2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 #define _WIN32_WINNT 0x0600
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
22 #include "qemu-thread-common.h"
25 static bool name_threads
;
27 void qemu_thread_naming(bool enable
)
29 /* But note we don't actually name them on Windows yet */
30 name_threads
= enable
;
32 fprintf(stderr
, "qemu: thread naming not supported on this host\n");
35 static void error_exit(int err
, const char *msg
)
39 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
| FORMAT_MESSAGE_ALLOCATE_BUFFER
,
40 NULL
, err
, 0, (LPTSTR
)&pstr
, 2, NULL
);
41 fprintf(stderr
, "qemu: %s: %s\n", msg
, pstr
);
46 void qemu_mutex_init(QemuMutex
*mutex
)
48 InitializeSRWLock(&mutex
->lock
);
49 qemu_mutex_post_init(mutex
);
52 void qemu_mutex_destroy(QemuMutex
*mutex
)
54 assert(mutex
->initialized
);
55 mutex
->initialized
= false;
56 InitializeSRWLock(&mutex
->lock
);
59 void qemu_mutex_lock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
61 assert(mutex
->initialized
);
62 qemu_mutex_pre_lock(mutex
, file
, line
);
63 AcquireSRWLockExclusive(&mutex
->lock
);
64 qemu_mutex_post_lock(mutex
, file
, line
);
67 int qemu_mutex_trylock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
71 assert(mutex
->initialized
);
72 owned
= TryAcquireSRWLockExclusive(&mutex
->lock
);
74 qemu_mutex_post_lock(mutex
, file
, line
);
80 void qemu_mutex_unlock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
82 assert(mutex
->initialized
);
83 qemu_mutex_pre_unlock(mutex
, file
, line
);
84 ReleaseSRWLockExclusive(&mutex
->lock
);
87 void qemu_rec_mutex_init(QemuRecMutex
*mutex
)
89 InitializeCriticalSection(&mutex
->lock
);
90 mutex
->initialized
= true;
93 void qemu_rec_mutex_destroy(QemuRecMutex
*mutex
)
95 assert(mutex
->initialized
);
96 mutex
->initialized
= false;
97 DeleteCriticalSection(&mutex
->lock
);
100 void qemu_rec_mutex_lock(QemuRecMutex
*mutex
)
102 assert(mutex
->initialized
);
103 EnterCriticalSection(&mutex
->lock
);
106 int qemu_rec_mutex_trylock(QemuRecMutex
*mutex
)
108 assert(mutex
->initialized
);
109 return !TryEnterCriticalSection(&mutex
->lock
);
112 void qemu_rec_mutex_unlock(QemuRecMutex
*mutex
)
114 assert(mutex
->initialized
);
115 LeaveCriticalSection(&mutex
->lock
);
118 void qemu_cond_init(QemuCond
*cond
)
120 memset(cond
, 0, sizeof(*cond
));
121 InitializeConditionVariable(&cond
->var
);
122 cond
->initialized
= true;
125 void qemu_cond_destroy(QemuCond
*cond
)
127 assert(cond
->initialized
);
128 cond
->initialized
= false;
129 InitializeConditionVariable(&cond
->var
);
132 void qemu_cond_signal(QemuCond
*cond
)
134 assert(cond
->initialized
);
135 WakeConditionVariable(&cond
->var
);
138 void qemu_cond_broadcast(QemuCond
*cond
)
140 assert(cond
->initialized
);
141 WakeAllConditionVariable(&cond
->var
);
144 void qemu_cond_wait_impl(QemuCond
*cond
, QemuMutex
*mutex
, const char *file
, const int line
)
146 assert(cond
->initialized
);
147 qemu_mutex_pre_unlock(mutex
, file
, line
);
148 SleepConditionVariableSRW(&cond
->var
, &mutex
->lock
, INFINITE
, 0);
149 qemu_mutex_post_lock(mutex
, file
, line
);
152 void qemu_sem_init(QemuSemaphore
*sem
, int init
)
155 sem
->sema
= CreateSemaphore(NULL
, init
, LONG_MAX
, NULL
);
156 sem
->initialized
= true;
159 void qemu_sem_destroy(QemuSemaphore
*sem
)
161 assert(sem
->initialized
);
162 sem
->initialized
= false;
163 CloseHandle(sem
->sema
);
166 void qemu_sem_post(QemuSemaphore
*sem
)
168 assert(sem
->initialized
);
169 ReleaseSemaphore(sem
->sema
, 1, NULL
);
172 int qemu_sem_timedwait(QemuSemaphore
*sem
, int ms
)
176 assert(sem
->initialized
);
177 rc
= WaitForSingleObject(sem
->sema
, ms
);
178 if (rc
== WAIT_OBJECT_0
) {
181 if (rc
!= WAIT_TIMEOUT
) {
182 error_exit(GetLastError(), __func__
);
187 void qemu_sem_wait(QemuSemaphore
*sem
)
189 assert(sem
->initialized
);
190 if (WaitForSingleObject(sem
->sema
, INFINITE
) != WAIT_OBJECT_0
) {
191 error_exit(GetLastError(), __func__
);
195 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
196 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
197 * sequence. Such a sequence is, indeed, how QemuEvents are used by
198 * RCU and other subsystems!
201 * - free->set, when setting the event
202 * - busy->set, when setting the event, followed by SetEvent
203 * - set->free, when resetting the event
204 * - free->busy, when waiting
206 * set->busy does not happen (it can be observed from the outside but
207 * it really is set->free->busy).
209 * busy->free provably cannot happen; to enforce it, the set->free transition
210 * is done with an OR, which becomes a no-op if the event has concurrently
211 * transitioned to free or busy (and is faster than cmpxchg).
218 void qemu_event_init(QemuEvent
*ev
, bool init
)
221 ev
->event
= CreateEvent(NULL
, TRUE
, TRUE
, NULL
);
222 ev
->value
= (init
? EV_SET
: EV_FREE
);
223 ev
->initialized
= true;
226 void qemu_event_destroy(QemuEvent
*ev
)
228 assert(ev
->initialized
);
229 ev
->initialized
= false;
230 CloseHandle(ev
->event
);
233 void qemu_event_set(QemuEvent
*ev
)
235 assert(ev
->initialized
);
236 /* qemu_event_set has release semantics, but because it *loads*
237 * ev->value we need a full memory barrier here.
240 if (atomic_read(&ev
->value
) != EV_SET
) {
241 if (atomic_xchg(&ev
->value
, EV_SET
) == EV_BUSY
) {
242 /* There were waiters, wake them up. */
248 void qemu_event_reset(QemuEvent
*ev
)
252 assert(ev
->initialized
);
253 value
= atomic_read(&ev
->value
);
255 if (value
== EV_SET
) {
256 /* If there was a concurrent reset (or even reset+wait),
257 * do nothing. Otherwise change EV_SET->EV_FREE.
259 atomic_or(&ev
->value
, EV_FREE
);
263 void qemu_event_wait(QemuEvent
*ev
)
267 assert(ev
->initialized
);
268 value
= atomic_read(&ev
->value
);
270 if (value
!= EV_SET
) {
271 if (value
== EV_FREE
) {
272 /* qemu_event_set is not yet going to call SetEvent, but we are
273 * going to do another check for EV_SET below when setting EV_BUSY.
274 * At that point it is safe to call WaitForSingleObject.
276 ResetEvent(ev
->event
);
278 /* Tell qemu_event_set that there are waiters. No need to retry
279 * because there cannot be a concurent busy->free transition.
280 * After the CAS, the event will be either set or busy.
282 if (atomic_cmpxchg(&ev
->value
, EV_FREE
, EV_BUSY
) == EV_SET
) {
288 if (value
== EV_BUSY
) {
289 WaitForSingleObject(ev
->event
, INFINITE
);
294 struct QemuThreadData
{
295 /* Passed to win32_start_routine. */
296 void *(*start_routine
)(void *);
301 /* Only used for joinable threads. */
307 static bool atexit_registered
;
308 static NotifierList main_thread_exit
;
310 static __thread QemuThreadData
*qemu_thread_data
;
312 static void run_main_thread_exit(void)
314 notifier_list_notify(&main_thread_exit
, NULL
);
317 void qemu_thread_atexit_add(Notifier
*notifier
)
319 if (!qemu_thread_data
) {
320 if (!atexit_registered
) {
321 atexit_registered
= true;
322 atexit(run_main_thread_exit
);
324 notifier_list_add(&main_thread_exit
, notifier
);
326 notifier_list_add(&qemu_thread_data
->exit
, notifier
);
330 void qemu_thread_atexit_remove(Notifier
*notifier
)
332 notifier_remove(notifier
);
335 static unsigned __stdcall
win32_start_routine(void *arg
)
337 QemuThreadData
*data
= (QemuThreadData
*) arg
;
338 void *(*start_routine
)(void *) = data
->start_routine
;
339 void *thread_arg
= data
->arg
;
341 qemu_thread_data
= data
;
342 qemu_thread_exit(start_routine(thread_arg
));
346 void qemu_thread_exit(void *arg
)
348 QemuThreadData
*data
= qemu_thread_data
;
350 notifier_list_notify(&data
->exit
, NULL
);
351 if (data
->mode
== QEMU_THREAD_JOINABLE
) {
353 EnterCriticalSection(&data
->cs
);
355 LeaveCriticalSection(&data
->cs
);
362 void *qemu_thread_join(QemuThread
*thread
)
364 QemuThreadData
*data
;
369 if (data
->mode
== QEMU_THREAD_DETACHED
) {
374 * Because multiple copies of the QemuThread can exist via
375 * qemu_thread_get_self, we need to store a value that cannot
376 * leak there. The simplest, non racy way is to store the TID,
377 * discard the handle that _beginthreadex gives back, and
378 * get another copy of the handle here.
380 handle
= qemu_thread_get_handle(thread
);
382 WaitForSingleObject(handle
, INFINITE
);
386 DeleteCriticalSection(&data
->cs
);
391 void qemu_thread_create(QemuThread
*thread
, const char *name
,
392 void *(*start_routine
)(void *),
396 struct QemuThreadData
*data
;
398 data
= g_malloc(sizeof *data
);
399 data
->start_routine
= start_routine
;
402 data
->exited
= false;
403 notifier_list_init(&data
->exit
);
405 if (data
->mode
!= QEMU_THREAD_DETACHED
) {
406 InitializeCriticalSection(&data
->cs
);
409 hThread
= (HANDLE
) _beginthreadex(NULL
, 0, win32_start_routine
,
410 data
, 0, &thread
->tid
);
412 error_exit(GetLastError(), __func__
);
414 CloseHandle(hThread
);
418 void qemu_thread_get_self(QemuThread
*thread
)
420 thread
->data
= qemu_thread_data
;
421 thread
->tid
= GetCurrentThreadId();
424 HANDLE
qemu_thread_get_handle(QemuThread
*thread
)
426 QemuThreadData
*data
;
430 if (data
->mode
== QEMU_THREAD_DETACHED
) {
434 EnterCriticalSection(&data
->cs
);
436 handle
= OpenThread(SYNCHRONIZE
| THREAD_SUSPEND_RESUME
|
437 THREAD_SET_CONTEXT
, FALSE
, thread
->tid
);
441 LeaveCriticalSection(&data
->cs
);
445 bool qemu_thread_is_self(QemuThread
*thread
)
447 return GetCurrentThreadId() == thread
->tid
;