Fix cpu_unlink_tb race
[qemu.git] / cpu-exec.c
blob5f88f3fa893716e8ccfe9068b937e6a478eae42b
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
48 int tb_invalidated_flag;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState *env)
55 return cpu_has_work(env);
58 void cpu_loop_exit(void)
60 env->current_tb = NULL;
61 longjmp(env->jmp_env, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 #if !defined(CONFIG_SOFTMMU)
70 #ifdef __linux__
71 struct ucontext *uc = puc;
72 #elif defined(__OpenBSD__)
73 struct sigcontext *uc = puc;
74 #endif
75 #endif
77 env = env1;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
82 if (puc) {
83 /* XXX: use siglongjmp ? */
84 #ifdef __linux__
85 #ifdef __ia64
86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
87 #else
88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
89 #endif
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 #endif
94 #endif
95 env->exception_index = -1;
96 longjmp(env->jmp_env, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
103 unsigned long next_tb;
104 TranslationBlock *tb;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
112 max_cycles);
113 env->current_tb = tb;
114 /* execute the generated code */
115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
116 env->current_tb = NULL;
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 tb_page_addr_t phys_pc, phys_page1, phys_page2;
134 target_ulong virt_page2;
136 tb_invalidated_flag = 0;
138 /* find translated block using physical mappings */
139 phys_pc = get_page_addr_code(env, pc);
140 phys_page1 = phys_pc & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 h = tb_phys_hash_func(phys_pc);
143 ptb1 = &tb_phys_hash[h];
144 for(;;) {
145 tb = *ptb1;
146 if (!tb)
147 goto not_found;
148 if (tb->pc == pc &&
149 tb->page_addr[0] == phys_page1 &&
150 tb->cs_base == cs_base &&
151 tb->flags == flags) {
152 /* check next page if needed */
153 if (tb->page_addr[1] != -1) {
154 virt_page2 = (pc & TARGET_PAGE_MASK) +
155 TARGET_PAGE_SIZE;
156 phys_page2 = get_page_addr_code(env, virt_page2);
157 if (tb->page_addr[1] == phys_page2)
158 goto found;
159 } else {
160 goto found;
163 ptb1 = &tb->phys_hash_next;
165 not_found:
166 /* if no translated code available, then translate it now */
167 tb = tb_gen_code(env, pc, cs_base, flags, 0);
169 found:
170 /* we add the TB in the virtual pc hash table */
171 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
172 return tb;
175 static inline TranslationBlock *tb_find_fast(void)
177 TranslationBlock *tb;
178 target_ulong cs_base, pc;
179 int flags;
181 /* we record a subset of the CPU state. It will
182 always be the same before a given translated block
183 is executed. */
184 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
185 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
186 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
187 tb->flags != flags)) {
188 tb = tb_find_slow(pc, cs_base, flags);
190 return tb;
193 static CPUDebugExcpHandler *debug_excp_handler;
195 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
197 CPUDebugExcpHandler *old_handler = debug_excp_handler;
199 debug_excp_handler = handler;
200 return old_handler;
203 static void cpu_handle_debug_exception(CPUState *env)
205 CPUWatchpoint *wp;
207 if (!env->watchpoint_hit)
208 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
209 wp->flags &= ~BP_WATCHPOINT_HIT;
211 if (debug_excp_handler)
212 debug_excp_handler(env);
215 /* main execution loop */
217 volatile sig_atomic_t exit_request;
219 int cpu_exec(CPUState *env1)
221 volatile host_reg_t saved_env_reg;
222 int ret, interrupt_request;
223 TranslationBlock *tb;
224 uint8_t *tc_ptr;
225 unsigned long next_tb;
227 if (cpu_halted(env1) == EXCP_HALTED)
228 return EXCP_HALTED;
230 cpu_single_env = env1;
232 /* the access to env below is actually saving the global register's
233 value, so that files not including target-xyz/exec.h are free to
234 use it. */
235 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
236 saved_env_reg = (host_reg_t) env;
237 barrier();
238 env = env1;
240 if (exit_request) {
241 env->exit_request = 1;
242 exit_request = 0;
245 #if defined(TARGET_I386)
246 if (!kvm_enabled()) {
247 /* put eflags in CPU temporary format */
248 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
249 DF = 1 - (2 * ((env->eflags >> 10) & 1));
250 CC_OP = CC_OP_EFLAGS;
251 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
253 #elif defined(TARGET_SPARC)
254 #elif defined(TARGET_M68K)
255 env->cc_op = CC_OP_FLAGS;
256 env->cc_dest = env->sr & 0xf;
257 env->cc_x = (env->sr >> 4) & 1;
258 #elif defined(TARGET_ALPHA)
259 #elif defined(TARGET_ARM)
260 #elif defined(TARGET_PPC)
261 #elif defined(TARGET_MICROBLAZE)
262 #elif defined(TARGET_MIPS)
263 #elif defined(TARGET_SH4)
264 #elif defined(TARGET_CRIS)
265 #elif defined(TARGET_S390X)
266 /* XXXXX */
267 #else
268 #error unsupported target CPU
269 #endif
270 env->exception_index = -1;
272 /* prepare setjmp context for exception handling */
273 for(;;) {
274 if (setjmp(env->jmp_env) == 0) {
275 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
276 #undef env
277 env = cpu_single_env;
278 #define env cpu_single_env
279 #endif
280 /* if an exception is pending, we execute it here */
281 if (env->exception_index >= 0) {
282 if (env->exception_index >= EXCP_INTERRUPT) {
283 /* exit request from the cpu execution loop */
284 ret = env->exception_index;
285 if (ret == EXCP_DEBUG)
286 cpu_handle_debug_exception(env);
287 break;
288 } else {
289 #if defined(CONFIG_USER_ONLY)
290 /* if user mode only, we simulate a fake exception
291 which will be handled outside the cpu execution
292 loop */
293 #if defined(TARGET_I386)
294 do_interrupt_user(env->exception_index,
295 env->exception_is_int,
296 env->error_code,
297 env->exception_next_eip);
298 /* successfully delivered */
299 env->old_exception = -1;
300 #endif
301 ret = env->exception_index;
302 break;
303 #else
304 #if defined(TARGET_I386)
305 /* simulate a real cpu exception. On i386, it can
306 trigger new exceptions, but we do not handle
307 double or triple faults yet. */
308 do_interrupt(env->exception_index,
309 env->exception_is_int,
310 env->error_code,
311 env->exception_next_eip, 0);
312 /* successfully delivered */
313 env->old_exception = -1;
314 #elif defined(TARGET_PPC)
315 do_interrupt(env);
316 #elif defined(TARGET_MICROBLAZE)
317 do_interrupt(env);
318 #elif defined(TARGET_MIPS)
319 do_interrupt(env);
320 #elif defined(TARGET_SPARC)
321 do_interrupt(env);
322 #elif defined(TARGET_ARM)
323 do_interrupt(env);
324 #elif defined(TARGET_SH4)
325 do_interrupt(env);
326 #elif defined(TARGET_ALPHA)
327 do_interrupt(env);
328 #elif defined(TARGET_CRIS)
329 do_interrupt(env);
330 #elif defined(TARGET_M68K)
331 do_interrupt(0);
332 #endif
333 env->exception_index = -1;
334 #endif
338 if (kvm_enabled()) {
339 kvm_cpu_exec(env);
340 longjmp(env->jmp_env, 1);
343 next_tb = 0; /* force lookup of first TB */
344 for(;;) {
345 interrupt_request = env->interrupt_request;
346 if (unlikely(interrupt_request)) {
347 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
348 /* Mask out external interrupts for this step. */
349 interrupt_request &= ~(CPU_INTERRUPT_HARD |
350 CPU_INTERRUPT_FIQ |
351 CPU_INTERRUPT_SMI |
352 CPU_INTERRUPT_NMI);
354 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
355 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
356 env->exception_index = EXCP_DEBUG;
357 cpu_loop_exit();
359 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
360 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
361 defined(TARGET_MICROBLAZE)
362 if (interrupt_request & CPU_INTERRUPT_HALT) {
363 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
364 env->halted = 1;
365 env->exception_index = EXCP_HLT;
366 cpu_loop_exit();
368 #endif
369 #if defined(TARGET_I386)
370 if (interrupt_request & CPU_INTERRUPT_INIT) {
371 svm_check_intercept(SVM_EXIT_INIT);
372 do_cpu_init(env);
373 env->exception_index = EXCP_HALTED;
374 cpu_loop_exit();
375 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
376 do_cpu_sipi(env);
377 } else if (env->hflags2 & HF2_GIF_MASK) {
378 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
379 !(env->hflags & HF_SMM_MASK)) {
380 svm_check_intercept(SVM_EXIT_SMI);
381 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
382 do_smm_enter();
383 next_tb = 0;
384 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
385 !(env->hflags2 & HF2_NMI_MASK)) {
386 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
387 env->hflags2 |= HF2_NMI_MASK;
388 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
389 next_tb = 0;
390 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
391 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
392 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
393 next_tb = 0;
394 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
395 (((env->hflags2 & HF2_VINTR_MASK) &&
396 (env->hflags2 & HF2_HIF_MASK)) ||
397 (!(env->hflags2 & HF2_VINTR_MASK) &&
398 (env->eflags & IF_MASK &&
399 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
400 int intno;
401 svm_check_intercept(SVM_EXIT_INTR);
402 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
403 intno = cpu_get_pic_interrupt(env);
404 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
405 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
406 #undef env
407 env = cpu_single_env;
408 #define env cpu_single_env
409 #endif
410 do_interrupt(intno, 0, 0, 0, 1);
411 /* ensure that no TB jump will be modified as
412 the program flow was changed */
413 next_tb = 0;
414 #if !defined(CONFIG_USER_ONLY)
415 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
416 (env->eflags & IF_MASK) &&
417 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
418 int intno;
419 /* FIXME: this should respect TPR */
420 svm_check_intercept(SVM_EXIT_VINTR);
421 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
422 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
423 do_interrupt(intno, 0, 0, 0, 1);
424 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
425 next_tb = 0;
426 #endif
429 #elif defined(TARGET_PPC)
430 #if 0
431 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
432 cpu_reset(env);
434 #endif
435 if (interrupt_request & CPU_INTERRUPT_HARD) {
436 ppc_hw_interrupt(env);
437 if (env->pending_interrupts == 0)
438 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
439 next_tb = 0;
441 #elif defined(TARGET_MICROBLAZE)
442 if ((interrupt_request & CPU_INTERRUPT_HARD)
443 && (env->sregs[SR_MSR] & MSR_IE)
444 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
445 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
446 env->exception_index = EXCP_IRQ;
447 do_interrupt(env);
448 next_tb = 0;
450 #elif defined(TARGET_MIPS)
451 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
452 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
453 (env->CP0_Status & (1 << CP0St_IE)) &&
454 !(env->CP0_Status & (1 << CP0St_EXL)) &&
455 !(env->CP0_Status & (1 << CP0St_ERL)) &&
456 !(env->hflags & MIPS_HFLAG_DM)) {
457 /* Raise it */
458 env->exception_index = EXCP_EXT_INTERRUPT;
459 env->error_code = 0;
460 do_interrupt(env);
461 next_tb = 0;
463 #elif defined(TARGET_SPARC)
464 if (interrupt_request & CPU_INTERRUPT_HARD) {
465 if (cpu_interrupts_enabled(env) &&
466 env->interrupt_index > 0) {
467 int pil = env->interrupt_index & 0xf;
468 int type = env->interrupt_index & 0xf0;
470 if (((type == TT_EXTINT) &&
471 cpu_pil_allowed(env, pil)) ||
472 type != TT_EXTINT) {
473 env->exception_index = env->interrupt_index;
474 do_interrupt(env);
475 next_tb = 0;
478 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
479 //do_interrupt(0, 0, 0, 0, 0);
480 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
482 #elif defined(TARGET_ARM)
483 if (interrupt_request & CPU_INTERRUPT_FIQ
484 && !(env->uncached_cpsr & CPSR_F)) {
485 env->exception_index = EXCP_FIQ;
486 do_interrupt(env);
487 next_tb = 0;
489 /* ARMv7-M interrupt return works by loading a magic value
490 into the PC. On real hardware the load causes the
491 return to occur. The qemu implementation performs the
492 jump normally, then does the exception return when the
493 CPU tries to execute code at the magic address.
494 This will cause the magic PC value to be pushed to
495 the stack if an interrupt occured at the wrong time.
496 We avoid this by disabling interrupts when
497 pc contains a magic address. */
498 if (interrupt_request & CPU_INTERRUPT_HARD
499 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
500 || !(env->uncached_cpsr & CPSR_I))) {
501 env->exception_index = EXCP_IRQ;
502 do_interrupt(env);
503 next_tb = 0;
505 #elif defined(TARGET_SH4)
506 if (interrupt_request & CPU_INTERRUPT_HARD) {
507 do_interrupt(env);
508 next_tb = 0;
510 #elif defined(TARGET_ALPHA)
511 if (interrupt_request & CPU_INTERRUPT_HARD) {
512 do_interrupt(env);
513 next_tb = 0;
515 #elif defined(TARGET_CRIS)
516 if (interrupt_request & CPU_INTERRUPT_HARD
517 && (env->pregs[PR_CCS] & I_FLAG)
518 && !env->locked_irq) {
519 env->exception_index = EXCP_IRQ;
520 do_interrupt(env);
521 next_tb = 0;
523 if (interrupt_request & CPU_INTERRUPT_NMI
524 && (env->pregs[PR_CCS] & M_FLAG)) {
525 env->exception_index = EXCP_NMI;
526 do_interrupt(env);
527 next_tb = 0;
529 #elif defined(TARGET_M68K)
530 if (interrupt_request & CPU_INTERRUPT_HARD
531 && ((env->sr & SR_I) >> SR_I_SHIFT)
532 < env->pending_level) {
533 /* Real hardware gets the interrupt vector via an
534 IACK cycle at this point. Current emulated
535 hardware doesn't rely on this, so we
536 provide/save the vector when the interrupt is
537 first signalled. */
538 env->exception_index = env->pending_vector;
539 do_interrupt(1);
540 next_tb = 0;
542 #endif
543 /* Don't use the cached interupt_request value,
544 do_interrupt may have updated the EXITTB flag. */
545 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
546 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
547 /* ensure that no TB jump will be modified as
548 the program flow was changed */
549 next_tb = 0;
552 if (unlikely(env->exit_request)) {
553 env->exit_request = 0;
554 env->exception_index = EXCP_INTERRUPT;
555 cpu_loop_exit();
557 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
558 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
559 /* restore flags in standard format */
560 #if defined(TARGET_I386)
561 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
562 log_cpu_state(env, X86_DUMP_CCOP);
563 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
564 #elif defined(TARGET_M68K)
565 cpu_m68k_flush_flags(env, env->cc_op);
566 env->cc_op = CC_OP_FLAGS;
567 env->sr = (env->sr & 0xffe0)
568 | env->cc_dest | (env->cc_x << 4);
569 log_cpu_state(env, 0);
570 #else
571 log_cpu_state(env, 0);
572 #endif
574 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
575 spin_lock(&tb_lock);
576 tb = tb_find_fast();
577 /* Note: we do it here to avoid a gcc bug on Mac OS X when
578 doing it in tb_find_slow */
579 if (tb_invalidated_flag) {
580 /* as some TB could have been invalidated because
581 of memory exceptions while generating the code, we
582 must recompute the hash index here */
583 next_tb = 0;
584 tb_invalidated_flag = 0;
586 #ifdef CONFIG_DEBUG_EXEC
587 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
588 (long)tb->tc_ptr, tb->pc,
589 lookup_symbol(tb->pc));
590 #endif
591 /* see if we can patch the calling TB. When the TB
592 spans two pages, we cannot safely do a direct
593 jump. */
594 if (next_tb != 0 && tb->page_addr[1] == -1) {
595 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
597 spin_unlock(&tb_lock);
599 /* cpu_interrupt might be called while translating the
600 TB, but before it is linked into a potentially
601 infinite loop and becomes env->current_tb. Avoid
602 starting execution if there is a pending interrupt. */
603 env->current_tb = tb;
604 barrier();
605 if (likely(!env->exit_request)) {
606 tc_ptr = tb->tc_ptr;
607 /* execute the generated code */
608 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
609 #undef env
610 env = cpu_single_env;
611 #define env cpu_single_env
612 #endif
613 next_tb = tcg_qemu_tb_exec(tc_ptr);
614 if ((next_tb & 3) == 2) {
615 /* Instruction counter expired. */
616 int insns_left;
617 tb = (TranslationBlock *)(long)(next_tb & ~3);
618 /* Restore PC. */
619 cpu_pc_from_tb(env, tb);
620 insns_left = env->icount_decr.u32;
621 if (env->icount_extra && insns_left >= 0) {
622 /* Refill decrementer and continue execution. */
623 env->icount_extra += insns_left;
624 if (env->icount_extra > 0xffff) {
625 insns_left = 0xffff;
626 } else {
627 insns_left = env->icount_extra;
629 env->icount_extra -= insns_left;
630 env->icount_decr.u16.low = insns_left;
631 } else {
632 if (insns_left > 0) {
633 /* Execute remaining instructions. */
634 cpu_exec_nocache(insns_left, tb);
636 env->exception_index = EXCP_INTERRUPT;
637 next_tb = 0;
638 cpu_loop_exit();
642 env->current_tb = NULL;
643 /* reset soft MMU for next block (it can currently
644 only be set by a memory fault) */
645 } /* for(;;) */
647 } /* for(;;) */
650 #if defined(TARGET_I386)
651 /* restore flags in standard format */
652 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
653 #elif defined(TARGET_ARM)
654 /* XXX: Save/restore host fpu exception state?. */
655 #elif defined(TARGET_SPARC)
656 #elif defined(TARGET_PPC)
657 #elif defined(TARGET_M68K)
658 cpu_m68k_flush_flags(env, env->cc_op);
659 env->cc_op = CC_OP_FLAGS;
660 env->sr = (env->sr & 0xffe0)
661 | env->cc_dest | (env->cc_x << 4);
662 #elif defined(TARGET_MICROBLAZE)
663 #elif defined(TARGET_MIPS)
664 #elif defined(TARGET_SH4)
665 #elif defined(TARGET_ALPHA)
666 #elif defined(TARGET_CRIS)
667 #elif defined(TARGET_S390X)
668 /* XXXXX */
669 #else
670 #error unsupported target CPU
671 #endif
673 /* restore global registers */
674 barrier();
675 env = (void *) saved_env_reg;
677 /* fail safe : never use cpu_single_env outside cpu_exec() */
678 cpu_single_env = NULL;
679 return ret;
682 /* must only be called from the generated code as an exception can be
683 generated */
684 void tb_invalidate_page_range(target_ulong start, target_ulong end)
686 /* XXX: cannot enable it yet because it yields to MMU exception
687 where NIP != read address on PowerPC */
688 #if 0
689 target_ulong phys_addr;
690 phys_addr = get_phys_addr_code(env, start);
691 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
692 #endif
695 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
697 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
699 CPUX86State *saved_env;
701 saved_env = env;
702 env = s;
703 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
704 selector &= 0xffff;
705 cpu_x86_load_seg_cache(env, seg_reg, selector,
706 (selector << 4), 0xffff, 0);
707 } else {
708 helper_load_seg(seg_reg, selector);
710 env = saved_env;
713 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
715 CPUX86State *saved_env;
717 saved_env = env;
718 env = s;
720 helper_fsave(ptr, data32);
722 env = saved_env;
725 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
727 CPUX86State *saved_env;
729 saved_env = env;
730 env = s;
732 helper_frstor(ptr, data32);
734 env = saved_env;
737 #endif /* TARGET_I386 */
739 #if !defined(CONFIG_SOFTMMU)
741 #if defined(TARGET_I386)
742 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
743 #else
744 #define EXCEPTION_ACTION cpu_loop_exit()
745 #endif
747 /* 'pc' is the host PC at which the exception was raised. 'address' is
748 the effective address of the memory exception. 'is_write' is 1 if a
749 write caused the exception and otherwise 0'. 'old_set' is the
750 signal set which should be restored */
751 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
752 int is_write, sigset_t *old_set,
753 void *puc)
755 TranslationBlock *tb;
756 int ret;
758 if (cpu_single_env)
759 env = cpu_single_env; /* XXX: find a correct solution for multithread */
760 #if defined(DEBUG_SIGNAL)
761 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
762 pc, address, is_write, *(unsigned long *)old_set);
763 #endif
764 /* XXX: locking issue */
765 if (is_write && page_unprotect(h2g(address), pc, puc)) {
766 return 1;
769 /* see if it is an MMU fault */
770 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
771 if (ret < 0)
772 return 0; /* not an MMU fault */
773 if (ret == 0)
774 return 1; /* the MMU fault was handled without causing real CPU fault */
775 /* now we have a real cpu fault */
776 tb = tb_find_pc(pc);
777 if (tb) {
778 /* the PC is inside the translated code. It means that we have
779 a virtual CPU fault */
780 cpu_restore_state(tb, env, pc, puc);
783 /* we restore the process signal mask as the sigreturn should
784 do it (XXX: use sigsetjmp) */
785 sigprocmask(SIG_SETMASK, old_set, NULL);
786 EXCEPTION_ACTION;
788 /* never comes here */
789 return 1;
792 #if defined(__i386__)
794 #if defined(__APPLE__)
795 # include <sys/ucontext.h>
797 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
798 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
799 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
800 # define MASK_sig(context) ((context)->uc_sigmask)
801 #elif defined (__NetBSD__)
802 # include <ucontext.h>
804 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
805 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
806 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
807 # define MASK_sig(context) ((context)->uc_sigmask)
808 #elif defined (__FreeBSD__) || defined(__DragonFly__)
809 # include <ucontext.h>
811 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
812 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
813 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
814 # define MASK_sig(context) ((context)->uc_sigmask)
815 #elif defined(__OpenBSD__)
816 # define EIP_sig(context) ((context)->sc_eip)
817 # define TRAP_sig(context) ((context)->sc_trapno)
818 # define ERROR_sig(context) ((context)->sc_err)
819 # define MASK_sig(context) ((context)->sc_mask)
820 #else
821 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
822 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
823 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
824 # define MASK_sig(context) ((context)->uc_sigmask)
825 #endif
827 int cpu_signal_handler(int host_signum, void *pinfo,
828 void *puc)
830 siginfo_t *info = pinfo;
831 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
832 ucontext_t *uc = puc;
833 #elif defined(__OpenBSD__)
834 struct sigcontext *uc = puc;
835 #else
836 struct ucontext *uc = puc;
837 #endif
838 unsigned long pc;
839 int trapno;
841 #ifndef REG_EIP
842 /* for glibc 2.1 */
843 #define REG_EIP EIP
844 #define REG_ERR ERR
845 #define REG_TRAPNO TRAPNO
846 #endif
847 pc = EIP_sig(uc);
848 trapno = TRAP_sig(uc);
849 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
850 trapno == 0xe ?
851 (ERROR_sig(uc) >> 1) & 1 : 0,
852 &MASK_sig(uc), puc);
855 #elif defined(__x86_64__)
857 #ifdef __NetBSD__
858 #define PC_sig(context) _UC_MACHINE_PC(context)
859 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
860 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
861 #define MASK_sig(context) ((context)->uc_sigmask)
862 #elif defined(__OpenBSD__)
863 #define PC_sig(context) ((context)->sc_rip)
864 #define TRAP_sig(context) ((context)->sc_trapno)
865 #define ERROR_sig(context) ((context)->sc_err)
866 #define MASK_sig(context) ((context)->sc_mask)
867 #elif defined (__FreeBSD__) || defined(__DragonFly__)
868 #include <ucontext.h>
870 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
871 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
872 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
873 #define MASK_sig(context) ((context)->uc_sigmask)
874 #else
875 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
876 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
877 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
878 #define MASK_sig(context) ((context)->uc_sigmask)
879 #endif
881 int cpu_signal_handler(int host_signum, void *pinfo,
882 void *puc)
884 siginfo_t *info = pinfo;
885 unsigned long pc;
886 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
887 ucontext_t *uc = puc;
888 #elif defined(__OpenBSD__)
889 struct sigcontext *uc = puc;
890 #else
891 struct ucontext *uc = puc;
892 #endif
894 pc = PC_sig(uc);
895 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
896 TRAP_sig(uc) == 0xe ?
897 (ERROR_sig(uc) >> 1) & 1 : 0,
898 &MASK_sig(uc), puc);
901 #elif defined(_ARCH_PPC)
903 /***********************************************************************
904 * signal context platform-specific definitions
905 * From Wine
907 #ifdef linux
908 /* All Registers access - only for local access */
909 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
910 /* Gpr Registers access */
911 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
912 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
913 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
914 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
915 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
916 # define LR_sig(context) REG_sig(link, context) /* Link register */
917 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
918 /* Float Registers access */
919 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
920 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
921 /* Exception Registers access */
922 # define DAR_sig(context) REG_sig(dar, context)
923 # define DSISR_sig(context) REG_sig(dsisr, context)
924 # define TRAP_sig(context) REG_sig(trap, context)
925 #endif /* linux */
927 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
928 #include <ucontext.h>
929 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
930 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
931 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
932 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
933 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
934 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
935 /* Exception Registers access */
936 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
937 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
938 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
939 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
941 #ifdef __APPLE__
942 # include <sys/ucontext.h>
943 typedef struct ucontext SIGCONTEXT;
944 /* All Registers access - only for local access */
945 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
946 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
947 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
948 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
949 /* Gpr Registers access */
950 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
951 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
952 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
953 # define CTR_sig(context) REG_sig(ctr, context)
954 # define XER_sig(context) REG_sig(xer, context) /* Link register */
955 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
956 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
957 /* Float Registers access */
958 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
959 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
960 /* Exception Registers access */
961 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
962 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
963 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
964 #endif /* __APPLE__ */
966 int cpu_signal_handler(int host_signum, void *pinfo,
967 void *puc)
969 siginfo_t *info = pinfo;
970 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
971 ucontext_t *uc = puc;
972 #else
973 struct ucontext *uc = puc;
974 #endif
975 unsigned long pc;
976 int is_write;
978 pc = IAR_sig(uc);
979 is_write = 0;
980 #if 0
981 /* ppc 4xx case */
982 if (DSISR_sig(uc) & 0x00800000)
983 is_write = 1;
984 #else
985 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
986 is_write = 1;
987 #endif
988 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
989 is_write, &uc->uc_sigmask, puc);
992 #elif defined(__alpha__)
994 int cpu_signal_handler(int host_signum, void *pinfo,
995 void *puc)
997 siginfo_t *info = pinfo;
998 struct ucontext *uc = puc;
999 uint32_t *pc = uc->uc_mcontext.sc_pc;
1000 uint32_t insn = *pc;
1001 int is_write = 0;
1003 /* XXX: need kernel patch to get write flag faster */
1004 switch (insn >> 26) {
1005 case 0x0d: // stw
1006 case 0x0e: // stb
1007 case 0x0f: // stq_u
1008 case 0x24: // stf
1009 case 0x25: // stg
1010 case 0x26: // sts
1011 case 0x27: // stt
1012 case 0x2c: // stl
1013 case 0x2d: // stq
1014 case 0x2e: // stl_c
1015 case 0x2f: // stq_c
1016 is_write = 1;
1019 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1020 is_write, &uc->uc_sigmask, puc);
1022 #elif defined(__sparc__)
1024 int cpu_signal_handler(int host_signum, void *pinfo,
1025 void *puc)
1027 siginfo_t *info = pinfo;
1028 int is_write;
1029 uint32_t insn;
1030 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1031 uint32_t *regs = (uint32_t *)(info + 1);
1032 void *sigmask = (regs + 20);
1033 /* XXX: is there a standard glibc define ? */
1034 unsigned long pc = regs[1];
1035 #else
1036 #ifdef __linux__
1037 struct sigcontext *sc = puc;
1038 unsigned long pc = sc->sigc_regs.tpc;
1039 void *sigmask = (void *)sc->sigc_mask;
1040 #elif defined(__OpenBSD__)
1041 struct sigcontext *uc = puc;
1042 unsigned long pc = uc->sc_pc;
1043 void *sigmask = (void *)(long)uc->sc_mask;
1044 #endif
1045 #endif
1047 /* XXX: need kernel patch to get write flag faster */
1048 is_write = 0;
1049 insn = *(uint32_t *)pc;
1050 if ((insn >> 30) == 3) {
1051 switch((insn >> 19) & 0x3f) {
1052 case 0x05: // stb
1053 case 0x15: // stba
1054 case 0x06: // sth
1055 case 0x16: // stha
1056 case 0x04: // st
1057 case 0x14: // sta
1058 case 0x07: // std
1059 case 0x17: // stda
1060 case 0x0e: // stx
1061 case 0x1e: // stxa
1062 case 0x24: // stf
1063 case 0x34: // stfa
1064 case 0x27: // stdf
1065 case 0x37: // stdfa
1066 case 0x26: // stqf
1067 case 0x36: // stqfa
1068 case 0x25: // stfsr
1069 case 0x3c: // casa
1070 case 0x3e: // casxa
1071 is_write = 1;
1072 break;
1075 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1076 is_write, sigmask, NULL);
1079 #elif defined(__arm__)
1081 int cpu_signal_handler(int host_signum, void *pinfo,
1082 void *puc)
1084 siginfo_t *info = pinfo;
1085 struct ucontext *uc = puc;
1086 unsigned long pc;
1087 int is_write;
1089 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1090 pc = uc->uc_mcontext.gregs[R15];
1091 #else
1092 pc = uc->uc_mcontext.arm_pc;
1093 #endif
1094 /* XXX: compute is_write */
1095 is_write = 0;
1096 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1097 is_write,
1098 &uc->uc_sigmask, puc);
1101 #elif defined(__mc68000)
1103 int cpu_signal_handler(int host_signum, void *pinfo,
1104 void *puc)
1106 siginfo_t *info = pinfo;
1107 struct ucontext *uc = puc;
1108 unsigned long pc;
1109 int is_write;
1111 pc = uc->uc_mcontext.gregs[16];
1112 /* XXX: compute is_write */
1113 is_write = 0;
1114 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1115 is_write,
1116 &uc->uc_sigmask, puc);
1119 #elif defined(__ia64)
1121 #ifndef __ISR_VALID
1122 /* This ought to be in <bits/siginfo.h>... */
1123 # define __ISR_VALID 1
1124 #endif
1126 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1128 siginfo_t *info = pinfo;
1129 struct ucontext *uc = puc;
1130 unsigned long ip;
1131 int is_write = 0;
1133 ip = uc->uc_mcontext.sc_ip;
1134 switch (host_signum) {
1135 case SIGILL:
1136 case SIGFPE:
1137 case SIGSEGV:
1138 case SIGBUS:
1139 case SIGTRAP:
1140 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1141 /* ISR.W (write-access) is bit 33: */
1142 is_write = (info->si_isr >> 33) & 1;
1143 break;
1145 default:
1146 break;
1148 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1149 is_write,
1150 (sigset_t *)&uc->uc_sigmask, puc);
1153 #elif defined(__s390__)
1155 int cpu_signal_handler(int host_signum, void *pinfo,
1156 void *puc)
1158 siginfo_t *info = pinfo;
1159 struct ucontext *uc = puc;
1160 unsigned long pc;
1161 uint16_t *pinsn;
1162 int is_write = 0;
1164 pc = uc->uc_mcontext.psw.addr;
1166 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1167 of the normal 2 arguments. The 3rd argument contains the "int_code"
1168 from the hardware which does in fact contain the is_write value.
1169 The rt signal handler, as far as I can tell, does not give this value
1170 at all. Not that we could get to it from here even if it were. */
1171 /* ??? This is not even close to complete, since it ignores all
1172 of the read-modify-write instructions. */
1173 pinsn = (uint16_t *)pc;
1174 switch (pinsn[0] >> 8) {
1175 case 0x50: /* ST */
1176 case 0x42: /* STC */
1177 case 0x40: /* STH */
1178 is_write = 1;
1179 break;
1180 case 0xc4: /* RIL format insns */
1181 switch (pinsn[0] & 0xf) {
1182 case 0xf: /* STRL */
1183 case 0xb: /* STGRL */
1184 case 0x7: /* STHRL */
1185 is_write = 1;
1187 break;
1188 case 0xe3: /* RXY format insns */
1189 switch (pinsn[2] & 0xff) {
1190 case 0x50: /* STY */
1191 case 0x24: /* STG */
1192 case 0x72: /* STCY */
1193 case 0x70: /* STHY */
1194 case 0x8e: /* STPQ */
1195 case 0x3f: /* STRVH */
1196 case 0x3e: /* STRV */
1197 case 0x2f: /* STRVG */
1198 is_write = 1;
1200 break;
1202 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1203 is_write, &uc->uc_sigmask, puc);
1206 #elif defined(__mips__)
1208 int cpu_signal_handler(int host_signum, void *pinfo,
1209 void *puc)
1211 siginfo_t *info = pinfo;
1212 struct ucontext *uc = puc;
1213 greg_t pc = uc->uc_mcontext.pc;
1214 int is_write;
1216 /* XXX: compute is_write */
1217 is_write = 0;
1218 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1219 is_write, &uc->uc_sigmask, puc);
1222 #elif defined(__hppa__)
1224 int cpu_signal_handler(int host_signum, void *pinfo,
1225 void *puc)
1227 struct siginfo *info = pinfo;
1228 struct ucontext *uc = puc;
1229 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1230 uint32_t insn = *(uint32_t *)pc;
1231 int is_write = 0;
1233 /* XXX: need kernel patch to get write flag faster. */
1234 switch (insn >> 26) {
1235 case 0x1a: /* STW */
1236 case 0x19: /* STH */
1237 case 0x18: /* STB */
1238 case 0x1b: /* STWM */
1239 is_write = 1;
1240 break;
1242 case 0x09: /* CSTWX, FSTWX, FSTWS */
1243 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1244 /* Distinguish from coprocessor load ... */
1245 is_write = (insn >> 9) & 1;
1246 break;
1248 case 0x03:
1249 switch ((insn >> 6) & 15) {
1250 case 0xa: /* STWS */
1251 case 0x9: /* STHS */
1252 case 0x8: /* STBS */
1253 case 0xe: /* STWAS */
1254 case 0xc: /* STBYS */
1255 is_write = 1;
1257 break;
1260 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1261 is_write, &uc->uc_sigmask, puc);
1264 #else
1266 #error host CPU specific signal handler needed
1268 #endif
1270 #endif /* !defined(CONFIG_SOFTMMU) */