s390x/cpumodel: store the CPU model in the CPU instance
[qemu.git] / target-ppc / fpu_helper.c
blobd9795d04d0d714ed47f2da358b565ec8de862c96
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
23 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
24 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
26 /*****************************************************************************/
27 /* Floating point operations helpers */
28 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
30 CPU_FloatU f;
31 CPU_DoubleU d;
33 f.l = arg;
34 d.d = float32_to_float64(f.f, &env->fp_status);
35 return d.ll;
38 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
40 CPU_FloatU f;
41 CPU_DoubleU d;
43 d.ll = arg;
44 f.f = float64_to_float32(d.d, &env->fp_status);
45 return f.l;
48 static inline int isden(float64 d)
50 CPU_DoubleU u;
52 u.d = d;
54 return ((u.ll >> 52) & 0x7FF) == 0;
57 static inline int ppc_float32_get_unbiased_exp(float32 f)
59 return ((f >> 23) & 0xFF) - 127;
62 static inline int ppc_float64_get_unbiased_exp(float64 f)
64 return ((f >> 52) & 0x7FF) - 1023;
67 void helper_compute_fprf(CPUPPCState *env, uint64_t arg)
69 CPU_DoubleU farg;
70 int isneg;
71 int fprf;
73 farg.ll = arg;
74 isneg = float64_is_neg(farg.d);
75 if (unlikely(float64_is_any_nan(farg.d))) {
76 if (float64_is_signaling_nan(farg.d, &env->fp_status)) {
77 /* Signaling NaN: flags are undefined */
78 fprf = 0x00;
79 } else {
80 /* Quiet NaN */
81 fprf = 0x11;
83 } else if (unlikely(float64_is_infinity(farg.d))) {
84 /* +/- infinity */
85 if (isneg) {
86 fprf = 0x09;
87 } else {
88 fprf = 0x05;
90 } else {
91 if (float64_is_zero(farg.d)) {
92 /* +/- zero */
93 if (isneg) {
94 fprf = 0x12;
95 } else {
96 fprf = 0x02;
98 } else {
99 if (isden(farg.d)) {
100 /* Denormalized numbers */
101 fprf = 0x10;
102 } else {
103 /* Normalized numbers */
104 fprf = 0x00;
106 if (isneg) {
107 fprf |= 0x08;
108 } else {
109 fprf |= 0x04;
113 /* We update FPSCR_FPRF */
114 env->fpscr &= ~(0x1F << FPSCR_FPRF);
115 env->fpscr |= fprf << FPSCR_FPRF;
118 /* Floating-point invalid operations exception */
119 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
120 int set_fpcc)
122 CPUState *cs = CPU(ppc_env_get_cpu(env));
123 uint64_t ret = 0;
124 int ve;
126 ve = fpscr_ve;
127 switch (op) {
128 case POWERPC_EXCP_FP_VXSNAN:
129 env->fpscr |= 1 << FPSCR_VXSNAN;
130 break;
131 case POWERPC_EXCP_FP_VXSOFT:
132 env->fpscr |= 1 << FPSCR_VXSOFT;
133 break;
134 case POWERPC_EXCP_FP_VXISI:
135 /* Magnitude subtraction of infinities */
136 env->fpscr |= 1 << FPSCR_VXISI;
137 goto update_arith;
138 case POWERPC_EXCP_FP_VXIDI:
139 /* Division of infinity by infinity */
140 env->fpscr |= 1 << FPSCR_VXIDI;
141 goto update_arith;
142 case POWERPC_EXCP_FP_VXZDZ:
143 /* Division of zero by zero */
144 env->fpscr |= 1 << FPSCR_VXZDZ;
145 goto update_arith;
146 case POWERPC_EXCP_FP_VXIMZ:
147 /* Multiplication of zero by infinity */
148 env->fpscr |= 1 << FPSCR_VXIMZ;
149 goto update_arith;
150 case POWERPC_EXCP_FP_VXVC:
151 /* Ordered comparison of NaN */
152 env->fpscr |= 1 << FPSCR_VXVC;
153 if (set_fpcc) {
154 env->fpscr &= ~(0xF << FPSCR_FPCC);
155 env->fpscr |= 0x11 << FPSCR_FPCC;
157 /* We must update the target FPR before raising the exception */
158 if (ve != 0) {
159 cs->exception_index = POWERPC_EXCP_PROGRAM;
160 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
161 /* Update the floating-point enabled exception summary */
162 env->fpscr |= 1 << FPSCR_FEX;
163 /* Exception is differed */
164 ve = 0;
166 break;
167 case POWERPC_EXCP_FP_VXSQRT:
168 /* Square root of a negative number */
169 env->fpscr |= 1 << FPSCR_VXSQRT;
170 update_arith:
171 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
172 if (ve == 0) {
173 /* Set the result to quiet NaN */
174 ret = 0x7FF8000000000000ULL;
175 if (set_fpcc) {
176 env->fpscr &= ~(0xF << FPSCR_FPCC);
177 env->fpscr |= 0x11 << FPSCR_FPCC;
180 break;
181 case POWERPC_EXCP_FP_VXCVI:
182 /* Invalid conversion */
183 env->fpscr |= 1 << FPSCR_VXCVI;
184 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
185 if (ve == 0) {
186 /* Set the result to quiet NaN */
187 ret = 0x7FF8000000000000ULL;
188 if (set_fpcc) {
189 env->fpscr &= ~(0xF << FPSCR_FPCC);
190 env->fpscr |= 0x11 << FPSCR_FPCC;
193 break;
195 /* Update the floating-point invalid operation summary */
196 env->fpscr |= 1 << FPSCR_VX;
197 /* Update the floating-point exception summary */
198 env->fpscr |= FP_FX;
199 if (ve != 0) {
200 /* Update the floating-point enabled exception summary */
201 env->fpscr |= 1 << FPSCR_FEX;
202 if (msr_fe0 != 0 || msr_fe1 != 0) {
203 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
204 POWERPC_EXCP_FP | op);
207 return ret;
210 static inline void float_zero_divide_excp(CPUPPCState *env)
212 env->fpscr |= 1 << FPSCR_ZX;
213 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
214 /* Update the floating-point exception summary */
215 env->fpscr |= FP_FX;
216 if (fpscr_ze != 0) {
217 /* Update the floating-point enabled exception summary */
218 env->fpscr |= 1 << FPSCR_FEX;
219 if (msr_fe0 != 0 || msr_fe1 != 0) {
220 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
221 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
226 static inline void float_overflow_excp(CPUPPCState *env)
228 CPUState *cs = CPU(ppc_env_get_cpu(env));
230 env->fpscr |= 1 << FPSCR_OX;
231 /* Update the floating-point exception summary */
232 env->fpscr |= FP_FX;
233 if (fpscr_oe != 0) {
234 /* XXX: should adjust the result */
235 /* Update the floating-point enabled exception summary */
236 env->fpscr |= 1 << FPSCR_FEX;
237 /* We must update the target FPR before raising the exception */
238 cs->exception_index = POWERPC_EXCP_PROGRAM;
239 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
240 } else {
241 env->fpscr |= 1 << FPSCR_XX;
242 env->fpscr |= 1 << FPSCR_FI;
246 static inline void float_underflow_excp(CPUPPCState *env)
248 CPUState *cs = CPU(ppc_env_get_cpu(env));
250 env->fpscr |= 1 << FPSCR_UX;
251 /* Update the floating-point exception summary */
252 env->fpscr |= FP_FX;
253 if (fpscr_ue != 0) {
254 /* XXX: should adjust the result */
255 /* Update the floating-point enabled exception summary */
256 env->fpscr |= 1 << FPSCR_FEX;
257 /* We must update the target FPR before raising the exception */
258 cs->exception_index = POWERPC_EXCP_PROGRAM;
259 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
263 static inline void float_inexact_excp(CPUPPCState *env)
265 CPUState *cs = CPU(ppc_env_get_cpu(env));
267 env->fpscr |= 1 << FPSCR_XX;
268 /* Update the floating-point exception summary */
269 env->fpscr |= FP_FX;
270 if (fpscr_xe != 0) {
271 /* Update the floating-point enabled exception summary */
272 env->fpscr |= 1 << FPSCR_FEX;
273 /* We must update the target FPR before raising the exception */
274 cs->exception_index = POWERPC_EXCP_PROGRAM;
275 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
279 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
281 int rnd_type;
283 /* Set rounding mode */
284 switch (fpscr_rn) {
285 case 0:
286 /* Best approximation (round to nearest) */
287 rnd_type = float_round_nearest_even;
288 break;
289 case 1:
290 /* Smaller magnitude (round toward zero) */
291 rnd_type = float_round_to_zero;
292 break;
293 case 2:
294 /* Round toward +infinite */
295 rnd_type = float_round_up;
296 break;
297 default:
298 case 3:
299 /* Round toward -infinite */
300 rnd_type = float_round_down;
301 break;
303 set_float_rounding_mode(rnd_type, &env->fp_status);
306 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
308 int prev;
310 prev = (env->fpscr >> bit) & 1;
311 env->fpscr &= ~(1 << bit);
312 if (prev == 1) {
313 switch (bit) {
314 case FPSCR_RN1:
315 case FPSCR_RN:
316 fpscr_set_rounding_mode(env);
317 break;
318 default:
319 break;
324 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
326 CPUState *cs = CPU(ppc_env_get_cpu(env));
327 int prev;
329 prev = (env->fpscr >> bit) & 1;
330 env->fpscr |= 1 << bit;
331 if (prev == 0) {
332 switch (bit) {
333 case FPSCR_VX:
334 env->fpscr |= FP_FX;
335 if (fpscr_ve) {
336 goto raise_ve;
338 break;
339 case FPSCR_OX:
340 env->fpscr |= FP_FX;
341 if (fpscr_oe) {
342 goto raise_oe;
344 break;
345 case FPSCR_UX:
346 env->fpscr |= FP_FX;
347 if (fpscr_ue) {
348 goto raise_ue;
350 break;
351 case FPSCR_ZX:
352 env->fpscr |= FP_FX;
353 if (fpscr_ze) {
354 goto raise_ze;
356 break;
357 case FPSCR_XX:
358 env->fpscr |= FP_FX;
359 if (fpscr_xe) {
360 goto raise_xe;
362 break;
363 case FPSCR_VXSNAN:
364 case FPSCR_VXISI:
365 case FPSCR_VXIDI:
366 case FPSCR_VXZDZ:
367 case FPSCR_VXIMZ:
368 case FPSCR_VXVC:
369 case FPSCR_VXSOFT:
370 case FPSCR_VXSQRT:
371 case FPSCR_VXCVI:
372 env->fpscr |= 1 << FPSCR_VX;
373 env->fpscr |= FP_FX;
374 if (fpscr_ve != 0) {
375 goto raise_ve;
377 break;
378 case FPSCR_VE:
379 if (fpscr_vx != 0) {
380 raise_ve:
381 env->error_code = POWERPC_EXCP_FP;
382 if (fpscr_vxsnan) {
383 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
385 if (fpscr_vxisi) {
386 env->error_code |= POWERPC_EXCP_FP_VXISI;
388 if (fpscr_vxidi) {
389 env->error_code |= POWERPC_EXCP_FP_VXIDI;
391 if (fpscr_vxzdz) {
392 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
394 if (fpscr_vximz) {
395 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
397 if (fpscr_vxvc) {
398 env->error_code |= POWERPC_EXCP_FP_VXVC;
400 if (fpscr_vxsoft) {
401 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
403 if (fpscr_vxsqrt) {
404 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
406 if (fpscr_vxcvi) {
407 env->error_code |= POWERPC_EXCP_FP_VXCVI;
409 goto raise_excp;
411 break;
412 case FPSCR_OE:
413 if (fpscr_ox != 0) {
414 raise_oe:
415 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
416 goto raise_excp;
418 break;
419 case FPSCR_UE:
420 if (fpscr_ux != 0) {
421 raise_ue:
422 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
423 goto raise_excp;
425 break;
426 case FPSCR_ZE:
427 if (fpscr_zx != 0) {
428 raise_ze:
429 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
430 goto raise_excp;
432 break;
433 case FPSCR_XE:
434 if (fpscr_xx != 0) {
435 raise_xe:
436 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
437 goto raise_excp;
439 break;
440 case FPSCR_RN1:
441 case FPSCR_RN:
442 fpscr_set_rounding_mode(env);
443 break;
444 default:
445 break;
446 raise_excp:
447 /* Update the floating-point enabled exception summary */
448 env->fpscr |= 1 << FPSCR_FEX;
449 /* We have to update Rc1 before raising the exception */
450 cs->exception_index = POWERPC_EXCP_PROGRAM;
451 break;
456 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
458 CPUState *cs = CPU(ppc_env_get_cpu(env));
459 target_ulong prev, new;
460 int i;
462 prev = env->fpscr;
463 new = (target_ulong)arg;
464 new &= ~0x60000000LL;
465 new |= prev & 0x60000000LL;
466 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
467 if (mask & (1 << i)) {
468 env->fpscr &= ~(0xFLL << (4 * i));
469 env->fpscr |= new & (0xFLL << (4 * i));
472 /* Update VX and FEX */
473 if (fpscr_ix != 0) {
474 env->fpscr |= 1 << FPSCR_VX;
475 } else {
476 env->fpscr &= ~(1 << FPSCR_VX);
478 if ((fpscr_ex & fpscr_eex) != 0) {
479 env->fpscr |= 1 << FPSCR_FEX;
480 cs->exception_index = POWERPC_EXCP_PROGRAM;
481 /* XXX: we should compute it properly */
482 env->error_code = POWERPC_EXCP_FP;
483 } else {
484 env->fpscr &= ~(1 << FPSCR_FEX);
486 fpscr_set_rounding_mode(env);
489 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
491 helper_store_fpscr(env, arg, mask);
494 void helper_float_check_status(CPUPPCState *env)
496 CPUState *cs = CPU(ppc_env_get_cpu(env));
497 int status = get_float_exception_flags(&env->fp_status);
499 if (status & float_flag_divbyzero) {
500 float_zero_divide_excp(env);
501 } else if (status & float_flag_overflow) {
502 float_overflow_excp(env);
503 } else if (status & float_flag_underflow) {
504 float_underflow_excp(env);
505 } else if (status & float_flag_inexact) {
506 float_inexact_excp(env);
509 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
510 (env->error_code & POWERPC_EXCP_FP)) {
511 /* Differred floating-point exception after target FPR update */
512 if (msr_fe0 != 0 || msr_fe1 != 0) {
513 helper_raise_exception_err(env, cs->exception_index,
514 env->error_code);
519 void helper_reset_fpstatus(CPUPPCState *env)
521 set_float_exception_flags(0, &env->fp_status);
524 /* fadd - fadd. */
525 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
527 CPU_DoubleU farg1, farg2;
529 farg1.ll = arg1;
530 farg2.ll = arg2;
532 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
533 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
534 /* Magnitude subtraction of infinities */
535 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
536 } else {
537 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
538 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
539 /* sNaN addition */
540 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
542 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
545 return farg1.ll;
548 /* fsub - fsub. */
549 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
551 CPU_DoubleU farg1, farg2;
553 farg1.ll = arg1;
554 farg2.ll = arg2;
556 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
557 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
558 /* Magnitude subtraction of infinities */
559 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
560 } else {
561 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
562 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
563 /* sNaN subtraction */
564 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
566 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
569 return farg1.ll;
572 /* fmul - fmul. */
573 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
575 CPU_DoubleU farg1, farg2;
577 farg1.ll = arg1;
578 farg2.ll = arg2;
580 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
581 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
582 /* Multiplication of zero by infinity */
583 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
584 } else {
585 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
586 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
587 /* sNaN multiplication */
588 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
590 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
593 return farg1.ll;
596 /* fdiv - fdiv. */
597 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
599 CPU_DoubleU farg1, farg2;
601 farg1.ll = arg1;
602 farg2.ll = arg2;
604 if (unlikely(float64_is_infinity(farg1.d) &&
605 float64_is_infinity(farg2.d))) {
606 /* Division of infinity by infinity */
607 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
608 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
609 /* Division of zero by zero */
610 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
611 } else {
612 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
613 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
614 /* sNaN division */
615 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
617 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
620 return farg1.ll;
624 #define FPU_FCTI(op, cvt, nanval) \
625 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
627 CPU_DoubleU farg; \
629 farg.ll = arg; \
630 farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \
632 if (unlikely(env->fp_status.float_exception_flags)) { \
633 if (float64_is_any_nan(arg)) { \
634 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
635 if (float64_is_signaling_nan(arg, &env->fp_status)) { \
636 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
638 farg.ll = nanval; \
639 } else if (env->fp_status.float_exception_flags & \
640 float_flag_invalid) { \
641 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
643 helper_float_check_status(env); \
645 return farg.ll; \
648 FPU_FCTI(fctiw, int32, 0x80000000U)
649 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
650 FPU_FCTI(fctiwu, uint32, 0x00000000U)
651 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
652 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
653 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
654 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
655 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
657 #define FPU_FCFI(op, cvtr, is_single) \
658 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
660 CPU_DoubleU farg; \
662 if (is_single) { \
663 float32 tmp = cvtr(arg, &env->fp_status); \
664 farg.d = float32_to_float64(tmp, &env->fp_status); \
665 } else { \
666 farg.d = cvtr(arg, &env->fp_status); \
668 helper_float_check_status(env); \
669 return farg.ll; \
672 FPU_FCFI(fcfid, int64_to_float64, 0)
673 FPU_FCFI(fcfids, int64_to_float32, 1)
674 FPU_FCFI(fcfidu, uint64_to_float64, 0)
675 FPU_FCFI(fcfidus, uint64_to_float32, 1)
677 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
678 int rounding_mode)
680 CPU_DoubleU farg;
682 farg.ll = arg;
684 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
685 /* sNaN round */
686 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
687 farg.ll = arg | 0x0008000000000000ULL;
688 } else {
689 int inexact = get_float_exception_flags(&env->fp_status) &
690 float_flag_inexact;
691 set_float_rounding_mode(rounding_mode, &env->fp_status);
692 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
693 /* Restore rounding mode from FPSCR */
694 fpscr_set_rounding_mode(env);
696 /* fri* does not set FPSCR[XX] */
697 if (!inexact) {
698 env->fp_status.float_exception_flags &= ~float_flag_inexact;
701 helper_float_check_status(env);
702 return farg.ll;
705 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
707 return do_fri(env, arg, float_round_ties_away);
710 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
712 return do_fri(env, arg, float_round_to_zero);
715 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
717 return do_fri(env, arg, float_round_up);
720 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
722 return do_fri(env, arg, float_round_down);
725 /* fmadd - fmadd. */
726 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
727 uint64_t arg3)
729 CPU_DoubleU farg1, farg2, farg3;
731 farg1.ll = arg1;
732 farg2.ll = arg2;
733 farg3.ll = arg3;
735 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
736 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
737 /* Multiplication of zero by infinity */
738 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
739 } else {
740 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
741 float64_is_signaling_nan(farg2.d, &env->fp_status) ||
742 float64_is_signaling_nan(farg3.d, &env->fp_status))) {
743 /* sNaN operation */
744 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
746 /* This is the way the PowerPC specification defines it */
747 float128 ft0_128, ft1_128;
749 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
750 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
751 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
752 if (unlikely(float128_is_infinity(ft0_128) &&
753 float64_is_infinity(farg3.d) &&
754 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
755 /* Magnitude subtraction of infinities */
756 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
757 } else {
758 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
759 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
760 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
764 return farg1.ll;
767 /* fmsub - fmsub. */
768 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
769 uint64_t arg3)
771 CPU_DoubleU farg1, farg2, farg3;
773 farg1.ll = arg1;
774 farg2.ll = arg2;
775 farg3.ll = arg3;
777 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
778 (float64_is_zero(farg1.d) &&
779 float64_is_infinity(farg2.d)))) {
780 /* Multiplication of zero by infinity */
781 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
782 } else {
783 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
784 float64_is_signaling_nan(farg2.d, &env->fp_status) ||
785 float64_is_signaling_nan(farg3.d, &env->fp_status))) {
786 /* sNaN operation */
787 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
789 /* This is the way the PowerPC specification defines it */
790 float128 ft0_128, ft1_128;
792 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
793 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
794 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
795 if (unlikely(float128_is_infinity(ft0_128) &&
796 float64_is_infinity(farg3.d) &&
797 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
798 /* Magnitude subtraction of infinities */
799 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
800 } else {
801 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
802 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
803 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
806 return farg1.ll;
809 /* fnmadd - fnmadd. */
810 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
811 uint64_t arg3)
813 CPU_DoubleU farg1, farg2, farg3;
815 farg1.ll = arg1;
816 farg2.ll = arg2;
817 farg3.ll = arg3;
819 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
820 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
821 /* Multiplication of zero by infinity */
822 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
823 } else {
824 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
825 float64_is_signaling_nan(farg2.d, &env->fp_status) ||
826 float64_is_signaling_nan(farg3.d, &env->fp_status))) {
827 /* sNaN operation */
828 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
830 /* This is the way the PowerPC specification defines it */
831 float128 ft0_128, ft1_128;
833 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
834 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
835 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
836 if (unlikely(float128_is_infinity(ft0_128) &&
837 float64_is_infinity(farg3.d) &&
838 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
839 /* Magnitude subtraction of infinities */
840 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
841 } else {
842 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
843 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
844 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
846 if (likely(!float64_is_any_nan(farg1.d))) {
847 farg1.d = float64_chs(farg1.d);
850 return farg1.ll;
853 /* fnmsub - fnmsub. */
854 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
855 uint64_t arg3)
857 CPU_DoubleU farg1, farg2, farg3;
859 farg1.ll = arg1;
860 farg2.ll = arg2;
861 farg3.ll = arg3;
863 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
864 (float64_is_zero(farg1.d) &&
865 float64_is_infinity(farg2.d)))) {
866 /* Multiplication of zero by infinity */
867 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
868 } else {
869 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
870 float64_is_signaling_nan(farg2.d, &env->fp_status) ||
871 float64_is_signaling_nan(farg3.d, &env->fp_status))) {
872 /* sNaN operation */
873 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
875 /* This is the way the PowerPC specification defines it */
876 float128 ft0_128, ft1_128;
878 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
879 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
880 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
881 if (unlikely(float128_is_infinity(ft0_128) &&
882 float64_is_infinity(farg3.d) &&
883 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
884 /* Magnitude subtraction of infinities */
885 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
886 } else {
887 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
888 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
889 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
891 if (likely(!float64_is_any_nan(farg1.d))) {
892 farg1.d = float64_chs(farg1.d);
895 return farg1.ll;
898 /* frsp - frsp. */
899 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
901 CPU_DoubleU farg;
902 float32 f32;
904 farg.ll = arg;
906 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
907 /* sNaN square root */
908 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
910 f32 = float64_to_float32(farg.d, &env->fp_status);
911 farg.d = float32_to_float64(f32, &env->fp_status);
913 return farg.ll;
916 /* fsqrt - fsqrt. */
917 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
919 CPU_DoubleU farg;
921 farg.ll = arg;
923 if (unlikely(float64_is_any_nan(farg.d))) {
924 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
925 /* sNaN reciprocal square root */
926 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
927 farg.ll = float64_snan_to_qnan(farg.ll);
929 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
930 /* Square root of a negative nonzero number */
931 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
932 } else {
933 farg.d = float64_sqrt(farg.d, &env->fp_status);
935 return farg.ll;
938 /* fre - fre. */
939 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
941 CPU_DoubleU farg;
943 farg.ll = arg;
945 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
946 /* sNaN reciprocal */
947 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
949 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
950 return farg.d;
953 /* fres - fres. */
954 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
956 CPU_DoubleU farg;
957 float32 f32;
959 farg.ll = arg;
961 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
962 /* sNaN reciprocal */
963 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
965 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
966 f32 = float64_to_float32(farg.d, &env->fp_status);
967 farg.d = float32_to_float64(f32, &env->fp_status);
969 return farg.ll;
972 /* frsqrte - frsqrte. */
973 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
975 CPU_DoubleU farg;
977 farg.ll = arg;
979 if (unlikely(float64_is_any_nan(farg.d))) {
980 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
981 /* sNaN reciprocal square root */
982 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
983 farg.ll = float64_snan_to_qnan(farg.ll);
985 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
986 /* Reciprocal square root of a negative nonzero number */
987 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
988 } else {
989 farg.d = float64_sqrt(farg.d, &env->fp_status);
990 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
993 return farg.ll;
996 /* fsel - fsel. */
997 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
998 uint64_t arg3)
1000 CPU_DoubleU farg1;
1002 farg1.ll = arg1;
1004 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1005 !float64_is_any_nan(farg1.d)) {
1006 return arg2;
1007 } else {
1008 return arg3;
1012 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1014 int fe_flag = 0;
1015 int fg_flag = 0;
1017 if (unlikely(float64_is_infinity(fra) ||
1018 float64_is_infinity(frb) ||
1019 float64_is_zero(frb))) {
1020 fe_flag = 1;
1021 fg_flag = 1;
1022 } else {
1023 int e_a = ppc_float64_get_unbiased_exp(fra);
1024 int e_b = ppc_float64_get_unbiased_exp(frb);
1026 if (unlikely(float64_is_any_nan(fra) ||
1027 float64_is_any_nan(frb))) {
1028 fe_flag = 1;
1029 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1030 fe_flag = 1;
1031 } else if (!float64_is_zero(fra) &&
1032 (((e_a - e_b) >= 1023) ||
1033 ((e_a - e_b) <= -1021) ||
1034 (e_a <= -970))) {
1035 fe_flag = 1;
1038 if (unlikely(float64_is_zero_or_denormal(frb))) {
1039 /* XB is not zero because of the above check and */
1040 /* so must be denormalized. */
1041 fg_flag = 1;
1045 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1048 uint32_t helper_ftsqrt(uint64_t frb)
1050 int fe_flag = 0;
1051 int fg_flag = 0;
1053 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1054 fe_flag = 1;
1055 fg_flag = 1;
1056 } else {
1057 int e_b = ppc_float64_get_unbiased_exp(frb);
1059 if (unlikely(float64_is_any_nan(frb))) {
1060 fe_flag = 1;
1061 } else if (unlikely(float64_is_zero(frb))) {
1062 fe_flag = 1;
1063 } else if (unlikely(float64_is_neg(frb))) {
1064 fe_flag = 1;
1065 } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1066 fe_flag = 1;
1069 if (unlikely(float64_is_zero_or_denormal(frb))) {
1070 /* XB is not zero because of the above check and */
1071 /* therefore must be denormalized. */
1072 fg_flag = 1;
1076 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1079 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1080 uint32_t crfD)
1082 CPU_DoubleU farg1, farg2;
1083 uint32_t ret = 0;
1085 farg1.ll = arg1;
1086 farg2.ll = arg2;
1088 if (unlikely(float64_is_any_nan(farg1.d) ||
1089 float64_is_any_nan(farg2.d))) {
1090 ret = 0x01UL;
1091 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1092 ret = 0x08UL;
1093 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1094 ret = 0x04UL;
1095 } else {
1096 ret = 0x02UL;
1099 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1100 env->fpscr |= ret << FPSCR_FPRF;
1101 env->crf[crfD] = ret;
1102 if (unlikely(ret == 0x01UL
1103 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1104 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1105 /* sNaN comparison */
1106 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1110 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1111 uint32_t crfD)
1113 CPU_DoubleU farg1, farg2;
1114 uint32_t ret = 0;
1116 farg1.ll = arg1;
1117 farg2.ll = arg2;
1119 if (unlikely(float64_is_any_nan(farg1.d) ||
1120 float64_is_any_nan(farg2.d))) {
1121 ret = 0x01UL;
1122 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1123 ret = 0x08UL;
1124 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1125 ret = 0x04UL;
1126 } else {
1127 ret = 0x02UL;
1130 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1131 env->fpscr |= ret << FPSCR_FPRF;
1132 env->crf[crfD] = ret;
1133 if (unlikely(ret == 0x01UL)) {
1134 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1135 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1136 /* sNaN comparison */
1137 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1138 POWERPC_EXCP_FP_VXVC, 1);
1139 } else {
1140 /* qNaN comparison */
1141 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1146 /* Single-precision floating-point conversions */
1147 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1149 CPU_FloatU u;
1151 u.f = int32_to_float32(val, &env->vec_status);
1153 return u.l;
1156 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1158 CPU_FloatU u;
1160 u.f = uint32_to_float32(val, &env->vec_status);
1162 return u.l;
1165 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1167 CPU_FloatU u;
1169 u.l = val;
1170 /* NaN are not treated the same way IEEE 754 does */
1171 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1172 return 0;
1175 return float32_to_int32(u.f, &env->vec_status);
1178 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1180 CPU_FloatU u;
1182 u.l = val;
1183 /* NaN are not treated the same way IEEE 754 does */
1184 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1185 return 0;
1188 return float32_to_uint32(u.f, &env->vec_status);
1191 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1193 CPU_FloatU u;
1195 u.l = val;
1196 /* NaN are not treated the same way IEEE 754 does */
1197 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1198 return 0;
1201 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1204 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1206 CPU_FloatU u;
1208 u.l = val;
1209 /* NaN are not treated the same way IEEE 754 does */
1210 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1211 return 0;
1214 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1217 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1219 CPU_FloatU u;
1220 float32 tmp;
1222 u.f = int32_to_float32(val, &env->vec_status);
1223 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1224 u.f = float32_div(u.f, tmp, &env->vec_status);
1226 return u.l;
1229 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1231 CPU_FloatU u;
1232 float32 tmp;
1234 u.f = uint32_to_float32(val, &env->vec_status);
1235 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1236 u.f = float32_div(u.f, tmp, &env->vec_status);
1238 return u.l;
1241 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1243 CPU_FloatU u;
1244 float32 tmp;
1246 u.l = val;
1247 /* NaN are not treated the same way IEEE 754 does */
1248 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1249 return 0;
1251 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1252 u.f = float32_mul(u.f, tmp, &env->vec_status);
1254 return float32_to_int32(u.f, &env->vec_status);
1257 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1259 CPU_FloatU u;
1260 float32 tmp;
1262 u.l = val;
1263 /* NaN are not treated the same way IEEE 754 does */
1264 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1265 return 0;
1267 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1268 u.f = float32_mul(u.f, tmp, &env->vec_status);
1270 return float32_to_uint32(u.f, &env->vec_status);
1273 #define HELPER_SPE_SINGLE_CONV(name) \
1274 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1276 return e##name(env, val); \
1278 /* efscfsi */
1279 HELPER_SPE_SINGLE_CONV(fscfsi);
1280 /* efscfui */
1281 HELPER_SPE_SINGLE_CONV(fscfui);
1282 /* efscfuf */
1283 HELPER_SPE_SINGLE_CONV(fscfuf);
1284 /* efscfsf */
1285 HELPER_SPE_SINGLE_CONV(fscfsf);
1286 /* efsctsi */
1287 HELPER_SPE_SINGLE_CONV(fsctsi);
1288 /* efsctui */
1289 HELPER_SPE_SINGLE_CONV(fsctui);
1290 /* efsctsiz */
1291 HELPER_SPE_SINGLE_CONV(fsctsiz);
1292 /* efsctuiz */
1293 HELPER_SPE_SINGLE_CONV(fsctuiz);
1294 /* efsctsf */
1295 HELPER_SPE_SINGLE_CONV(fsctsf);
1296 /* efsctuf */
1297 HELPER_SPE_SINGLE_CONV(fsctuf);
1299 #define HELPER_SPE_VECTOR_CONV(name) \
1300 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1302 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1303 (uint64_t)e##name(env, val); \
1305 /* evfscfsi */
1306 HELPER_SPE_VECTOR_CONV(fscfsi);
1307 /* evfscfui */
1308 HELPER_SPE_VECTOR_CONV(fscfui);
1309 /* evfscfuf */
1310 HELPER_SPE_VECTOR_CONV(fscfuf);
1311 /* evfscfsf */
1312 HELPER_SPE_VECTOR_CONV(fscfsf);
1313 /* evfsctsi */
1314 HELPER_SPE_VECTOR_CONV(fsctsi);
1315 /* evfsctui */
1316 HELPER_SPE_VECTOR_CONV(fsctui);
1317 /* evfsctsiz */
1318 HELPER_SPE_VECTOR_CONV(fsctsiz);
1319 /* evfsctuiz */
1320 HELPER_SPE_VECTOR_CONV(fsctuiz);
1321 /* evfsctsf */
1322 HELPER_SPE_VECTOR_CONV(fsctsf);
1323 /* evfsctuf */
1324 HELPER_SPE_VECTOR_CONV(fsctuf);
1326 /* Single-precision floating-point arithmetic */
1327 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1329 CPU_FloatU u1, u2;
1331 u1.l = op1;
1332 u2.l = op2;
1333 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1334 return u1.l;
1337 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1339 CPU_FloatU u1, u2;
1341 u1.l = op1;
1342 u2.l = op2;
1343 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1344 return u1.l;
1347 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1349 CPU_FloatU u1, u2;
1351 u1.l = op1;
1352 u2.l = op2;
1353 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1354 return u1.l;
1357 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1359 CPU_FloatU u1, u2;
1361 u1.l = op1;
1362 u2.l = op2;
1363 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1364 return u1.l;
1367 #define HELPER_SPE_SINGLE_ARITH(name) \
1368 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1370 return e##name(env, op1, op2); \
1372 /* efsadd */
1373 HELPER_SPE_SINGLE_ARITH(fsadd);
1374 /* efssub */
1375 HELPER_SPE_SINGLE_ARITH(fssub);
1376 /* efsmul */
1377 HELPER_SPE_SINGLE_ARITH(fsmul);
1378 /* efsdiv */
1379 HELPER_SPE_SINGLE_ARITH(fsdiv);
1381 #define HELPER_SPE_VECTOR_ARITH(name) \
1382 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1384 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1385 (uint64_t)e##name(env, op1, op2); \
1387 /* evfsadd */
1388 HELPER_SPE_VECTOR_ARITH(fsadd);
1389 /* evfssub */
1390 HELPER_SPE_VECTOR_ARITH(fssub);
1391 /* evfsmul */
1392 HELPER_SPE_VECTOR_ARITH(fsmul);
1393 /* evfsdiv */
1394 HELPER_SPE_VECTOR_ARITH(fsdiv);
1396 /* Single-precision floating-point comparisons */
1397 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1399 CPU_FloatU u1, u2;
1401 u1.l = op1;
1402 u2.l = op2;
1403 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1406 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1408 CPU_FloatU u1, u2;
1410 u1.l = op1;
1411 u2.l = op2;
1412 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1415 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1417 CPU_FloatU u1, u2;
1419 u1.l = op1;
1420 u2.l = op2;
1421 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1424 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1426 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1427 return efscmplt(env, op1, op2);
1430 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1432 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1433 return efscmpgt(env, op1, op2);
1436 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1438 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1439 return efscmpeq(env, op1, op2);
1442 #define HELPER_SINGLE_SPE_CMP(name) \
1443 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1445 return e##name(env, op1, op2); \
1447 /* efststlt */
1448 HELPER_SINGLE_SPE_CMP(fststlt);
1449 /* efststgt */
1450 HELPER_SINGLE_SPE_CMP(fststgt);
1451 /* efststeq */
1452 HELPER_SINGLE_SPE_CMP(fststeq);
1453 /* efscmplt */
1454 HELPER_SINGLE_SPE_CMP(fscmplt);
1455 /* efscmpgt */
1456 HELPER_SINGLE_SPE_CMP(fscmpgt);
1457 /* efscmpeq */
1458 HELPER_SINGLE_SPE_CMP(fscmpeq);
1460 static inline uint32_t evcmp_merge(int t0, int t1)
1462 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1465 #define HELPER_VECTOR_SPE_CMP(name) \
1466 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1468 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1469 e##name(env, op1, op2)); \
1471 /* evfststlt */
1472 HELPER_VECTOR_SPE_CMP(fststlt);
1473 /* evfststgt */
1474 HELPER_VECTOR_SPE_CMP(fststgt);
1475 /* evfststeq */
1476 HELPER_VECTOR_SPE_CMP(fststeq);
1477 /* evfscmplt */
1478 HELPER_VECTOR_SPE_CMP(fscmplt);
1479 /* evfscmpgt */
1480 HELPER_VECTOR_SPE_CMP(fscmpgt);
1481 /* evfscmpeq */
1482 HELPER_VECTOR_SPE_CMP(fscmpeq);
1484 /* Double-precision floating-point conversion */
1485 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1487 CPU_DoubleU u;
1489 u.d = int32_to_float64(val, &env->vec_status);
1491 return u.ll;
1494 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1496 CPU_DoubleU u;
1498 u.d = int64_to_float64(val, &env->vec_status);
1500 return u.ll;
1503 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1505 CPU_DoubleU u;
1507 u.d = uint32_to_float64(val, &env->vec_status);
1509 return u.ll;
1512 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1514 CPU_DoubleU u;
1516 u.d = uint64_to_float64(val, &env->vec_status);
1518 return u.ll;
1521 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1523 CPU_DoubleU u;
1525 u.ll = val;
1526 /* NaN are not treated the same way IEEE 754 does */
1527 if (unlikely(float64_is_any_nan(u.d))) {
1528 return 0;
1531 return float64_to_int32(u.d, &env->vec_status);
1534 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1536 CPU_DoubleU u;
1538 u.ll = val;
1539 /* NaN are not treated the same way IEEE 754 does */
1540 if (unlikely(float64_is_any_nan(u.d))) {
1541 return 0;
1544 return float64_to_uint32(u.d, &env->vec_status);
1547 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1549 CPU_DoubleU u;
1551 u.ll = val;
1552 /* NaN are not treated the same way IEEE 754 does */
1553 if (unlikely(float64_is_any_nan(u.d))) {
1554 return 0;
1557 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1560 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1562 CPU_DoubleU u;
1564 u.ll = val;
1565 /* NaN are not treated the same way IEEE 754 does */
1566 if (unlikely(float64_is_any_nan(u.d))) {
1567 return 0;
1570 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1573 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1575 CPU_DoubleU u;
1577 u.ll = val;
1578 /* NaN are not treated the same way IEEE 754 does */
1579 if (unlikely(float64_is_any_nan(u.d))) {
1580 return 0;
1583 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1586 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1588 CPU_DoubleU u;
1590 u.ll = val;
1591 /* NaN are not treated the same way IEEE 754 does */
1592 if (unlikely(float64_is_any_nan(u.d))) {
1593 return 0;
1596 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1599 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1601 CPU_DoubleU u;
1602 float64 tmp;
1604 u.d = int32_to_float64(val, &env->vec_status);
1605 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1606 u.d = float64_div(u.d, tmp, &env->vec_status);
1608 return u.ll;
1611 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1613 CPU_DoubleU u;
1614 float64 tmp;
1616 u.d = uint32_to_float64(val, &env->vec_status);
1617 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1618 u.d = float64_div(u.d, tmp, &env->vec_status);
1620 return u.ll;
1623 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1625 CPU_DoubleU u;
1626 float64 tmp;
1628 u.ll = val;
1629 /* NaN are not treated the same way IEEE 754 does */
1630 if (unlikely(float64_is_any_nan(u.d))) {
1631 return 0;
1633 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1634 u.d = float64_mul(u.d, tmp, &env->vec_status);
1636 return float64_to_int32(u.d, &env->vec_status);
1639 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1641 CPU_DoubleU u;
1642 float64 tmp;
1644 u.ll = val;
1645 /* NaN are not treated the same way IEEE 754 does */
1646 if (unlikely(float64_is_any_nan(u.d))) {
1647 return 0;
1649 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1650 u.d = float64_mul(u.d, tmp, &env->vec_status);
1652 return float64_to_uint32(u.d, &env->vec_status);
1655 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1657 CPU_DoubleU u1;
1658 CPU_FloatU u2;
1660 u1.ll = val;
1661 u2.f = float64_to_float32(u1.d, &env->vec_status);
1663 return u2.l;
1666 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1668 CPU_DoubleU u2;
1669 CPU_FloatU u1;
1671 u1.l = val;
1672 u2.d = float32_to_float64(u1.f, &env->vec_status);
1674 return u2.ll;
1677 /* Double precision fixed-point arithmetic */
1678 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1680 CPU_DoubleU u1, u2;
1682 u1.ll = op1;
1683 u2.ll = op2;
1684 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1685 return u1.ll;
1688 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1690 CPU_DoubleU u1, u2;
1692 u1.ll = op1;
1693 u2.ll = op2;
1694 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1695 return u1.ll;
1698 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1700 CPU_DoubleU u1, u2;
1702 u1.ll = op1;
1703 u2.ll = op2;
1704 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1705 return u1.ll;
1708 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1710 CPU_DoubleU u1, u2;
1712 u1.ll = op1;
1713 u2.ll = op2;
1714 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1715 return u1.ll;
1718 /* Double precision floating point helpers */
1719 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1721 CPU_DoubleU u1, u2;
1723 u1.ll = op1;
1724 u2.ll = op2;
1725 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1728 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1730 CPU_DoubleU u1, u2;
1732 u1.ll = op1;
1733 u2.ll = op2;
1734 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1737 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1739 CPU_DoubleU u1, u2;
1741 u1.ll = op1;
1742 u2.ll = op2;
1743 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1746 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1748 /* XXX: TODO: test special values (NaN, infinites, ...) */
1749 return helper_efdtstlt(env, op1, op2);
1752 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1754 /* XXX: TODO: test special values (NaN, infinites, ...) */
1755 return helper_efdtstgt(env, op1, op2);
1758 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1760 /* XXX: TODO: test special values (NaN, infinites, ...) */
1761 return helper_efdtsteq(env, op1, op2);
1764 #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1765 (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) | \
1766 (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1768 #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1769 #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1770 #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1771 #define xC(opcode) DECODE_SPLIT(opcode, 3, 1, 6, 5)
1772 #define BF(opcode) (((opcode) >> (31-8)) & 7)
1774 typedef union _ppc_vsr_t {
1775 uint64_t u64[2];
1776 uint32_t u32[4];
1777 float32 f32[4];
1778 float64 f64[2];
1779 } ppc_vsr_t;
1781 #if defined(HOST_WORDS_BIGENDIAN)
1782 #define VsrW(i) u32[i]
1783 #define VsrD(i) u64[i]
1784 #else
1785 #define VsrW(i) u32[3-(i)]
1786 #define VsrD(i) u64[1-(i)]
1787 #endif
1789 static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1791 if (n < 32) {
1792 vsr->VsrD(0) = env->fpr[n];
1793 vsr->VsrD(1) = env->vsr[n];
1794 } else {
1795 vsr->u64[0] = env->avr[n-32].u64[0];
1796 vsr->u64[1] = env->avr[n-32].u64[1];
1800 static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1802 if (n < 32) {
1803 env->fpr[n] = vsr->VsrD(0);
1804 env->vsr[n] = vsr->VsrD(1);
1805 } else {
1806 env->avr[n-32].u64[0] = vsr->u64[0];
1807 env->avr[n-32].u64[1] = vsr->u64[1];
1811 #define float64_to_float64(x, env) x
1814 /* VSX_ADD_SUB - VSX floating point add/subract
1815 * name - instruction mnemonic
1816 * op - operation (add or sub)
1817 * nels - number of elements (1, 2 or 4)
1818 * tp - type (float32 or float64)
1819 * fld - vsr_t field (VsrD(*) or VsrW(*))
1820 * sfprf - set FPRF
1822 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1823 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1825 ppc_vsr_t xt, xa, xb; \
1826 int i; \
1828 getVSR(xA(opcode), &xa, env); \
1829 getVSR(xB(opcode), &xb, env); \
1830 getVSR(xT(opcode), &xt, env); \
1831 helper_reset_fpstatus(env); \
1833 for (i = 0; i < nels; i++) { \
1834 float_status tstat = env->fp_status; \
1835 set_float_exception_flags(0, &tstat); \
1836 xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \
1837 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1839 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1840 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1841 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
1842 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1843 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1844 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1848 if (r2sp) { \
1849 xt.fld = helper_frsp(env, xt.fld); \
1852 if (sfprf) { \
1853 helper_compute_fprf(env, xt.fld); \
1856 putVSR(xT(opcode), &xt, env); \
1857 helper_float_check_status(env); \
1860 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1861 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1862 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1863 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1864 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1865 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1866 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1867 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1869 /* VSX_MUL - VSX floating point multiply
1870 * op - instruction mnemonic
1871 * nels - number of elements (1, 2 or 4)
1872 * tp - type (float32 or float64)
1873 * fld - vsr_t field (VsrD(*) or VsrW(*))
1874 * sfprf - set FPRF
1876 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1877 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1879 ppc_vsr_t xt, xa, xb; \
1880 int i; \
1882 getVSR(xA(opcode), &xa, env); \
1883 getVSR(xB(opcode), &xb, env); \
1884 getVSR(xT(opcode), &xt, env); \
1885 helper_reset_fpstatus(env); \
1887 for (i = 0; i < nels; i++) { \
1888 float_status tstat = env->fp_status; \
1889 set_float_exception_flags(0, &tstat); \
1890 xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \
1891 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1893 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1894 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) || \
1895 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) { \
1896 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \
1897 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1898 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1899 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1903 if (r2sp) { \
1904 xt.fld = helper_frsp(env, xt.fld); \
1907 if (sfprf) { \
1908 helper_compute_fprf(env, xt.fld); \
1912 putVSR(xT(opcode), &xt, env); \
1913 helper_float_check_status(env); \
1916 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1917 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1918 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1919 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1921 /* VSX_DIV - VSX floating point divide
1922 * op - instruction mnemonic
1923 * nels - number of elements (1, 2 or 4)
1924 * tp - type (float32 or float64)
1925 * fld - vsr_t field (VsrD(*) or VsrW(*))
1926 * sfprf - set FPRF
1928 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1929 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1931 ppc_vsr_t xt, xa, xb; \
1932 int i; \
1934 getVSR(xA(opcode), &xa, env); \
1935 getVSR(xB(opcode), &xb, env); \
1936 getVSR(xT(opcode), &xt, env); \
1937 helper_reset_fpstatus(env); \
1939 for (i = 0; i < nels; i++) { \
1940 float_status tstat = env->fp_status; \
1941 set_float_exception_flags(0, &tstat); \
1942 xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \
1943 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1945 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1946 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1947 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \
1948 } else if (tp##_is_zero(xa.fld) && \
1949 tp##_is_zero(xb.fld)) { \
1950 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \
1951 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1952 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1953 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1957 if (r2sp) { \
1958 xt.fld = helper_frsp(env, xt.fld); \
1961 if (sfprf) { \
1962 helper_compute_fprf(env, xt.fld); \
1966 putVSR(xT(opcode), &xt, env); \
1967 helper_float_check_status(env); \
1970 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1971 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1972 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1973 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1975 /* VSX_RE - VSX floating point reciprocal estimate
1976 * op - instruction mnemonic
1977 * nels - number of elements (1, 2 or 4)
1978 * tp - type (float32 or float64)
1979 * fld - vsr_t field (VsrD(*) or VsrW(*))
1980 * sfprf - set FPRF
1982 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
1983 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1985 ppc_vsr_t xt, xb; \
1986 int i; \
1988 getVSR(xB(opcode), &xb, env); \
1989 getVSR(xT(opcode), &xt, env); \
1990 helper_reset_fpstatus(env); \
1992 for (i = 0; i < nels; i++) { \
1993 if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
1994 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1996 xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \
1998 if (r2sp) { \
1999 xt.fld = helper_frsp(env, xt.fld); \
2002 if (sfprf) { \
2003 helper_compute_fprf(env, xt.fld); \
2007 putVSR(xT(opcode), &xt, env); \
2008 helper_float_check_status(env); \
2011 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2012 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2013 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2014 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2016 /* VSX_SQRT - VSX floating point square root
2017 * op - instruction mnemonic
2018 * nels - number of elements (1, 2 or 4)
2019 * tp - type (float32 or float64)
2020 * fld - vsr_t field (VsrD(*) or VsrW(*))
2021 * sfprf - set FPRF
2023 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2024 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2026 ppc_vsr_t xt, xb; \
2027 int i; \
2029 getVSR(xB(opcode), &xb, env); \
2030 getVSR(xT(opcode), &xt, env); \
2031 helper_reset_fpstatus(env); \
2033 for (i = 0; i < nels; i++) { \
2034 float_status tstat = env->fp_status; \
2035 set_float_exception_flags(0, &tstat); \
2036 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2037 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2039 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2040 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2041 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2042 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2043 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2047 if (r2sp) { \
2048 xt.fld = helper_frsp(env, xt.fld); \
2051 if (sfprf) { \
2052 helper_compute_fprf(env, xt.fld); \
2056 putVSR(xT(opcode), &xt, env); \
2057 helper_float_check_status(env); \
2060 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2061 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2062 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2063 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2065 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2066 * op - instruction mnemonic
2067 * nels - number of elements (1, 2 or 4)
2068 * tp - type (float32 or float64)
2069 * fld - vsr_t field (VsrD(*) or VsrW(*))
2070 * sfprf - set FPRF
2072 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2073 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2075 ppc_vsr_t xt, xb; \
2076 int i; \
2078 getVSR(xB(opcode), &xb, env); \
2079 getVSR(xT(opcode), &xt, env); \
2080 helper_reset_fpstatus(env); \
2082 for (i = 0; i < nels; i++) { \
2083 float_status tstat = env->fp_status; \
2084 set_float_exception_flags(0, &tstat); \
2085 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2086 xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \
2087 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2089 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2090 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2091 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2092 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2093 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2097 if (r2sp) { \
2098 xt.fld = helper_frsp(env, xt.fld); \
2101 if (sfprf) { \
2102 helper_compute_fprf(env, xt.fld); \
2106 putVSR(xT(opcode), &xt, env); \
2107 helper_float_check_status(env); \
2110 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2111 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2112 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2113 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2115 /* VSX_TDIV - VSX floating point test for divide
2116 * op - instruction mnemonic
2117 * nels - number of elements (1, 2 or 4)
2118 * tp - type (float32 or float64)
2119 * fld - vsr_t field (VsrD(*) or VsrW(*))
2120 * emin - minimum unbiased exponent
2121 * emax - maximum unbiased exponent
2122 * nbits - number of fraction bits
2124 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2125 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2127 ppc_vsr_t xa, xb; \
2128 int i; \
2129 int fe_flag = 0; \
2130 int fg_flag = 0; \
2132 getVSR(xA(opcode), &xa, env); \
2133 getVSR(xB(opcode), &xb, env); \
2135 for (i = 0; i < nels; i++) { \
2136 if (unlikely(tp##_is_infinity(xa.fld) || \
2137 tp##_is_infinity(xb.fld) || \
2138 tp##_is_zero(xb.fld))) { \
2139 fe_flag = 1; \
2140 fg_flag = 1; \
2141 } else { \
2142 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \
2143 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2145 if (unlikely(tp##_is_any_nan(xa.fld) || \
2146 tp##_is_any_nan(xb.fld))) { \
2147 fe_flag = 1; \
2148 } else if ((e_b <= emin) || (e_b >= (emax-2))) { \
2149 fe_flag = 1; \
2150 } else if (!tp##_is_zero(xa.fld) && \
2151 (((e_a - e_b) >= emax) || \
2152 ((e_a - e_b) <= (emin+1)) || \
2153 (e_a <= (emin+nbits)))) { \
2154 fe_flag = 1; \
2157 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2158 /* XB is not zero because of the above check and */ \
2159 /* so must be denormalized. */ \
2160 fg_flag = 1; \
2165 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2168 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2169 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2170 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2172 /* VSX_TSQRT - VSX floating point test for square root
2173 * op - instruction mnemonic
2174 * nels - number of elements (1, 2 or 4)
2175 * tp - type (float32 or float64)
2176 * fld - vsr_t field (VsrD(*) or VsrW(*))
2177 * emin - minimum unbiased exponent
2178 * emax - maximum unbiased exponent
2179 * nbits - number of fraction bits
2181 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2182 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2184 ppc_vsr_t xa, xb; \
2185 int i; \
2186 int fe_flag = 0; \
2187 int fg_flag = 0; \
2189 getVSR(xA(opcode), &xa, env); \
2190 getVSR(xB(opcode), &xb, env); \
2192 for (i = 0; i < nels; i++) { \
2193 if (unlikely(tp##_is_infinity(xb.fld) || \
2194 tp##_is_zero(xb.fld))) { \
2195 fe_flag = 1; \
2196 fg_flag = 1; \
2197 } else { \
2198 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2200 if (unlikely(tp##_is_any_nan(xb.fld))) { \
2201 fe_flag = 1; \
2202 } else if (unlikely(tp##_is_zero(xb.fld))) { \
2203 fe_flag = 1; \
2204 } else if (unlikely(tp##_is_neg(xb.fld))) { \
2205 fe_flag = 1; \
2206 } else if (!tp##_is_zero(xb.fld) && \
2207 (e_b <= (emin+nbits))) { \
2208 fe_flag = 1; \
2211 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2212 /* XB is not zero because of the above check and */ \
2213 /* therefore must be denormalized. */ \
2214 fg_flag = 1; \
2219 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2222 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2223 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2224 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2226 /* VSX_MADD - VSX floating point muliply/add variations
2227 * op - instruction mnemonic
2228 * nels - number of elements (1, 2 or 4)
2229 * tp - type (float32 or float64)
2230 * fld - vsr_t field (VsrD(*) or VsrW(*))
2231 * maddflgs - flags for the float*muladd routine that control the
2232 * various forms (madd, msub, nmadd, nmsub)
2233 * afrm - A form (1=A, 0=M)
2234 * sfprf - set FPRF
2236 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2237 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2239 ppc_vsr_t xt_in, xa, xb, xt_out; \
2240 ppc_vsr_t *b, *c; \
2241 int i; \
2243 if (afrm) { /* AxB + T */ \
2244 b = &xb; \
2245 c = &xt_in; \
2246 } else { /* AxT + B */ \
2247 b = &xt_in; \
2248 c = &xb; \
2251 getVSR(xA(opcode), &xa, env); \
2252 getVSR(xB(opcode), &xb, env); \
2253 getVSR(xT(opcode), &xt_in, env); \
2255 xt_out = xt_in; \
2257 helper_reset_fpstatus(env); \
2259 for (i = 0; i < nels; i++) { \
2260 float_status tstat = env->fp_status; \
2261 set_float_exception_flags(0, &tstat); \
2262 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2263 /* Avoid double rounding errors by rounding the intermediate */ \
2264 /* result to odd. */ \
2265 set_float_rounding_mode(float_round_to_zero, &tstat); \
2266 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2267 maddflgs, &tstat); \
2268 xt_out.fld |= (get_float_exception_flags(&tstat) & \
2269 float_flag_inexact) != 0; \
2270 } else { \
2271 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2272 maddflgs, &tstat); \
2274 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2276 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2277 if (tp##_is_signaling_nan(xa.fld, &tstat) || \
2278 tp##_is_signaling_nan(b->fld, &tstat) || \
2279 tp##_is_signaling_nan(c->fld, &tstat)) { \
2280 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2281 tstat.float_exception_flags &= ~float_flag_invalid; \
2283 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) || \
2284 (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) { \
2285 xt_out.fld = float64_to_##tp(fload_invalid_op_excp(env, \
2286 POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status); \
2287 tstat.float_exception_flags &= ~float_flag_invalid; \
2289 if ((tstat.float_exception_flags & float_flag_invalid) && \
2290 ((tp##_is_infinity(xa.fld) || \
2291 tp##_is_infinity(b->fld)) && \
2292 tp##_is_infinity(c->fld))) { \
2293 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
2297 if (r2sp) { \
2298 xt_out.fld = helper_frsp(env, xt_out.fld); \
2301 if (sfprf) { \
2302 helper_compute_fprf(env, xt_out.fld); \
2305 putVSR(xT(opcode), &xt_out, env); \
2306 helper_float_check_status(env); \
2309 #define MADD_FLGS 0
2310 #define MSUB_FLGS float_muladd_negate_c
2311 #define NMADD_FLGS float_muladd_negate_result
2312 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2314 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2315 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2316 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2317 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2318 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2319 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2320 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2321 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2323 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2324 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2325 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2326 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2327 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2328 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2329 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2330 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2332 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2333 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2334 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2335 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2336 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2337 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2338 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2339 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2341 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2342 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2343 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2344 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2345 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2346 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2347 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2348 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2350 #define VSX_SCALAR_CMP(op, ordered) \
2351 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2353 ppc_vsr_t xa, xb; \
2354 uint32_t cc = 0; \
2356 getVSR(xA(opcode), &xa, env); \
2357 getVSR(xB(opcode), &xb, env); \
2359 if (unlikely(float64_is_any_nan(xa.VsrD(0)) || \
2360 float64_is_any_nan(xb.VsrD(0)))) { \
2361 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2362 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2363 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2365 if (ordered) { \
2366 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2368 cc = 1; \
2369 } else { \
2370 if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2371 cc = 8; \
2372 } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), \
2373 &env->fp_status)) { \
2374 cc = 4; \
2375 } else { \
2376 cc = 2; \
2380 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2381 env->fpscr |= cc << FPSCR_FPRF; \
2382 env->crf[BF(opcode)] = cc; \
2384 helper_float_check_status(env); \
2387 VSX_SCALAR_CMP(xscmpodp, 1)
2388 VSX_SCALAR_CMP(xscmpudp, 0)
2390 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2391 * name - instruction mnemonic
2392 * op - operation (max or min)
2393 * nels - number of elements (1, 2 or 4)
2394 * tp - type (float32 or float64)
2395 * fld - vsr_t field (VsrD(*) or VsrW(*))
2397 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2398 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2400 ppc_vsr_t xt, xa, xb; \
2401 int i; \
2403 getVSR(xA(opcode), &xa, env); \
2404 getVSR(xB(opcode), &xb, env); \
2405 getVSR(xT(opcode), &xt, env); \
2407 for (i = 0; i < nels; i++) { \
2408 xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \
2409 if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2410 tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2411 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2415 putVSR(xT(opcode), &xt, env); \
2416 helper_float_check_status(env); \
2419 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2420 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2421 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2422 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2423 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2424 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2426 /* VSX_CMP - VSX floating point compare
2427 * op - instruction mnemonic
2428 * nels - number of elements (1, 2 or 4)
2429 * tp - type (float32 or float64)
2430 * fld - vsr_t field (VsrD(*) or VsrW(*))
2431 * cmp - comparison operation
2432 * svxvc - set VXVC bit
2434 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc) \
2435 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2437 ppc_vsr_t xt, xa, xb; \
2438 int i; \
2439 int all_true = 1; \
2440 int all_false = 1; \
2442 getVSR(xA(opcode), &xa, env); \
2443 getVSR(xB(opcode), &xb, env); \
2444 getVSR(xT(opcode), &xt, env); \
2446 for (i = 0; i < nels; i++) { \
2447 if (unlikely(tp##_is_any_nan(xa.fld) || \
2448 tp##_is_any_nan(xb.fld))) { \
2449 if (tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2450 tp##_is_signaling_nan(xb.fld, &env->fp_status)) { \
2451 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2453 if (svxvc) { \
2454 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2456 xt.fld = 0; \
2457 all_true = 0; \
2458 } else { \
2459 if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == 1) { \
2460 xt.fld = -1; \
2461 all_false = 0; \
2462 } else { \
2463 xt.fld = 0; \
2464 all_true = 0; \
2469 putVSR(xT(opcode), &xt, env); \
2470 if ((opcode >> (31-21)) & 1) { \
2471 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2473 helper_float_check_status(env); \
2476 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0)
2477 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1)
2478 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1)
2479 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0)
2480 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1)
2481 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1)
2483 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2484 * op - instruction mnemonic
2485 * nels - number of elements (1, 2 or 4)
2486 * stp - source type (float32 or float64)
2487 * ttp - target type (float32 or float64)
2488 * sfld - source vsr_t field
2489 * tfld - target vsr_t field (f32 or f64)
2490 * sfprf - set FPRF
2492 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2493 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2495 ppc_vsr_t xt, xb; \
2496 int i; \
2498 getVSR(xB(opcode), &xb, env); \
2499 getVSR(xT(opcode), &xt, env); \
2501 for (i = 0; i < nels; i++) { \
2502 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2503 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2504 &env->fp_status))) { \
2505 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2506 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2508 if (sfprf) { \
2509 helper_compute_fprf(env, ttp##_to_float64(xt.tfld, \
2510 &env->fp_status)); \
2514 putVSR(xT(opcode), &xt, env); \
2515 helper_float_check_status(env); \
2518 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2519 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2520 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2521 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2523 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2525 float_status tstat = env->fp_status;
2526 set_float_exception_flags(0, &tstat);
2528 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2531 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2533 float_status tstat = env->fp_status;
2534 set_float_exception_flags(0, &tstat);
2536 return float32_to_float64(xb >> 32, &tstat);
2539 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2540 * op - instruction mnemonic
2541 * nels - number of elements (1, 2 or 4)
2542 * stp - source type (float32 or float64)
2543 * ttp - target type (int32, uint32, int64 or uint64)
2544 * sfld - source vsr_t field
2545 * tfld - target vsr_t field
2546 * rnan - resulting NaN
2548 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2549 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2551 ppc_vsr_t xt, xb; \
2552 int i; \
2554 getVSR(xB(opcode), &xb, env); \
2555 getVSR(xT(opcode), &xt, env); \
2557 for (i = 0; i < nels; i++) { \
2558 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2559 if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) { \
2560 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2562 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2563 xt.tfld = rnan; \
2564 } else { \
2565 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2566 &env->fp_status); \
2567 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2568 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2573 putVSR(xT(opcode), &xt, env); \
2574 helper_float_check_status(env); \
2577 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2578 0x8000000000000000ULL)
2579 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2580 0x80000000U)
2581 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2582 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2583 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2584 0x8000000000000000ULL)
2585 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2586 0x80000000U)
2587 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2588 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2589 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2590 0x8000000000000000ULL)
2591 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2592 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2593 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2595 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2596 * op - instruction mnemonic
2597 * nels - number of elements (1, 2 or 4)
2598 * stp - source type (int32, uint32, int64 or uint64)
2599 * ttp - target type (float32 or float64)
2600 * sfld - source vsr_t field
2601 * tfld - target vsr_t field
2602 * jdef - definition of the j index (i or 2*i)
2603 * sfprf - set FPRF
2605 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
2606 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2608 ppc_vsr_t xt, xb; \
2609 int i; \
2611 getVSR(xB(opcode), &xb, env); \
2612 getVSR(xT(opcode), &xt, env); \
2614 for (i = 0; i < nels; i++) { \
2615 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2616 if (r2sp) { \
2617 xt.tfld = helper_frsp(env, xt.tfld); \
2619 if (sfprf) { \
2620 helper_compute_fprf(env, xt.tfld); \
2624 putVSR(xT(opcode), &xt, env); \
2625 helper_float_check_status(env); \
2628 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2629 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2630 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2631 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2632 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2633 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2634 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2635 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2636 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
2637 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
2638 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2639 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2641 /* For "use current rounding mode", define a value that will not be one of
2642 * the existing rounding model enums.
2644 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2645 float_round_up + float_round_to_zero)
2647 /* VSX_ROUND - VSX floating point round
2648 * op - instruction mnemonic
2649 * nels - number of elements (1, 2 or 4)
2650 * tp - type (float32 or float64)
2651 * fld - vsr_t field (VsrD(*) or VsrW(*))
2652 * rmode - rounding mode
2653 * sfprf - set FPRF
2655 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
2656 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2658 ppc_vsr_t xt, xb; \
2659 int i; \
2660 getVSR(xB(opcode), &xb, env); \
2661 getVSR(xT(opcode), &xt, env); \
2663 if (rmode != FLOAT_ROUND_CURRENT) { \
2664 set_float_rounding_mode(rmode, &env->fp_status); \
2667 for (i = 0; i < nels; i++) { \
2668 if (unlikely(tp##_is_signaling_nan(xb.fld, \
2669 &env->fp_status))) { \
2670 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2671 xt.fld = tp##_snan_to_qnan(xb.fld); \
2672 } else { \
2673 xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \
2675 if (sfprf) { \
2676 helper_compute_fprf(env, xt.fld); \
2680 /* If this is not a "use current rounding mode" instruction, \
2681 * then inhibit setting of the XX bit and restore rounding \
2682 * mode from FPSCR */ \
2683 if (rmode != FLOAT_ROUND_CURRENT) { \
2684 fpscr_set_rounding_mode(env); \
2685 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
2688 putVSR(xT(opcode), &xt, env); \
2689 helper_float_check_status(env); \
2692 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
2693 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2694 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2695 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2696 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2698 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
2699 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2700 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2701 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2702 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2704 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
2705 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2706 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2707 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2708 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2710 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2712 helper_reset_fpstatus(env);
2714 uint64_t xt = helper_frsp(env, xb);
2716 helper_compute_fprf(env, xt);
2717 helper_float_check_status(env);
2718 return xt;