Call MADV_HUGEPAGE for guest RAM allocations
[qemu.git] / uri.c
blobdd922de3399f483f0885ff26695d27e60a427aa4
1 /**
2 * uri.c: set of generic URI related routines
4 * Reference: RFCs 3986, 2732 and 2373
6 * Copyright (C) 1998-2003 Daniel Veillard. All Rights Reserved.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
22 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 * Except as contained in this notice, the name of Daniel Veillard shall not
26 * be used in advertising or otherwise to promote the sale, use or other
27 * dealings in this Software without prior written authorization from him.
29 * daniel@veillard.com
33 * Copyright (C) 2007, 2009-2010 Red Hat, Inc.
35 * This library is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU Lesser General Public
37 * License as published by the Free Software Foundation; either
38 * version 2.1 of the License, or (at your option) any later version.
40 * This library is distributed in the hope that it will be useful,
41 * but WITHOUT ANY WARRANTY; without even the implied warranty of
42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
43 * Lesser General Public License for more details.
45 * You should have received a copy of the GNU Lesser General Public
46 * License along with this library; if not, write to the Free Software
47 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
49 * Authors:
50 * Richard W.M. Jones <rjones@redhat.com>
54 #include <glib.h>
55 #include <string.h>
56 #include <stdio.h>
58 #include "uri.h"
60 static void uri_clean(URI *uri);
63 * Old rule from 2396 used in legacy handling code
64 * alpha = lowalpha | upalpha
66 #define IS_ALPHA(x) (IS_LOWALPHA(x) || IS_UPALPHA(x))
70 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
71 * "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" |
72 * "u" | "v" | "w" | "x" | "y" | "z"
75 #define IS_LOWALPHA(x) (((x) >= 'a') && ((x) <= 'z'))
78 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |
79 * "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
80 * "U" | "V" | "W" | "X" | "Y" | "Z"
82 #define IS_UPALPHA(x) (((x) >= 'A') && ((x) <= 'Z'))
84 #ifdef IS_DIGIT
85 #undef IS_DIGIT
86 #endif
88 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
90 #define IS_DIGIT(x) (((x) >= '0') && ((x) <= '9'))
93 * alphanum = alpha | digit
96 #define IS_ALPHANUM(x) (IS_ALPHA(x) || IS_DIGIT(x))
99 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
102 #define IS_MARK(x) (((x) == '-') || ((x) == '_') || ((x) == '.') || \
103 ((x) == '!') || ((x) == '~') || ((x) == '*') || ((x) == '\'') || \
104 ((x) == '(') || ((x) == ')'))
107 * unwise = "{" | "}" | "|" | "\" | "^" | "`"
110 #define IS_UNWISE(p) \
111 (((*(p) == '{')) || ((*(p) == '}')) || ((*(p) == '|')) || \
112 ((*(p) == '\\')) || ((*(p) == '^')) || ((*(p) == '[')) || \
113 ((*(p) == ']')) || ((*(p) == '`')))
115 * reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | "," |
116 * "[" | "]"
119 #define IS_RESERVED(x) (((x) == ';') || ((x) == '/') || ((x) == '?') || \
120 ((x) == ':') || ((x) == '@') || ((x) == '&') || ((x) == '=') || \
121 ((x) == '+') || ((x) == '$') || ((x) == ',') || ((x) == '[') || \
122 ((x) == ']'))
125 * unreserved = alphanum | mark
128 #define IS_UNRESERVED(x) (IS_ALPHANUM(x) || IS_MARK(x))
131 * Skip to next pointer char, handle escaped sequences
134 #define NEXT(p) ((*p == '%')? p += 3 : p++)
137 * Productions from the spec.
139 * authority = server | reg_name
140 * reg_name = 1*( unreserved | escaped | "$" | "," |
141 * ";" | ":" | "@" | "&" | "=" | "+" )
143 * path = [ abs_path | opaque_part ]
147 /************************************************************************
149 * RFC 3986 parser *
151 ************************************************************************/
153 #define ISA_DIGIT(p) ((*(p) >= '0') && (*(p) <= '9'))
154 #define ISA_ALPHA(p) (((*(p) >= 'a') && (*(p) <= 'z')) || \
155 ((*(p) >= 'A') && (*(p) <= 'Z')))
156 #define ISA_HEXDIG(p) \
157 (ISA_DIGIT(p) || ((*(p) >= 'a') && (*(p) <= 'f')) || \
158 ((*(p) >= 'A') && (*(p) <= 'F')))
161 * sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
162 * / "*" / "+" / "," / ";" / "="
164 #define ISA_SUB_DELIM(p) \
165 (((*(p) == '!')) || ((*(p) == '$')) || ((*(p) == '&')) || \
166 ((*(p) == '(')) || ((*(p) == ')')) || ((*(p) == '*')) || \
167 ((*(p) == '+')) || ((*(p) == ',')) || ((*(p) == ';')) || \
168 ((*(p) == '=')) || ((*(p) == '\'')))
171 * gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
173 #define ISA_GEN_DELIM(p) \
174 (((*(p) == ':')) || ((*(p) == '/')) || ((*(p) == '?')) || \
175 ((*(p) == '#')) || ((*(p) == '[')) || ((*(p) == ']')) || \
176 ((*(p) == '@')))
179 * reserved = gen-delims / sub-delims
181 #define ISA_RESERVED(p) (ISA_GEN_DELIM(p) || (ISA_SUB_DELIM(p)))
184 * unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
186 #define ISA_UNRESERVED(p) \
187 ((ISA_ALPHA(p)) || (ISA_DIGIT(p)) || ((*(p) == '-')) || \
188 ((*(p) == '.')) || ((*(p) == '_')) || ((*(p) == '~')))
191 * pct-encoded = "%" HEXDIG HEXDIG
193 #define ISA_PCT_ENCODED(p) \
194 ((*(p) == '%') && (ISA_HEXDIG(p + 1)) && (ISA_HEXDIG(p + 2)))
197 * pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
199 #define ISA_PCHAR(p) \
200 (ISA_UNRESERVED(p) || ISA_PCT_ENCODED(p) || ISA_SUB_DELIM(p) || \
201 ((*(p) == ':')) || ((*(p) == '@')))
204 * rfc3986_parse_scheme:
205 * @uri: pointer to an URI structure
206 * @str: pointer to the string to analyze
208 * Parse an URI scheme
210 * ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )
212 * Returns 0 or the error code
214 static int
215 rfc3986_parse_scheme(URI *uri, const char **str) {
216 const char *cur;
218 if (str == NULL)
219 return(-1);
221 cur = *str;
222 if (!ISA_ALPHA(cur))
223 return(2);
224 cur++;
225 while (ISA_ALPHA(cur) || ISA_DIGIT(cur) ||
226 (*cur == '+') || (*cur == '-') || (*cur == '.')) cur++;
227 if (uri != NULL) {
228 if (uri->scheme != NULL) g_free(uri->scheme);
229 uri->scheme = g_strndup(*str, cur - *str);
231 *str = cur;
232 return(0);
236 * rfc3986_parse_fragment:
237 * @uri: pointer to an URI structure
238 * @str: pointer to the string to analyze
240 * Parse the query part of an URI
242 * fragment = *( pchar / "/" / "?" )
243 * NOTE: the strict syntax as defined by 3986 does not allow '[' and ']'
244 * in the fragment identifier but this is used very broadly for
245 * xpointer scheme selection, so we are allowing it here to not break
246 * for example all the DocBook processing chains.
248 * Returns 0 or the error code
250 static int
251 rfc3986_parse_fragment(URI *uri, const char **str)
253 const char *cur;
255 if (str == NULL)
256 return (-1);
258 cur = *str;
260 while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
261 (*cur == '[') || (*cur == ']') ||
262 ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur))))
263 NEXT(cur);
264 if (uri != NULL) {
265 if (uri->fragment != NULL)
266 g_free(uri->fragment);
267 if (uri->cleanup & 2)
268 uri->fragment = g_strndup(*str, cur - *str);
269 else
270 uri->fragment = uri_string_unescape(*str, cur - *str, NULL);
272 *str = cur;
273 return (0);
277 * rfc3986_parse_query:
278 * @uri: pointer to an URI structure
279 * @str: pointer to the string to analyze
281 * Parse the query part of an URI
283 * query = *uric
285 * Returns 0 or the error code
287 static int
288 rfc3986_parse_query(URI *uri, const char **str)
290 const char *cur;
292 if (str == NULL)
293 return (-1);
295 cur = *str;
297 while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
298 ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur))))
299 NEXT(cur);
300 if (uri != NULL) {
301 if (uri->query != NULL)
302 g_free (uri->query);
303 uri->query = g_strndup (*str, cur - *str);
305 *str = cur;
306 return (0);
310 * rfc3986_parse_port:
311 * @uri: pointer to an URI structure
312 * @str: the string to analyze
314 * Parse a port part and fills in the appropriate fields
315 * of the @uri structure
317 * port = *DIGIT
319 * Returns 0 or the error code
321 static int
322 rfc3986_parse_port(URI *uri, const char **str)
324 const char *cur = *str;
326 if (ISA_DIGIT(cur)) {
327 if (uri != NULL)
328 uri->port = 0;
329 while (ISA_DIGIT(cur)) {
330 if (uri != NULL)
331 uri->port = uri->port * 10 + (*cur - '0');
332 cur++;
334 *str = cur;
335 return(0);
337 return(1);
341 * rfc3986_parse_user_info:
342 * @uri: pointer to an URI structure
343 * @str: the string to analyze
345 * Parse an user informations part and fills in the appropriate fields
346 * of the @uri structure
348 * userinfo = *( unreserved / pct-encoded / sub-delims / ":" )
350 * Returns 0 or the error code
352 static int
353 rfc3986_parse_user_info(URI *uri, const char **str)
355 const char *cur;
357 cur = *str;
358 while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) ||
359 ISA_SUB_DELIM(cur) || (*cur == ':'))
360 NEXT(cur);
361 if (*cur == '@') {
362 if (uri != NULL) {
363 if (uri->user != NULL) g_free(uri->user);
364 if (uri->cleanup & 2)
365 uri->user = g_strndup(*str, cur - *str);
366 else
367 uri->user = uri_string_unescape(*str, cur - *str, NULL);
369 *str = cur;
370 return(0);
372 return(1);
376 * rfc3986_parse_dec_octet:
377 * @str: the string to analyze
379 * dec-octet = DIGIT ; 0-9
380 * / %x31-39 DIGIT ; 10-99
381 * / "1" 2DIGIT ; 100-199
382 * / "2" %x30-34 DIGIT ; 200-249
383 * / "25" %x30-35 ; 250-255
385 * Skip a dec-octet.
387 * Returns 0 if found and skipped, 1 otherwise
389 static int
390 rfc3986_parse_dec_octet(const char **str) {
391 const char *cur = *str;
393 if (!(ISA_DIGIT(cur)))
394 return(1);
395 if (!ISA_DIGIT(cur+1))
396 cur++;
397 else if ((*cur != '0') && (ISA_DIGIT(cur + 1)) && (!ISA_DIGIT(cur+2)))
398 cur += 2;
399 else if ((*cur == '1') && (ISA_DIGIT(cur + 1)) && (ISA_DIGIT(cur + 2)))
400 cur += 3;
401 else if ((*cur == '2') && (*(cur + 1) >= '0') &&
402 (*(cur + 1) <= '4') && (ISA_DIGIT(cur + 2)))
403 cur += 3;
404 else if ((*cur == '2') && (*(cur + 1) == '5') &&
405 (*(cur + 2) >= '0') && (*(cur + 1) <= '5'))
406 cur += 3;
407 else
408 return(1);
409 *str = cur;
410 return(0);
413 * rfc3986_parse_host:
414 * @uri: pointer to an URI structure
415 * @str: the string to analyze
417 * Parse an host part and fills in the appropriate fields
418 * of the @uri structure
420 * host = IP-literal / IPv4address / reg-name
421 * IP-literal = "[" ( IPv6address / IPvFuture ) "]"
422 * IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet
423 * reg-name = *( unreserved / pct-encoded / sub-delims )
425 * Returns 0 or the error code
427 static int
428 rfc3986_parse_host(URI *uri, const char **str)
430 const char *cur = *str;
431 const char *host;
433 host = cur;
435 * IPv6 and future adressing scheme are enclosed between brackets
437 if (*cur == '[') {
438 cur++;
439 while ((*cur != ']') && (*cur != 0))
440 cur++;
441 if (*cur != ']')
442 return(1);
443 cur++;
444 goto found;
447 * try to parse an IPv4
449 if (ISA_DIGIT(cur)) {
450 if (rfc3986_parse_dec_octet(&cur) != 0)
451 goto not_ipv4;
452 if (*cur != '.')
453 goto not_ipv4;
454 cur++;
455 if (rfc3986_parse_dec_octet(&cur) != 0)
456 goto not_ipv4;
457 if (*cur != '.')
458 goto not_ipv4;
459 if (rfc3986_parse_dec_octet(&cur) != 0)
460 goto not_ipv4;
461 if (*cur != '.')
462 goto not_ipv4;
463 if (rfc3986_parse_dec_octet(&cur) != 0)
464 goto not_ipv4;
465 goto found;
466 not_ipv4:
467 cur = *str;
470 * then this should be a hostname which can be empty
472 while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur))
473 NEXT(cur);
474 found:
475 if (uri != NULL) {
476 if (uri->authority != NULL) g_free(uri->authority);
477 uri->authority = NULL;
478 if (uri->server != NULL) g_free(uri->server);
479 if (cur != host) {
480 if (uri->cleanup & 2)
481 uri->server = g_strndup(host, cur - host);
482 else
483 uri->server = uri_string_unescape(host, cur - host, NULL);
484 } else
485 uri->server = NULL;
487 *str = cur;
488 return(0);
492 * rfc3986_parse_authority:
493 * @uri: pointer to an URI structure
494 * @str: the string to analyze
496 * Parse an authority part and fills in the appropriate fields
497 * of the @uri structure
499 * authority = [ userinfo "@" ] host [ ":" port ]
501 * Returns 0 or the error code
503 static int
504 rfc3986_parse_authority(URI *uri, const char **str)
506 const char *cur;
507 int ret;
509 cur = *str;
511 * try to parse an userinfo and check for the trailing @
513 ret = rfc3986_parse_user_info(uri, &cur);
514 if ((ret != 0) || (*cur != '@'))
515 cur = *str;
516 else
517 cur++;
518 ret = rfc3986_parse_host(uri, &cur);
519 if (ret != 0) return(ret);
520 if (*cur == ':') {
521 cur++;
522 ret = rfc3986_parse_port(uri, &cur);
523 if (ret != 0) return(ret);
525 *str = cur;
526 return(0);
530 * rfc3986_parse_segment:
531 * @str: the string to analyze
532 * @forbid: an optional forbidden character
533 * @empty: allow an empty segment
535 * Parse a segment and fills in the appropriate fields
536 * of the @uri structure
538 * segment = *pchar
539 * segment-nz = 1*pchar
540 * segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" )
541 * ; non-zero-length segment without any colon ":"
543 * Returns 0 or the error code
545 static int
546 rfc3986_parse_segment(const char **str, char forbid, int empty)
548 const char *cur;
550 cur = *str;
551 if (!ISA_PCHAR(cur)) {
552 if (empty)
553 return(0);
554 return(1);
556 while (ISA_PCHAR(cur) && (*cur != forbid))
557 NEXT(cur);
558 *str = cur;
559 return (0);
563 * rfc3986_parse_path_ab_empty:
564 * @uri: pointer to an URI structure
565 * @str: the string to analyze
567 * Parse an path absolute or empty and fills in the appropriate fields
568 * of the @uri structure
570 * path-abempty = *( "/" segment )
572 * Returns 0 or the error code
574 static int
575 rfc3986_parse_path_ab_empty(URI *uri, const char **str)
577 const char *cur;
578 int ret;
580 cur = *str;
582 while (*cur == '/') {
583 cur++;
584 ret = rfc3986_parse_segment(&cur, 0, 1);
585 if (ret != 0) return(ret);
587 if (uri != NULL) {
588 if (uri->path != NULL) g_free(uri->path);
589 if (*str != cur) {
590 if (uri->cleanup & 2)
591 uri->path = g_strndup(*str, cur - *str);
592 else
593 uri->path = uri_string_unescape(*str, cur - *str, NULL);
594 } else {
595 uri->path = NULL;
598 *str = cur;
599 return (0);
603 * rfc3986_parse_path_absolute:
604 * @uri: pointer to an URI structure
605 * @str: the string to analyze
607 * Parse an path absolute and fills in the appropriate fields
608 * of the @uri structure
610 * path-absolute = "/" [ segment-nz *( "/" segment ) ]
612 * Returns 0 or the error code
614 static int
615 rfc3986_parse_path_absolute(URI *uri, const char **str)
617 const char *cur;
618 int ret;
620 cur = *str;
622 if (*cur != '/')
623 return(1);
624 cur++;
625 ret = rfc3986_parse_segment(&cur, 0, 0);
626 if (ret == 0) {
627 while (*cur == '/') {
628 cur++;
629 ret = rfc3986_parse_segment(&cur, 0, 1);
630 if (ret != 0) return(ret);
633 if (uri != NULL) {
634 if (uri->path != NULL) g_free(uri->path);
635 if (cur != *str) {
636 if (uri->cleanup & 2)
637 uri->path = g_strndup(*str, cur - *str);
638 else
639 uri->path = uri_string_unescape(*str, cur - *str, NULL);
640 } else {
641 uri->path = NULL;
644 *str = cur;
645 return (0);
649 * rfc3986_parse_path_rootless:
650 * @uri: pointer to an URI structure
651 * @str: the string to analyze
653 * Parse an path without root and fills in the appropriate fields
654 * of the @uri structure
656 * path-rootless = segment-nz *( "/" segment )
658 * Returns 0 or the error code
660 static int
661 rfc3986_parse_path_rootless(URI *uri, const char **str)
663 const char *cur;
664 int ret;
666 cur = *str;
668 ret = rfc3986_parse_segment(&cur, 0, 0);
669 if (ret != 0) return(ret);
670 while (*cur == '/') {
671 cur++;
672 ret = rfc3986_parse_segment(&cur, 0, 1);
673 if (ret != 0) return(ret);
675 if (uri != NULL) {
676 if (uri->path != NULL) g_free(uri->path);
677 if (cur != *str) {
678 if (uri->cleanup & 2)
679 uri->path = g_strndup(*str, cur - *str);
680 else
681 uri->path = uri_string_unescape(*str, cur - *str, NULL);
682 } else {
683 uri->path = NULL;
686 *str = cur;
687 return (0);
691 * rfc3986_parse_path_no_scheme:
692 * @uri: pointer to an URI structure
693 * @str: the string to analyze
695 * Parse an path which is not a scheme and fills in the appropriate fields
696 * of the @uri structure
698 * path-noscheme = segment-nz-nc *( "/" segment )
700 * Returns 0 or the error code
702 static int
703 rfc3986_parse_path_no_scheme(URI *uri, const char **str)
705 const char *cur;
706 int ret;
708 cur = *str;
710 ret = rfc3986_parse_segment(&cur, ':', 0);
711 if (ret != 0) return(ret);
712 while (*cur == '/') {
713 cur++;
714 ret = rfc3986_parse_segment(&cur, 0, 1);
715 if (ret != 0) return(ret);
717 if (uri != NULL) {
718 if (uri->path != NULL) g_free(uri->path);
719 if (cur != *str) {
720 if (uri->cleanup & 2)
721 uri->path = g_strndup(*str, cur - *str);
722 else
723 uri->path = uri_string_unescape(*str, cur - *str, NULL);
724 } else {
725 uri->path = NULL;
728 *str = cur;
729 return (0);
733 * rfc3986_parse_hier_part:
734 * @uri: pointer to an URI structure
735 * @str: the string to analyze
737 * Parse an hierarchical part and fills in the appropriate fields
738 * of the @uri structure
740 * hier-part = "//" authority path-abempty
741 * / path-absolute
742 * / path-rootless
743 * / path-empty
745 * Returns 0 or the error code
747 static int
748 rfc3986_parse_hier_part(URI *uri, const char **str)
750 const char *cur;
751 int ret;
753 cur = *str;
755 if ((*cur == '/') && (*(cur + 1) == '/')) {
756 cur += 2;
757 ret = rfc3986_parse_authority(uri, &cur);
758 if (ret != 0) return(ret);
759 ret = rfc3986_parse_path_ab_empty(uri, &cur);
760 if (ret != 0) return(ret);
761 *str = cur;
762 return(0);
763 } else if (*cur == '/') {
764 ret = rfc3986_parse_path_absolute(uri, &cur);
765 if (ret != 0) return(ret);
766 } else if (ISA_PCHAR(cur)) {
767 ret = rfc3986_parse_path_rootless(uri, &cur);
768 if (ret != 0) return(ret);
769 } else {
770 /* path-empty is effectively empty */
771 if (uri != NULL) {
772 if (uri->path != NULL) g_free(uri->path);
773 uri->path = NULL;
776 *str = cur;
777 return (0);
781 * rfc3986_parse_relative_ref:
782 * @uri: pointer to an URI structure
783 * @str: the string to analyze
785 * Parse an URI string and fills in the appropriate fields
786 * of the @uri structure
788 * relative-ref = relative-part [ "?" query ] [ "#" fragment ]
789 * relative-part = "//" authority path-abempty
790 * / path-absolute
791 * / path-noscheme
792 * / path-empty
794 * Returns 0 or the error code
796 static int
797 rfc3986_parse_relative_ref(URI *uri, const char *str) {
798 int ret;
800 if ((*str == '/') && (*(str + 1) == '/')) {
801 str += 2;
802 ret = rfc3986_parse_authority(uri, &str);
803 if (ret != 0) return(ret);
804 ret = rfc3986_parse_path_ab_empty(uri, &str);
805 if (ret != 0) return(ret);
806 } else if (*str == '/') {
807 ret = rfc3986_parse_path_absolute(uri, &str);
808 if (ret != 0) return(ret);
809 } else if (ISA_PCHAR(str)) {
810 ret = rfc3986_parse_path_no_scheme(uri, &str);
811 if (ret != 0) return(ret);
812 } else {
813 /* path-empty is effectively empty */
814 if (uri != NULL) {
815 if (uri->path != NULL) g_free(uri->path);
816 uri->path = NULL;
820 if (*str == '?') {
821 str++;
822 ret = rfc3986_parse_query(uri, &str);
823 if (ret != 0) return(ret);
825 if (*str == '#') {
826 str++;
827 ret = rfc3986_parse_fragment(uri, &str);
828 if (ret != 0) return(ret);
830 if (*str != 0) {
831 uri_clean(uri);
832 return(1);
834 return(0);
839 * rfc3986_parse:
840 * @uri: pointer to an URI structure
841 * @str: the string to analyze
843 * Parse an URI string and fills in the appropriate fields
844 * of the @uri structure
846 * scheme ":" hier-part [ "?" query ] [ "#" fragment ]
848 * Returns 0 or the error code
850 static int
851 rfc3986_parse(URI *uri, const char *str) {
852 int ret;
854 ret = rfc3986_parse_scheme(uri, &str);
855 if (ret != 0) return(ret);
856 if (*str != ':') {
857 return(1);
859 str++;
860 ret = rfc3986_parse_hier_part(uri, &str);
861 if (ret != 0) return(ret);
862 if (*str == '?') {
863 str++;
864 ret = rfc3986_parse_query(uri, &str);
865 if (ret != 0) return(ret);
867 if (*str == '#') {
868 str++;
869 ret = rfc3986_parse_fragment(uri, &str);
870 if (ret != 0) return(ret);
872 if (*str != 0) {
873 uri_clean(uri);
874 return(1);
876 return(0);
880 * rfc3986_parse_uri_reference:
881 * @uri: pointer to an URI structure
882 * @str: the string to analyze
884 * Parse an URI reference string and fills in the appropriate fields
885 * of the @uri structure
887 * URI-reference = URI / relative-ref
889 * Returns 0 or the error code
891 static int
892 rfc3986_parse_uri_reference(URI *uri, const char *str) {
893 int ret;
895 if (str == NULL)
896 return(-1);
897 uri_clean(uri);
900 * Try first to parse absolute refs, then fallback to relative if
901 * it fails.
903 ret = rfc3986_parse(uri, str);
904 if (ret != 0) {
905 uri_clean(uri);
906 ret = rfc3986_parse_relative_ref(uri, str);
907 if (ret != 0) {
908 uri_clean(uri);
909 return(ret);
912 return(0);
916 * uri_parse:
917 * @str: the URI string to analyze
919 * Parse an URI based on RFC 3986
921 * URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
923 * Returns a newly built URI or NULL in case of error
925 URI *
926 uri_parse(const char *str) {
927 URI *uri;
928 int ret;
930 if (str == NULL)
931 return(NULL);
932 uri = uri_new();
933 if (uri != NULL) {
934 ret = rfc3986_parse_uri_reference(uri, str);
935 if (ret) {
936 uri_free(uri);
937 return(NULL);
940 return(uri);
944 * uri_parse_into:
945 * @uri: pointer to an URI structure
946 * @str: the string to analyze
948 * Parse an URI reference string based on RFC 3986 and fills in the
949 * appropriate fields of the @uri structure
951 * URI-reference = URI / relative-ref
953 * Returns 0 or the error code
956 uri_parse_into(URI *uri, const char *str) {
957 return(rfc3986_parse_uri_reference(uri, str));
961 * uri_parse_raw:
962 * @str: the URI string to analyze
963 * @raw: if 1 unescaping of URI pieces are disabled
965 * Parse an URI but allows to keep intact the original fragments.
967 * URI-reference = URI / relative-ref
969 * Returns a newly built URI or NULL in case of error
971 URI *
972 uri_parse_raw(const char *str, int raw) {
973 URI *uri;
974 int ret;
976 if (str == NULL)
977 return(NULL);
978 uri = uri_new();
979 if (uri != NULL) {
980 if (raw) {
981 uri->cleanup |= 2;
983 ret = uri_parse_into(uri, str);
984 if (ret) {
985 uri_free(uri);
986 return(NULL);
989 return(uri);
992 /************************************************************************
994 * Generic URI structure functions *
996 ************************************************************************/
999 * uri_new:
1001 * Simply creates an empty URI
1003 * Returns the new structure or NULL in case of error
1005 URI *
1006 uri_new(void) {
1007 URI *ret;
1009 ret = (URI *) g_malloc(sizeof(URI));
1010 memset(ret, 0, sizeof(URI));
1011 return(ret);
1015 * realloc2n:
1017 * Function to handle properly a reallocation when saving an URI
1018 * Also imposes some limit on the length of an URI string output
1020 static char *
1021 realloc2n(char *ret, int *max) {
1022 char *temp;
1023 int tmp;
1025 tmp = *max * 2;
1026 temp = g_realloc(ret, (tmp + 1));
1027 *max = tmp;
1028 return(temp);
1032 * uri_to_string:
1033 * @uri: pointer to an URI
1035 * Save the URI as an escaped string
1037 * Returns a new string (to be deallocated by caller)
1039 char *
1040 uri_to_string(URI *uri) {
1041 char *ret = NULL;
1042 char *temp;
1043 const char *p;
1044 int len;
1045 int max;
1047 if (uri == NULL) return(NULL);
1050 max = 80;
1051 ret = g_malloc(max + 1);
1052 len = 0;
1054 if (uri->scheme != NULL) {
1055 p = uri->scheme;
1056 while (*p != 0) {
1057 if (len >= max) {
1058 temp = realloc2n(ret, &max);
1059 if (temp == NULL) goto mem_error;
1060 ret = temp;
1062 ret[len++] = *p++;
1064 if (len >= max) {
1065 temp = realloc2n(ret, &max);
1066 if (temp == NULL) goto mem_error;
1067 ret = temp;
1069 ret[len++] = ':';
1071 if (uri->opaque != NULL) {
1072 p = uri->opaque;
1073 while (*p != 0) {
1074 if (len + 3 >= max) {
1075 temp = realloc2n(ret, &max);
1076 if (temp == NULL) goto mem_error;
1077 ret = temp;
1079 if (IS_RESERVED(*(p)) || IS_UNRESERVED(*(p)))
1080 ret[len++] = *p++;
1081 else {
1082 int val = *(unsigned char *)p++;
1083 int hi = val / 0x10, lo = val % 0x10;
1084 ret[len++] = '%';
1085 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1086 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1089 } else {
1090 if (uri->server != NULL) {
1091 if (len + 3 >= max) {
1092 temp = realloc2n(ret, &max);
1093 if (temp == NULL) goto mem_error;
1094 ret = temp;
1096 ret[len++] = '/';
1097 ret[len++] = '/';
1098 if (uri->user != NULL) {
1099 p = uri->user;
1100 while (*p != 0) {
1101 if (len + 3 >= max) {
1102 temp = realloc2n(ret, &max);
1103 if (temp == NULL) goto mem_error;
1104 ret = temp;
1106 if ((IS_UNRESERVED(*(p))) ||
1107 ((*(p) == ';')) || ((*(p) == ':')) ||
1108 ((*(p) == '&')) || ((*(p) == '=')) ||
1109 ((*(p) == '+')) || ((*(p) == '$')) ||
1110 ((*(p) == ',')))
1111 ret[len++] = *p++;
1112 else {
1113 int val = *(unsigned char *)p++;
1114 int hi = val / 0x10, lo = val % 0x10;
1115 ret[len++] = '%';
1116 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1117 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1120 if (len + 3 >= max) {
1121 temp = realloc2n(ret, &max);
1122 if (temp == NULL) goto mem_error;
1123 ret = temp;
1125 ret[len++] = '@';
1127 p = uri->server;
1128 while (*p != 0) {
1129 if (len >= max) {
1130 temp = realloc2n(ret, &max);
1131 if (temp == NULL) goto mem_error;
1132 ret = temp;
1134 ret[len++] = *p++;
1136 if (uri->port > 0) {
1137 if (len + 10 >= max) {
1138 temp = realloc2n(ret, &max);
1139 if (temp == NULL) goto mem_error;
1140 ret = temp;
1142 len += snprintf(&ret[len], max - len, ":%d", uri->port);
1144 } else if (uri->authority != NULL) {
1145 if (len + 3 >= max) {
1146 temp = realloc2n(ret, &max);
1147 if (temp == NULL) goto mem_error;
1148 ret = temp;
1150 ret[len++] = '/';
1151 ret[len++] = '/';
1152 p = uri->authority;
1153 while (*p != 0) {
1154 if (len + 3 >= max) {
1155 temp = realloc2n(ret, &max);
1156 if (temp == NULL) goto mem_error;
1157 ret = temp;
1159 if ((IS_UNRESERVED(*(p))) ||
1160 ((*(p) == '$')) || ((*(p) == ',')) || ((*(p) == ';')) ||
1161 ((*(p) == ':')) || ((*(p) == '@')) || ((*(p) == '&')) ||
1162 ((*(p) == '=')) || ((*(p) == '+')))
1163 ret[len++] = *p++;
1164 else {
1165 int val = *(unsigned char *)p++;
1166 int hi = val / 0x10, lo = val % 0x10;
1167 ret[len++] = '%';
1168 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1169 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1172 } else if (uri->scheme != NULL) {
1173 if (len + 3 >= max) {
1174 temp = realloc2n(ret, &max);
1175 if (temp == NULL) goto mem_error;
1176 ret = temp;
1178 ret[len++] = '/';
1179 ret[len++] = '/';
1181 if (uri->path != NULL) {
1182 p = uri->path;
1184 * the colon in file:///d: should not be escaped or
1185 * Windows accesses fail later.
1187 if ((uri->scheme != NULL) &&
1188 (p[0] == '/') &&
1189 (((p[1] >= 'a') && (p[1] <= 'z')) ||
1190 ((p[1] >= 'A') && (p[1] <= 'Z'))) &&
1191 (p[2] == ':') &&
1192 (!strcmp(uri->scheme, "file"))) {
1193 if (len + 3 >= max) {
1194 temp = realloc2n(ret, &max);
1195 if (temp == NULL) goto mem_error;
1196 ret = temp;
1198 ret[len++] = *p++;
1199 ret[len++] = *p++;
1200 ret[len++] = *p++;
1202 while (*p != 0) {
1203 if (len + 3 >= max) {
1204 temp = realloc2n(ret, &max);
1205 if (temp == NULL) goto mem_error;
1206 ret = temp;
1208 if ((IS_UNRESERVED(*(p))) || ((*(p) == '/')) ||
1209 ((*(p) == ';')) || ((*(p) == '@')) || ((*(p) == '&')) ||
1210 ((*(p) == '=')) || ((*(p) == '+')) || ((*(p) == '$')) ||
1211 ((*(p) == ',')))
1212 ret[len++] = *p++;
1213 else {
1214 int val = *(unsigned char *)p++;
1215 int hi = val / 0x10, lo = val % 0x10;
1216 ret[len++] = '%';
1217 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1218 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1222 if (uri->query != NULL) {
1223 if (len + 1 >= max) {
1224 temp = realloc2n(ret, &max);
1225 if (temp == NULL) goto mem_error;
1226 ret = temp;
1228 ret[len++] = '?';
1229 p = uri->query;
1230 while (*p != 0) {
1231 if (len + 1 >= max) {
1232 temp = realloc2n(ret, &max);
1233 if (temp == NULL) goto mem_error;
1234 ret = temp;
1236 ret[len++] = *p++;
1240 if (uri->fragment != NULL) {
1241 if (len + 3 >= max) {
1242 temp = realloc2n(ret, &max);
1243 if (temp == NULL) goto mem_error;
1244 ret = temp;
1246 ret[len++] = '#';
1247 p = uri->fragment;
1248 while (*p != 0) {
1249 if (len + 3 >= max) {
1250 temp = realloc2n(ret, &max);
1251 if (temp == NULL) goto mem_error;
1252 ret = temp;
1254 if ((IS_UNRESERVED(*(p))) || (IS_RESERVED(*(p))))
1255 ret[len++] = *p++;
1256 else {
1257 int val = *(unsigned char *)p++;
1258 int hi = val / 0x10, lo = val % 0x10;
1259 ret[len++] = '%';
1260 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1261 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1265 if (len >= max) {
1266 temp = realloc2n(ret, &max);
1267 if (temp == NULL) goto mem_error;
1268 ret = temp;
1270 ret[len] = 0;
1271 return(ret);
1273 mem_error:
1274 g_free(ret);
1275 return(NULL);
1279 * uri_clean:
1280 * @uri: pointer to an URI
1282 * Make sure the URI struct is free of content
1284 static void
1285 uri_clean(URI *uri) {
1286 if (uri == NULL) return;
1288 if (uri->scheme != NULL) g_free(uri->scheme);
1289 uri->scheme = NULL;
1290 if (uri->server != NULL) g_free(uri->server);
1291 uri->server = NULL;
1292 if (uri->user != NULL) g_free(uri->user);
1293 uri->user = NULL;
1294 if (uri->path != NULL) g_free(uri->path);
1295 uri->path = NULL;
1296 if (uri->fragment != NULL) g_free(uri->fragment);
1297 uri->fragment = NULL;
1298 if (uri->opaque != NULL) g_free(uri->opaque);
1299 uri->opaque = NULL;
1300 if (uri->authority != NULL) g_free(uri->authority);
1301 uri->authority = NULL;
1302 if (uri->query != NULL) g_free(uri->query);
1303 uri->query = NULL;
1307 * uri_free:
1308 * @uri: pointer to an URI
1310 * Free up the URI struct
1312 void
1313 uri_free(URI *uri) {
1314 uri_clean(uri);
1315 g_free(uri);
1318 /************************************************************************
1320 * Helper functions *
1322 ************************************************************************/
1325 * normalize_uri_path:
1326 * @path: pointer to the path string
1328 * Applies the 5 normalization steps to a path string--that is, RFC 2396
1329 * Section 5.2, steps 6.c through 6.g.
1331 * Normalization occurs directly on the string, no new allocation is done
1333 * Returns 0 or an error code
1335 static int
1336 normalize_uri_path(char *path) {
1337 char *cur, *out;
1339 if (path == NULL)
1340 return(-1);
1342 /* Skip all initial "/" chars. We want to get to the beginning of the
1343 * first non-empty segment.
1345 cur = path;
1346 while (cur[0] == '/')
1347 ++cur;
1348 if (cur[0] == '\0')
1349 return(0);
1351 /* Keep everything we've seen so far. */
1352 out = cur;
1355 * Analyze each segment in sequence for cases (c) and (d).
1357 while (cur[0] != '\0') {
1359 * c) All occurrences of "./", where "." is a complete path segment,
1360 * are removed from the buffer string.
1362 if ((cur[0] == '.') && (cur[1] == '/')) {
1363 cur += 2;
1364 /* '//' normalization should be done at this point too */
1365 while (cur[0] == '/')
1366 cur++;
1367 continue;
1371 * d) If the buffer string ends with "." as a complete path segment,
1372 * that "." is removed.
1374 if ((cur[0] == '.') && (cur[1] == '\0'))
1375 break;
1377 /* Otherwise keep the segment. */
1378 while (cur[0] != '/') {
1379 if (cur[0] == '\0')
1380 goto done_cd;
1381 (out++)[0] = (cur++)[0];
1383 /* nomalize // */
1384 while ((cur[0] == '/') && (cur[1] == '/'))
1385 cur++;
1387 (out++)[0] = (cur++)[0];
1389 done_cd:
1390 out[0] = '\0';
1392 /* Reset to the beginning of the first segment for the next sequence. */
1393 cur = path;
1394 while (cur[0] == '/')
1395 ++cur;
1396 if (cur[0] == '\0')
1397 return(0);
1400 * Analyze each segment in sequence for cases (e) and (f).
1402 * e) All occurrences of "<segment>/../", where <segment> is a
1403 * complete path segment not equal to "..", are removed from the
1404 * buffer string. Removal of these path segments is performed
1405 * iteratively, removing the leftmost matching pattern on each
1406 * iteration, until no matching pattern remains.
1408 * f) If the buffer string ends with "<segment>/..", where <segment>
1409 * is a complete path segment not equal to "..", that
1410 * "<segment>/.." is removed.
1412 * To satisfy the "iterative" clause in (e), we need to collapse the
1413 * string every time we find something that needs to be removed. Thus,
1414 * we don't need to keep two pointers into the string: we only need a
1415 * "current position" pointer.
1417 while (1) {
1418 char *segp, *tmp;
1420 /* At the beginning of each iteration of this loop, "cur" points to
1421 * the first character of the segment we want to examine.
1424 /* Find the end of the current segment. */
1425 segp = cur;
1426 while ((segp[0] != '/') && (segp[0] != '\0'))
1427 ++segp;
1429 /* If this is the last segment, we're done (we need at least two
1430 * segments to meet the criteria for the (e) and (f) cases).
1432 if (segp[0] == '\0')
1433 break;
1435 /* If the first segment is "..", or if the next segment _isn't_ "..",
1436 * keep this segment and try the next one.
1438 ++segp;
1439 if (((cur[0] == '.') && (cur[1] == '.') && (segp == cur+3))
1440 || ((segp[0] != '.') || (segp[1] != '.')
1441 || ((segp[2] != '/') && (segp[2] != '\0')))) {
1442 cur = segp;
1443 continue;
1446 /* If we get here, remove this segment and the next one and back up
1447 * to the previous segment (if there is one), to implement the
1448 * "iteratively" clause. It's pretty much impossible to back up
1449 * while maintaining two pointers into the buffer, so just compact
1450 * the whole buffer now.
1453 /* If this is the end of the buffer, we're done. */
1454 if (segp[2] == '\0') {
1455 cur[0] = '\0';
1456 break;
1458 /* Valgrind complained, strcpy(cur, segp + 3); */
1459 /* string will overlap, do not use strcpy */
1460 tmp = cur;
1461 segp += 3;
1462 while ((*tmp++ = *segp++) != 0)
1465 /* If there are no previous segments, then keep going from here. */
1466 segp = cur;
1467 while ((segp > path) && ((--segp)[0] == '/'))
1469 if (segp == path)
1470 continue;
1472 /* "segp" is pointing to the end of a previous segment; find it's
1473 * start. We need to back up to the previous segment and start
1474 * over with that to handle things like "foo/bar/../..". If we
1475 * don't do this, then on the first pass we'll remove the "bar/..",
1476 * but be pointing at the second ".." so we won't realize we can also
1477 * remove the "foo/..".
1479 cur = segp;
1480 while ((cur > path) && (cur[-1] != '/'))
1481 --cur;
1483 out[0] = '\0';
1486 * g) If the resulting buffer string still begins with one or more
1487 * complete path segments of "..", then the reference is
1488 * considered to be in error. Implementations may handle this
1489 * error by retaining these components in the resolved path (i.e.,
1490 * treating them as part of the final URI), by removing them from
1491 * the resolved path (i.e., discarding relative levels above the
1492 * root), or by avoiding traversal of the reference.
1494 * We discard them from the final path.
1496 if (path[0] == '/') {
1497 cur = path;
1498 while ((cur[0] == '/') && (cur[1] == '.') && (cur[2] == '.')
1499 && ((cur[3] == '/') || (cur[3] == '\0')))
1500 cur += 3;
1502 if (cur != path) {
1503 out = path;
1504 while (cur[0] != '\0')
1505 (out++)[0] = (cur++)[0];
1506 out[0] = 0;
1510 return(0);
1513 static int is_hex(char c) {
1514 if (((c >= '0') && (c <= '9')) ||
1515 ((c >= 'a') && (c <= 'f')) ||
1516 ((c >= 'A') && (c <= 'F')))
1517 return(1);
1518 return(0);
1523 * uri_string_unescape:
1524 * @str: the string to unescape
1525 * @len: the length in bytes to unescape (or <= 0 to indicate full string)
1526 * @target: optional destination buffer
1528 * Unescaping routine, but does not check that the string is an URI. The
1529 * output is a direct unsigned char translation of %XX values (no encoding)
1530 * Note that the length of the result can only be smaller or same size as
1531 * the input string.
1533 * Returns a copy of the string, but unescaped, will return NULL only in case
1534 * of error
1536 char *
1537 uri_string_unescape(const char *str, int len, char *target) {
1538 char *ret, *out;
1539 const char *in;
1541 if (str == NULL)
1542 return(NULL);
1543 if (len <= 0) len = strlen(str);
1544 if (len < 0) return(NULL);
1546 if (target == NULL) {
1547 ret = g_malloc(len + 1);
1548 } else
1549 ret = target;
1550 in = str;
1551 out = ret;
1552 while(len > 0) {
1553 if ((len > 2) && (*in == '%') && (is_hex(in[1])) && (is_hex(in[2]))) {
1554 in++;
1555 if ((*in >= '0') && (*in <= '9'))
1556 *out = (*in - '0');
1557 else if ((*in >= 'a') && (*in <= 'f'))
1558 *out = (*in - 'a') + 10;
1559 else if ((*in >= 'A') && (*in <= 'F'))
1560 *out = (*in - 'A') + 10;
1561 in++;
1562 if ((*in >= '0') && (*in <= '9'))
1563 *out = *out * 16 + (*in - '0');
1564 else if ((*in >= 'a') && (*in <= 'f'))
1565 *out = *out * 16 + (*in - 'a') + 10;
1566 else if ((*in >= 'A') && (*in <= 'F'))
1567 *out = *out * 16 + (*in - 'A') + 10;
1568 in++;
1569 len -= 3;
1570 out++;
1571 } else {
1572 *out++ = *in++;
1573 len--;
1576 *out = 0;
1577 return(ret);
1581 * uri_string_escape:
1582 * @str: string to escape
1583 * @list: exception list string of chars not to escape
1585 * This routine escapes a string to hex, ignoring reserved characters (a-z)
1586 * and the characters in the exception list.
1588 * Returns a new escaped string or NULL in case of error.
1590 char *
1591 uri_string_escape(const char *str, const char *list) {
1592 char *ret, ch;
1593 char *temp;
1594 const char *in;
1595 int len, out;
1597 if (str == NULL)
1598 return(NULL);
1599 if (str[0] == 0)
1600 return(g_strdup(str));
1601 len = strlen(str);
1602 if (!(len > 0)) return(NULL);
1604 len += 20;
1605 ret = g_malloc(len);
1606 in = str;
1607 out = 0;
1608 while(*in != 0) {
1609 if (len - out <= 3) {
1610 temp = realloc2n(ret, &len);
1611 ret = temp;
1614 ch = *in;
1616 if ((ch != '@') && (!IS_UNRESERVED(ch)) && (!strchr(list, ch))) {
1617 unsigned char val;
1618 ret[out++] = '%';
1619 val = ch >> 4;
1620 if (val <= 9)
1621 ret[out++] = '0' + val;
1622 else
1623 ret[out++] = 'A' + val - 0xA;
1624 val = ch & 0xF;
1625 if (val <= 9)
1626 ret[out++] = '0' + val;
1627 else
1628 ret[out++] = 'A' + val - 0xA;
1629 in++;
1630 } else {
1631 ret[out++] = *in++;
1635 ret[out] = 0;
1636 return(ret);
1639 /************************************************************************
1641 * Public functions *
1643 ************************************************************************/
1646 * uri_resolve:
1647 * @URI: the URI instance found in the document
1648 * @base: the base value
1650 * Computes he final URI of the reference done by checking that
1651 * the given URI is valid, and building the final URI using the
1652 * base URI. This is processed according to section 5.2 of the
1653 * RFC 2396
1655 * 5.2. Resolving Relative References to Absolute Form
1657 * Returns a new URI string (to be freed by the caller) or NULL in case
1658 * of error.
1660 char *
1661 uri_resolve(const char *uri, const char *base) {
1662 char *val = NULL;
1663 int ret, len, indx, cur, out;
1664 URI *ref = NULL;
1665 URI *bas = NULL;
1666 URI *res = NULL;
1669 * 1) The URI reference is parsed into the potential four components and
1670 * fragment identifier, as described in Section 4.3.
1672 * NOTE that a completely empty URI is treated by modern browsers
1673 * as a reference to "." rather than as a synonym for the current
1674 * URI. Should we do that here?
1676 if (uri == NULL)
1677 ret = -1;
1678 else {
1679 if (*uri) {
1680 ref = uri_new();
1681 if (ref == NULL)
1682 goto done;
1683 ret = uri_parse_into(ref, uri);
1685 else
1686 ret = 0;
1688 if (ret != 0)
1689 goto done;
1690 if ((ref != NULL) && (ref->scheme != NULL)) {
1692 * The URI is absolute don't modify.
1694 val = g_strdup(uri);
1695 goto done;
1697 if (base == NULL)
1698 ret = -1;
1699 else {
1700 bas = uri_new();
1701 if (bas == NULL)
1702 goto done;
1703 ret = uri_parse_into(bas, base);
1705 if (ret != 0) {
1706 if (ref)
1707 val = uri_to_string(ref);
1708 goto done;
1710 if (ref == NULL) {
1712 * the base fragment must be ignored
1714 if (bas->fragment != NULL) {
1715 g_free(bas->fragment);
1716 bas->fragment = NULL;
1718 val = uri_to_string(bas);
1719 goto done;
1723 * 2) If the path component is empty and the scheme, authority, and
1724 * query components are undefined, then it is a reference to the
1725 * current document and we are done. Otherwise, the reference URI's
1726 * query and fragment components are defined as found (or not found)
1727 * within the URI reference and not inherited from the base URI.
1729 * NOTE that in modern browsers, the parsing differs from the above
1730 * in the following aspect: the query component is allowed to be
1731 * defined while still treating this as a reference to the current
1732 * document.
1734 res = uri_new();
1735 if (res == NULL)
1736 goto done;
1737 if ((ref->scheme == NULL) && (ref->path == NULL) &&
1738 ((ref->authority == NULL) && (ref->server == NULL))) {
1739 if (bas->scheme != NULL)
1740 res->scheme = g_strdup(bas->scheme);
1741 if (bas->authority != NULL)
1742 res->authority = g_strdup(bas->authority);
1743 else if (bas->server != NULL) {
1744 res->server = g_strdup(bas->server);
1745 if (bas->user != NULL)
1746 res->user = g_strdup(bas->user);
1747 res->port = bas->port;
1749 if (bas->path != NULL)
1750 res->path = g_strdup(bas->path);
1751 if (ref->query != NULL)
1752 res->query = g_strdup (ref->query);
1753 else if (bas->query != NULL)
1754 res->query = g_strdup(bas->query);
1755 if (ref->fragment != NULL)
1756 res->fragment = g_strdup(ref->fragment);
1757 goto step_7;
1761 * 3) If the scheme component is defined, indicating that the reference
1762 * starts with a scheme name, then the reference is interpreted as an
1763 * absolute URI and we are done. Otherwise, the reference URI's
1764 * scheme is inherited from the base URI's scheme component.
1766 if (ref->scheme != NULL) {
1767 val = uri_to_string(ref);
1768 goto done;
1770 if (bas->scheme != NULL)
1771 res->scheme = g_strdup(bas->scheme);
1773 if (ref->query != NULL)
1774 res->query = g_strdup(ref->query);
1775 if (ref->fragment != NULL)
1776 res->fragment = g_strdup(ref->fragment);
1779 * 4) If the authority component is defined, then the reference is a
1780 * network-path and we skip to step 7. Otherwise, the reference
1781 * URI's authority is inherited from the base URI's authority
1782 * component, which will also be undefined if the URI scheme does not
1783 * use an authority component.
1785 if ((ref->authority != NULL) || (ref->server != NULL)) {
1786 if (ref->authority != NULL)
1787 res->authority = g_strdup(ref->authority);
1788 else {
1789 res->server = g_strdup(ref->server);
1790 if (ref->user != NULL)
1791 res->user = g_strdup(ref->user);
1792 res->port = ref->port;
1794 if (ref->path != NULL)
1795 res->path = g_strdup(ref->path);
1796 goto step_7;
1798 if (bas->authority != NULL)
1799 res->authority = g_strdup(bas->authority);
1800 else if (bas->server != NULL) {
1801 res->server = g_strdup(bas->server);
1802 if (bas->user != NULL)
1803 res->user = g_strdup(bas->user);
1804 res->port = bas->port;
1808 * 5) If the path component begins with a slash character ("/"), then
1809 * the reference is an absolute-path and we skip to step 7.
1811 if ((ref->path != NULL) && (ref->path[0] == '/')) {
1812 res->path = g_strdup(ref->path);
1813 goto step_7;
1818 * 6) If this step is reached, then we are resolving a relative-path
1819 * reference. The relative path needs to be merged with the base
1820 * URI's path. Although there are many ways to do this, we will
1821 * describe a simple method using a separate string buffer.
1823 * Allocate a buffer large enough for the result string.
1825 len = 2; /* extra / and 0 */
1826 if (ref->path != NULL)
1827 len += strlen(ref->path);
1828 if (bas->path != NULL)
1829 len += strlen(bas->path);
1830 res->path = g_malloc(len);
1831 res->path[0] = 0;
1834 * a) All but the last segment of the base URI's path component is
1835 * copied to the buffer. In other words, any characters after the
1836 * last (right-most) slash character, if any, are excluded.
1838 cur = 0;
1839 out = 0;
1840 if (bas->path != NULL) {
1841 while (bas->path[cur] != 0) {
1842 while ((bas->path[cur] != 0) && (bas->path[cur] != '/'))
1843 cur++;
1844 if (bas->path[cur] == 0)
1845 break;
1847 cur++;
1848 while (out < cur) {
1849 res->path[out] = bas->path[out];
1850 out++;
1854 res->path[out] = 0;
1857 * b) The reference's path component is appended to the buffer
1858 * string.
1860 if (ref->path != NULL && ref->path[0] != 0) {
1861 indx = 0;
1863 * Ensure the path includes a '/'
1865 if ((out == 0) && (bas->server != NULL))
1866 res->path[out++] = '/';
1867 while (ref->path[indx] != 0) {
1868 res->path[out++] = ref->path[indx++];
1871 res->path[out] = 0;
1874 * Steps c) to h) are really path normalization steps
1876 normalize_uri_path(res->path);
1878 step_7:
1881 * 7) The resulting URI components, including any inherited from the
1882 * base URI, are recombined to give the absolute form of the URI
1883 * reference.
1885 val = uri_to_string(res);
1887 done:
1888 if (ref != NULL)
1889 uri_free(ref);
1890 if (bas != NULL)
1891 uri_free(bas);
1892 if (res != NULL)
1893 uri_free(res);
1894 return(val);
1898 * uri_resolve_relative:
1899 * @URI: the URI reference under consideration
1900 * @base: the base value
1902 * Expresses the URI of the reference in terms relative to the
1903 * base. Some examples of this operation include:
1904 * base = "http://site1.com/docs/book1.html"
1905 * URI input URI returned
1906 * docs/pic1.gif pic1.gif
1907 * docs/img/pic1.gif img/pic1.gif
1908 * img/pic1.gif ../img/pic1.gif
1909 * http://site1.com/docs/pic1.gif pic1.gif
1910 * http://site2.com/docs/pic1.gif http://site2.com/docs/pic1.gif
1912 * base = "docs/book1.html"
1913 * URI input URI returned
1914 * docs/pic1.gif pic1.gif
1915 * docs/img/pic1.gif img/pic1.gif
1916 * img/pic1.gif ../img/pic1.gif
1917 * http://site1.com/docs/pic1.gif http://site1.com/docs/pic1.gif
1920 * Note: if the URI reference is really wierd or complicated, it may be
1921 * worthwhile to first convert it into a "nice" one by calling
1922 * uri_resolve (using 'base') before calling this routine,
1923 * since this routine (for reasonable efficiency) assumes URI has
1924 * already been through some validation.
1926 * Returns a new URI string (to be freed by the caller) or NULL in case
1927 * error.
1929 char *
1930 uri_resolve_relative (const char *uri, const char * base)
1932 char *val = NULL;
1933 int ret;
1934 int ix;
1935 int pos = 0;
1936 int nbslash = 0;
1937 int len;
1938 URI *ref = NULL;
1939 URI *bas = NULL;
1940 char *bptr, *uptr, *vptr;
1941 int remove_path = 0;
1943 if ((uri == NULL) || (*uri == 0))
1944 return NULL;
1947 * First parse URI into a standard form
1949 ref = uri_new ();
1950 if (ref == NULL)
1951 return NULL;
1952 /* If URI not already in "relative" form */
1953 if (uri[0] != '.') {
1954 ret = uri_parse_into (ref, uri);
1955 if (ret != 0)
1956 goto done; /* Error in URI, return NULL */
1957 } else
1958 ref->path = g_strdup(uri);
1961 * Next parse base into the same standard form
1963 if ((base == NULL) || (*base == 0)) {
1964 val = g_strdup (uri);
1965 goto done;
1967 bas = uri_new ();
1968 if (bas == NULL)
1969 goto done;
1970 if (base[0] != '.') {
1971 ret = uri_parse_into (bas, base);
1972 if (ret != 0)
1973 goto done; /* Error in base, return NULL */
1974 } else
1975 bas->path = g_strdup(base);
1978 * If the scheme / server on the URI differs from the base,
1979 * just return the URI
1981 if ((ref->scheme != NULL) &&
1982 ((bas->scheme == NULL) ||
1983 (strcmp (bas->scheme, ref->scheme)) ||
1984 (strcmp (bas->server, ref->server)))) {
1985 val = g_strdup (uri);
1986 goto done;
1988 if (!strcmp(bas->path, ref->path)) {
1989 val = g_strdup("");
1990 goto done;
1992 if (bas->path == NULL) {
1993 val = g_strdup(ref->path);
1994 goto done;
1996 if (ref->path == NULL) {
1997 ref->path = (char *) "/";
1998 remove_path = 1;
2002 * At this point (at last!) we can compare the two paths
2004 * First we take care of the special case where either of the
2005 * two path components may be missing (bug 316224)
2007 if (bas->path == NULL) {
2008 if (ref->path != NULL) {
2009 uptr = ref->path;
2010 if (*uptr == '/')
2011 uptr++;
2012 /* exception characters from uri_to_string */
2013 val = uri_string_escape(uptr, "/;&=+$,");
2015 goto done;
2017 bptr = bas->path;
2018 if (ref->path == NULL) {
2019 for (ix = 0; bptr[ix] != 0; ix++) {
2020 if (bptr[ix] == '/')
2021 nbslash++;
2023 uptr = NULL;
2024 len = 1; /* this is for a string terminator only */
2025 } else {
2027 * Next we compare the two strings and find where they first differ
2029 if ((ref->path[pos] == '.') && (ref->path[pos+1] == '/'))
2030 pos += 2;
2031 if ((*bptr == '.') && (bptr[1] == '/'))
2032 bptr += 2;
2033 else if ((*bptr == '/') && (ref->path[pos] != '/'))
2034 bptr++;
2035 while ((bptr[pos] == ref->path[pos]) && (bptr[pos] != 0))
2036 pos++;
2038 if (bptr[pos] == ref->path[pos]) {
2039 val = g_strdup("");
2040 goto done; /* (I can't imagine why anyone would do this) */
2044 * In URI, "back up" to the last '/' encountered. This will be the
2045 * beginning of the "unique" suffix of URI
2047 ix = pos;
2048 if ((ref->path[ix] == '/') && (ix > 0))
2049 ix--;
2050 else if ((ref->path[ix] == 0) && (ix > 1) && (ref->path[ix - 1] == '/'))
2051 ix -= 2;
2052 for (; ix > 0; ix--) {
2053 if (ref->path[ix] == '/')
2054 break;
2056 if (ix == 0) {
2057 uptr = ref->path;
2058 } else {
2059 ix++;
2060 uptr = &ref->path[ix];
2064 * In base, count the number of '/' from the differing point
2066 if (bptr[pos] != ref->path[pos]) {/* check for trivial URI == base */
2067 for (; bptr[ix] != 0; ix++) {
2068 if (bptr[ix] == '/')
2069 nbslash++;
2072 len = strlen (uptr) + 1;
2075 if (nbslash == 0) {
2076 if (uptr != NULL)
2077 /* exception characters from uri_to_string */
2078 val = uri_string_escape(uptr, "/;&=+$,");
2079 goto done;
2083 * Allocate just enough space for the returned string -
2084 * length of the remainder of the URI, plus enough space
2085 * for the "../" groups, plus one for the terminator
2087 val = g_malloc (len + 3 * nbslash);
2088 vptr = val;
2090 * Put in as many "../" as needed
2092 for (; nbslash>0; nbslash--) {
2093 *vptr++ = '.';
2094 *vptr++ = '.';
2095 *vptr++ = '/';
2098 * Finish up with the end of the URI
2100 if (uptr != NULL) {
2101 if ((vptr > val) && (len > 0) &&
2102 (uptr[0] == '/') && (vptr[-1] == '/')) {
2103 memcpy (vptr, uptr + 1, len - 1);
2104 vptr[len - 2] = 0;
2105 } else {
2106 memcpy (vptr, uptr, len);
2107 vptr[len - 1] = 0;
2109 } else {
2110 vptr[len - 1] = 0;
2113 /* escape the freshly-built path */
2114 vptr = val;
2115 /* exception characters from uri_to_string */
2116 val = uri_string_escape(vptr, "/;&=+$,");
2117 g_free(vptr);
2119 done:
2121 * Free the working variables
2123 if (remove_path != 0)
2124 ref->path = NULL;
2125 if (ref != NULL)
2126 uri_free (ref);
2127 if (bas != NULL)
2128 uri_free (bas);
2130 return val;
2134 * Utility functions to help parse and assemble query strings.
2137 struct QueryParams *
2138 query_params_new (int init_alloc)
2140 struct QueryParams *ps;
2142 if (init_alloc <= 0) init_alloc = 1;
2144 ps = g_new(QueryParams, 1);
2145 ps->n = 0;
2146 ps->alloc = init_alloc;
2147 ps->p = g_new(QueryParam, ps->alloc);
2149 return ps;
2152 /* Ensure there is space to store at least one more parameter
2153 * at the end of the set.
2155 static int
2156 query_params_append (struct QueryParams *ps,
2157 const char *name, const char *value)
2159 if (ps->n >= ps->alloc) {
2160 ps->p = g_renew(QueryParam, ps->p, ps->alloc * 2);
2161 ps->alloc *= 2;
2164 ps->p[ps->n].name = g_strdup(name);
2165 ps->p[ps->n].value = value ? g_strdup(value) : NULL;
2166 ps->p[ps->n].ignore = 0;
2167 ps->n++;
2169 return 0;
2172 void
2173 query_params_free (struct QueryParams *ps)
2175 int i;
2177 for (i = 0; i < ps->n; ++i) {
2178 g_free (ps->p[i].name);
2179 g_free (ps->p[i].value);
2181 g_free (ps->p);
2182 g_free (ps);
2185 struct QueryParams *
2186 query_params_parse (const char *query)
2188 struct QueryParams *ps;
2189 const char *end, *eq;
2191 ps = query_params_new (0);
2192 if (!query || query[0] == '\0') return ps;
2194 while (*query) {
2195 char *name = NULL, *value = NULL;
2197 /* Find the next separator, or end of the string. */
2198 end = strchr (query, '&');
2199 if (!end)
2200 end = strchr (query, ';');
2201 if (!end)
2202 end = query + strlen (query);
2204 /* Find the first '=' character between here and end. */
2205 eq = strchr (query, '=');
2206 if (eq && eq >= end) eq = NULL;
2208 /* Empty section (eg. "&&"). */
2209 if (end == query)
2210 goto next;
2212 /* If there is no '=' character, then we have just "name"
2213 * and consistent with CGI.pm we assume value is "".
2215 else if (!eq) {
2216 name = uri_string_unescape (query, end - query, NULL);
2217 value = NULL;
2219 /* Or if we have "name=" here (works around annoying
2220 * problem when calling uri_string_unescape with len = 0).
2222 else if (eq+1 == end) {
2223 name = uri_string_unescape (query, eq - query, NULL);
2224 value = g_new0(char, 1);
2226 /* If the '=' character is at the beginning then we have
2227 * "=value" and consistent with CGI.pm we _ignore_ this.
2229 else if (query == eq)
2230 goto next;
2232 /* Otherwise it's "name=value". */
2233 else {
2234 name = uri_string_unescape (query, eq - query, NULL);
2235 value = uri_string_unescape (eq+1, end - (eq+1), NULL);
2238 /* Append to the parameter set. */
2239 query_params_append (ps, name, value);
2240 g_free(name);
2241 g_free(value);
2243 next:
2244 query = end;
2245 if (*query) query ++; /* skip '&' separator */
2248 return ps;