s390x/cpumodel: store the CPU model in the CPU instance
[qemu.git] / target-ppc / mem_helper.c
blobe4ed3773e8fe4de0d6d814a3d616d2890aae4479
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
25 #include "helper_regs.h"
26 #include "exec/exec-all.h"
27 #include "exec/cpu_ldst.h"
29 //#define DEBUG_OP
31 static inline bool needs_byteswap(const CPUPPCState *env)
33 #if defined(TARGET_WORDS_BIGENDIAN)
34 return msr_le;
35 #else
36 return !msr_le;
37 #endif
40 /*****************************************************************************/
41 /* Memory load and stores */
43 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
44 target_long arg)
46 #if defined(TARGET_PPC64)
47 if (!msr_is_64bit(env, env->msr)) {
48 return (uint32_t)(addr + arg);
49 } else
50 #endif
52 return addr + arg;
56 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
58 for (; reg < 32; reg++) {
59 if (needs_byteswap(env)) {
60 env->gpr[reg] = bswap32(cpu_ldl_data(env, addr));
61 } else {
62 env->gpr[reg] = cpu_ldl_data(env, addr);
64 addr = addr_add(env, addr, 4);
68 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
70 for (; reg < 32; reg++) {
71 if (needs_byteswap(env)) {
72 cpu_stl_data(env, addr, bswap32((uint32_t)env->gpr[reg]));
73 } else {
74 cpu_stl_data(env, addr, (uint32_t)env->gpr[reg]);
76 addr = addr_add(env, addr, 4);
80 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
82 int sh;
84 for (; nb > 3; nb -= 4) {
85 env->gpr[reg] = cpu_ldl_data(env, addr);
86 reg = (reg + 1) % 32;
87 addr = addr_add(env, addr, 4);
89 if (unlikely(nb > 0)) {
90 env->gpr[reg] = 0;
91 for (sh = 24; nb > 0; nb--, sh -= 8) {
92 env->gpr[reg] |= cpu_ldub_data(env, addr) << sh;
93 addr = addr_add(env, addr, 1);
97 /* PPC32 specification says we must generate an exception if
98 * rA is in the range of registers to be loaded.
99 * In an other hand, IBM says this is valid, but rA won't be loaded.
100 * For now, I'll follow the spec...
102 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
103 uint32_t ra, uint32_t rb)
105 if (likely(xer_bc != 0)) {
106 int num_used_regs = (xer_bc + 3) / 4;
107 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
108 lsw_reg_in_range(reg, num_used_regs, rb))) {
109 env->nip += 4; /* Compensate the "nip - 4" from gen_lswx() */
110 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
111 POWERPC_EXCP_INVAL |
112 POWERPC_EXCP_INVAL_LSWX);
113 } else {
114 helper_lsw(env, addr, xer_bc, reg);
119 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
120 uint32_t reg)
122 int sh;
124 for (; nb > 3; nb -= 4) {
125 cpu_stl_data(env, addr, env->gpr[reg]);
126 reg = (reg + 1) % 32;
127 addr = addr_add(env, addr, 4);
129 if (unlikely(nb > 0)) {
130 for (sh = 24; nb > 0; nb--, sh -= 8) {
131 cpu_stb_data(env, addr, (env->gpr[reg] >> sh) & 0xFF);
132 addr = addr_add(env, addr, 1);
137 static void do_dcbz(CPUPPCState *env, target_ulong addr, int dcache_line_size)
139 int i;
141 addr &= ~(dcache_line_size - 1);
142 for (i = 0; i < dcache_line_size; i += 4) {
143 cpu_stl_data(env, addr + i, 0);
145 if (env->reserve_addr == addr) {
146 env->reserve_addr = (target_ulong)-1ULL;
150 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t is_dcbzl)
152 int dcbz_size = env->dcache_line_size;
154 #if defined(TARGET_PPC64)
155 if (!is_dcbzl &&
156 (env->excp_model == POWERPC_EXCP_970) &&
157 ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
158 dcbz_size = 32;
160 #endif
162 /* XXX add e500mc support */
164 do_dcbz(env, addr, dcbz_size);
167 void helper_icbi(CPUPPCState *env, target_ulong addr)
169 addr &= ~(env->dcache_line_size - 1);
170 /* Invalidate one cache line :
171 * PowerPC specification says this is to be treated like a load
172 * (not a fetch) by the MMU. To be sure it will be so,
173 * do the load "by hand".
175 cpu_ldl_data(env, addr);
178 /* XXX: to be tested */
179 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
180 uint32_t ra, uint32_t rb)
182 int i, c, d;
184 d = 24;
185 for (i = 0; i < xer_bc; i++) {
186 c = cpu_ldub_data(env, addr);
187 addr = addr_add(env, addr, 1);
188 /* ra (if not 0) and rb are never modified */
189 if (likely(reg != rb && (ra == 0 || reg != ra))) {
190 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
192 if (unlikely(c == xer_cmp)) {
193 break;
195 if (likely(d != 0)) {
196 d -= 8;
197 } else {
198 d = 24;
199 reg++;
200 reg = reg & 0x1F;
203 return i;
206 /*****************************************************************************/
207 /* Altivec extension helpers */
208 #if defined(HOST_WORDS_BIGENDIAN)
209 #define HI_IDX 0
210 #define LO_IDX 1
211 #else
212 #define HI_IDX 1
213 #define LO_IDX 0
214 #endif
216 /* We use msr_le to determine index ordering in a vector. However,
217 byteswapping is not simply controlled by msr_le. We also need to take
218 into account endianness of the target. This is done for the little-endian
219 PPC64 user-mode target. */
221 #define LVE(name, access, swap, element) \
222 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
223 target_ulong addr) \
225 size_t n_elems = ARRAY_SIZE(r->element); \
226 int adjust = HI_IDX*(n_elems - 1); \
227 int sh = sizeof(r->element[0]) >> 1; \
228 int index = (addr & 0xf) >> sh; \
229 if (msr_le) { \
230 index = n_elems - index - 1; \
233 if (needs_byteswap(env)) { \
234 r->element[LO_IDX ? index : (adjust - index)] = \
235 swap(access(env, addr, GETPC())); \
236 } else { \
237 r->element[LO_IDX ? index : (adjust - index)] = \
238 access(env, addr, GETPC()); \
241 #define I(x) (x)
242 LVE(lvebx, cpu_ldub_data_ra, I, u8)
243 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
244 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
245 #undef I
246 #undef LVE
248 #define STVE(name, access, swap, element) \
249 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
250 target_ulong addr) \
252 size_t n_elems = ARRAY_SIZE(r->element); \
253 int adjust = HI_IDX * (n_elems - 1); \
254 int sh = sizeof(r->element[0]) >> 1; \
255 int index = (addr & 0xf) >> sh; \
256 if (msr_le) { \
257 index = n_elems - index - 1; \
260 if (needs_byteswap(env)) { \
261 access(env, addr, swap(r->element[LO_IDX ? index : \
262 (adjust - index)]), \
263 GETPC()); \
264 } else { \
265 access(env, addr, r->element[LO_IDX ? index : \
266 (adjust - index)], GETPC()); \
269 #define I(x) (x)
270 STVE(stvebx, cpu_stb_data_ra, I, u8)
271 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
272 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
273 #undef I
274 #undef LVE
276 #undef HI_IDX
277 #undef LO_IDX
279 void helper_tbegin(CPUPPCState *env)
281 /* As a degenerate implementation, always fail tbegin. The reason
282 * given is "Nesting overflow". The "persistent" bit is set,
283 * providing a hint to the error handler to not retry. The TFIAR
284 * captures the address of the failure, which is this tbegin
285 * instruction. Instruction execution will continue with the
286 * next instruction in memory, which is precisely what we want.
289 env->spr[SPR_TEXASR] =
290 (1ULL << TEXASR_FAILURE_PERSISTENT) |
291 (1ULL << TEXASR_NESTING_OVERFLOW) |
292 (msr_hv << TEXASR_PRIVILEGE_HV) |
293 (msr_pr << TEXASR_PRIVILEGE_PR) |
294 (1ULL << TEXASR_FAILURE_SUMMARY) |
295 (1ULL << TEXASR_TFIAR_EXACT);
296 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
297 env->spr[SPR_TFHAR] = env->nip + 4;
298 env->crf[0] = 0xB; /* 0b1010 = transaction failure */