a
>> 24, b
>> 24);
5612 /* For ARMv6 SEL instruction. */
5613 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
5626 return (a
& mask
) | (b
& ~mask
);
5629 /* VFP support. We follow the convention used for VFP instructions:
5630 Single precision routines have a "s" suffix, double precision a
5633 /* Convert host exception flags to vfp form. */
5634 static inline int vfp_exceptbits_from_host(int host_bits
)
5636 int target_bits
= 0;
5638 if (host_bits
& float_flag_invalid
)
5640 if (host_bits
& float_flag_divbyzero
)
5642 if (host_bits
& float_flag_overflow
)
5644 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
5646 if (host_bits
& float_flag_inexact
)
5647 target_bits
|= 0x10;
5648 if (host_bits
& float_flag_input_denormal
)
5649 target_bits
|= 0x80;
5653 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
5658 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
5659 | (env
->vfp
.vec_len
<< 16)
5660 | (env
->vfp
.vec_stride
<< 20);
5661 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
5662 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
5663 fpscr
|= vfp_exceptbits_from_host(i
);
5667 uint32_t vfp_get_fpscr(CPUARMState
*env
)
5669 return HELPER(vfp_get_fpscr
)(env
);
5672 /* Convert vfp exception flags to target form. */
5673 static inline int vfp_exceptbits_to_host(int target_bits
)
5677 if (target_bits
& 1)
5678 host_bits
|= float_flag_invalid
;
5679 if (target_bits
& 2)
5680 host_bits
|= float_flag_divbyzero
;
5681 if (target_bits
& 4)
5682 host_bits
|= float_flag_overflow
;
5683 if (target_bits
& 8)
5684 host_bits
|= float_flag_underflow
;
5685 if (target_bits
& 0x10)
5686 host_bits
|= float_flag_inexact
;
5687 if (target_bits
& 0x80)
5688 host_bits
|= float_flag_input_denormal
;
5692 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
5697 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
5698 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
5699 env
->vfp
.vec_len
= (val
>> 16) & 7;
5700 env
->vfp
.vec_stride
= (val
>> 20) & 3;
5703 if (changed
& (3 << 22)) {
5704 i
= (val
>> 22) & 3;
5706 case FPROUNDING_TIEEVEN
:
5707 i
= float_round_nearest_even
;
5709 case FPROUNDING_POSINF
:
5712 case FPROUNDING_NEGINF
:
5713 i
= float_round_down
;
5715 case FPROUNDING_ZERO
:
5716 i
= float_round_to_zero
;
5719 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
5721 if (changed
& (1 << 24)) {
5722 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
5723 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
5725 if (changed
& (1 << 25))
5726 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
5728 i
= vfp_exceptbits_to_host(val
);
5729 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
5730 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
5733 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
5735 HELPER(vfp_set_fpscr
)(env
, val
);
5738 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
5740 #define VFP_BINOP(name) \
5741 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
5743 float_status *fpst = fpstp; \
5744 return float32_ ## name(a, b, fpst); \
5746 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
5748 float_status *fpst = fpstp; \
5749 return float64_ ## name(a, b, fpst); \
5761 float32
VFP_HELPER(neg
, s
)(float32 a
)
5763 return float32_chs(a
);
5766 float64
VFP_HELPER(neg
, d
)(float64 a
)
5768 return float64_chs(a
);
5771 float32
VFP_HELPER(abs
, s
)(float32 a
)
5773 return float32_abs(a
);
5776 float64
VFP_HELPER(abs
, d
)(float64 a
)
5778 return float64_abs(a
);
5781 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
5783 return float32_sqrt(a
, &env
->vfp
.fp_status
);
5786 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
5788 return float64_sqrt(a
, &env
->vfp
.fp_status
);
5791 /* XXX: check quiet/signaling case */
5792 #define DO_VFP_cmp(p, type) \
5793 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
5796 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
5797 case 0: flags = 0x6; break; \
5798 case -1: flags = 0x8; break; \
5799 case 1: flags = 0x2; break; \
5800 default: case 2: flags = 0x3; break; \
5802 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
5803 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
5805 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
5808 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
5809 case 0: flags = 0x6; break; \
5810 case -1: flags = 0x8; break; \
5811 case 1: flags = 0x2; break; \
5812 default: case 2: flags = 0x3; break; \
5814 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
5815 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
5817 DO_VFP_cmp(s
, float32
)
5818 DO_VFP_cmp(d
, float64
)
5821 /* Integer to float and float to integer conversions */
5823 #define CONV_ITOF(name, fsz, sign) \
5824 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
5826 float_status *fpst = fpstp; \
5827 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
5830 #define CONV_FTOI(name, fsz, sign, round) \
5831 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
5833 float_status *fpst = fpstp; \
5834 if (float##fsz##_is_any_nan(x)) { \
5835 float_raise(float_flag_invalid, fpst); \
5838 return float##fsz##_to_##sign##int32##round(x, fpst); \
5841 #define FLOAT_CONVS(name, p, fsz, sign) \
5842 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
5843 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
5844 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
5846 FLOAT_CONVS(si
, s
, 32, )
5847 FLOAT_CONVS(si
, d
, 64, )
5848 FLOAT_CONVS(ui
, s
, 32, u
)
5849 FLOAT_CONVS(ui
, d
, 64, u
)
5855 /* floating point conversion */
5856 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
5858 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
5859 /* ARM requires that S<->D conversion of any kind of NaN generates
5860 * a quiet NaN by forcing the most significant frac bit to 1.
5862 return float64_maybe_silence_nan(r
);
5865 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
5867 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
5868 /* ARM requires that S<->D conversion of any kind of NaN generates
5869 * a quiet NaN by forcing the most significant frac bit to 1.
5871 return float32_maybe_silence_nan(r
);
5874 /* VFP3 fixed point conversion. */
5875 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5876 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
5879 float_status *fpst = fpstp; \
5881 tmp = itype##_to_##float##fsz(x, fpst); \
5882 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
5885 /* Notice that we want only input-denormal exception flags from the
5886 * scalbn operation: the other possible flags (overflow+inexact if
5887 * we overflow to infinity, output-denormal) aren't correct for the
5888 * complete scale-and-convert operation.
5890 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
5891 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
5895 float_status *fpst = fpstp; \
5896 int old_exc_flags = get_float_exception_flags(fpst); \
5898 if (float##fsz##_is_any_nan(x)) { \
5899 float_raise(float_flag_invalid, fpst); \
5902 tmp = float##fsz##_scalbn(x, shift, fpst); \
5903 old_exc_flags |= get_float_exception_flags(fpst) \
5904 & float_flag_input_denormal; \
5905 set_float_exception_flags(old_exc_flags, fpst); \
5906 return float##fsz##_to_##itype##round(tmp, fpst); \
5909 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
5910 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5911 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
5912 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
5914 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
5915 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5916 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
5918 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
5919 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
5920 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
5921 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
5922 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
5923 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
5924 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
5925 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
5926 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
5927 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
5928 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
5929 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
5931 #undef VFP_CONV_FIX_FLOAT
5932 #undef VFP_CONV_FLOAT_FIX_ROUND
5934 /* Set the current fp rounding mode and return the old one.
5935 * The argument is a softfloat float_round_ value.
5937 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
5939 float_status
*fp_status
= &env
->vfp
.fp_status
;
5941 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
5942 set_float_rounding_mode(rmode
, fp_status
);
5947 /* Set the current fp rounding mode in the standard fp status and return
5948 * the old one. This is for NEON instructions that need to change the
5949 * rounding mode but wish to use the standard FPSCR values for everything
5950 * else. Always set the rounding mode back to the correct value after
5952 * The argument is a softfloat float_round_ value.
5954 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
5956 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
5958 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
5959 set_float_rounding_mode(rmode
, fp_status
);
5964 /* Half precision conversions. */
5965 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
5967 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5968 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
5970 return float32_maybe_silence_nan(r
);
5975 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
5977 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5978 float16 r
= float32_to_float16(a
, ieee
, s
);
5980 r
= float16_maybe_silence_nan(r
);
5982 return float16_val(r
);
5985 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
5987 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
5990 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
5992 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
5995 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
5997 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
6000 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
6002 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
6005 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
6007 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6008 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
6010 return float64_maybe_silence_nan(r
);
6015 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
6017 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6018 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
6020 r
= float16_maybe_silence_nan(r
);
6022 return float16_val(r
);
6025 #define float32_two make_float32(0x40000000)
6026 #define float32_three make_float32(0x40400000)
6027 #define float32_one_point_five make_float32(0x3fc00000)
6029 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
6031 float_status
*s
= &env
->vfp
.standard_fp_status
;
6032 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
6033 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
6034 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
6035 float_raise(float_flag_input_denormal
, s
);
6039 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
6042 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
6044 float_status
*s
= &env
->vfp
.standard_fp_status
;
6046 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
6047 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
6048 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
6049 float_raise(float_flag_input_denormal
, s
);
6051 return float32_one_point_five
;
6053 product
= float32_mul(a
, b
, s
);
6054 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
6059 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6060 * int->float conversions at run-time. */
6061 #define float64_256 make_float64(0x4070000000000000LL)
6062 #define float64_512 make_float64(0x4080000000000000LL)
6063 #define float32_maxnorm make_float32(0x7f7fffff)
6064 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6066 /* Reciprocal functions
6068 * The algorithm that must be used to calculate the estimate
6069 * is specified by the ARM ARM, see FPRecipEstimate()
6072 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
6074 /* These calculations mustn't set any fp exception flags,
6075 * so we use a local copy of the fp_status.
6077 float_status dummy_status
= *real_fp_status
;
6078 float_status
*s
= &dummy_status
;
6079 /* q = (int)(a * 512.0) */
6080 float64 q
= float64_mul(float64_512
, a
, s
);
6081 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
6083 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6084 q
= int64_to_float64(q_int
, s
);
6085 q
= float64_add(q
, float64_half
, s
);
6086 q
= float64_div(q
, float64_512
, s
);
6087 q
= float64_div(float64_one
, q
, s
);
6089 /* s = (int)(256.0 * r + 0.5) */
6090 q
= float64_mul(q
, float64_256
, s
);
6091 q
= float64_add(q
, float64_half
, s
);
6092 q_int
= float64_to_int64_round_to_zero(q
, s
);
6094 /* return (double)s / 256.0 */
6095 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
6098 /* Common wrapper to call recip_estimate */
6099 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
6101 uint64_t val64
= float64_val(num
);
6102 uint64_t frac
= extract64(val64
, 0, 52);
6103 int64_t exp
= extract64(val64
, 52, 11);
6105 float64 scaled
, estimate
;
6107 /* Generate the scaled number for the estimate function */
6109 if (extract64(frac
, 51, 1) == 0) {
6111 frac
= extract64(frac
, 0, 50) << 2;
6113 frac
= extract64(frac
, 0, 51) << 1;
6117 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6118 scaled
= make_float64((0x3feULL
<< 52)
6119 | extract64(frac
, 44, 8) << 44);
6121 estimate
= recip_estimate(scaled
, fpst
);
6123 /* Build new result */
6124 val64
= float64_val(estimate
);
6125 sbit
= 0x8000000000000000ULL
& val64
;
6127 frac
= extract64(val64
, 0, 52);
6130 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
6131 } else if (exp
== -1) {
6132 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
6136 return make_float64(sbit
| (exp
<< 52) | frac
);
6139 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
6141 switch (fpst
->float_rounding_mode
) {
6142 case float_round_nearest_even
: /* Round to Nearest */
6144 case float_round_up
: /* Round to +Inf */
6146 case float_round_down
: /* Round to -Inf */
6148 case float_round_to_zero
: /* Round to Zero */
6152 g_assert_not_reached();
6155 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
6157 float_status
*fpst
= fpstp
;
6158 float32 f32
= float32_squash_input_denormal(input
, fpst
);
6159 uint32_t f32_val
= float32_val(f32
);
6160 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
6161 int32_t f32_exp
= extract32(f32_val
, 23, 8);
6162 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
6168 if (float32_is_any_nan(f32
)) {
6170 if (float32_is_signaling_nan(f32
)) {
6171 float_raise(float_flag_invalid
, fpst
);
6172 nan
= float32_maybe_silence_nan(f32
);
6174 if (fpst
->default_nan_mode
) {
6175 nan
= float32_default_nan
;
6178 } else if (float32_is_infinity(f32
)) {
6179 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
6180 } else if (float32_is_zero(f32
)) {
6181 float_raise(float_flag_divbyzero
, fpst
);
6182 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6183 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
6184 /* Abs(value) < 2.0^-128 */
6185 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
6186 if (round_to_inf(fpst
, f32_sbit
)) {
6187 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6189 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
6191 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
6192 float_raise(float_flag_underflow
, fpst
);
6193 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
6197 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
6198 r64
= call_recip_estimate(f64
, 253, fpst
);
6199 r64_val
= float64_val(r64
);
6200 r64_exp
= extract64(r64_val
, 52, 11);
6201 r64_frac
= extract64(r64_val
, 0, 52);
6203 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6204 return make_float32(f32_sbit
|
6205 (r64_exp
& 0xff) << 23 |
6206 extract64(r64_frac
, 29, 24));
6209 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
6211 float_status
*fpst
= fpstp
;
6212 float64 f64
= float64_squash_input_denormal(input
, fpst
);
6213 uint64_t f64_val
= float64_val(f64
);
6214 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
6215 int64_t f64_exp
= extract64(f64_val
, 52, 11);
6221 /* Deal with any special cases */
6222 if (float64_is_any_nan(f64
)) {
6224 if (float64_is_signaling_nan(f64
)) {
6225 float_raise(float_flag_invalid
, fpst
);
6226 nan
= float64_maybe_silence_nan(f64
);
6228 if (fpst
->default_nan_mode
) {
6229 nan
= float64_default_nan
;
6232 } else if (float64_is_infinity(f64
)) {
6233 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
6234 } else if (float64_is_zero(f64
)) {
6235 float_raise(float_flag_divbyzero
, fpst
);
6236 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6237 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
6238 /* Abs(value) < 2.0^-1024 */
6239 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
6240 if (round_to_inf(fpst
, f64_sbit
)) {
6241 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6243 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
6245 } else if (f64_exp
>= 1023 && fpst
->flush_to_zero
) {
6246 float_raise(float_flag_underflow
, fpst
);
6247 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
6250 r64
= call_recip_estimate(f64
, 2045, fpst
);
6251 r64_val
= float64_val(r64
);
6252 r64_exp
= extract64(r64_val
, 52, 11);
6253 r64_frac
= extract64(r64_val
, 0, 52);
6255 /* result = sign : result_exp<10:0> : fraction<51:0> */
6256 return make_float64(f64_sbit
|
6257 ((r64_exp
& 0x7ff) << 52) |
6261 /* The algorithm that must be used to calculate the estimate
6262 * is specified by the ARM ARM.
6264 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
6266 /* These calculations mustn't set any fp exception flags,
6267 * so we use a local copy of the fp_status.
6269 float_status dummy_status
= *real_fp_status
;
6270 float_status
*s
= &dummy_status
;
6274 if (float64_lt(a
, float64_half
, s
)) {
6275 /* range 0.25 <= a < 0.5 */
6277 /* a in units of 1/512 rounded down */
6278 /* q0 = (int)(a * 512.0); */
6279 q
= float64_mul(float64_512
, a
, s
);
6280 q_int
= float64_to_int64_round_to_zero(q
, s
);
6282 /* reciprocal root r */
6283 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
6284 q
= int64_to_float64(q_int
, s
);
6285 q
= float64_add(q
, float64_half
, s
);
6286 q
= float64_div(q
, float64_512
, s
);
6287 q
= float64_sqrt(q
, s
);
6288 q
= float64_div(float64_one
, q
, s
);
6290 /* range 0.5 <= a < 1.0 */
6292 /* a in units of 1/256 rounded down */
6293 /* q1 = (int)(a * 256.0); */
6294 q
= float64_mul(float64_256
, a
, s
);
6295 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
6297 /* reciprocal root r */
6298 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
6299 q
= int64_to_float64(q_int
, s
);
6300 q
= float64_add(q
, float64_half
, s
);
6301 q
= float64_div(q
, float64_256
, s
);
6302 q
= float64_sqrt(q
, s
);
6303 q
= float64_div(float64_one
, q
, s
);
6305 /* r in units of 1/256 rounded to nearest */
6306 /* s = (int)(256.0 * r + 0.5); */
6308 q
= float64_mul(q
, float64_256
,s
);
6309 q
= float64_add(q
, float64_half
, s
);
6310 q_int
= float64_to_int64_round_to_zero(q
, s
);
6312 /* return (double)s / 256.0;*/
6313 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
6316 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
6318 float_status
*s
= fpstp
;
6319 float32 f32
= float32_squash_input_denormal(input
, s
);
6320 uint32_t val
= float32_val(f32
);
6321 uint32_t f32_sbit
= 0x80000000 & val
;
6322 int32_t f32_exp
= extract32(val
, 23, 8);
6323 uint32_t f32_frac
= extract32(val
, 0, 23);
6329 if (float32_is_any_nan(f32
)) {
6331 if (float32_is_signaling_nan(f32
)) {
6332 float_raise(float_flag_invalid
, s
);
6333 nan
= float32_maybe_silence_nan(f32
);
6335 if (s
->default_nan_mode
) {
6336 nan
= float32_default_nan
;
6339 } else if (float32_is_zero(f32
)) {
6340 float_raise(float_flag_divbyzero
, s
);
6341 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6342 } else if (float32_is_neg(f32
)) {
6343 float_raise(float_flag_invalid
, s
);
6344 return float32_default_nan
;
6345 } else if (float32_is_infinity(f32
)) {
6346 return float32_zero
;
6349 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
6350 * preserving the parity of the exponent. */
6352 f64_frac
= ((uint64_t) f32_frac
) << 29;
6354 while (extract64(f64_frac
, 51, 1) == 0) {
6355 f64_frac
= f64_frac
<< 1;
6356 f32_exp
= f32_exp
-1;
6358 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
6361 if (extract64(f32_exp
, 0, 1) == 0) {
6362 f64
= make_float64(((uint64_t) f32_sbit
) << 32
6366 f64
= make_float64(((uint64_t) f32_sbit
) << 32
6371 result_exp
= (380 - f32_exp
) / 2;
6373 f64
= recip_sqrt_estimate(f64
, s
);
6375 val64
= float64_val(f64
);
6377 val
= ((result_exp
& 0xff) << 23)
6378 | ((val64
>> 29) & 0x7fffff);
6379 return make_float32(val
);
6382 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
6384 float_status
*s
= fpstp
;
6385 float64 f64
= float64_squash_input_denormal(input
, s
);
6386 uint64_t val
= float64_val(f64
);
6387 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
6388 int64_t f64_exp
= extract64(val
, 52, 11);
6389 uint64_t f64_frac
= extract64(val
, 0, 52);
6391 uint64_t result_frac
;
6393 if (float64_is_any_nan(f64
)) {
6395 if (float64_is_signaling_nan(f64
)) {
6396 float_raise(float_flag_invalid
, s
);
6397 nan
= float64_maybe_silence_nan(f64
);
6399 if (s
->default_nan_mode
) {
6400 nan
= float64_default_nan
;
6403 } else if (float64_is_zero(f64
)) {
6404 float_raise(float_flag_divbyzero
, s
);
6405 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6406 } else if (float64_is_neg(f64
)) {
6407 float_raise(float_flag_invalid
, s
);
6408 return float64_default_nan
;
6409 } else if (float64_is_infinity(f64
)) {
6410 return float64_zero
;
6413 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
6414 * preserving the parity of the exponent. */
6417 while (extract64(f64_frac
, 51, 1) == 0) {
6418 f64_frac
= f64_frac
<< 1;
6419 f64_exp
= f64_exp
- 1;
6421 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
6424 if (extract64(f64_exp
, 0, 1) == 0) {
6425 f64
= make_float64(f64_sbit
6429 f64
= make_float64(f64_sbit
6434 result_exp
= (3068 - f64_exp
) / 2;
6436 f64
= recip_sqrt_estimate(f64
, s
);
6438 result_frac
= extract64(float64_val(f64
), 0, 52);
6440 return make_float64(f64_sbit
|
6441 ((result_exp
& 0x7ff) << 52) |
6445 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
6447 float_status
*s
= fpstp
;
6450 if ((a
& 0x80000000) == 0) {
6454 f64
= make_float64((0x3feULL
<< 52)
6455 | ((int64_t)(a
& 0x7fffffff) << 21));
6457 f64
= recip_estimate(f64
, s
);
6459 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
6462 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
6464 float_status
*fpst
= fpstp
;
6467 if ((a
& 0xc0000000) == 0) {
6471 if (a
& 0x80000000) {
6472 f64
= make_float64((0x3feULL
<< 52)
6473 | ((uint64_t)(a
& 0x7fffffff) << 21));
6474 } else { /* bits 31-30 == '01' */
6475 f64
= make_float64((0x3fdULL
<< 52)
6476 | ((uint64_t)(a
& 0x3fffffff) << 22));
6479 f64
= recip_sqrt_estimate(f64
, fpst
);
6481 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
6484 /* VFPv4 fused multiply-accumulate */
6485 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
6487 float_status
*fpst
= fpstp
;
6488 return float32_muladd(a
, b
, c
, 0, fpst
);
6491 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
6493 float_status
*fpst
= fpstp
;
6494 return float64_muladd(a
, b
, c
, 0, fpst
);
6497 /* ARMv8 round to integral */
6498 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
6500 return float32_round_to_int(x
, fp_status
);
6503 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
6505 return float64_round_to_int(x
, fp_status
);
6508 float32
HELPER(rints
)(float32 x
, void *fp_status
)
6510 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
6513 ret
= float32_round_to_int(x
, fp_status
);
6515 /* Suppress any inexact exceptions the conversion produced */
6516 if (!(old_flags
& float_flag_inexact
)) {
6517 new_flags
= get_float_exception_flags(fp_status
);
6518 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
6524 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
6526 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
6529 ret
= float64_round_to_int(x
, fp_status
);
6531 new_flags
= get_float_exception_flags(fp_status
);
6533 /* Suppress any inexact exceptions the conversion produced */
6534 if (!(old_flags
& float_flag_inexact
)) {
6535 new_flags
= get_float_exception_flags(fp_status
);
6536 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
6542 /* Convert ARM rounding mode to softfloat */
6543 int arm_rmode_to_sf(int rmode
)
6546 case FPROUNDING_TIEAWAY
:
6547 rmode
= float_round_ties_away
;
6549 case FPROUNDING_ODD
:
6550 /* FIXME: add support for TIEAWAY and ODD */
6551 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
6553 case FPROUNDING_TIEEVEN
:
6555 rmode
= float_round_nearest_even
;
6557 case FPROUNDING_POSINF
:
6558 rmode
= float_round_up
;
6560 case FPROUNDING_NEGINF
:
6561 rmode
= float_round_down
;
6563 case FPROUNDING_ZERO
:
6564 rmode
= float_round_to_zero
;
6571 * The upper bytes of val (above the number specified by 'bytes') must have
6572 * been zeroed out by the caller.
6574 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
6580 /* zlib crc32 converts the accumulator and output to one's complement. */
6581 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
6584 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
6590 /* Linux crc32c converts the output to one's complement. */
6591 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;