target/arm: Implement FCSEL for fp16
[qemu.git] / target / arm / translate-a64.c
blob9dacb583ae8ecce62755e23686e88e63c0206091
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
40 static TCGv_i64 cpu_X[32];
41 static TCGv_i64 cpu_pc;
43 /* Load/store exclusive handling */
44 static TCGv_i64 cpu_exclusive_high;
45 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* Function prototype for gen_ functions for calling Neon helpers */
73 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
74 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
77 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
78 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
79 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
80 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
81 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
82 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
83 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
84 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
85 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
86 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
87 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
89 /* Note that the gvec expanders operate on offsets + sizes. */
90 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
91 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
92 uint32_t, uint32_t);
93 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
94 uint32_t, uint32_t, uint32_t);
96 /* initialize TCG globals. */
97 void a64_translate_init(void)
99 int i;
101 cpu_pc = tcg_global_mem_new_i64(cpu_env,
102 offsetof(CPUARMState, pc),
103 "pc");
104 for (i = 0; i < 32; i++) {
105 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
106 offsetof(CPUARMState, xregs[i]),
107 regnames[i]);
110 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
111 offsetof(CPUARMState, exclusive_high), "exclusive_high");
114 static inline int get_a64_user_mem_index(DisasContext *s)
116 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
117 * if EL1, access as if EL0; otherwise access at current EL
119 ARMMMUIdx useridx;
121 switch (s->mmu_idx) {
122 case ARMMMUIdx_S12NSE1:
123 useridx = ARMMMUIdx_S12NSE0;
124 break;
125 case ARMMMUIdx_S1SE1:
126 useridx = ARMMMUIdx_S1SE0;
127 break;
128 case ARMMMUIdx_S2NS:
129 g_assert_not_reached();
130 default:
131 useridx = s->mmu_idx;
132 break;
134 return arm_to_core_mmu_idx(useridx);
137 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
138 fprintf_function cpu_fprintf, int flags)
140 ARMCPU *cpu = ARM_CPU(cs);
141 CPUARMState *env = &cpu->env;
142 uint32_t psr = pstate_read(env);
143 int i;
144 int el = arm_current_el(env);
145 const char *ns_status;
147 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
148 env->pc, env->xregs[31]);
149 for (i = 0; i < 31; i++) {
150 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
151 if ((i % 4) == 3) {
152 cpu_fprintf(f, "\n");
153 } else {
154 cpu_fprintf(f, " ");
158 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
159 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
160 } else {
161 ns_status = "";
164 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
165 psr,
166 psr & PSTATE_N ? 'N' : '-',
167 psr & PSTATE_Z ? 'Z' : '-',
168 psr & PSTATE_C ? 'C' : '-',
169 psr & PSTATE_V ? 'V' : '-',
170 ns_status,
172 psr & PSTATE_SP ? 'h' : 't');
174 if (flags & CPU_DUMP_FPU) {
175 int numvfpregs = 32;
176 for (i = 0; i < numvfpregs; i++) {
177 uint64_t *q = aa64_vfp_qreg(env, i);
178 uint64_t vlo = q[0];
179 uint64_t vhi = q[1];
180 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "%c",
181 i, vhi, vlo, (i & 1 ? '\n' : ' '));
183 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
184 vfp_get_fpcr(env), vfp_get_fpsr(env));
188 void gen_a64_set_pc_im(uint64_t val)
190 tcg_gen_movi_i64(cpu_pc, val);
193 /* Load the PC from a generic TCG variable.
195 * If address tagging is enabled via the TCR TBI bits, then loading
196 * an address into the PC will clear out any tag in the it:
197 * + for EL2 and EL3 there is only one TBI bit, and if it is set
198 * then the address is zero-extended, clearing bits [63:56]
199 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
200 * and TBI1 controls addressses with bit 55 == 1.
201 * If the appropriate TBI bit is set for the address then
202 * the address is sign-extended from bit 55 into bits [63:56]
204 * We can avoid doing this for relative-branches, because the
205 * PC + offset can never overflow into the tag bits (assuming
206 * that virtual addresses are less than 56 bits wide, as they
207 * are currently), but we must handle it for branch-to-register.
209 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
212 if (s->current_el <= 1) {
213 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
214 * examine bit 55 of address, can just generate code.
215 * If mixed, then test via generated code
217 if (s->tbi0 && s->tbi1) {
218 TCGv_i64 tmp_reg = tcg_temp_new_i64();
219 /* Both bits set, sign extension from bit 55 into [63:56] will
220 * cover both cases
222 tcg_gen_shli_i64(tmp_reg, src, 8);
223 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
224 tcg_temp_free_i64(tmp_reg);
225 } else if (!s->tbi0 && !s->tbi1) {
226 /* Neither bit set, just load it as-is */
227 tcg_gen_mov_i64(cpu_pc, src);
228 } else {
229 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
230 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
231 TCGv_i64 tcg_zero = tcg_const_i64(0);
233 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
235 if (s->tbi0) {
236 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
237 tcg_gen_andi_i64(tcg_tmpval, src,
238 0x00FFFFFFFFFFFFFFull);
239 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
240 tcg_tmpval, src);
241 } else {
242 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
243 tcg_gen_ori_i64(tcg_tmpval, src,
244 0xFF00000000000000ull);
245 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
246 tcg_tmpval, src);
248 tcg_temp_free_i64(tcg_zero);
249 tcg_temp_free_i64(tcg_bit55);
250 tcg_temp_free_i64(tcg_tmpval);
252 } else { /* EL > 1 */
253 if (s->tbi0) {
254 /* Force tag byte to all zero */
255 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
256 } else {
257 /* Load unmodified address */
258 tcg_gen_mov_i64(cpu_pc, src);
263 typedef struct DisasCompare64 {
264 TCGCond cond;
265 TCGv_i64 value;
266 } DisasCompare64;
268 static void a64_test_cc(DisasCompare64 *c64, int cc)
270 DisasCompare c32;
272 arm_test_cc(&c32, cc);
274 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
275 * properly. The NE/EQ comparisons are also fine with this choice. */
276 c64->cond = c32.cond;
277 c64->value = tcg_temp_new_i64();
278 tcg_gen_ext_i32_i64(c64->value, c32.value);
280 arm_free_cc(&c32);
283 static void a64_free_cc(DisasCompare64 *c64)
285 tcg_temp_free_i64(c64->value);
288 static void gen_exception_internal(int excp)
290 TCGv_i32 tcg_excp = tcg_const_i32(excp);
292 assert(excp_is_internal(excp));
293 gen_helper_exception_internal(cpu_env, tcg_excp);
294 tcg_temp_free_i32(tcg_excp);
297 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
299 TCGv_i32 tcg_excp = tcg_const_i32(excp);
300 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
301 TCGv_i32 tcg_el = tcg_const_i32(target_el);
303 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
304 tcg_syn, tcg_el);
305 tcg_temp_free_i32(tcg_el);
306 tcg_temp_free_i32(tcg_syn);
307 tcg_temp_free_i32(tcg_excp);
310 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
312 gen_a64_set_pc_im(s->pc - offset);
313 gen_exception_internal(excp);
314 s->base.is_jmp = DISAS_NORETURN;
317 static void gen_exception_insn(DisasContext *s, int offset, int excp,
318 uint32_t syndrome, uint32_t target_el)
320 gen_a64_set_pc_im(s->pc - offset);
321 gen_exception(excp, syndrome, target_el);
322 s->base.is_jmp = DISAS_NORETURN;
325 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
326 uint32_t syndrome)
328 TCGv_i32 tcg_syn;
330 gen_a64_set_pc_im(s->pc - offset);
331 tcg_syn = tcg_const_i32(syndrome);
332 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
333 tcg_temp_free_i32(tcg_syn);
334 s->base.is_jmp = DISAS_NORETURN;
337 static void gen_ss_advance(DisasContext *s)
339 /* If the singlestep state is Active-not-pending, advance to
340 * Active-pending.
342 if (s->ss_active) {
343 s->pstate_ss = 0;
344 gen_helper_clear_pstate_ss(cpu_env);
348 static void gen_step_complete_exception(DisasContext *s)
350 /* We just completed step of an insn. Move from Active-not-pending
351 * to Active-pending, and then also take the swstep exception.
352 * This corresponds to making the (IMPDEF) choice to prioritize
353 * swstep exceptions over asynchronous exceptions taken to an exception
354 * level where debug is disabled. This choice has the advantage that
355 * we do not need to maintain internal state corresponding to the
356 * ISV/EX syndrome bits between completion of the step and generation
357 * of the exception, and our syndrome information is always correct.
359 gen_ss_advance(s);
360 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
361 default_exception_el(s));
362 s->base.is_jmp = DISAS_NORETURN;
365 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
367 /* No direct tb linking with singlestep (either QEMU's or the ARM
368 * debug architecture kind) or deterministic io
370 if (s->base.singlestep_enabled || s->ss_active ||
371 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
372 return false;
375 #ifndef CONFIG_USER_ONLY
376 /* Only link tbs from inside the same guest page */
377 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
378 return false;
380 #endif
382 return true;
385 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
387 TranslationBlock *tb;
389 tb = s->base.tb;
390 if (use_goto_tb(s, n, dest)) {
391 tcg_gen_goto_tb(n);
392 gen_a64_set_pc_im(dest);
393 tcg_gen_exit_tb((intptr_t)tb + n);
394 s->base.is_jmp = DISAS_NORETURN;
395 } else {
396 gen_a64_set_pc_im(dest);
397 if (s->ss_active) {
398 gen_step_complete_exception(s);
399 } else if (s->base.singlestep_enabled) {
400 gen_exception_internal(EXCP_DEBUG);
401 } else {
402 tcg_gen_lookup_and_goto_ptr();
403 s->base.is_jmp = DISAS_NORETURN;
408 static void unallocated_encoding(DisasContext *s)
410 /* Unallocated and reserved encodings are uncategorized */
411 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
412 default_exception_el(s));
415 #define unsupported_encoding(s, insn) \
416 do { \
417 qemu_log_mask(LOG_UNIMP, \
418 "%s:%d: unsupported instruction encoding 0x%08x " \
419 "at pc=%016" PRIx64 "\n", \
420 __FILE__, __LINE__, insn, s->pc - 4); \
421 unallocated_encoding(s); \
422 } while (0)
424 static void init_tmp_a64_array(DisasContext *s)
426 #ifdef CONFIG_DEBUG_TCG
427 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
428 #endif
429 s->tmp_a64_count = 0;
432 static void free_tmp_a64(DisasContext *s)
434 int i;
435 for (i = 0; i < s->tmp_a64_count; i++) {
436 tcg_temp_free_i64(s->tmp_a64[i]);
438 init_tmp_a64_array(s);
441 static TCGv_i64 new_tmp_a64(DisasContext *s)
443 assert(s->tmp_a64_count < TMP_A64_MAX);
444 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
447 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
449 TCGv_i64 t = new_tmp_a64(s);
450 tcg_gen_movi_i64(t, 0);
451 return t;
455 * Register access functions
457 * These functions are used for directly accessing a register in where
458 * changes to the final register value are likely to be made. If you
459 * need to use a register for temporary calculation (e.g. index type
460 * operations) use the read_* form.
462 * B1.2.1 Register mappings
464 * In instruction register encoding 31 can refer to ZR (zero register) or
465 * the SP (stack pointer) depending on context. In QEMU's case we map SP
466 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
467 * This is the point of the _sp forms.
469 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
471 if (reg == 31) {
472 return new_tmp_a64_zero(s);
473 } else {
474 return cpu_X[reg];
478 /* register access for when 31 == SP */
479 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
481 return cpu_X[reg];
484 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
485 * representing the register contents. This TCGv is an auto-freed
486 * temporary so it need not be explicitly freed, and may be modified.
488 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
490 TCGv_i64 v = new_tmp_a64(s);
491 if (reg != 31) {
492 if (sf) {
493 tcg_gen_mov_i64(v, cpu_X[reg]);
494 } else {
495 tcg_gen_ext32u_i64(v, cpu_X[reg]);
497 } else {
498 tcg_gen_movi_i64(v, 0);
500 return v;
503 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
505 TCGv_i64 v = new_tmp_a64(s);
506 if (sf) {
507 tcg_gen_mov_i64(v, cpu_X[reg]);
508 } else {
509 tcg_gen_ext32u_i64(v, cpu_X[reg]);
511 return v;
514 /* We should have at some point before trying to access an FP register
515 * done the necessary access check, so assert that
516 * (a) we did the check and
517 * (b) we didn't then just plough ahead anyway if it failed.
518 * Print the instruction pattern in the abort message so we can figure
519 * out what we need to fix if a user encounters this problem in the wild.
521 static inline void assert_fp_access_checked(DisasContext *s)
523 #ifdef CONFIG_DEBUG_TCG
524 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
525 fprintf(stderr, "target-arm: FP access check missing for "
526 "instruction 0x%08x\n", s->insn);
527 abort();
529 #endif
532 /* Return the offset into CPUARMState of an element of specified
533 * size, 'element' places in from the least significant end of
534 * the FP/vector register Qn.
536 static inline int vec_reg_offset(DisasContext *s, int regno,
537 int element, TCGMemOp size)
539 int offs = 0;
540 #ifdef HOST_WORDS_BIGENDIAN
541 /* This is complicated slightly because vfp.zregs[n].d[0] is
542 * still the low half and vfp.zregs[n].d[1] the high half
543 * of the 128 bit vector, even on big endian systems.
544 * Calculate the offset assuming a fully bigendian 128 bits,
545 * then XOR to account for the order of the two 64 bit halves.
547 offs += (16 - ((element + 1) * (1 << size)));
548 offs ^= 8;
549 #else
550 offs += element * (1 << size);
551 #endif
552 offs += offsetof(CPUARMState, vfp.zregs[regno]);
553 assert_fp_access_checked(s);
554 return offs;
557 /* Return the offset info CPUARMState of the "whole" vector register Qn. */
558 static inline int vec_full_reg_offset(DisasContext *s, int regno)
560 assert_fp_access_checked(s);
561 return offsetof(CPUARMState, vfp.zregs[regno]);
564 /* Return a newly allocated pointer to the vector register. */
565 static TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno)
567 TCGv_ptr ret = tcg_temp_new_ptr();
568 tcg_gen_addi_ptr(ret, cpu_env, vec_full_reg_offset(s, regno));
569 return ret;
572 /* Return the byte size of the "whole" vector register, VL / 8. */
573 static inline int vec_full_reg_size(DisasContext *s)
575 /* FIXME SVE: We should put the composite ZCR_EL* value into tb->flags.
576 In the meantime this is just the AdvSIMD length of 128. */
577 return 128 / 8;
580 /* Return the offset into CPUARMState of a slice (from
581 * the least significant end) of FP register Qn (ie
582 * Dn, Sn, Hn or Bn).
583 * (Note that this is not the same mapping as for A32; see cpu.h)
585 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
587 return vec_reg_offset(s, regno, 0, size);
590 /* Offset of the high half of the 128 bit vector Qn */
591 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
593 return vec_reg_offset(s, regno, 1, MO_64);
596 /* Convenience accessors for reading and writing single and double
597 * FP registers. Writing clears the upper parts of the associated
598 * 128 bit vector register, as required by the architecture.
599 * Note that unlike the GP register accessors, the values returned
600 * by the read functions must be manually freed.
602 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
604 TCGv_i64 v = tcg_temp_new_i64();
606 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
607 return v;
610 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
612 TCGv_i32 v = tcg_temp_new_i32();
614 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
615 return v;
618 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
620 TCGv_i32 v = tcg_temp_new_i32();
622 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
623 return v;
626 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
627 * If SVE is not enabled, then there are only 128 bits in the vector.
629 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
631 unsigned ofs = fp_reg_offset(s, rd, MO_64);
632 unsigned vsz = vec_full_reg_size(s);
634 if (!is_q) {
635 TCGv_i64 tcg_zero = tcg_const_i64(0);
636 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
637 tcg_temp_free_i64(tcg_zero);
639 if (vsz > 16) {
640 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
644 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
646 unsigned ofs = fp_reg_offset(s, reg, MO_64);
648 tcg_gen_st_i64(v, cpu_env, ofs);
649 clear_vec_high(s, false, reg);
652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
654 TCGv_i64 tmp = tcg_temp_new_i64();
656 tcg_gen_extu_i32_i64(tmp, v);
657 write_fp_dreg(s, reg, tmp);
658 tcg_temp_free_i64(tmp);
661 static TCGv_ptr get_fpstatus_ptr(bool is_f16)
663 TCGv_ptr statusptr = tcg_temp_new_ptr();
664 int offset;
666 /* In A64 all instructions (both FP and Neon) use the FPCR; there
667 * is no equivalent of the A32 Neon "standard FPSCR value".
668 * However half-precision operations operate under a different
669 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
671 if (is_f16) {
672 offset = offsetof(CPUARMState, vfp.fp_status_f16);
673 } else {
674 offset = offsetof(CPUARMState, vfp.fp_status);
676 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
677 return statusptr;
680 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
681 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
682 GVecGen2Fn *gvec_fn, int vece)
684 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
685 is_q ? 16 : 8, vec_full_reg_size(s));
688 /* Expand a 2-operand + immediate AdvSIMD vector operation using
689 * an expander function.
691 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
692 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
694 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
695 imm, is_q ? 16 : 8, vec_full_reg_size(s));
698 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
699 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
700 GVecGen3Fn *gvec_fn, int vece)
702 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
703 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
706 /* Expand a 2-operand + immediate AdvSIMD vector operation using
707 * an op descriptor.
709 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
710 int rn, int64_t imm, const GVecGen2i *gvec_op)
712 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
713 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
716 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
717 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
718 int rn, int rm, const GVecGen3 *gvec_op)
720 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
721 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
722 vec_full_reg_size(s), gvec_op);
725 /* Expand a 3-operand + env pointer operation using
726 * an out-of-line helper.
728 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
729 int rn, int rm, gen_helper_gvec_3_ptr *fn)
731 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
732 vec_full_reg_offset(s, rn),
733 vec_full_reg_offset(s, rm), cpu_env,
734 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
737 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
738 * an out-of-line helper.
740 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
741 int rm, bool is_fp16, int data,
742 gen_helper_gvec_3_ptr *fn)
744 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
745 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
746 vec_full_reg_offset(s, rn),
747 vec_full_reg_offset(s, rm), fpst,
748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 tcg_temp_free_ptr(fpst);
752 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
753 * than the 32 bit equivalent.
755 static inline void gen_set_NZ64(TCGv_i64 result)
757 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
758 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
762 static inline void gen_logic_CC(int sf, TCGv_i64 result)
764 if (sf) {
765 gen_set_NZ64(result);
766 } else {
767 tcg_gen_extrl_i64_i32(cpu_ZF, result);
768 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
770 tcg_gen_movi_i32(cpu_CF, 0);
771 tcg_gen_movi_i32(cpu_VF, 0);
774 /* dest = T0 + T1; compute C, N, V and Z flags */
775 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
777 if (sf) {
778 TCGv_i64 result, flag, tmp;
779 result = tcg_temp_new_i64();
780 flag = tcg_temp_new_i64();
781 tmp = tcg_temp_new_i64();
783 tcg_gen_movi_i64(tmp, 0);
784 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 gen_set_NZ64(result);
790 tcg_gen_xor_i64(flag, result, t0);
791 tcg_gen_xor_i64(tmp, t0, t1);
792 tcg_gen_andc_i64(flag, flag, tmp);
793 tcg_temp_free_i64(tmp);
794 tcg_gen_extrh_i64_i32(cpu_VF, flag);
796 tcg_gen_mov_i64(dest, result);
797 tcg_temp_free_i64(result);
798 tcg_temp_free_i64(flag);
799 } else {
800 /* 32 bit arithmetic */
801 TCGv_i32 t0_32 = tcg_temp_new_i32();
802 TCGv_i32 t1_32 = tcg_temp_new_i32();
803 TCGv_i32 tmp = tcg_temp_new_i32();
805 tcg_gen_movi_i32(tmp, 0);
806 tcg_gen_extrl_i64_i32(t0_32, t0);
807 tcg_gen_extrl_i64_i32(t1_32, t1);
808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811 tcg_gen_xor_i32(tmp, t0_32, t1_32);
812 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813 tcg_gen_extu_i32_i64(dest, cpu_NF);
815 tcg_temp_free_i32(tmp);
816 tcg_temp_free_i32(t0_32);
817 tcg_temp_free_i32(t1_32);
821 /* dest = T0 - T1; compute C, N, V and Z flags */
822 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
824 if (sf) {
825 /* 64 bit arithmetic */
826 TCGv_i64 result, flag, tmp;
828 result = tcg_temp_new_i64();
829 flag = tcg_temp_new_i64();
830 tcg_gen_sub_i64(result, t0, t1);
832 gen_set_NZ64(result);
834 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
835 tcg_gen_extrl_i64_i32(cpu_CF, flag);
837 tcg_gen_xor_i64(flag, result, t0);
838 tmp = tcg_temp_new_i64();
839 tcg_gen_xor_i64(tmp, t0, t1);
840 tcg_gen_and_i64(flag, flag, tmp);
841 tcg_temp_free_i64(tmp);
842 tcg_gen_extrh_i64_i32(cpu_VF, flag);
843 tcg_gen_mov_i64(dest, result);
844 tcg_temp_free_i64(flag);
845 tcg_temp_free_i64(result);
846 } else {
847 /* 32 bit arithmetic */
848 TCGv_i32 t0_32 = tcg_temp_new_i32();
849 TCGv_i32 t1_32 = tcg_temp_new_i32();
850 TCGv_i32 tmp;
852 tcg_gen_extrl_i64_i32(t0_32, t0);
853 tcg_gen_extrl_i64_i32(t1_32, t1);
854 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
855 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
856 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
857 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
858 tmp = tcg_temp_new_i32();
859 tcg_gen_xor_i32(tmp, t0_32, t1_32);
860 tcg_temp_free_i32(t0_32);
861 tcg_temp_free_i32(t1_32);
862 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
863 tcg_temp_free_i32(tmp);
864 tcg_gen_extu_i32_i64(dest, cpu_NF);
868 /* dest = T0 + T1 + CF; do not compute flags. */
869 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
871 TCGv_i64 flag = tcg_temp_new_i64();
872 tcg_gen_extu_i32_i64(flag, cpu_CF);
873 tcg_gen_add_i64(dest, t0, t1);
874 tcg_gen_add_i64(dest, dest, flag);
875 tcg_temp_free_i64(flag);
877 if (!sf) {
878 tcg_gen_ext32u_i64(dest, dest);
882 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
883 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
885 if (sf) {
886 TCGv_i64 result, cf_64, vf_64, tmp;
887 result = tcg_temp_new_i64();
888 cf_64 = tcg_temp_new_i64();
889 vf_64 = tcg_temp_new_i64();
890 tmp = tcg_const_i64(0);
892 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
893 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
894 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
895 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
896 gen_set_NZ64(result);
898 tcg_gen_xor_i64(vf_64, result, t0);
899 tcg_gen_xor_i64(tmp, t0, t1);
900 tcg_gen_andc_i64(vf_64, vf_64, tmp);
901 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
903 tcg_gen_mov_i64(dest, result);
905 tcg_temp_free_i64(tmp);
906 tcg_temp_free_i64(vf_64);
907 tcg_temp_free_i64(cf_64);
908 tcg_temp_free_i64(result);
909 } else {
910 TCGv_i32 t0_32, t1_32, tmp;
911 t0_32 = tcg_temp_new_i32();
912 t1_32 = tcg_temp_new_i32();
913 tmp = tcg_const_i32(0);
915 tcg_gen_extrl_i64_i32(t0_32, t0);
916 tcg_gen_extrl_i64_i32(t1_32, t1);
917 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
918 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
920 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
921 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
922 tcg_gen_xor_i32(tmp, t0_32, t1_32);
923 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
924 tcg_gen_extu_i32_i64(dest, cpu_NF);
926 tcg_temp_free_i32(tmp);
927 tcg_temp_free_i32(t1_32);
928 tcg_temp_free_i32(t0_32);
933 * Load/Store generators
937 * Store from GPR register to memory.
939 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
940 TCGv_i64 tcg_addr, int size, int memidx,
941 bool iss_valid,
942 unsigned int iss_srt,
943 bool iss_sf, bool iss_ar)
945 g_assert(size <= 3);
946 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
948 if (iss_valid) {
949 uint32_t syn;
951 syn = syn_data_abort_with_iss(0,
952 size,
953 false,
954 iss_srt,
955 iss_sf,
956 iss_ar,
957 0, 0, 0, 0, 0, false);
958 disas_set_insn_syndrome(s, syn);
962 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
963 TCGv_i64 tcg_addr, int size,
964 bool iss_valid,
965 unsigned int iss_srt,
966 bool iss_sf, bool iss_ar)
968 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
969 iss_valid, iss_srt, iss_sf, iss_ar);
973 * Load from memory to GPR register
975 static void do_gpr_ld_memidx(DisasContext *s,
976 TCGv_i64 dest, TCGv_i64 tcg_addr,
977 int size, bool is_signed,
978 bool extend, int memidx,
979 bool iss_valid, unsigned int iss_srt,
980 bool iss_sf, bool iss_ar)
982 TCGMemOp memop = s->be_data + size;
984 g_assert(size <= 3);
986 if (is_signed) {
987 memop += MO_SIGN;
990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
992 if (extend && is_signed) {
993 g_assert(size < 3);
994 tcg_gen_ext32u_i64(dest, dest);
997 if (iss_valid) {
998 uint32_t syn;
1000 syn = syn_data_abort_with_iss(0,
1001 size,
1002 is_signed,
1003 iss_srt,
1004 iss_sf,
1005 iss_ar,
1006 0, 0, 0, 0, 0, false);
1007 disas_set_insn_syndrome(s, syn);
1011 static void do_gpr_ld(DisasContext *s,
1012 TCGv_i64 dest, TCGv_i64 tcg_addr,
1013 int size, bool is_signed, bool extend,
1014 bool iss_valid, unsigned int iss_srt,
1015 bool iss_sf, bool iss_ar)
1017 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1018 get_mem_index(s),
1019 iss_valid, iss_srt, iss_sf, iss_ar);
1023 * Store from FP register to memory
1025 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1027 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1028 TCGv_i64 tmp = tcg_temp_new_i64();
1029 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1030 if (size < 4) {
1031 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1032 s->be_data + size);
1033 } else {
1034 bool be = s->be_data == MO_BE;
1035 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1037 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1038 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1039 s->be_data | MO_Q);
1040 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1041 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1042 s->be_data | MO_Q);
1043 tcg_temp_free_i64(tcg_hiaddr);
1046 tcg_temp_free_i64(tmp);
1050 * Load from memory to FP register
1052 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1054 /* This always zero-extends and writes to a full 128 bit wide vector */
1055 TCGv_i64 tmplo = tcg_temp_new_i64();
1056 TCGv_i64 tmphi;
1058 if (size < 4) {
1059 TCGMemOp memop = s->be_data + size;
1060 tmphi = tcg_const_i64(0);
1061 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1062 } else {
1063 bool be = s->be_data == MO_BE;
1064 TCGv_i64 tcg_hiaddr;
1066 tmphi = tcg_temp_new_i64();
1067 tcg_hiaddr = tcg_temp_new_i64();
1069 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1070 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1071 s->be_data | MO_Q);
1072 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1073 s->be_data | MO_Q);
1074 tcg_temp_free_i64(tcg_hiaddr);
1077 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1078 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1080 tcg_temp_free_i64(tmplo);
1081 tcg_temp_free_i64(tmphi);
1083 clear_vec_high(s, true, destidx);
1087 * Vector load/store helpers.
1089 * The principal difference between this and a FP load is that we don't
1090 * zero extend as we are filling a partial chunk of the vector register.
1091 * These functions don't support 128 bit loads/stores, which would be
1092 * normal load/store operations.
1094 * The _i32 versions are useful when operating on 32 bit quantities
1095 * (eg for floating point single or using Neon helper functions).
1098 /* Get value of an element within a vector register */
1099 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1100 int element, TCGMemOp memop)
1102 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1103 switch (memop) {
1104 case MO_8:
1105 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1106 break;
1107 case MO_16:
1108 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1109 break;
1110 case MO_32:
1111 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1112 break;
1113 case MO_8|MO_SIGN:
1114 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1115 break;
1116 case MO_16|MO_SIGN:
1117 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1118 break;
1119 case MO_32|MO_SIGN:
1120 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1121 break;
1122 case MO_64:
1123 case MO_64|MO_SIGN:
1124 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1125 break;
1126 default:
1127 g_assert_not_reached();
1131 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1132 int element, TCGMemOp memop)
1134 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1135 switch (memop) {
1136 case MO_8:
1137 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1138 break;
1139 case MO_16:
1140 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1141 break;
1142 case MO_8|MO_SIGN:
1143 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1144 break;
1145 case MO_16|MO_SIGN:
1146 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1147 break;
1148 case MO_32:
1149 case MO_32|MO_SIGN:
1150 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1151 break;
1152 default:
1153 g_assert_not_reached();
1157 /* Set value of an element within a vector register */
1158 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1159 int element, TCGMemOp memop)
1161 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1162 switch (memop) {
1163 case MO_8:
1164 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1165 break;
1166 case MO_16:
1167 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1168 break;
1169 case MO_32:
1170 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1171 break;
1172 case MO_64:
1173 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1174 break;
1175 default:
1176 g_assert_not_reached();
1180 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1181 int destidx, int element, TCGMemOp memop)
1183 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1184 switch (memop) {
1185 case MO_8:
1186 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1187 break;
1188 case MO_16:
1189 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1190 break;
1191 case MO_32:
1192 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1193 break;
1194 default:
1195 g_assert_not_reached();
1199 /* Store from vector register to memory */
1200 static void do_vec_st(DisasContext *s, int srcidx, int element,
1201 TCGv_i64 tcg_addr, int size)
1203 TCGMemOp memop = s->be_data + size;
1204 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1206 read_vec_element(s, tcg_tmp, srcidx, element, size);
1207 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1209 tcg_temp_free_i64(tcg_tmp);
1212 /* Load from memory to vector register */
1213 static void do_vec_ld(DisasContext *s, int destidx, int element,
1214 TCGv_i64 tcg_addr, int size)
1216 TCGMemOp memop = s->be_data + size;
1217 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1219 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1220 write_vec_element(s, tcg_tmp, destidx, element, size);
1222 tcg_temp_free_i64(tcg_tmp);
1225 /* Check that FP/Neon access is enabled. If it is, return
1226 * true. If not, emit code to generate an appropriate exception,
1227 * and return false; the caller should not emit any code for
1228 * the instruction. Note that this check must happen after all
1229 * unallocated-encoding checks (otherwise the syndrome information
1230 * for the resulting exception will be incorrect).
1232 static inline bool fp_access_check(DisasContext *s)
1234 assert(!s->fp_access_checked);
1235 s->fp_access_checked = true;
1237 if (!s->fp_excp_el) {
1238 return true;
1241 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1242 s->fp_excp_el);
1243 return false;
1246 /* Check that SVE access is enabled. If it is, return true.
1247 * If not, emit code to generate an appropriate exception and return false.
1249 static inline bool sve_access_check(DisasContext *s)
1251 if (s->sve_excp_el) {
1252 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1253 s->sve_excp_el);
1254 return false;
1256 return true;
1260 * This utility function is for doing register extension with an
1261 * optional shift. You will likely want to pass a temporary for the
1262 * destination register. See DecodeRegExtend() in the ARM ARM.
1264 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1265 int option, unsigned int shift)
1267 int extsize = extract32(option, 0, 2);
1268 bool is_signed = extract32(option, 2, 1);
1270 if (is_signed) {
1271 switch (extsize) {
1272 case 0:
1273 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1274 break;
1275 case 1:
1276 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1277 break;
1278 case 2:
1279 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1280 break;
1281 case 3:
1282 tcg_gen_mov_i64(tcg_out, tcg_in);
1283 break;
1285 } else {
1286 switch (extsize) {
1287 case 0:
1288 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1289 break;
1290 case 1:
1291 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1292 break;
1293 case 2:
1294 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1295 break;
1296 case 3:
1297 tcg_gen_mov_i64(tcg_out, tcg_in);
1298 break;
1302 if (shift) {
1303 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1307 static inline void gen_check_sp_alignment(DisasContext *s)
1309 /* The AArch64 architecture mandates that (if enabled via PSTATE
1310 * or SCTLR bits) there is a check that SP is 16-aligned on every
1311 * SP-relative load or store (with an exception generated if it is not).
1312 * In line with general QEMU practice regarding misaligned accesses,
1313 * we omit these checks for the sake of guest program performance.
1314 * This function is provided as a hook so we can more easily add these
1315 * checks in future (possibly as a "favour catching guest program bugs
1316 * over speed" user selectable option).
1321 * This provides a simple table based table lookup decoder. It is
1322 * intended to be used when the relevant bits for decode are too
1323 * awkwardly placed and switch/if based logic would be confusing and
1324 * deeply nested. Since it's a linear search through the table, tables
1325 * should be kept small.
1327 * It returns the first handler where insn & mask == pattern, or
1328 * NULL if there is no match.
1329 * The table is terminated by an empty mask (i.e. 0)
1331 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1332 uint32_t insn)
1334 const AArch64DecodeTable *tptr = table;
1336 while (tptr->mask) {
1337 if ((insn & tptr->mask) == tptr->pattern) {
1338 return tptr->disas_fn;
1340 tptr++;
1342 return NULL;
1346 * The instruction disassembly implemented here matches
1347 * the instruction encoding classifications in chapter C4
1348 * of the ARM Architecture Reference Manual (DDI0487B_a);
1349 * classification names and decode diagrams here should generally
1350 * match up with those in the manual.
1353 /* Unconditional branch (immediate)
1354 * 31 30 26 25 0
1355 * +----+-----------+-------------------------------------+
1356 * | op | 0 0 1 0 1 | imm26 |
1357 * +----+-----------+-------------------------------------+
1359 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1361 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1363 if (insn & (1U << 31)) {
1364 /* BL Branch with link */
1365 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1368 /* B Branch / BL Branch with link */
1369 gen_goto_tb(s, 0, addr);
1372 /* Compare and branch (immediate)
1373 * 31 30 25 24 23 5 4 0
1374 * +----+-------------+----+---------------------+--------+
1375 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1376 * +----+-------------+----+---------------------+--------+
1378 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1380 unsigned int sf, op, rt;
1381 uint64_t addr;
1382 TCGLabel *label_match;
1383 TCGv_i64 tcg_cmp;
1385 sf = extract32(insn, 31, 1);
1386 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1387 rt = extract32(insn, 0, 5);
1388 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1390 tcg_cmp = read_cpu_reg(s, rt, sf);
1391 label_match = gen_new_label();
1393 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1394 tcg_cmp, 0, label_match);
1396 gen_goto_tb(s, 0, s->pc);
1397 gen_set_label(label_match);
1398 gen_goto_tb(s, 1, addr);
1401 /* Test and branch (immediate)
1402 * 31 30 25 24 23 19 18 5 4 0
1403 * +----+-------------+----+-------+-------------+------+
1404 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1405 * +----+-------------+----+-------+-------------+------+
1407 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1409 unsigned int bit_pos, op, rt;
1410 uint64_t addr;
1411 TCGLabel *label_match;
1412 TCGv_i64 tcg_cmp;
1414 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1415 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1416 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1417 rt = extract32(insn, 0, 5);
1419 tcg_cmp = tcg_temp_new_i64();
1420 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1421 label_match = gen_new_label();
1422 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1423 tcg_cmp, 0, label_match);
1424 tcg_temp_free_i64(tcg_cmp);
1425 gen_goto_tb(s, 0, s->pc);
1426 gen_set_label(label_match);
1427 gen_goto_tb(s, 1, addr);
1430 /* Conditional branch (immediate)
1431 * 31 25 24 23 5 4 3 0
1432 * +---------------+----+---------------------+----+------+
1433 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1434 * +---------------+----+---------------------+----+------+
1436 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1438 unsigned int cond;
1439 uint64_t addr;
1441 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1442 unallocated_encoding(s);
1443 return;
1445 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1446 cond = extract32(insn, 0, 4);
1448 if (cond < 0x0e) {
1449 /* genuinely conditional branches */
1450 TCGLabel *label_match = gen_new_label();
1451 arm_gen_test_cc(cond, label_match);
1452 gen_goto_tb(s, 0, s->pc);
1453 gen_set_label(label_match);
1454 gen_goto_tb(s, 1, addr);
1455 } else {
1456 /* 0xe and 0xf are both "always" conditions */
1457 gen_goto_tb(s, 0, addr);
1461 /* HINT instruction group, including various allocated HINTs */
1462 static void handle_hint(DisasContext *s, uint32_t insn,
1463 unsigned int op1, unsigned int op2, unsigned int crm)
1465 unsigned int selector = crm << 3 | op2;
1467 if (op1 != 3) {
1468 unallocated_encoding(s);
1469 return;
1472 switch (selector) {
1473 case 0: /* NOP */
1474 return;
1475 case 3: /* WFI */
1476 s->base.is_jmp = DISAS_WFI;
1477 return;
1478 /* When running in MTTCG we don't generate jumps to the yield and
1479 * WFE helpers as it won't affect the scheduling of other vCPUs.
1480 * If we wanted to more completely model WFE/SEV so we don't busy
1481 * spin unnecessarily we would need to do something more involved.
1483 case 1: /* YIELD */
1484 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1485 s->base.is_jmp = DISAS_YIELD;
1487 return;
1488 case 2: /* WFE */
1489 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1490 s->base.is_jmp = DISAS_WFE;
1492 return;
1493 case 4: /* SEV */
1494 case 5: /* SEVL */
1495 /* we treat all as NOP at least for now */
1496 return;
1497 default:
1498 /* default specified as NOP equivalent */
1499 return;
1503 static void gen_clrex(DisasContext *s, uint32_t insn)
1505 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1508 /* CLREX, DSB, DMB, ISB */
1509 static void handle_sync(DisasContext *s, uint32_t insn,
1510 unsigned int op1, unsigned int op2, unsigned int crm)
1512 TCGBar bar;
1514 if (op1 != 3) {
1515 unallocated_encoding(s);
1516 return;
1519 switch (op2) {
1520 case 2: /* CLREX */
1521 gen_clrex(s, insn);
1522 return;
1523 case 4: /* DSB */
1524 case 5: /* DMB */
1525 switch (crm & 3) {
1526 case 1: /* MBReqTypes_Reads */
1527 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1528 break;
1529 case 2: /* MBReqTypes_Writes */
1530 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1531 break;
1532 default: /* MBReqTypes_All */
1533 bar = TCG_BAR_SC | TCG_MO_ALL;
1534 break;
1536 tcg_gen_mb(bar);
1537 return;
1538 case 6: /* ISB */
1539 /* We need to break the TB after this insn to execute
1540 * a self-modified code correctly and also to take
1541 * any pending interrupts immediately.
1543 gen_goto_tb(s, 0, s->pc);
1544 return;
1545 default:
1546 unallocated_encoding(s);
1547 return;
1551 /* MSR (immediate) - move immediate to processor state field */
1552 static void handle_msr_i(DisasContext *s, uint32_t insn,
1553 unsigned int op1, unsigned int op2, unsigned int crm)
1555 int op = op1 << 3 | op2;
1556 switch (op) {
1557 case 0x05: /* SPSel */
1558 if (s->current_el == 0) {
1559 unallocated_encoding(s);
1560 return;
1562 /* fall through */
1563 case 0x1e: /* DAIFSet */
1564 case 0x1f: /* DAIFClear */
1566 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1567 TCGv_i32 tcg_op = tcg_const_i32(op);
1568 gen_a64_set_pc_im(s->pc - 4);
1569 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1570 tcg_temp_free_i32(tcg_imm);
1571 tcg_temp_free_i32(tcg_op);
1572 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1573 gen_a64_set_pc_im(s->pc);
1574 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1575 break;
1577 default:
1578 unallocated_encoding(s);
1579 return;
1583 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1585 TCGv_i32 tmp = tcg_temp_new_i32();
1586 TCGv_i32 nzcv = tcg_temp_new_i32();
1588 /* build bit 31, N */
1589 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1590 /* build bit 30, Z */
1591 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1592 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1593 /* build bit 29, C */
1594 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1595 /* build bit 28, V */
1596 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1597 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1598 /* generate result */
1599 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1601 tcg_temp_free_i32(nzcv);
1602 tcg_temp_free_i32(tmp);
1605 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1608 TCGv_i32 nzcv = tcg_temp_new_i32();
1610 /* take NZCV from R[t] */
1611 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1613 /* bit 31, N */
1614 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1615 /* bit 30, Z */
1616 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1617 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1618 /* bit 29, C */
1619 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1620 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1621 /* bit 28, V */
1622 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1623 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1624 tcg_temp_free_i32(nzcv);
1627 /* MRS - move from system register
1628 * MSR (register) - move to system register
1629 * SYS
1630 * SYSL
1631 * These are all essentially the same insn in 'read' and 'write'
1632 * versions, with varying op0 fields.
1634 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1635 unsigned int op0, unsigned int op1, unsigned int op2,
1636 unsigned int crn, unsigned int crm, unsigned int rt)
1638 const ARMCPRegInfo *ri;
1639 TCGv_i64 tcg_rt;
1641 ri = get_arm_cp_reginfo(s->cp_regs,
1642 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1643 crn, crm, op0, op1, op2));
1645 if (!ri) {
1646 /* Unknown register; this might be a guest error or a QEMU
1647 * unimplemented feature.
1649 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1650 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1651 isread ? "read" : "write", op0, op1, crn, crm, op2);
1652 unallocated_encoding(s);
1653 return;
1656 /* Check access permissions */
1657 if (!cp_access_ok(s->current_el, ri, isread)) {
1658 unallocated_encoding(s);
1659 return;
1662 if (ri->accessfn) {
1663 /* Emit code to perform further access permissions checks at
1664 * runtime; this may result in an exception.
1666 TCGv_ptr tmpptr;
1667 TCGv_i32 tcg_syn, tcg_isread;
1668 uint32_t syndrome;
1670 gen_a64_set_pc_im(s->pc - 4);
1671 tmpptr = tcg_const_ptr(ri);
1672 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1673 tcg_syn = tcg_const_i32(syndrome);
1674 tcg_isread = tcg_const_i32(isread);
1675 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1676 tcg_temp_free_ptr(tmpptr);
1677 tcg_temp_free_i32(tcg_syn);
1678 tcg_temp_free_i32(tcg_isread);
1681 /* Handle special cases first */
1682 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1683 case ARM_CP_NOP:
1684 return;
1685 case ARM_CP_NZCV:
1686 tcg_rt = cpu_reg(s, rt);
1687 if (isread) {
1688 gen_get_nzcv(tcg_rt);
1689 } else {
1690 gen_set_nzcv(tcg_rt);
1692 return;
1693 case ARM_CP_CURRENTEL:
1694 /* Reads as current EL value from pstate, which is
1695 * guaranteed to be constant by the tb flags.
1697 tcg_rt = cpu_reg(s, rt);
1698 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1699 return;
1700 case ARM_CP_DC_ZVA:
1701 /* Writes clear the aligned block of memory which rt points into. */
1702 tcg_rt = cpu_reg(s, rt);
1703 gen_helper_dc_zva(cpu_env, tcg_rt);
1704 return;
1705 default:
1706 break;
1708 if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1709 return;
1711 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1712 return;
1715 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1716 gen_io_start();
1719 tcg_rt = cpu_reg(s, rt);
1721 if (isread) {
1722 if (ri->type & ARM_CP_CONST) {
1723 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1724 } else if (ri->readfn) {
1725 TCGv_ptr tmpptr;
1726 tmpptr = tcg_const_ptr(ri);
1727 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1728 tcg_temp_free_ptr(tmpptr);
1729 } else {
1730 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1732 } else {
1733 if (ri->type & ARM_CP_CONST) {
1734 /* If not forbidden by access permissions, treat as WI */
1735 return;
1736 } else if (ri->writefn) {
1737 TCGv_ptr tmpptr;
1738 tmpptr = tcg_const_ptr(ri);
1739 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1740 tcg_temp_free_ptr(tmpptr);
1741 } else {
1742 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1746 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1747 /* I/O operations must end the TB here (whether read or write) */
1748 gen_io_end();
1749 s->base.is_jmp = DISAS_UPDATE;
1750 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1751 /* We default to ending the TB on a coprocessor register write,
1752 * but allow this to be suppressed by the register definition
1753 * (usually only necessary to work around guest bugs).
1755 s->base.is_jmp = DISAS_UPDATE;
1759 /* System
1760 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1761 * +---------------------+---+-----+-----+-------+-------+-----+------+
1762 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1763 * +---------------------+---+-----+-----+-------+-------+-----+------+
1765 static void disas_system(DisasContext *s, uint32_t insn)
1767 unsigned int l, op0, op1, crn, crm, op2, rt;
1768 l = extract32(insn, 21, 1);
1769 op0 = extract32(insn, 19, 2);
1770 op1 = extract32(insn, 16, 3);
1771 crn = extract32(insn, 12, 4);
1772 crm = extract32(insn, 8, 4);
1773 op2 = extract32(insn, 5, 3);
1774 rt = extract32(insn, 0, 5);
1776 if (op0 == 0) {
1777 if (l || rt != 31) {
1778 unallocated_encoding(s);
1779 return;
1781 switch (crn) {
1782 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1783 handle_hint(s, insn, op1, op2, crm);
1784 break;
1785 case 3: /* CLREX, DSB, DMB, ISB */
1786 handle_sync(s, insn, op1, op2, crm);
1787 break;
1788 case 4: /* MSR (immediate) */
1789 handle_msr_i(s, insn, op1, op2, crm);
1790 break;
1791 default:
1792 unallocated_encoding(s);
1793 break;
1795 return;
1797 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1800 /* Exception generation
1802 * 31 24 23 21 20 5 4 2 1 0
1803 * +-----------------+-----+------------------------+-----+----+
1804 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1805 * +-----------------------+------------------------+----------+
1807 static void disas_exc(DisasContext *s, uint32_t insn)
1809 int opc = extract32(insn, 21, 3);
1810 int op2_ll = extract32(insn, 0, 5);
1811 int imm16 = extract32(insn, 5, 16);
1812 TCGv_i32 tmp;
1814 switch (opc) {
1815 case 0:
1816 /* For SVC, HVC and SMC we advance the single-step state
1817 * machine before taking the exception. This is architecturally
1818 * mandated, to ensure that single-stepping a system call
1819 * instruction works properly.
1821 switch (op2_ll) {
1822 case 1: /* SVC */
1823 gen_ss_advance(s);
1824 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1825 default_exception_el(s));
1826 break;
1827 case 2: /* HVC */
1828 if (s->current_el == 0) {
1829 unallocated_encoding(s);
1830 break;
1832 /* The pre HVC helper handles cases when HVC gets trapped
1833 * as an undefined insn by runtime configuration.
1835 gen_a64_set_pc_im(s->pc - 4);
1836 gen_helper_pre_hvc(cpu_env);
1837 gen_ss_advance(s);
1838 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1839 break;
1840 case 3: /* SMC */
1841 if (s->current_el == 0) {
1842 unallocated_encoding(s);
1843 break;
1845 gen_a64_set_pc_im(s->pc - 4);
1846 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1847 gen_helper_pre_smc(cpu_env, tmp);
1848 tcg_temp_free_i32(tmp);
1849 gen_ss_advance(s);
1850 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1851 break;
1852 default:
1853 unallocated_encoding(s);
1854 break;
1856 break;
1857 case 1:
1858 if (op2_ll != 0) {
1859 unallocated_encoding(s);
1860 break;
1862 /* BRK */
1863 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1864 break;
1865 case 2:
1866 if (op2_ll != 0) {
1867 unallocated_encoding(s);
1868 break;
1870 /* HLT. This has two purposes.
1871 * Architecturally, it is an external halting debug instruction.
1872 * Since QEMU doesn't implement external debug, we treat this as
1873 * it is required for halting debug disabled: it will UNDEF.
1874 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1876 if (semihosting_enabled() && imm16 == 0xf000) {
1877 #ifndef CONFIG_USER_ONLY
1878 /* In system mode, don't allow userspace access to semihosting,
1879 * to provide some semblance of security (and for consistency
1880 * with our 32-bit semihosting).
1882 if (s->current_el == 0) {
1883 unsupported_encoding(s, insn);
1884 break;
1886 #endif
1887 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1888 } else {
1889 unsupported_encoding(s, insn);
1891 break;
1892 case 5:
1893 if (op2_ll < 1 || op2_ll > 3) {
1894 unallocated_encoding(s);
1895 break;
1897 /* DCPS1, DCPS2, DCPS3 */
1898 unsupported_encoding(s, insn);
1899 break;
1900 default:
1901 unallocated_encoding(s);
1902 break;
1906 /* Unconditional branch (register)
1907 * 31 25 24 21 20 16 15 10 9 5 4 0
1908 * +---------------+-------+-------+-------+------+-------+
1909 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1910 * +---------------+-------+-------+-------+------+-------+
1912 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1914 unsigned int opc, op2, op3, rn, op4;
1916 opc = extract32(insn, 21, 4);
1917 op2 = extract32(insn, 16, 5);
1918 op3 = extract32(insn, 10, 6);
1919 rn = extract32(insn, 5, 5);
1920 op4 = extract32(insn, 0, 5);
1922 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1923 unallocated_encoding(s);
1924 return;
1927 switch (opc) {
1928 case 0: /* BR */
1929 case 1: /* BLR */
1930 case 2: /* RET */
1931 gen_a64_set_pc(s, cpu_reg(s, rn));
1932 /* BLR also needs to load return address */
1933 if (opc == 1) {
1934 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1936 break;
1937 case 4: /* ERET */
1938 if (s->current_el == 0) {
1939 unallocated_encoding(s);
1940 return;
1942 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
1943 gen_io_start();
1945 gen_helper_exception_return(cpu_env);
1946 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
1947 gen_io_end();
1949 /* Must exit loop to check un-masked IRQs */
1950 s->base.is_jmp = DISAS_EXIT;
1951 return;
1952 case 5: /* DRPS */
1953 if (rn != 0x1f) {
1954 unallocated_encoding(s);
1955 } else {
1956 unsupported_encoding(s, insn);
1958 return;
1959 default:
1960 unallocated_encoding(s);
1961 return;
1964 s->base.is_jmp = DISAS_JUMP;
1967 /* Branches, exception generating and system instructions */
1968 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1970 switch (extract32(insn, 25, 7)) {
1971 case 0x0a: case 0x0b:
1972 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1973 disas_uncond_b_imm(s, insn);
1974 break;
1975 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1976 disas_comp_b_imm(s, insn);
1977 break;
1978 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1979 disas_test_b_imm(s, insn);
1980 break;
1981 case 0x2a: /* Conditional branch (immediate) */
1982 disas_cond_b_imm(s, insn);
1983 break;
1984 case 0x6a: /* Exception generation / System */
1985 if (insn & (1 << 24)) {
1986 disas_system(s, insn);
1987 } else {
1988 disas_exc(s, insn);
1990 break;
1991 case 0x6b: /* Unconditional branch (register) */
1992 disas_uncond_b_reg(s, insn);
1993 break;
1994 default:
1995 unallocated_encoding(s);
1996 break;
2001 * Load/Store exclusive instructions are implemented by remembering
2002 * the value/address loaded, and seeing if these are the same
2003 * when the store is performed. This is not actually the architecturally
2004 * mandated semantics, but it works for typical guest code sequences
2005 * and avoids having to monitor regular stores.
2007 * The store exclusive uses the atomic cmpxchg primitives to avoid
2008 * races in multi-threaded linux-user and when MTTCG softmmu is
2009 * enabled.
2011 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2012 TCGv_i64 addr, int size, bool is_pair)
2014 int idx = get_mem_index(s);
2015 TCGMemOp memop = s->be_data;
2017 g_assert(size <= 3);
2018 if (is_pair) {
2019 g_assert(size >= 2);
2020 if (size == 2) {
2021 /* The pair must be single-copy atomic for the doubleword. */
2022 memop |= MO_64 | MO_ALIGN;
2023 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2024 if (s->be_data == MO_LE) {
2025 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2026 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2027 } else {
2028 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2029 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2031 } else {
2032 /* The pair must be single-copy atomic for *each* doubleword, not
2033 the entire quadword, however it must be quadword aligned. */
2034 memop |= MO_64;
2035 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2036 memop | MO_ALIGN_16);
2038 TCGv_i64 addr2 = tcg_temp_new_i64();
2039 tcg_gen_addi_i64(addr2, addr, 8);
2040 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2041 tcg_temp_free_i64(addr2);
2043 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2044 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2046 } else {
2047 memop |= size | MO_ALIGN;
2048 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2049 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2051 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2054 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2055 TCGv_i64 addr, int size, int is_pair)
2057 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2058 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2059 * [addr] = {Rt};
2060 * if (is_pair) {
2061 * [addr + datasize] = {Rt2};
2063 * {Rd} = 0;
2064 * } else {
2065 * {Rd} = 1;
2067 * env->exclusive_addr = -1;
2069 TCGLabel *fail_label = gen_new_label();
2070 TCGLabel *done_label = gen_new_label();
2071 TCGv_i64 tmp;
2073 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2075 tmp = tcg_temp_new_i64();
2076 if (is_pair) {
2077 if (size == 2) {
2078 if (s->be_data == MO_LE) {
2079 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2080 } else {
2081 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2083 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2084 cpu_exclusive_val, tmp,
2085 get_mem_index(s),
2086 MO_64 | MO_ALIGN | s->be_data);
2087 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2088 } else if (s->be_data == MO_LE) {
2089 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2090 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2091 cpu_exclusive_addr,
2092 cpu_reg(s, rt),
2093 cpu_reg(s, rt2));
2094 } else {
2095 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2096 cpu_reg(s, rt), cpu_reg(s, rt2));
2098 } else {
2099 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2100 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2101 cpu_exclusive_addr,
2102 cpu_reg(s, rt),
2103 cpu_reg(s, rt2));
2104 } else {
2105 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2106 cpu_reg(s, rt), cpu_reg(s, rt2));
2109 } else {
2110 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2111 cpu_reg(s, rt), get_mem_index(s),
2112 size | MO_ALIGN | s->be_data);
2113 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2115 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2116 tcg_temp_free_i64(tmp);
2117 tcg_gen_br(done_label);
2119 gen_set_label(fail_label);
2120 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2121 gen_set_label(done_label);
2122 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2125 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2126 int rn, int size)
2128 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2129 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2130 int memidx = get_mem_index(s);
2131 TCGv_i64 addr = cpu_reg_sp(s, rn);
2133 if (rn == 31) {
2134 gen_check_sp_alignment(s);
2136 tcg_gen_atomic_cmpxchg_i64(tcg_rs, addr, tcg_rs, tcg_rt, memidx,
2137 size | MO_ALIGN | s->be_data);
2140 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2141 int rn, int size)
2143 TCGv_i64 s1 = cpu_reg(s, rs);
2144 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2145 TCGv_i64 t1 = cpu_reg(s, rt);
2146 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2147 TCGv_i64 addr = cpu_reg_sp(s, rn);
2148 int memidx = get_mem_index(s);
2150 if (rn == 31) {
2151 gen_check_sp_alignment(s);
2154 if (size == 2) {
2155 TCGv_i64 cmp = tcg_temp_new_i64();
2156 TCGv_i64 val = tcg_temp_new_i64();
2158 if (s->be_data == MO_LE) {
2159 tcg_gen_concat32_i64(val, t1, t2);
2160 tcg_gen_concat32_i64(cmp, s1, s2);
2161 } else {
2162 tcg_gen_concat32_i64(val, t2, t1);
2163 tcg_gen_concat32_i64(cmp, s2, s1);
2166 tcg_gen_atomic_cmpxchg_i64(cmp, addr, cmp, val, memidx,
2167 MO_64 | MO_ALIGN | s->be_data);
2168 tcg_temp_free_i64(val);
2170 if (s->be_data == MO_LE) {
2171 tcg_gen_extr32_i64(s1, s2, cmp);
2172 } else {
2173 tcg_gen_extr32_i64(s2, s1, cmp);
2175 tcg_temp_free_i64(cmp);
2176 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2177 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2179 if (s->be_data == MO_LE) {
2180 gen_helper_casp_le_parallel(cpu_env, tcg_rs, addr, t1, t2);
2181 } else {
2182 gen_helper_casp_be_parallel(cpu_env, tcg_rs, addr, t1, t2);
2184 tcg_temp_free_i32(tcg_rs);
2185 } else {
2186 TCGv_i64 d1 = tcg_temp_new_i64();
2187 TCGv_i64 d2 = tcg_temp_new_i64();
2188 TCGv_i64 a2 = tcg_temp_new_i64();
2189 TCGv_i64 c1 = tcg_temp_new_i64();
2190 TCGv_i64 c2 = tcg_temp_new_i64();
2191 TCGv_i64 zero = tcg_const_i64(0);
2193 /* Load the two words, in memory order. */
2194 tcg_gen_qemu_ld_i64(d1, addr, memidx,
2195 MO_64 | MO_ALIGN_16 | s->be_data);
2196 tcg_gen_addi_i64(a2, addr, 8);
2197 tcg_gen_qemu_ld_i64(d2, addr, memidx, MO_64 | s->be_data);
2199 /* Compare the two words, also in memory order. */
2200 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2201 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2202 tcg_gen_and_i64(c2, c2, c1);
2204 /* If compare equal, write back new data, else write back old data. */
2205 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2206 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2207 tcg_gen_qemu_st_i64(c1, addr, memidx, MO_64 | s->be_data);
2208 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2209 tcg_temp_free_i64(a2);
2210 tcg_temp_free_i64(c1);
2211 tcg_temp_free_i64(c2);
2212 tcg_temp_free_i64(zero);
2214 /* Write back the data from memory to Rs. */
2215 tcg_gen_mov_i64(s1, d1);
2216 tcg_gen_mov_i64(s2, d2);
2217 tcg_temp_free_i64(d1);
2218 tcg_temp_free_i64(d2);
2222 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2223 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2225 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2227 int opc0 = extract32(opc, 0, 1);
2228 int regsize;
2230 if (is_signed) {
2231 regsize = opc0 ? 32 : 64;
2232 } else {
2233 regsize = size == 3 ? 64 : 32;
2235 return regsize == 64;
2238 /* Load/store exclusive
2240 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2241 * +-----+-------------+----+---+----+------+----+-------+------+------+
2242 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2243 * +-----+-------------+----+---+----+------+----+-------+------+------+
2245 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2246 * L: 0 -> store, 1 -> load
2247 * o2: 0 -> exclusive, 1 -> not
2248 * o1: 0 -> single register, 1 -> register pair
2249 * o0: 1 -> load-acquire/store-release, 0 -> not
2251 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2253 int rt = extract32(insn, 0, 5);
2254 int rn = extract32(insn, 5, 5);
2255 int rt2 = extract32(insn, 10, 5);
2256 int rs = extract32(insn, 16, 5);
2257 int is_lasr = extract32(insn, 15, 1);
2258 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2259 int size = extract32(insn, 30, 2);
2260 TCGv_i64 tcg_addr;
2262 switch (o2_L_o1_o0) {
2263 case 0x0: /* STXR */
2264 case 0x1: /* STLXR */
2265 if (rn == 31) {
2266 gen_check_sp_alignment(s);
2268 if (is_lasr) {
2269 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2271 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2272 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, false);
2273 return;
2275 case 0x4: /* LDXR */
2276 case 0x5: /* LDAXR */
2277 if (rn == 31) {
2278 gen_check_sp_alignment(s);
2280 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2281 s->is_ldex = true;
2282 gen_load_exclusive(s, rt, rt2, tcg_addr, size, false);
2283 if (is_lasr) {
2284 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2286 return;
2288 case 0x9: /* STLR */
2289 /* Generate ISS for non-exclusive accesses including LASR. */
2290 if (rn == 31) {
2291 gen_check_sp_alignment(s);
2293 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2294 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2295 do_gpr_st(s, cpu_reg(s, rt), tcg_addr, size, true, rt,
2296 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2297 return;
2299 case 0xd: /* LDAR */
2300 /* Generate ISS for non-exclusive accesses including LASR. */
2301 if (rn == 31) {
2302 gen_check_sp_alignment(s);
2304 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2305 do_gpr_ld(s, cpu_reg(s, rt), tcg_addr, size, false, false, true, rt,
2306 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2307 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2308 return;
2310 case 0x2: case 0x3: /* CASP / STXP */
2311 if (size & 2) { /* STXP / STLXP */
2312 if (rn == 31) {
2313 gen_check_sp_alignment(s);
2315 if (is_lasr) {
2316 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2318 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2319 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, true);
2320 return;
2322 if (rt2 == 31
2323 && ((rt | rs) & 1) == 0
2324 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) {
2325 /* CASP / CASPL */
2326 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2327 return;
2329 break;
2331 case 0x6: case 0x7: /* CASPA / LDXP */
2332 if (size & 2) { /* LDXP / LDAXP */
2333 if (rn == 31) {
2334 gen_check_sp_alignment(s);
2336 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2337 s->is_ldex = true;
2338 gen_load_exclusive(s, rt, rt2, tcg_addr, size, true);
2339 if (is_lasr) {
2340 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2342 return;
2344 if (rt2 == 31
2345 && ((rt | rs) & 1) == 0
2346 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) {
2347 /* CASPA / CASPAL */
2348 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2349 return;
2351 break;
2353 case 0xa: /* CAS */
2354 case 0xb: /* CASL */
2355 case 0xe: /* CASA */
2356 case 0xf: /* CASAL */
2357 if (rt2 == 31 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) {
2358 gen_compare_and_swap(s, rs, rt, rn, size);
2359 return;
2361 break;
2363 unallocated_encoding(s);
2367 * Load register (literal)
2369 * 31 30 29 27 26 25 24 23 5 4 0
2370 * +-----+-------+---+-----+-------------------+-------+
2371 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2372 * +-----+-------+---+-----+-------------------+-------+
2374 * V: 1 -> vector (simd/fp)
2375 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2376 * 10-> 32 bit signed, 11 -> prefetch
2377 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2379 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2381 int rt = extract32(insn, 0, 5);
2382 int64_t imm = sextract32(insn, 5, 19) << 2;
2383 bool is_vector = extract32(insn, 26, 1);
2384 int opc = extract32(insn, 30, 2);
2385 bool is_signed = false;
2386 int size = 2;
2387 TCGv_i64 tcg_rt, tcg_addr;
2389 if (is_vector) {
2390 if (opc == 3) {
2391 unallocated_encoding(s);
2392 return;
2394 size = 2 + opc;
2395 if (!fp_access_check(s)) {
2396 return;
2398 } else {
2399 if (opc == 3) {
2400 /* PRFM (literal) : prefetch */
2401 return;
2403 size = 2 + extract32(opc, 0, 1);
2404 is_signed = extract32(opc, 1, 1);
2407 tcg_rt = cpu_reg(s, rt);
2409 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2410 if (is_vector) {
2411 do_fp_ld(s, rt, tcg_addr, size);
2412 } else {
2413 /* Only unsigned 32bit loads target 32bit registers. */
2414 bool iss_sf = opc != 0;
2416 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2417 true, rt, iss_sf, false);
2419 tcg_temp_free_i64(tcg_addr);
2423 * LDNP (Load Pair - non-temporal hint)
2424 * LDP (Load Pair - non vector)
2425 * LDPSW (Load Pair Signed Word - non vector)
2426 * STNP (Store Pair - non-temporal hint)
2427 * STP (Store Pair - non vector)
2428 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2429 * LDP (Load Pair of SIMD&FP)
2430 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2431 * STP (Store Pair of SIMD&FP)
2433 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2434 * +-----+-------+---+---+-------+---+-----------------------------+
2435 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2436 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2438 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2439 * LDPSW 01
2440 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2441 * V: 0 -> GPR, 1 -> Vector
2442 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2443 * 10 -> signed offset, 11 -> pre-index
2444 * L: 0 -> Store 1 -> Load
2446 * Rt, Rt2 = GPR or SIMD registers to be stored
2447 * Rn = general purpose register containing address
2448 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2450 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2452 int rt = extract32(insn, 0, 5);
2453 int rn = extract32(insn, 5, 5);
2454 int rt2 = extract32(insn, 10, 5);
2455 uint64_t offset = sextract64(insn, 15, 7);
2456 int index = extract32(insn, 23, 2);
2457 bool is_vector = extract32(insn, 26, 1);
2458 bool is_load = extract32(insn, 22, 1);
2459 int opc = extract32(insn, 30, 2);
2461 bool is_signed = false;
2462 bool postindex = false;
2463 bool wback = false;
2465 TCGv_i64 tcg_addr; /* calculated address */
2466 int size;
2468 if (opc == 3) {
2469 unallocated_encoding(s);
2470 return;
2473 if (is_vector) {
2474 size = 2 + opc;
2475 } else {
2476 size = 2 + extract32(opc, 1, 1);
2477 is_signed = extract32(opc, 0, 1);
2478 if (!is_load && is_signed) {
2479 unallocated_encoding(s);
2480 return;
2484 switch (index) {
2485 case 1: /* post-index */
2486 postindex = true;
2487 wback = true;
2488 break;
2489 case 0:
2490 /* signed offset with "non-temporal" hint. Since we don't emulate
2491 * caches we don't care about hints to the cache system about
2492 * data access patterns, and handle this identically to plain
2493 * signed offset.
2495 if (is_signed) {
2496 /* There is no non-temporal-hint version of LDPSW */
2497 unallocated_encoding(s);
2498 return;
2500 postindex = false;
2501 break;
2502 case 2: /* signed offset, rn not updated */
2503 postindex = false;
2504 break;
2505 case 3: /* pre-index */
2506 postindex = false;
2507 wback = true;
2508 break;
2511 if (is_vector && !fp_access_check(s)) {
2512 return;
2515 offset <<= size;
2517 if (rn == 31) {
2518 gen_check_sp_alignment(s);
2521 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2523 if (!postindex) {
2524 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2527 if (is_vector) {
2528 if (is_load) {
2529 do_fp_ld(s, rt, tcg_addr, size);
2530 } else {
2531 do_fp_st(s, rt, tcg_addr, size);
2533 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2534 if (is_load) {
2535 do_fp_ld(s, rt2, tcg_addr, size);
2536 } else {
2537 do_fp_st(s, rt2, tcg_addr, size);
2539 } else {
2540 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2541 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2543 if (is_load) {
2544 TCGv_i64 tmp = tcg_temp_new_i64();
2546 /* Do not modify tcg_rt before recognizing any exception
2547 * from the second load.
2549 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2550 false, 0, false, false);
2551 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2552 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2553 false, 0, false, false);
2555 tcg_gen_mov_i64(tcg_rt, tmp);
2556 tcg_temp_free_i64(tmp);
2557 } else {
2558 do_gpr_st(s, tcg_rt, tcg_addr, size,
2559 false, 0, false, false);
2560 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2561 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2562 false, 0, false, false);
2566 if (wback) {
2567 if (postindex) {
2568 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2569 } else {
2570 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2572 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2577 * Load/store (immediate post-indexed)
2578 * Load/store (immediate pre-indexed)
2579 * Load/store (unscaled immediate)
2581 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2582 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2583 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2584 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2586 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2587 10 -> unprivileged
2588 * V = 0 -> non-vector
2589 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2590 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2592 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2593 int opc,
2594 int size,
2595 int rt,
2596 bool is_vector)
2598 int rn = extract32(insn, 5, 5);
2599 int imm9 = sextract32(insn, 12, 9);
2600 int idx = extract32(insn, 10, 2);
2601 bool is_signed = false;
2602 bool is_store = false;
2603 bool is_extended = false;
2604 bool is_unpriv = (idx == 2);
2605 bool iss_valid = !is_vector;
2606 bool post_index;
2607 bool writeback;
2609 TCGv_i64 tcg_addr;
2611 if (is_vector) {
2612 size |= (opc & 2) << 1;
2613 if (size > 4 || is_unpriv) {
2614 unallocated_encoding(s);
2615 return;
2617 is_store = ((opc & 1) == 0);
2618 if (!fp_access_check(s)) {
2619 return;
2621 } else {
2622 if (size == 3 && opc == 2) {
2623 /* PRFM - prefetch */
2624 if (is_unpriv) {
2625 unallocated_encoding(s);
2626 return;
2628 return;
2630 if (opc == 3 && size > 1) {
2631 unallocated_encoding(s);
2632 return;
2634 is_store = (opc == 0);
2635 is_signed = extract32(opc, 1, 1);
2636 is_extended = (size < 3) && extract32(opc, 0, 1);
2639 switch (idx) {
2640 case 0:
2641 case 2:
2642 post_index = false;
2643 writeback = false;
2644 break;
2645 case 1:
2646 post_index = true;
2647 writeback = true;
2648 break;
2649 case 3:
2650 post_index = false;
2651 writeback = true;
2652 break;
2653 default:
2654 g_assert_not_reached();
2657 if (rn == 31) {
2658 gen_check_sp_alignment(s);
2660 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2662 if (!post_index) {
2663 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2666 if (is_vector) {
2667 if (is_store) {
2668 do_fp_st(s, rt, tcg_addr, size);
2669 } else {
2670 do_fp_ld(s, rt, tcg_addr, size);
2672 } else {
2673 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2674 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2675 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2677 if (is_store) {
2678 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2679 iss_valid, rt, iss_sf, false);
2680 } else {
2681 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2682 is_signed, is_extended, memidx,
2683 iss_valid, rt, iss_sf, false);
2687 if (writeback) {
2688 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2689 if (post_index) {
2690 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2692 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2697 * Load/store (register offset)
2699 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2700 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2701 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2702 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2704 * For non-vector:
2705 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2706 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2707 * For vector:
2708 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2709 * opc<0>: 0 -> store, 1 -> load
2710 * V: 1 -> vector/simd
2711 * opt: extend encoding (see DecodeRegExtend)
2712 * S: if S=1 then scale (essentially index by sizeof(size))
2713 * Rt: register to transfer into/out of
2714 * Rn: address register or SP for base
2715 * Rm: offset register or ZR for offset
2717 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2718 int opc,
2719 int size,
2720 int rt,
2721 bool is_vector)
2723 int rn = extract32(insn, 5, 5);
2724 int shift = extract32(insn, 12, 1);
2725 int rm = extract32(insn, 16, 5);
2726 int opt = extract32(insn, 13, 3);
2727 bool is_signed = false;
2728 bool is_store = false;
2729 bool is_extended = false;
2731 TCGv_i64 tcg_rm;
2732 TCGv_i64 tcg_addr;
2734 if (extract32(opt, 1, 1) == 0) {
2735 unallocated_encoding(s);
2736 return;
2739 if (is_vector) {
2740 size |= (opc & 2) << 1;
2741 if (size > 4) {
2742 unallocated_encoding(s);
2743 return;
2745 is_store = !extract32(opc, 0, 1);
2746 if (!fp_access_check(s)) {
2747 return;
2749 } else {
2750 if (size == 3 && opc == 2) {
2751 /* PRFM - prefetch */
2752 return;
2754 if (opc == 3 && size > 1) {
2755 unallocated_encoding(s);
2756 return;
2758 is_store = (opc == 0);
2759 is_signed = extract32(opc, 1, 1);
2760 is_extended = (size < 3) && extract32(opc, 0, 1);
2763 if (rn == 31) {
2764 gen_check_sp_alignment(s);
2766 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2768 tcg_rm = read_cpu_reg(s, rm, 1);
2769 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2771 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2773 if (is_vector) {
2774 if (is_store) {
2775 do_fp_st(s, rt, tcg_addr, size);
2776 } else {
2777 do_fp_ld(s, rt, tcg_addr, size);
2779 } else {
2780 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2781 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2782 if (is_store) {
2783 do_gpr_st(s, tcg_rt, tcg_addr, size,
2784 true, rt, iss_sf, false);
2785 } else {
2786 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2787 is_signed, is_extended,
2788 true, rt, iss_sf, false);
2794 * Load/store (unsigned immediate)
2796 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2797 * +----+-------+---+-----+-----+------------+-------+------+
2798 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2799 * +----+-------+---+-----+-----+------------+-------+------+
2801 * For non-vector:
2802 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2803 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2804 * For vector:
2805 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2806 * opc<0>: 0 -> store, 1 -> load
2807 * Rn: base address register (inc SP)
2808 * Rt: target register
2810 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2811 int opc,
2812 int size,
2813 int rt,
2814 bool is_vector)
2816 int rn = extract32(insn, 5, 5);
2817 unsigned int imm12 = extract32(insn, 10, 12);
2818 unsigned int offset;
2820 TCGv_i64 tcg_addr;
2822 bool is_store;
2823 bool is_signed = false;
2824 bool is_extended = false;
2826 if (is_vector) {
2827 size |= (opc & 2) << 1;
2828 if (size > 4) {
2829 unallocated_encoding(s);
2830 return;
2832 is_store = !extract32(opc, 0, 1);
2833 if (!fp_access_check(s)) {
2834 return;
2836 } else {
2837 if (size == 3 && opc == 2) {
2838 /* PRFM - prefetch */
2839 return;
2841 if (opc == 3 && size > 1) {
2842 unallocated_encoding(s);
2843 return;
2845 is_store = (opc == 0);
2846 is_signed = extract32(opc, 1, 1);
2847 is_extended = (size < 3) && extract32(opc, 0, 1);
2850 if (rn == 31) {
2851 gen_check_sp_alignment(s);
2853 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2854 offset = imm12 << size;
2855 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2857 if (is_vector) {
2858 if (is_store) {
2859 do_fp_st(s, rt, tcg_addr, size);
2860 } else {
2861 do_fp_ld(s, rt, tcg_addr, size);
2863 } else {
2864 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2865 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2866 if (is_store) {
2867 do_gpr_st(s, tcg_rt, tcg_addr, size,
2868 true, rt, iss_sf, false);
2869 } else {
2870 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2871 true, rt, iss_sf, false);
2876 /* Atomic memory operations
2878 * 31 30 27 26 24 22 21 16 15 12 10 5 0
2879 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
2880 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
2881 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
2883 * Rt: the result register
2884 * Rn: base address or SP
2885 * Rs: the source register for the operation
2886 * V: vector flag (always 0 as of v8.3)
2887 * A: acquire flag
2888 * R: release flag
2890 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
2891 int size, int rt, bool is_vector)
2893 int rs = extract32(insn, 16, 5);
2894 int rn = extract32(insn, 5, 5);
2895 int o3_opc = extract32(insn, 12, 4);
2896 int feature = ARM_FEATURE_V8_ATOMICS;
2897 TCGv_i64 tcg_rn, tcg_rs;
2898 AtomicThreeOpFn *fn;
2900 if (is_vector) {
2901 unallocated_encoding(s);
2902 return;
2904 switch (o3_opc) {
2905 case 000: /* LDADD */
2906 fn = tcg_gen_atomic_fetch_add_i64;
2907 break;
2908 case 001: /* LDCLR */
2909 fn = tcg_gen_atomic_fetch_and_i64;
2910 break;
2911 case 002: /* LDEOR */
2912 fn = tcg_gen_atomic_fetch_xor_i64;
2913 break;
2914 case 003: /* LDSET */
2915 fn = tcg_gen_atomic_fetch_or_i64;
2916 break;
2917 case 004: /* LDSMAX */
2918 fn = tcg_gen_atomic_fetch_smax_i64;
2919 break;
2920 case 005: /* LDSMIN */
2921 fn = tcg_gen_atomic_fetch_smin_i64;
2922 break;
2923 case 006: /* LDUMAX */
2924 fn = tcg_gen_atomic_fetch_umax_i64;
2925 break;
2926 case 007: /* LDUMIN */
2927 fn = tcg_gen_atomic_fetch_umin_i64;
2928 break;
2929 case 010: /* SWP */
2930 fn = tcg_gen_atomic_xchg_i64;
2931 break;
2932 default:
2933 unallocated_encoding(s);
2934 return;
2936 if (!arm_dc_feature(s, feature)) {
2937 unallocated_encoding(s);
2938 return;
2941 if (rn == 31) {
2942 gen_check_sp_alignment(s);
2944 tcg_rn = cpu_reg_sp(s, rn);
2945 tcg_rs = read_cpu_reg(s, rs, true);
2947 if (o3_opc == 1) { /* LDCLR */
2948 tcg_gen_not_i64(tcg_rs, tcg_rs);
2951 /* The tcg atomic primitives are all full barriers. Therefore we
2952 * can ignore the Acquire and Release bits of this instruction.
2954 fn(cpu_reg(s, rt), tcg_rn, tcg_rs, get_mem_index(s),
2955 s->be_data | size | MO_ALIGN);
2958 /* Load/store register (all forms) */
2959 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2961 int rt = extract32(insn, 0, 5);
2962 int opc = extract32(insn, 22, 2);
2963 bool is_vector = extract32(insn, 26, 1);
2964 int size = extract32(insn, 30, 2);
2966 switch (extract32(insn, 24, 2)) {
2967 case 0:
2968 if (extract32(insn, 21, 1) == 0) {
2969 /* Load/store register (unscaled immediate)
2970 * Load/store immediate pre/post-indexed
2971 * Load/store register unprivileged
2973 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2974 return;
2976 switch (extract32(insn, 10, 2)) {
2977 case 0:
2978 disas_ldst_atomic(s, insn, size, rt, is_vector);
2979 return;
2980 case 2:
2981 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2982 return;
2984 break;
2985 case 1:
2986 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2987 return;
2989 unallocated_encoding(s);
2992 /* AdvSIMD load/store multiple structures
2994 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2995 * +---+---+---------------+---+-------------+--------+------+------+------+
2996 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2997 * +---+---+---------------+---+-------------+--------+------+------+------+
2999 * AdvSIMD load/store multiple structures (post-indexed)
3001 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3002 * +---+---+---------------+---+---+---------+--------+------+------+------+
3003 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3004 * +---+---+---------------+---+---+---------+--------+------+------+------+
3006 * Rt: first (or only) SIMD&FP register to be transferred
3007 * Rn: base address or SP
3008 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3010 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3012 int rt = extract32(insn, 0, 5);
3013 int rn = extract32(insn, 5, 5);
3014 int size = extract32(insn, 10, 2);
3015 int opcode = extract32(insn, 12, 4);
3016 bool is_store = !extract32(insn, 22, 1);
3017 bool is_postidx = extract32(insn, 23, 1);
3018 bool is_q = extract32(insn, 30, 1);
3019 TCGv_i64 tcg_addr, tcg_rn;
3021 int ebytes = 1 << size;
3022 int elements = (is_q ? 128 : 64) / (8 << size);
3023 int rpt; /* num iterations */
3024 int selem; /* structure elements */
3025 int r;
3027 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3028 unallocated_encoding(s);
3029 return;
3032 /* From the shared decode logic */
3033 switch (opcode) {
3034 case 0x0:
3035 rpt = 1;
3036 selem = 4;
3037 break;
3038 case 0x2:
3039 rpt = 4;
3040 selem = 1;
3041 break;
3042 case 0x4:
3043 rpt = 1;
3044 selem = 3;
3045 break;
3046 case 0x6:
3047 rpt = 3;
3048 selem = 1;
3049 break;
3050 case 0x7:
3051 rpt = 1;
3052 selem = 1;
3053 break;
3054 case 0x8:
3055 rpt = 1;
3056 selem = 2;
3057 break;
3058 case 0xa:
3059 rpt = 2;
3060 selem = 1;
3061 break;
3062 default:
3063 unallocated_encoding(s);
3064 return;
3067 if (size == 3 && !is_q && selem != 1) {
3068 /* reserved */
3069 unallocated_encoding(s);
3070 return;
3073 if (!fp_access_check(s)) {
3074 return;
3077 if (rn == 31) {
3078 gen_check_sp_alignment(s);
3081 tcg_rn = cpu_reg_sp(s, rn);
3082 tcg_addr = tcg_temp_new_i64();
3083 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3085 for (r = 0; r < rpt; r++) {
3086 int e;
3087 for (e = 0; e < elements; e++) {
3088 int tt = (rt + r) % 32;
3089 int xs;
3090 for (xs = 0; xs < selem; xs++) {
3091 if (is_store) {
3092 do_vec_st(s, tt, e, tcg_addr, size);
3093 } else {
3094 do_vec_ld(s, tt, e, tcg_addr, size);
3096 /* For non-quad operations, setting a slice of the low
3097 * 64 bits of the register clears the high 64 bits (in
3098 * the ARM ARM pseudocode this is implicit in the fact
3099 * that 'rval' is a 64 bit wide variable).
3100 * For quad operations, we might still need to zero the
3101 * high bits of SVE. We optimize by noticing that we only
3102 * need to do this the first time we touch a register.
3104 if (e == 0 && (r == 0 || xs == selem - 1)) {
3105 clear_vec_high(s, is_q, tt);
3108 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
3109 tt = (tt + 1) % 32;
3114 if (is_postidx) {
3115 int rm = extract32(insn, 16, 5);
3116 if (rm == 31) {
3117 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3118 } else {
3119 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3122 tcg_temp_free_i64(tcg_addr);
3125 /* AdvSIMD load/store single structure
3127 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3128 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3129 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3130 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3132 * AdvSIMD load/store single structure (post-indexed)
3134 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3135 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3136 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3137 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3139 * Rt: first (or only) SIMD&FP register to be transferred
3140 * Rn: base address or SP
3141 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3142 * index = encoded in Q:S:size dependent on size
3144 * lane_size = encoded in R, opc
3145 * transfer width = encoded in opc, S, size
3147 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3149 int rt = extract32(insn, 0, 5);
3150 int rn = extract32(insn, 5, 5);
3151 int size = extract32(insn, 10, 2);
3152 int S = extract32(insn, 12, 1);
3153 int opc = extract32(insn, 13, 3);
3154 int R = extract32(insn, 21, 1);
3155 int is_load = extract32(insn, 22, 1);
3156 int is_postidx = extract32(insn, 23, 1);
3157 int is_q = extract32(insn, 30, 1);
3159 int scale = extract32(opc, 1, 2);
3160 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3161 bool replicate = false;
3162 int index = is_q << 3 | S << 2 | size;
3163 int ebytes, xs;
3164 TCGv_i64 tcg_addr, tcg_rn;
3166 switch (scale) {
3167 case 3:
3168 if (!is_load || S) {
3169 unallocated_encoding(s);
3170 return;
3172 scale = size;
3173 replicate = true;
3174 break;
3175 case 0:
3176 break;
3177 case 1:
3178 if (extract32(size, 0, 1)) {
3179 unallocated_encoding(s);
3180 return;
3182 index >>= 1;
3183 break;
3184 case 2:
3185 if (extract32(size, 1, 1)) {
3186 unallocated_encoding(s);
3187 return;
3189 if (!extract32(size, 0, 1)) {
3190 index >>= 2;
3191 } else {
3192 if (S) {
3193 unallocated_encoding(s);
3194 return;
3196 index >>= 3;
3197 scale = 3;
3199 break;
3200 default:
3201 g_assert_not_reached();
3204 if (!fp_access_check(s)) {
3205 return;
3208 ebytes = 1 << scale;
3210 if (rn == 31) {
3211 gen_check_sp_alignment(s);
3214 tcg_rn = cpu_reg_sp(s, rn);
3215 tcg_addr = tcg_temp_new_i64();
3216 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3218 for (xs = 0; xs < selem; xs++) {
3219 if (replicate) {
3220 /* Load and replicate to all elements */
3221 uint64_t mulconst;
3222 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3224 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
3225 get_mem_index(s), s->be_data + scale);
3226 switch (scale) {
3227 case 0:
3228 mulconst = 0x0101010101010101ULL;
3229 break;
3230 case 1:
3231 mulconst = 0x0001000100010001ULL;
3232 break;
3233 case 2:
3234 mulconst = 0x0000000100000001ULL;
3235 break;
3236 case 3:
3237 mulconst = 0;
3238 break;
3239 default:
3240 g_assert_not_reached();
3242 if (mulconst) {
3243 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
3245 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
3246 if (is_q) {
3247 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
3249 tcg_temp_free_i64(tcg_tmp);
3250 clear_vec_high(s, is_q, rt);
3251 } else {
3252 /* Load/store one element per register */
3253 if (is_load) {
3254 do_vec_ld(s, rt, index, tcg_addr, scale);
3255 } else {
3256 do_vec_st(s, rt, index, tcg_addr, scale);
3259 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
3260 rt = (rt + 1) % 32;
3263 if (is_postidx) {
3264 int rm = extract32(insn, 16, 5);
3265 if (rm == 31) {
3266 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3267 } else {
3268 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3271 tcg_temp_free_i64(tcg_addr);
3274 /* Loads and stores */
3275 static void disas_ldst(DisasContext *s, uint32_t insn)
3277 switch (extract32(insn, 24, 6)) {
3278 case 0x08: /* Load/store exclusive */
3279 disas_ldst_excl(s, insn);
3280 break;
3281 case 0x18: case 0x1c: /* Load register (literal) */
3282 disas_ld_lit(s, insn);
3283 break;
3284 case 0x28: case 0x29:
3285 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3286 disas_ldst_pair(s, insn);
3287 break;
3288 case 0x38: case 0x39:
3289 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3290 disas_ldst_reg(s, insn);
3291 break;
3292 case 0x0c: /* AdvSIMD load/store multiple structures */
3293 disas_ldst_multiple_struct(s, insn);
3294 break;
3295 case 0x0d: /* AdvSIMD load/store single structure */
3296 disas_ldst_single_struct(s, insn);
3297 break;
3298 default:
3299 unallocated_encoding(s);
3300 break;
3304 /* PC-rel. addressing
3305 * 31 30 29 28 24 23 5 4 0
3306 * +----+-------+-----------+-------------------+------+
3307 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3308 * +----+-------+-----------+-------------------+------+
3310 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3312 unsigned int page, rd;
3313 uint64_t base;
3314 uint64_t offset;
3316 page = extract32(insn, 31, 1);
3317 /* SignExtend(immhi:immlo) -> offset */
3318 offset = sextract64(insn, 5, 19);
3319 offset = offset << 2 | extract32(insn, 29, 2);
3320 rd = extract32(insn, 0, 5);
3321 base = s->pc - 4;
3323 if (page) {
3324 /* ADRP (page based) */
3325 base &= ~0xfff;
3326 offset <<= 12;
3329 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3333 * Add/subtract (immediate)
3335 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3336 * +--+--+--+-----------+-----+-------------+-----+-----+
3337 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3338 * +--+--+--+-----------+-----+-------------+-----+-----+
3340 * sf: 0 -> 32bit, 1 -> 64bit
3341 * op: 0 -> add , 1 -> sub
3342 * S: 1 -> set flags
3343 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3345 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3347 int rd = extract32(insn, 0, 5);
3348 int rn = extract32(insn, 5, 5);
3349 uint64_t imm = extract32(insn, 10, 12);
3350 int shift = extract32(insn, 22, 2);
3351 bool setflags = extract32(insn, 29, 1);
3352 bool sub_op = extract32(insn, 30, 1);
3353 bool is_64bit = extract32(insn, 31, 1);
3355 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3356 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3357 TCGv_i64 tcg_result;
3359 switch (shift) {
3360 case 0x0:
3361 break;
3362 case 0x1:
3363 imm <<= 12;
3364 break;
3365 default:
3366 unallocated_encoding(s);
3367 return;
3370 tcg_result = tcg_temp_new_i64();
3371 if (!setflags) {
3372 if (sub_op) {
3373 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3374 } else {
3375 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3377 } else {
3378 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3379 if (sub_op) {
3380 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3381 } else {
3382 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3384 tcg_temp_free_i64(tcg_imm);
3387 if (is_64bit) {
3388 tcg_gen_mov_i64(tcg_rd, tcg_result);
3389 } else {
3390 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3393 tcg_temp_free_i64(tcg_result);
3396 /* The input should be a value in the bottom e bits (with higher
3397 * bits zero); returns that value replicated into every element
3398 * of size e in a 64 bit integer.
3400 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3402 assert(e != 0);
3403 while (e < 64) {
3404 mask |= mask << e;
3405 e *= 2;
3407 return mask;
3410 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3411 static inline uint64_t bitmask64(unsigned int length)
3413 assert(length > 0 && length <= 64);
3414 return ~0ULL >> (64 - length);
3417 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3418 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3419 * value (ie should cause a guest UNDEF exception), and true if they are
3420 * valid, in which case the decoded bit pattern is written to result.
3422 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3423 unsigned int imms, unsigned int immr)
3425 uint64_t mask;
3426 unsigned e, levels, s, r;
3427 int len;
3429 assert(immn < 2 && imms < 64 && immr < 64);
3431 /* The bit patterns we create here are 64 bit patterns which
3432 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3433 * 64 bits each. Each element contains the same value: a run
3434 * of between 1 and e-1 non-zero bits, rotated within the
3435 * element by between 0 and e-1 bits.
3437 * The element size and run length are encoded into immn (1 bit)
3438 * and imms (6 bits) as follows:
3439 * 64 bit elements: immn = 1, imms = <length of run - 1>
3440 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3441 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3442 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3443 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3444 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3445 * Notice that immn = 0, imms = 11111x is the only combination
3446 * not covered by one of the above options; this is reserved.
3447 * Further, <length of run - 1> all-ones is a reserved pattern.
3449 * In all cases the rotation is by immr % e (and immr is 6 bits).
3452 /* First determine the element size */
3453 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3454 if (len < 1) {
3455 /* This is the immn == 0, imms == 0x11111x case */
3456 return false;
3458 e = 1 << len;
3460 levels = e - 1;
3461 s = imms & levels;
3462 r = immr & levels;
3464 if (s == levels) {
3465 /* <length of run - 1> mustn't be all-ones. */
3466 return false;
3469 /* Create the value of one element: s+1 set bits rotated
3470 * by r within the element (which is e bits wide)...
3472 mask = bitmask64(s + 1);
3473 if (r) {
3474 mask = (mask >> r) | (mask << (e - r));
3475 mask &= bitmask64(e);
3477 /* ...then replicate the element over the whole 64 bit value */
3478 mask = bitfield_replicate(mask, e);
3479 *result = mask;
3480 return true;
3483 /* Logical (immediate)
3484 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3485 * +----+-----+-------------+---+------+------+------+------+
3486 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3487 * +----+-----+-------------+---+------+------+------+------+
3489 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3491 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3492 TCGv_i64 tcg_rd, tcg_rn;
3493 uint64_t wmask;
3494 bool is_and = false;
3496 sf = extract32(insn, 31, 1);
3497 opc = extract32(insn, 29, 2);
3498 is_n = extract32(insn, 22, 1);
3499 immr = extract32(insn, 16, 6);
3500 imms = extract32(insn, 10, 6);
3501 rn = extract32(insn, 5, 5);
3502 rd = extract32(insn, 0, 5);
3504 if (!sf && is_n) {
3505 unallocated_encoding(s);
3506 return;
3509 if (opc == 0x3) { /* ANDS */
3510 tcg_rd = cpu_reg(s, rd);
3511 } else {
3512 tcg_rd = cpu_reg_sp(s, rd);
3514 tcg_rn = cpu_reg(s, rn);
3516 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3517 /* some immediate field values are reserved */
3518 unallocated_encoding(s);
3519 return;
3522 if (!sf) {
3523 wmask &= 0xffffffff;
3526 switch (opc) {
3527 case 0x3: /* ANDS */
3528 case 0x0: /* AND */
3529 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3530 is_and = true;
3531 break;
3532 case 0x1: /* ORR */
3533 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3534 break;
3535 case 0x2: /* EOR */
3536 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3537 break;
3538 default:
3539 assert(FALSE); /* must handle all above */
3540 break;
3543 if (!sf && !is_and) {
3544 /* zero extend final result; we know we can skip this for AND
3545 * since the immediate had the high 32 bits clear.
3547 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3550 if (opc == 3) { /* ANDS */
3551 gen_logic_CC(sf, tcg_rd);
3556 * Move wide (immediate)
3558 * 31 30 29 28 23 22 21 20 5 4 0
3559 * +--+-----+-------------+-----+----------------+------+
3560 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3561 * +--+-----+-------------+-----+----------------+------+
3563 * sf: 0 -> 32 bit, 1 -> 64 bit
3564 * opc: 00 -> N, 10 -> Z, 11 -> K
3565 * hw: shift/16 (0,16, and sf only 32, 48)
3567 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3569 int rd = extract32(insn, 0, 5);
3570 uint64_t imm = extract32(insn, 5, 16);
3571 int sf = extract32(insn, 31, 1);
3572 int opc = extract32(insn, 29, 2);
3573 int pos = extract32(insn, 21, 2) << 4;
3574 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3575 TCGv_i64 tcg_imm;
3577 if (!sf && (pos >= 32)) {
3578 unallocated_encoding(s);
3579 return;
3582 switch (opc) {
3583 case 0: /* MOVN */
3584 case 2: /* MOVZ */
3585 imm <<= pos;
3586 if (opc == 0) {
3587 imm = ~imm;
3589 if (!sf) {
3590 imm &= 0xffffffffu;
3592 tcg_gen_movi_i64(tcg_rd, imm);
3593 break;
3594 case 3: /* MOVK */
3595 tcg_imm = tcg_const_i64(imm);
3596 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3597 tcg_temp_free_i64(tcg_imm);
3598 if (!sf) {
3599 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3601 break;
3602 default:
3603 unallocated_encoding(s);
3604 break;
3608 /* Bitfield
3609 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3610 * +----+-----+-------------+---+------+------+------+------+
3611 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3612 * +----+-----+-------------+---+------+------+------+------+
3614 static void disas_bitfield(DisasContext *s, uint32_t insn)
3616 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3617 TCGv_i64 tcg_rd, tcg_tmp;
3619 sf = extract32(insn, 31, 1);
3620 opc = extract32(insn, 29, 2);
3621 n = extract32(insn, 22, 1);
3622 ri = extract32(insn, 16, 6);
3623 si = extract32(insn, 10, 6);
3624 rn = extract32(insn, 5, 5);
3625 rd = extract32(insn, 0, 5);
3626 bitsize = sf ? 64 : 32;
3628 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3629 unallocated_encoding(s);
3630 return;
3633 tcg_rd = cpu_reg(s, rd);
3635 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3636 to be smaller than bitsize, we'll never reference data outside the
3637 low 32-bits anyway. */
3638 tcg_tmp = read_cpu_reg(s, rn, 1);
3640 /* Recognize simple(r) extractions. */
3641 if (si >= ri) {
3642 /* Wd<s-r:0> = Wn<s:r> */
3643 len = (si - ri) + 1;
3644 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3645 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3646 goto done;
3647 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3648 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3649 return;
3651 /* opc == 1, BXFIL fall through to deposit */
3652 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3653 pos = 0;
3654 } else {
3655 /* Handle the ri > si case with a deposit
3656 * Wd<32+s-r,32-r> = Wn<s:0>
3658 len = si + 1;
3659 pos = (bitsize - ri) & (bitsize - 1);
3662 if (opc == 0 && len < ri) {
3663 /* SBFM: sign extend the destination field from len to fill
3664 the balance of the word. Let the deposit below insert all
3665 of those sign bits. */
3666 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3667 len = ri;
3670 if (opc == 1) { /* BFM, BXFIL */
3671 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3672 } else {
3673 /* SBFM or UBFM: We start with zero, and we haven't modified
3674 any bits outside bitsize, therefore the zero-extension
3675 below is unneeded. */
3676 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3677 return;
3680 done:
3681 if (!sf) { /* zero extend final result */
3682 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3686 /* Extract
3687 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3688 * +----+------+-------------+---+----+------+--------+------+------+
3689 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3690 * +----+------+-------------+---+----+------+--------+------+------+
3692 static void disas_extract(DisasContext *s, uint32_t insn)
3694 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3696 sf = extract32(insn, 31, 1);
3697 n = extract32(insn, 22, 1);
3698 rm = extract32(insn, 16, 5);
3699 imm = extract32(insn, 10, 6);
3700 rn = extract32(insn, 5, 5);
3701 rd = extract32(insn, 0, 5);
3702 op21 = extract32(insn, 29, 2);
3703 op0 = extract32(insn, 21, 1);
3704 bitsize = sf ? 64 : 32;
3706 if (sf != n || op21 || op0 || imm >= bitsize) {
3707 unallocated_encoding(s);
3708 } else {
3709 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3711 tcg_rd = cpu_reg(s, rd);
3713 if (unlikely(imm == 0)) {
3714 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3715 * so an extract from bit 0 is a special case.
3717 if (sf) {
3718 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3719 } else {
3720 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3722 } else if (rm == rn) { /* ROR */
3723 tcg_rm = cpu_reg(s, rm);
3724 if (sf) {
3725 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3726 } else {
3727 TCGv_i32 tmp = tcg_temp_new_i32();
3728 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3729 tcg_gen_rotri_i32(tmp, tmp, imm);
3730 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3731 tcg_temp_free_i32(tmp);
3733 } else {
3734 tcg_rm = read_cpu_reg(s, rm, sf);
3735 tcg_rn = read_cpu_reg(s, rn, sf);
3736 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3737 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3738 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3739 if (!sf) {
3740 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3746 /* Data processing - immediate */
3747 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3749 switch (extract32(insn, 23, 6)) {
3750 case 0x20: case 0x21: /* PC-rel. addressing */
3751 disas_pc_rel_adr(s, insn);
3752 break;
3753 case 0x22: case 0x23: /* Add/subtract (immediate) */
3754 disas_add_sub_imm(s, insn);
3755 break;
3756 case 0x24: /* Logical (immediate) */
3757 disas_logic_imm(s, insn);
3758 break;
3759 case 0x25: /* Move wide (immediate) */
3760 disas_movw_imm(s, insn);
3761 break;
3762 case 0x26: /* Bitfield */
3763 disas_bitfield(s, insn);
3764 break;
3765 case 0x27: /* Extract */
3766 disas_extract(s, insn);
3767 break;
3768 default:
3769 unallocated_encoding(s);
3770 break;
3774 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3775 * Note that it is the caller's responsibility to ensure that the
3776 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3777 * mandated semantics for out of range shifts.
3779 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3780 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3782 switch (shift_type) {
3783 case A64_SHIFT_TYPE_LSL:
3784 tcg_gen_shl_i64(dst, src, shift_amount);
3785 break;
3786 case A64_SHIFT_TYPE_LSR:
3787 tcg_gen_shr_i64(dst, src, shift_amount);
3788 break;
3789 case A64_SHIFT_TYPE_ASR:
3790 if (!sf) {
3791 tcg_gen_ext32s_i64(dst, src);
3793 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3794 break;
3795 case A64_SHIFT_TYPE_ROR:
3796 if (sf) {
3797 tcg_gen_rotr_i64(dst, src, shift_amount);
3798 } else {
3799 TCGv_i32 t0, t1;
3800 t0 = tcg_temp_new_i32();
3801 t1 = tcg_temp_new_i32();
3802 tcg_gen_extrl_i64_i32(t0, src);
3803 tcg_gen_extrl_i64_i32(t1, shift_amount);
3804 tcg_gen_rotr_i32(t0, t0, t1);
3805 tcg_gen_extu_i32_i64(dst, t0);
3806 tcg_temp_free_i32(t0);
3807 tcg_temp_free_i32(t1);
3809 break;
3810 default:
3811 assert(FALSE); /* all shift types should be handled */
3812 break;
3815 if (!sf) { /* zero extend final result */
3816 tcg_gen_ext32u_i64(dst, dst);
3820 /* Shift a TCGv src by immediate, put result in dst.
3821 * The shift amount must be in range (this should always be true as the
3822 * relevant instructions will UNDEF on bad shift immediates).
3824 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3825 enum a64_shift_type shift_type, unsigned int shift_i)
3827 assert(shift_i < (sf ? 64 : 32));
3829 if (shift_i == 0) {
3830 tcg_gen_mov_i64(dst, src);
3831 } else {
3832 TCGv_i64 shift_const;
3834 shift_const = tcg_const_i64(shift_i);
3835 shift_reg(dst, src, sf, shift_type, shift_const);
3836 tcg_temp_free_i64(shift_const);
3840 /* Logical (shifted register)
3841 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3842 * +----+-----+-----------+-------+---+------+--------+------+------+
3843 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3844 * +----+-----+-----------+-------+---+------+--------+------+------+
3846 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3848 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3849 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3851 sf = extract32(insn, 31, 1);
3852 opc = extract32(insn, 29, 2);
3853 shift_type = extract32(insn, 22, 2);
3854 invert = extract32(insn, 21, 1);
3855 rm = extract32(insn, 16, 5);
3856 shift_amount = extract32(insn, 10, 6);
3857 rn = extract32(insn, 5, 5);
3858 rd = extract32(insn, 0, 5);
3860 if (!sf && (shift_amount & (1 << 5))) {
3861 unallocated_encoding(s);
3862 return;
3865 tcg_rd = cpu_reg(s, rd);
3867 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3868 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3869 * register-register MOV and MVN, so it is worth special casing.
3871 tcg_rm = cpu_reg(s, rm);
3872 if (invert) {
3873 tcg_gen_not_i64(tcg_rd, tcg_rm);
3874 if (!sf) {
3875 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3877 } else {
3878 if (sf) {
3879 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3880 } else {
3881 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3884 return;
3887 tcg_rm = read_cpu_reg(s, rm, sf);
3889 if (shift_amount) {
3890 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3893 tcg_rn = cpu_reg(s, rn);
3895 switch (opc | (invert << 2)) {
3896 case 0: /* AND */
3897 case 3: /* ANDS */
3898 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3899 break;
3900 case 1: /* ORR */
3901 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3902 break;
3903 case 2: /* EOR */
3904 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3905 break;
3906 case 4: /* BIC */
3907 case 7: /* BICS */
3908 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3909 break;
3910 case 5: /* ORN */
3911 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3912 break;
3913 case 6: /* EON */
3914 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3915 break;
3916 default:
3917 assert(FALSE);
3918 break;
3921 if (!sf) {
3922 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3925 if (opc == 3) {
3926 gen_logic_CC(sf, tcg_rd);
3931 * Add/subtract (extended register)
3933 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3934 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3935 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3936 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3938 * sf: 0 -> 32bit, 1 -> 64bit
3939 * op: 0 -> add , 1 -> sub
3940 * S: 1 -> set flags
3941 * opt: 00
3942 * option: extension type (see DecodeRegExtend)
3943 * imm3: optional shift to Rm
3945 * Rd = Rn + LSL(extend(Rm), amount)
3947 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3949 int rd = extract32(insn, 0, 5);
3950 int rn = extract32(insn, 5, 5);
3951 int imm3 = extract32(insn, 10, 3);
3952 int option = extract32(insn, 13, 3);
3953 int rm = extract32(insn, 16, 5);
3954 bool setflags = extract32(insn, 29, 1);
3955 bool sub_op = extract32(insn, 30, 1);
3956 bool sf = extract32(insn, 31, 1);
3958 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3959 TCGv_i64 tcg_rd;
3960 TCGv_i64 tcg_result;
3962 if (imm3 > 4) {
3963 unallocated_encoding(s);
3964 return;
3967 /* non-flag setting ops may use SP */
3968 if (!setflags) {
3969 tcg_rd = cpu_reg_sp(s, rd);
3970 } else {
3971 tcg_rd = cpu_reg(s, rd);
3973 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3975 tcg_rm = read_cpu_reg(s, rm, sf);
3976 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3978 tcg_result = tcg_temp_new_i64();
3980 if (!setflags) {
3981 if (sub_op) {
3982 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3983 } else {
3984 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3986 } else {
3987 if (sub_op) {
3988 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3989 } else {
3990 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3994 if (sf) {
3995 tcg_gen_mov_i64(tcg_rd, tcg_result);
3996 } else {
3997 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4000 tcg_temp_free_i64(tcg_result);
4004 * Add/subtract (shifted register)
4006 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4007 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4008 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4009 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4011 * sf: 0 -> 32bit, 1 -> 64bit
4012 * op: 0 -> add , 1 -> sub
4013 * S: 1 -> set flags
4014 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4015 * imm6: Shift amount to apply to Rm before the add/sub
4017 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4019 int rd = extract32(insn, 0, 5);
4020 int rn = extract32(insn, 5, 5);
4021 int imm6 = extract32(insn, 10, 6);
4022 int rm = extract32(insn, 16, 5);
4023 int shift_type = extract32(insn, 22, 2);
4024 bool setflags = extract32(insn, 29, 1);
4025 bool sub_op = extract32(insn, 30, 1);
4026 bool sf = extract32(insn, 31, 1);
4028 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4029 TCGv_i64 tcg_rn, tcg_rm;
4030 TCGv_i64 tcg_result;
4032 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4033 unallocated_encoding(s);
4034 return;
4037 tcg_rn = read_cpu_reg(s, rn, sf);
4038 tcg_rm = read_cpu_reg(s, rm, sf);
4040 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4042 tcg_result = tcg_temp_new_i64();
4044 if (!setflags) {
4045 if (sub_op) {
4046 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4047 } else {
4048 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4050 } else {
4051 if (sub_op) {
4052 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4053 } else {
4054 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4058 if (sf) {
4059 tcg_gen_mov_i64(tcg_rd, tcg_result);
4060 } else {
4061 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4064 tcg_temp_free_i64(tcg_result);
4067 /* Data-processing (3 source)
4069 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4070 * +--+------+-----------+------+------+----+------+------+------+
4071 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4072 * +--+------+-----------+------+------+----+------+------+------+
4074 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4076 int rd = extract32(insn, 0, 5);
4077 int rn = extract32(insn, 5, 5);
4078 int ra = extract32(insn, 10, 5);
4079 int rm = extract32(insn, 16, 5);
4080 int op_id = (extract32(insn, 29, 3) << 4) |
4081 (extract32(insn, 21, 3) << 1) |
4082 extract32(insn, 15, 1);
4083 bool sf = extract32(insn, 31, 1);
4084 bool is_sub = extract32(op_id, 0, 1);
4085 bool is_high = extract32(op_id, 2, 1);
4086 bool is_signed = false;
4087 TCGv_i64 tcg_op1;
4088 TCGv_i64 tcg_op2;
4089 TCGv_i64 tcg_tmp;
4091 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4092 switch (op_id) {
4093 case 0x42: /* SMADDL */
4094 case 0x43: /* SMSUBL */
4095 case 0x44: /* SMULH */
4096 is_signed = true;
4097 break;
4098 case 0x0: /* MADD (32bit) */
4099 case 0x1: /* MSUB (32bit) */
4100 case 0x40: /* MADD (64bit) */
4101 case 0x41: /* MSUB (64bit) */
4102 case 0x4a: /* UMADDL */
4103 case 0x4b: /* UMSUBL */
4104 case 0x4c: /* UMULH */
4105 break;
4106 default:
4107 unallocated_encoding(s);
4108 return;
4111 if (is_high) {
4112 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4113 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4114 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4115 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4117 if (is_signed) {
4118 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4119 } else {
4120 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4123 tcg_temp_free_i64(low_bits);
4124 return;
4127 tcg_op1 = tcg_temp_new_i64();
4128 tcg_op2 = tcg_temp_new_i64();
4129 tcg_tmp = tcg_temp_new_i64();
4131 if (op_id < 0x42) {
4132 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4133 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4134 } else {
4135 if (is_signed) {
4136 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4137 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4138 } else {
4139 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4140 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4144 if (ra == 31 && !is_sub) {
4145 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4146 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4147 } else {
4148 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4149 if (is_sub) {
4150 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4151 } else {
4152 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4156 if (!sf) {
4157 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4160 tcg_temp_free_i64(tcg_op1);
4161 tcg_temp_free_i64(tcg_op2);
4162 tcg_temp_free_i64(tcg_tmp);
4165 /* Add/subtract (with carry)
4166 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4167 * +--+--+--+------------------------+------+---------+------+-----+
4168 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
4169 * +--+--+--+------------------------+------+---------+------+-----+
4170 * [000000]
4173 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4175 unsigned int sf, op, setflags, rm, rn, rd;
4176 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4178 if (extract32(insn, 10, 6) != 0) {
4179 unallocated_encoding(s);
4180 return;
4183 sf = extract32(insn, 31, 1);
4184 op = extract32(insn, 30, 1);
4185 setflags = extract32(insn, 29, 1);
4186 rm = extract32(insn, 16, 5);
4187 rn = extract32(insn, 5, 5);
4188 rd = extract32(insn, 0, 5);
4190 tcg_rd = cpu_reg(s, rd);
4191 tcg_rn = cpu_reg(s, rn);
4193 if (op) {
4194 tcg_y = new_tmp_a64(s);
4195 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4196 } else {
4197 tcg_y = cpu_reg(s, rm);
4200 if (setflags) {
4201 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4202 } else {
4203 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4207 /* Conditional compare (immediate / register)
4208 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4209 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4210 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4211 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4212 * [1] y [0] [0]
4214 static void disas_cc(DisasContext *s, uint32_t insn)
4216 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4217 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4218 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4219 DisasCompare c;
4221 if (!extract32(insn, 29, 1)) {
4222 unallocated_encoding(s);
4223 return;
4225 if (insn & (1 << 10 | 1 << 4)) {
4226 unallocated_encoding(s);
4227 return;
4229 sf = extract32(insn, 31, 1);
4230 op = extract32(insn, 30, 1);
4231 is_imm = extract32(insn, 11, 1);
4232 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4233 cond = extract32(insn, 12, 4);
4234 rn = extract32(insn, 5, 5);
4235 nzcv = extract32(insn, 0, 4);
4237 /* Set T0 = !COND. */
4238 tcg_t0 = tcg_temp_new_i32();
4239 arm_test_cc(&c, cond);
4240 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4241 arm_free_cc(&c);
4243 /* Load the arguments for the new comparison. */
4244 if (is_imm) {
4245 tcg_y = new_tmp_a64(s);
4246 tcg_gen_movi_i64(tcg_y, y);
4247 } else {
4248 tcg_y = cpu_reg(s, y);
4250 tcg_rn = cpu_reg(s, rn);
4252 /* Set the flags for the new comparison. */
4253 tcg_tmp = tcg_temp_new_i64();
4254 if (op) {
4255 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4256 } else {
4257 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4259 tcg_temp_free_i64(tcg_tmp);
4261 /* If COND was false, force the flags to #nzcv. Compute two masks
4262 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4263 * For tcg hosts that support ANDC, we can make do with just T1.
4264 * In either case, allow the tcg optimizer to delete any unused mask.
4266 tcg_t1 = tcg_temp_new_i32();
4267 tcg_t2 = tcg_temp_new_i32();
4268 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4269 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4271 if (nzcv & 8) { /* N */
4272 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4273 } else {
4274 if (TCG_TARGET_HAS_andc_i32) {
4275 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4276 } else {
4277 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4280 if (nzcv & 4) { /* Z */
4281 if (TCG_TARGET_HAS_andc_i32) {
4282 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4283 } else {
4284 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4286 } else {
4287 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4289 if (nzcv & 2) { /* C */
4290 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4291 } else {
4292 if (TCG_TARGET_HAS_andc_i32) {
4293 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4294 } else {
4295 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4298 if (nzcv & 1) { /* V */
4299 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4300 } else {
4301 if (TCG_TARGET_HAS_andc_i32) {
4302 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4303 } else {
4304 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4307 tcg_temp_free_i32(tcg_t0);
4308 tcg_temp_free_i32(tcg_t1);
4309 tcg_temp_free_i32(tcg_t2);
4312 /* Conditional select
4313 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4314 * +----+----+---+-----------------+------+------+-----+------+------+
4315 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4316 * +----+----+---+-----------------+------+------+-----+------+------+
4318 static void disas_cond_select(DisasContext *s, uint32_t insn)
4320 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4321 TCGv_i64 tcg_rd, zero;
4322 DisasCompare64 c;
4324 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4325 /* S == 1 or op2<1> == 1 */
4326 unallocated_encoding(s);
4327 return;
4329 sf = extract32(insn, 31, 1);
4330 else_inv = extract32(insn, 30, 1);
4331 rm = extract32(insn, 16, 5);
4332 cond = extract32(insn, 12, 4);
4333 else_inc = extract32(insn, 10, 1);
4334 rn = extract32(insn, 5, 5);
4335 rd = extract32(insn, 0, 5);
4337 tcg_rd = cpu_reg(s, rd);
4339 a64_test_cc(&c, cond);
4340 zero = tcg_const_i64(0);
4342 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4343 /* CSET & CSETM. */
4344 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4345 if (else_inv) {
4346 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4348 } else {
4349 TCGv_i64 t_true = cpu_reg(s, rn);
4350 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4351 if (else_inv && else_inc) {
4352 tcg_gen_neg_i64(t_false, t_false);
4353 } else if (else_inv) {
4354 tcg_gen_not_i64(t_false, t_false);
4355 } else if (else_inc) {
4356 tcg_gen_addi_i64(t_false, t_false, 1);
4358 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4361 tcg_temp_free_i64(zero);
4362 a64_free_cc(&c);
4364 if (!sf) {
4365 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4369 static void handle_clz(DisasContext *s, unsigned int sf,
4370 unsigned int rn, unsigned int rd)
4372 TCGv_i64 tcg_rd, tcg_rn;
4373 tcg_rd = cpu_reg(s, rd);
4374 tcg_rn = cpu_reg(s, rn);
4376 if (sf) {
4377 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4378 } else {
4379 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4380 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4381 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4382 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4383 tcg_temp_free_i32(tcg_tmp32);
4387 static void handle_cls(DisasContext *s, unsigned int sf,
4388 unsigned int rn, unsigned int rd)
4390 TCGv_i64 tcg_rd, tcg_rn;
4391 tcg_rd = cpu_reg(s, rd);
4392 tcg_rn = cpu_reg(s, rn);
4394 if (sf) {
4395 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4396 } else {
4397 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4398 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4399 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4400 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4401 tcg_temp_free_i32(tcg_tmp32);
4405 static void handle_rbit(DisasContext *s, unsigned int sf,
4406 unsigned int rn, unsigned int rd)
4408 TCGv_i64 tcg_rd, tcg_rn;
4409 tcg_rd = cpu_reg(s, rd);
4410 tcg_rn = cpu_reg(s, rn);
4412 if (sf) {
4413 gen_helper_rbit64(tcg_rd, tcg_rn);
4414 } else {
4415 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4416 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4417 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4418 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4419 tcg_temp_free_i32(tcg_tmp32);
4423 /* REV with sf==1, opcode==3 ("REV64") */
4424 static void handle_rev64(DisasContext *s, unsigned int sf,
4425 unsigned int rn, unsigned int rd)
4427 if (!sf) {
4428 unallocated_encoding(s);
4429 return;
4431 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4434 /* REV with sf==0, opcode==2
4435 * REV32 (sf==1, opcode==2)
4437 static void handle_rev32(DisasContext *s, unsigned int sf,
4438 unsigned int rn, unsigned int rd)
4440 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4442 if (sf) {
4443 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4444 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4446 /* bswap32_i64 requires zero high word */
4447 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4448 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4449 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4450 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4451 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4453 tcg_temp_free_i64(tcg_tmp);
4454 } else {
4455 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4456 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4460 /* REV16 (opcode==1) */
4461 static void handle_rev16(DisasContext *s, unsigned int sf,
4462 unsigned int rn, unsigned int rd)
4464 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4465 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4466 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4467 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4469 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4470 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4471 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4472 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4473 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4475 tcg_temp_free_i64(mask);
4476 tcg_temp_free_i64(tcg_tmp);
4479 /* Data-processing (1 source)
4480 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4481 * +----+---+---+-----------------+---------+--------+------+------+
4482 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4483 * +----+---+---+-----------------+---------+--------+------+------+
4485 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4487 unsigned int sf, opcode, rn, rd;
4489 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4490 unallocated_encoding(s);
4491 return;
4494 sf = extract32(insn, 31, 1);
4495 opcode = extract32(insn, 10, 6);
4496 rn = extract32(insn, 5, 5);
4497 rd = extract32(insn, 0, 5);
4499 switch (opcode) {
4500 case 0: /* RBIT */
4501 handle_rbit(s, sf, rn, rd);
4502 break;
4503 case 1: /* REV16 */
4504 handle_rev16(s, sf, rn, rd);
4505 break;
4506 case 2: /* REV32 */
4507 handle_rev32(s, sf, rn, rd);
4508 break;
4509 case 3: /* REV64 */
4510 handle_rev64(s, sf, rn, rd);
4511 break;
4512 case 4: /* CLZ */
4513 handle_clz(s, sf, rn, rd);
4514 break;
4515 case 5: /* CLS */
4516 handle_cls(s, sf, rn, rd);
4517 break;
4521 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4522 unsigned int rm, unsigned int rn, unsigned int rd)
4524 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4525 tcg_rd = cpu_reg(s, rd);
4527 if (!sf && is_signed) {
4528 tcg_n = new_tmp_a64(s);
4529 tcg_m = new_tmp_a64(s);
4530 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4531 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4532 } else {
4533 tcg_n = read_cpu_reg(s, rn, sf);
4534 tcg_m = read_cpu_reg(s, rm, sf);
4537 if (is_signed) {
4538 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4539 } else {
4540 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4543 if (!sf) { /* zero extend final result */
4544 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4548 /* LSLV, LSRV, ASRV, RORV */
4549 static void handle_shift_reg(DisasContext *s,
4550 enum a64_shift_type shift_type, unsigned int sf,
4551 unsigned int rm, unsigned int rn, unsigned int rd)
4553 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4554 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4555 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4557 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4558 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4559 tcg_temp_free_i64(tcg_shift);
4562 /* CRC32[BHWX], CRC32C[BHWX] */
4563 static void handle_crc32(DisasContext *s,
4564 unsigned int sf, unsigned int sz, bool crc32c,
4565 unsigned int rm, unsigned int rn, unsigned int rd)
4567 TCGv_i64 tcg_acc, tcg_val;
4568 TCGv_i32 tcg_bytes;
4570 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4571 || (sf == 1 && sz != 3)
4572 || (sf == 0 && sz == 3)) {
4573 unallocated_encoding(s);
4574 return;
4577 if (sz == 3) {
4578 tcg_val = cpu_reg(s, rm);
4579 } else {
4580 uint64_t mask;
4581 switch (sz) {
4582 case 0:
4583 mask = 0xFF;
4584 break;
4585 case 1:
4586 mask = 0xFFFF;
4587 break;
4588 case 2:
4589 mask = 0xFFFFFFFF;
4590 break;
4591 default:
4592 g_assert_not_reached();
4594 tcg_val = new_tmp_a64(s);
4595 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4598 tcg_acc = cpu_reg(s, rn);
4599 tcg_bytes = tcg_const_i32(1 << sz);
4601 if (crc32c) {
4602 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4603 } else {
4604 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4607 tcg_temp_free_i32(tcg_bytes);
4610 /* Data-processing (2 source)
4611 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4612 * +----+---+---+-----------------+------+--------+------+------+
4613 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4614 * +----+---+---+-----------------+------+--------+------+------+
4616 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4618 unsigned int sf, rm, opcode, rn, rd;
4619 sf = extract32(insn, 31, 1);
4620 rm = extract32(insn, 16, 5);
4621 opcode = extract32(insn, 10, 6);
4622 rn = extract32(insn, 5, 5);
4623 rd = extract32(insn, 0, 5);
4625 if (extract32(insn, 29, 1)) {
4626 unallocated_encoding(s);
4627 return;
4630 switch (opcode) {
4631 case 2: /* UDIV */
4632 handle_div(s, false, sf, rm, rn, rd);
4633 break;
4634 case 3: /* SDIV */
4635 handle_div(s, true, sf, rm, rn, rd);
4636 break;
4637 case 8: /* LSLV */
4638 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4639 break;
4640 case 9: /* LSRV */
4641 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4642 break;
4643 case 10: /* ASRV */
4644 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4645 break;
4646 case 11: /* RORV */
4647 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4648 break;
4649 case 16:
4650 case 17:
4651 case 18:
4652 case 19:
4653 case 20:
4654 case 21:
4655 case 22:
4656 case 23: /* CRC32 */
4658 int sz = extract32(opcode, 0, 2);
4659 bool crc32c = extract32(opcode, 2, 1);
4660 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4661 break;
4663 default:
4664 unallocated_encoding(s);
4665 break;
4669 /* Data processing - register */
4670 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4672 switch (extract32(insn, 24, 5)) {
4673 case 0x0a: /* Logical (shifted register) */
4674 disas_logic_reg(s, insn);
4675 break;
4676 case 0x0b: /* Add/subtract */
4677 if (insn & (1 << 21)) { /* (extended register) */
4678 disas_add_sub_ext_reg(s, insn);
4679 } else {
4680 disas_add_sub_reg(s, insn);
4682 break;
4683 case 0x1b: /* Data-processing (3 source) */
4684 disas_data_proc_3src(s, insn);
4685 break;
4686 case 0x1a:
4687 switch (extract32(insn, 21, 3)) {
4688 case 0x0: /* Add/subtract (with carry) */
4689 disas_adc_sbc(s, insn);
4690 break;
4691 case 0x2: /* Conditional compare */
4692 disas_cc(s, insn); /* both imm and reg forms */
4693 break;
4694 case 0x4: /* Conditional select */
4695 disas_cond_select(s, insn);
4696 break;
4697 case 0x6: /* Data-processing */
4698 if (insn & (1 << 30)) { /* (1 source) */
4699 disas_data_proc_1src(s, insn);
4700 } else { /* (2 source) */
4701 disas_data_proc_2src(s, insn);
4703 break;
4704 default:
4705 unallocated_encoding(s);
4706 break;
4708 break;
4709 default:
4710 unallocated_encoding(s);
4711 break;
4715 static void handle_fp_compare(DisasContext *s, int size,
4716 unsigned int rn, unsigned int rm,
4717 bool cmp_with_zero, bool signal_all_nans)
4719 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4720 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
4722 if (size == MO_64) {
4723 TCGv_i64 tcg_vn, tcg_vm;
4725 tcg_vn = read_fp_dreg(s, rn);
4726 if (cmp_with_zero) {
4727 tcg_vm = tcg_const_i64(0);
4728 } else {
4729 tcg_vm = read_fp_dreg(s, rm);
4731 if (signal_all_nans) {
4732 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4733 } else {
4734 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4736 tcg_temp_free_i64(tcg_vn);
4737 tcg_temp_free_i64(tcg_vm);
4738 } else {
4739 TCGv_i32 tcg_vn = tcg_temp_new_i32();
4740 TCGv_i32 tcg_vm = tcg_temp_new_i32();
4742 read_vec_element_i32(s, tcg_vn, rn, 0, size);
4743 if (cmp_with_zero) {
4744 tcg_gen_movi_i32(tcg_vm, 0);
4745 } else {
4746 read_vec_element_i32(s, tcg_vm, rm, 0, size);
4749 switch (size) {
4750 case MO_32:
4751 if (signal_all_nans) {
4752 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4753 } else {
4754 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4756 break;
4757 case MO_16:
4758 if (signal_all_nans) {
4759 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4760 } else {
4761 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4763 break;
4764 default:
4765 g_assert_not_reached();
4768 tcg_temp_free_i32(tcg_vn);
4769 tcg_temp_free_i32(tcg_vm);
4772 tcg_temp_free_ptr(fpst);
4774 gen_set_nzcv(tcg_flags);
4776 tcg_temp_free_i64(tcg_flags);
4779 /* Floating point compare
4780 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4781 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4782 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4783 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4785 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4787 unsigned int mos, type, rm, op, rn, opc, op2r;
4788 int size;
4790 mos = extract32(insn, 29, 3);
4791 type = extract32(insn, 22, 2);
4792 rm = extract32(insn, 16, 5);
4793 op = extract32(insn, 14, 2);
4794 rn = extract32(insn, 5, 5);
4795 opc = extract32(insn, 3, 2);
4796 op2r = extract32(insn, 0, 3);
4798 if (mos || op || op2r) {
4799 unallocated_encoding(s);
4800 return;
4803 switch (type) {
4804 case 0:
4805 size = MO_32;
4806 break;
4807 case 1:
4808 size = MO_64;
4809 break;
4810 case 3:
4811 size = MO_16;
4812 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4813 break;
4815 /* fallthru */
4816 default:
4817 unallocated_encoding(s);
4818 return;
4821 if (!fp_access_check(s)) {
4822 return;
4825 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
4828 /* Floating point conditional compare
4829 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4830 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4831 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4832 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4834 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4836 unsigned int mos, type, rm, cond, rn, op, nzcv;
4837 TCGv_i64 tcg_flags;
4838 TCGLabel *label_continue = NULL;
4839 int size;
4841 mos = extract32(insn, 29, 3);
4842 type = extract32(insn, 22, 2);
4843 rm = extract32(insn, 16, 5);
4844 cond = extract32(insn, 12, 4);
4845 rn = extract32(insn, 5, 5);
4846 op = extract32(insn, 4, 1);
4847 nzcv = extract32(insn, 0, 4);
4849 if (mos) {
4850 unallocated_encoding(s);
4851 return;
4854 switch (type) {
4855 case 0:
4856 size = MO_32;
4857 break;
4858 case 1:
4859 size = MO_64;
4860 break;
4861 case 3:
4862 size = MO_16;
4863 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4864 break;
4866 /* fallthru */
4867 default:
4868 unallocated_encoding(s);
4869 return;
4872 if (!fp_access_check(s)) {
4873 return;
4876 if (cond < 0x0e) { /* not always */
4877 TCGLabel *label_match = gen_new_label();
4878 label_continue = gen_new_label();
4879 arm_gen_test_cc(cond, label_match);
4880 /* nomatch: */
4881 tcg_flags = tcg_const_i64(nzcv << 28);
4882 gen_set_nzcv(tcg_flags);
4883 tcg_temp_free_i64(tcg_flags);
4884 tcg_gen_br(label_continue);
4885 gen_set_label(label_match);
4888 handle_fp_compare(s, size, rn, rm, false, op);
4890 if (cond < 0x0e) {
4891 gen_set_label(label_continue);
4895 /* Floating point conditional select
4896 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4897 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4898 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4899 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4901 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4903 unsigned int mos, type, rm, cond, rn, rd;
4904 TCGv_i64 t_true, t_false, t_zero;
4905 DisasCompare64 c;
4906 TCGMemOp sz;
4908 mos = extract32(insn, 29, 3);
4909 type = extract32(insn, 22, 2);
4910 rm = extract32(insn, 16, 5);
4911 cond = extract32(insn, 12, 4);
4912 rn = extract32(insn, 5, 5);
4913 rd = extract32(insn, 0, 5);
4915 if (mos) {
4916 unallocated_encoding(s);
4917 return;
4920 switch (type) {
4921 case 0:
4922 sz = MO_32;
4923 break;
4924 case 1:
4925 sz = MO_64;
4926 break;
4927 case 3:
4928 sz = MO_16;
4929 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4930 break;
4932 /* fallthru */
4933 default:
4934 unallocated_encoding(s);
4935 return;
4938 if (!fp_access_check(s)) {
4939 return;
4942 /* Zero extend sreg & hreg inputs to 64 bits now. */
4943 t_true = tcg_temp_new_i64();
4944 t_false = tcg_temp_new_i64();
4945 read_vec_element(s, t_true, rn, 0, sz);
4946 read_vec_element(s, t_false, rm, 0, sz);
4948 a64_test_cc(&c, cond);
4949 t_zero = tcg_const_i64(0);
4950 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4951 tcg_temp_free_i64(t_zero);
4952 tcg_temp_free_i64(t_false);
4953 a64_free_cc(&c);
4955 /* Note that sregs & hregs write back zeros to the high bits,
4956 and we've already done the zero-extension. */
4957 write_fp_dreg(s, rd, t_true);
4958 tcg_temp_free_i64(t_true);
4961 /* Floating-point data-processing (1 source) - half precision */
4962 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
4964 TCGv_ptr fpst = NULL;
4965 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
4966 TCGv_i32 tcg_res = tcg_temp_new_i32();
4968 switch (opcode) {
4969 case 0x0: /* FMOV */
4970 tcg_gen_mov_i32(tcg_res, tcg_op);
4971 break;
4972 case 0x1: /* FABS */
4973 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
4974 break;
4975 case 0x2: /* FNEG */
4976 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
4977 break;
4978 case 0x3: /* FSQRT */
4979 gen_helper_sqrt_f16(tcg_res, tcg_op, cpu_env);
4980 break;
4981 case 0x8: /* FRINTN */
4982 case 0x9: /* FRINTP */
4983 case 0xa: /* FRINTM */
4984 case 0xb: /* FRINTZ */
4985 case 0xc: /* FRINTA */
4987 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4988 fpst = get_fpstatus_ptr(true);
4990 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4991 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4993 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4994 tcg_temp_free_i32(tcg_rmode);
4995 break;
4997 case 0xe: /* FRINTX */
4998 fpst = get_fpstatus_ptr(true);
4999 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5000 break;
5001 case 0xf: /* FRINTI */
5002 fpst = get_fpstatus_ptr(true);
5003 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5004 break;
5005 default:
5006 abort();
5009 write_fp_sreg(s, rd, tcg_res);
5011 if (fpst) {
5012 tcg_temp_free_ptr(fpst);
5014 tcg_temp_free_i32(tcg_op);
5015 tcg_temp_free_i32(tcg_res);
5018 /* Floating-point data-processing (1 source) - single precision */
5019 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5021 TCGv_ptr fpst;
5022 TCGv_i32 tcg_op;
5023 TCGv_i32 tcg_res;
5025 fpst = get_fpstatus_ptr(false);
5026 tcg_op = read_fp_sreg(s, rn);
5027 tcg_res = tcg_temp_new_i32();
5029 switch (opcode) {
5030 case 0x0: /* FMOV */
5031 tcg_gen_mov_i32(tcg_res, tcg_op);
5032 break;
5033 case 0x1: /* FABS */
5034 gen_helper_vfp_abss(tcg_res, tcg_op);
5035 break;
5036 case 0x2: /* FNEG */
5037 gen_helper_vfp_negs(tcg_res, tcg_op);
5038 break;
5039 case 0x3: /* FSQRT */
5040 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5041 break;
5042 case 0x8: /* FRINTN */
5043 case 0x9: /* FRINTP */
5044 case 0xa: /* FRINTM */
5045 case 0xb: /* FRINTZ */
5046 case 0xc: /* FRINTA */
5048 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5050 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5051 gen_helper_rints(tcg_res, tcg_op, fpst);
5053 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5054 tcg_temp_free_i32(tcg_rmode);
5055 break;
5057 case 0xe: /* FRINTX */
5058 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
5059 break;
5060 case 0xf: /* FRINTI */
5061 gen_helper_rints(tcg_res, tcg_op, fpst);
5062 break;
5063 default:
5064 abort();
5067 write_fp_sreg(s, rd, tcg_res);
5069 tcg_temp_free_ptr(fpst);
5070 tcg_temp_free_i32(tcg_op);
5071 tcg_temp_free_i32(tcg_res);
5074 /* Floating-point data-processing (1 source) - double precision */
5075 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5077 TCGv_ptr fpst;
5078 TCGv_i64 tcg_op;
5079 TCGv_i64 tcg_res;
5081 switch (opcode) {
5082 case 0x0: /* FMOV */
5083 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5084 return;
5087 fpst = get_fpstatus_ptr(false);
5088 tcg_op = read_fp_dreg(s, rn);
5089 tcg_res = tcg_temp_new_i64();
5091 switch (opcode) {
5092 case 0x1: /* FABS */
5093 gen_helper_vfp_absd(tcg_res, tcg_op);
5094 break;
5095 case 0x2: /* FNEG */
5096 gen_helper_vfp_negd(tcg_res, tcg_op);
5097 break;
5098 case 0x3: /* FSQRT */
5099 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5100 break;
5101 case 0x8: /* FRINTN */
5102 case 0x9: /* FRINTP */
5103 case 0xa: /* FRINTM */
5104 case 0xb: /* FRINTZ */
5105 case 0xc: /* FRINTA */
5107 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5109 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5110 gen_helper_rintd(tcg_res, tcg_op, fpst);
5112 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5113 tcg_temp_free_i32(tcg_rmode);
5114 break;
5116 case 0xe: /* FRINTX */
5117 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
5118 break;
5119 case 0xf: /* FRINTI */
5120 gen_helper_rintd(tcg_res, tcg_op, fpst);
5121 break;
5122 default:
5123 abort();
5126 write_fp_dreg(s, rd, tcg_res);
5128 tcg_temp_free_ptr(fpst);
5129 tcg_temp_free_i64(tcg_op);
5130 tcg_temp_free_i64(tcg_res);
5133 static void handle_fp_fcvt(DisasContext *s, int opcode,
5134 int rd, int rn, int dtype, int ntype)
5136 switch (ntype) {
5137 case 0x0:
5139 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5140 if (dtype == 1) {
5141 /* Single to double */
5142 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5143 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5144 write_fp_dreg(s, rd, tcg_rd);
5145 tcg_temp_free_i64(tcg_rd);
5146 } else {
5147 /* Single to half */
5148 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5149 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
5150 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5151 write_fp_sreg(s, rd, tcg_rd);
5152 tcg_temp_free_i32(tcg_rd);
5154 tcg_temp_free_i32(tcg_rn);
5155 break;
5157 case 0x1:
5159 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5160 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5161 if (dtype == 0) {
5162 /* Double to single */
5163 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5164 } else {
5165 /* Double to half */
5166 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
5167 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5169 write_fp_sreg(s, rd, tcg_rd);
5170 tcg_temp_free_i32(tcg_rd);
5171 tcg_temp_free_i64(tcg_rn);
5172 break;
5174 case 0x3:
5176 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5177 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5178 if (dtype == 0) {
5179 /* Half to single */
5180 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5181 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
5182 write_fp_sreg(s, rd, tcg_rd);
5183 tcg_temp_free_i32(tcg_rd);
5184 } else {
5185 /* Half to double */
5186 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5187 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
5188 write_fp_dreg(s, rd, tcg_rd);
5189 tcg_temp_free_i64(tcg_rd);
5191 tcg_temp_free_i32(tcg_rn);
5192 break;
5194 default:
5195 abort();
5199 /* Floating point data-processing (1 source)
5200 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5201 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5202 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5203 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5205 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5207 int type = extract32(insn, 22, 2);
5208 int opcode = extract32(insn, 15, 6);
5209 int rn = extract32(insn, 5, 5);
5210 int rd = extract32(insn, 0, 5);
5212 switch (opcode) {
5213 case 0x4: case 0x5: case 0x7:
5215 /* FCVT between half, single and double precision */
5216 int dtype = extract32(opcode, 0, 2);
5217 if (type == 2 || dtype == type) {
5218 unallocated_encoding(s);
5219 return;
5221 if (!fp_access_check(s)) {
5222 return;
5225 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5226 break;
5228 case 0x0 ... 0x3:
5229 case 0x8 ... 0xc:
5230 case 0xe ... 0xf:
5231 /* 32-to-32 and 64-to-64 ops */
5232 switch (type) {
5233 case 0:
5234 if (!fp_access_check(s)) {
5235 return;
5238 handle_fp_1src_single(s, opcode, rd, rn);
5239 break;
5240 case 1:
5241 if (!fp_access_check(s)) {
5242 return;
5245 handle_fp_1src_double(s, opcode, rd, rn);
5246 break;
5247 case 3:
5248 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5249 unallocated_encoding(s);
5250 return;
5253 if (!fp_access_check(s)) {
5254 return;
5257 handle_fp_1src_half(s, opcode, rd, rn);
5258 break;
5259 default:
5260 unallocated_encoding(s);
5262 break;
5263 default:
5264 unallocated_encoding(s);
5265 break;
5269 /* Floating-point data-processing (2 source) - single precision */
5270 static void handle_fp_2src_single(DisasContext *s, int opcode,
5271 int rd, int rn, int rm)
5273 TCGv_i32 tcg_op1;
5274 TCGv_i32 tcg_op2;
5275 TCGv_i32 tcg_res;
5276 TCGv_ptr fpst;
5278 tcg_res = tcg_temp_new_i32();
5279 fpst = get_fpstatus_ptr(false);
5280 tcg_op1 = read_fp_sreg(s, rn);
5281 tcg_op2 = read_fp_sreg(s, rm);
5283 switch (opcode) {
5284 case 0x0: /* FMUL */
5285 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5286 break;
5287 case 0x1: /* FDIV */
5288 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
5289 break;
5290 case 0x2: /* FADD */
5291 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
5292 break;
5293 case 0x3: /* FSUB */
5294 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
5295 break;
5296 case 0x4: /* FMAX */
5297 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
5298 break;
5299 case 0x5: /* FMIN */
5300 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
5301 break;
5302 case 0x6: /* FMAXNM */
5303 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
5304 break;
5305 case 0x7: /* FMINNM */
5306 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
5307 break;
5308 case 0x8: /* FNMUL */
5309 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5310 gen_helper_vfp_negs(tcg_res, tcg_res);
5311 break;
5314 write_fp_sreg(s, rd, tcg_res);
5316 tcg_temp_free_ptr(fpst);
5317 tcg_temp_free_i32(tcg_op1);
5318 tcg_temp_free_i32(tcg_op2);
5319 tcg_temp_free_i32(tcg_res);
5322 /* Floating-point data-processing (2 source) - double precision */
5323 static void handle_fp_2src_double(DisasContext *s, int opcode,
5324 int rd, int rn, int rm)
5326 TCGv_i64 tcg_op1;
5327 TCGv_i64 tcg_op2;
5328 TCGv_i64 tcg_res;
5329 TCGv_ptr fpst;
5331 tcg_res = tcg_temp_new_i64();
5332 fpst = get_fpstatus_ptr(false);
5333 tcg_op1 = read_fp_dreg(s, rn);
5334 tcg_op2 = read_fp_dreg(s, rm);
5336 switch (opcode) {
5337 case 0x0: /* FMUL */
5338 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5339 break;
5340 case 0x1: /* FDIV */
5341 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5342 break;
5343 case 0x2: /* FADD */
5344 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5345 break;
5346 case 0x3: /* FSUB */
5347 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5348 break;
5349 case 0x4: /* FMAX */
5350 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5351 break;
5352 case 0x5: /* FMIN */
5353 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5354 break;
5355 case 0x6: /* FMAXNM */
5356 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5357 break;
5358 case 0x7: /* FMINNM */
5359 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5360 break;
5361 case 0x8: /* FNMUL */
5362 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5363 gen_helper_vfp_negd(tcg_res, tcg_res);
5364 break;
5367 write_fp_dreg(s, rd, tcg_res);
5369 tcg_temp_free_ptr(fpst);
5370 tcg_temp_free_i64(tcg_op1);
5371 tcg_temp_free_i64(tcg_op2);
5372 tcg_temp_free_i64(tcg_res);
5375 /* Floating-point data-processing (2 source) - half precision */
5376 static void handle_fp_2src_half(DisasContext *s, int opcode,
5377 int rd, int rn, int rm)
5379 TCGv_i32 tcg_op1;
5380 TCGv_i32 tcg_op2;
5381 TCGv_i32 tcg_res;
5382 TCGv_ptr fpst;
5384 tcg_res = tcg_temp_new_i32();
5385 fpst = get_fpstatus_ptr(true);
5386 tcg_op1 = read_fp_hreg(s, rn);
5387 tcg_op2 = read_fp_hreg(s, rm);
5389 switch (opcode) {
5390 case 0x0: /* FMUL */
5391 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5392 break;
5393 case 0x1: /* FDIV */
5394 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
5395 break;
5396 case 0x2: /* FADD */
5397 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
5398 break;
5399 case 0x3: /* FSUB */
5400 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
5401 break;
5402 case 0x4: /* FMAX */
5403 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
5404 break;
5405 case 0x5: /* FMIN */
5406 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
5407 break;
5408 case 0x6: /* FMAXNM */
5409 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5410 break;
5411 case 0x7: /* FMINNM */
5412 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5413 break;
5414 case 0x8: /* FNMUL */
5415 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5416 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
5417 break;
5418 default:
5419 g_assert_not_reached();
5422 write_fp_sreg(s, rd, tcg_res);
5424 tcg_temp_free_ptr(fpst);
5425 tcg_temp_free_i32(tcg_op1);
5426 tcg_temp_free_i32(tcg_op2);
5427 tcg_temp_free_i32(tcg_res);
5430 /* Floating point data-processing (2 source)
5431 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5432 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5433 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5434 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5436 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5438 int type = extract32(insn, 22, 2);
5439 int rd = extract32(insn, 0, 5);
5440 int rn = extract32(insn, 5, 5);
5441 int rm = extract32(insn, 16, 5);
5442 int opcode = extract32(insn, 12, 4);
5444 if (opcode > 8) {
5445 unallocated_encoding(s);
5446 return;
5449 switch (type) {
5450 case 0:
5451 if (!fp_access_check(s)) {
5452 return;
5454 handle_fp_2src_single(s, opcode, rd, rn, rm);
5455 break;
5456 case 1:
5457 if (!fp_access_check(s)) {
5458 return;
5460 handle_fp_2src_double(s, opcode, rd, rn, rm);
5461 break;
5462 case 3:
5463 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5464 unallocated_encoding(s);
5465 return;
5467 if (!fp_access_check(s)) {
5468 return;
5470 handle_fp_2src_half(s, opcode, rd, rn, rm);
5471 break;
5472 default:
5473 unallocated_encoding(s);
5477 /* Floating-point data-processing (3 source) - single precision */
5478 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5479 int rd, int rn, int rm, int ra)
5481 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5482 TCGv_i32 tcg_res = tcg_temp_new_i32();
5483 TCGv_ptr fpst = get_fpstatus_ptr(false);
5485 tcg_op1 = read_fp_sreg(s, rn);
5486 tcg_op2 = read_fp_sreg(s, rm);
5487 tcg_op3 = read_fp_sreg(s, ra);
5489 /* These are fused multiply-add, and must be done as one
5490 * floating point operation with no rounding between the
5491 * multiplication and addition steps.
5492 * NB that doing the negations here as separate steps is
5493 * correct : an input NaN should come out with its sign bit
5494 * flipped if it is a negated-input.
5496 if (o1 == true) {
5497 gen_helper_vfp_negs(tcg_op3, tcg_op3);
5500 if (o0 != o1) {
5501 gen_helper_vfp_negs(tcg_op1, tcg_op1);
5504 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5506 write_fp_sreg(s, rd, tcg_res);
5508 tcg_temp_free_ptr(fpst);
5509 tcg_temp_free_i32(tcg_op1);
5510 tcg_temp_free_i32(tcg_op2);
5511 tcg_temp_free_i32(tcg_op3);
5512 tcg_temp_free_i32(tcg_res);
5515 /* Floating-point data-processing (3 source) - double precision */
5516 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
5517 int rd, int rn, int rm, int ra)
5519 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
5520 TCGv_i64 tcg_res = tcg_temp_new_i64();
5521 TCGv_ptr fpst = get_fpstatus_ptr(false);
5523 tcg_op1 = read_fp_dreg(s, rn);
5524 tcg_op2 = read_fp_dreg(s, rm);
5525 tcg_op3 = read_fp_dreg(s, ra);
5527 /* These are fused multiply-add, and must be done as one
5528 * floating point operation with no rounding between the
5529 * multiplication and addition steps.
5530 * NB that doing the negations here as separate steps is
5531 * correct : an input NaN should come out with its sign bit
5532 * flipped if it is a negated-input.
5534 if (o1 == true) {
5535 gen_helper_vfp_negd(tcg_op3, tcg_op3);
5538 if (o0 != o1) {
5539 gen_helper_vfp_negd(tcg_op1, tcg_op1);
5542 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5544 write_fp_dreg(s, rd, tcg_res);
5546 tcg_temp_free_ptr(fpst);
5547 tcg_temp_free_i64(tcg_op1);
5548 tcg_temp_free_i64(tcg_op2);
5549 tcg_temp_free_i64(tcg_op3);
5550 tcg_temp_free_i64(tcg_res);
5553 /* Floating-point data-processing (3 source) - half precision */
5554 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
5555 int rd, int rn, int rm, int ra)
5557 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5558 TCGv_i32 tcg_res = tcg_temp_new_i32();
5559 TCGv_ptr fpst = get_fpstatus_ptr(true);
5561 tcg_op1 = read_fp_hreg(s, rn);
5562 tcg_op2 = read_fp_hreg(s, rm);
5563 tcg_op3 = read_fp_hreg(s, ra);
5565 /* These are fused multiply-add, and must be done as one
5566 * floating point operation with no rounding between the
5567 * multiplication and addition steps.
5568 * NB that doing the negations here as separate steps is
5569 * correct : an input NaN should come out with its sign bit
5570 * flipped if it is a negated-input.
5572 if (o1 == true) {
5573 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
5576 if (o0 != o1) {
5577 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
5580 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5582 write_fp_sreg(s, rd, tcg_res);
5584 tcg_temp_free_ptr(fpst);
5585 tcg_temp_free_i32(tcg_op1);
5586 tcg_temp_free_i32(tcg_op2);
5587 tcg_temp_free_i32(tcg_op3);
5588 tcg_temp_free_i32(tcg_res);
5591 /* Floating point data-processing (3 source)
5592 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
5593 * +---+---+---+-----------+------+----+------+----+------+------+------+
5594 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
5595 * +---+---+---+-----------+------+----+------+----+------+------+------+
5597 static void disas_fp_3src(DisasContext *s, uint32_t insn)
5599 int type = extract32(insn, 22, 2);
5600 int rd = extract32(insn, 0, 5);
5601 int rn = extract32(insn, 5, 5);
5602 int ra = extract32(insn, 10, 5);
5603 int rm = extract32(insn, 16, 5);
5604 bool o0 = extract32(insn, 15, 1);
5605 bool o1 = extract32(insn, 21, 1);
5607 switch (type) {
5608 case 0:
5609 if (!fp_access_check(s)) {
5610 return;
5612 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
5613 break;
5614 case 1:
5615 if (!fp_access_check(s)) {
5616 return;
5618 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
5619 break;
5620 case 3:
5621 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5622 unallocated_encoding(s);
5623 return;
5625 if (!fp_access_check(s)) {
5626 return;
5628 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
5629 break;
5630 default:
5631 unallocated_encoding(s);
5635 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
5636 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
5637 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
5639 static uint64_t vfp_expand_imm(int size, uint8_t imm8)
5641 uint64_t imm;
5643 switch (size) {
5644 case MO_64:
5645 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5646 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5647 extract32(imm8, 0, 6);
5648 imm <<= 48;
5649 break;
5650 case MO_32:
5651 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5652 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5653 (extract32(imm8, 0, 6) << 3);
5654 imm <<= 16;
5655 break;
5656 case MO_16:
5657 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5658 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
5659 (extract32(imm8, 0, 6) << 6);
5660 break;
5661 default:
5662 g_assert_not_reached();
5664 return imm;
5667 /* Floating point immediate
5668 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
5669 * +---+---+---+-----------+------+---+------------+-------+------+------+
5670 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
5671 * +---+---+---+-----------+------+---+------------+-------+------+------+
5673 static void disas_fp_imm(DisasContext *s, uint32_t insn)
5675 int rd = extract32(insn, 0, 5);
5676 int imm8 = extract32(insn, 13, 8);
5677 int is_double = extract32(insn, 22, 2);
5678 uint64_t imm;
5679 TCGv_i64 tcg_res;
5681 if (is_double > 1) {
5682 unallocated_encoding(s);
5683 return;
5686 if (!fp_access_check(s)) {
5687 return;
5690 imm = vfp_expand_imm(MO_32 + is_double, imm8);
5692 tcg_res = tcg_const_i64(imm);
5693 write_fp_dreg(s, rd, tcg_res);
5694 tcg_temp_free_i64(tcg_res);
5697 /* Handle floating point <=> fixed point conversions. Note that we can
5698 * also deal with fp <=> integer conversions as a special case (scale == 64)
5699 * OPTME: consider handling that special case specially or at least skipping
5700 * the call to scalbn in the helpers for zero shifts.
5702 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5703 bool itof, int rmode, int scale, int sf, int type)
5705 bool is_signed = !(opcode & 1);
5706 TCGv_ptr tcg_fpstatus;
5707 TCGv_i32 tcg_shift, tcg_single;
5708 TCGv_i64 tcg_double;
5710 tcg_fpstatus = get_fpstatus_ptr(type == 3);
5712 tcg_shift = tcg_const_i32(64 - scale);
5714 if (itof) {
5715 TCGv_i64 tcg_int = cpu_reg(s, rn);
5716 if (!sf) {
5717 TCGv_i64 tcg_extend = new_tmp_a64(s);
5719 if (is_signed) {
5720 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5721 } else {
5722 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5725 tcg_int = tcg_extend;
5728 switch (type) {
5729 case 1: /* float64 */
5730 tcg_double = tcg_temp_new_i64();
5731 if (is_signed) {
5732 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5733 tcg_shift, tcg_fpstatus);
5734 } else {
5735 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5736 tcg_shift, tcg_fpstatus);
5738 write_fp_dreg(s, rd, tcg_double);
5739 tcg_temp_free_i64(tcg_double);
5740 break;
5742 case 0: /* float32 */
5743 tcg_single = tcg_temp_new_i32();
5744 if (is_signed) {
5745 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5746 tcg_shift, tcg_fpstatus);
5747 } else {
5748 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5749 tcg_shift, tcg_fpstatus);
5751 write_fp_sreg(s, rd, tcg_single);
5752 tcg_temp_free_i32(tcg_single);
5753 break;
5755 case 3: /* float16 */
5756 tcg_single = tcg_temp_new_i32();
5757 if (is_signed) {
5758 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
5759 tcg_shift, tcg_fpstatus);
5760 } else {
5761 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
5762 tcg_shift, tcg_fpstatus);
5764 write_fp_sreg(s, rd, tcg_single);
5765 tcg_temp_free_i32(tcg_single);
5766 break;
5768 default:
5769 g_assert_not_reached();
5771 } else {
5772 TCGv_i64 tcg_int = cpu_reg(s, rd);
5773 TCGv_i32 tcg_rmode;
5775 if (extract32(opcode, 2, 1)) {
5776 /* There are too many rounding modes to all fit into rmode,
5777 * so FCVTA[US] is a special case.
5779 rmode = FPROUNDING_TIEAWAY;
5782 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5784 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5786 switch (type) {
5787 case 1: /* float64 */
5788 tcg_double = read_fp_dreg(s, rn);
5789 if (is_signed) {
5790 if (!sf) {
5791 gen_helper_vfp_tosld(tcg_int, tcg_double,
5792 tcg_shift, tcg_fpstatus);
5793 } else {
5794 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5795 tcg_shift, tcg_fpstatus);
5797 } else {
5798 if (!sf) {
5799 gen_helper_vfp_tould(tcg_int, tcg_double,
5800 tcg_shift, tcg_fpstatus);
5801 } else {
5802 gen_helper_vfp_touqd(tcg_int, tcg_double,
5803 tcg_shift, tcg_fpstatus);
5806 if (!sf) {
5807 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5809 tcg_temp_free_i64(tcg_double);
5810 break;
5812 case 0: /* float32 */
5813 tcg_single = read_fp_sreg(s, rn);
5814 if (sf) {
5815 if (is_signed) {
5816 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5817 tcg_shift, tcg_fpstatus);
5818 } else {
5819 gen_helper_vfp_touqs(tcg_int, tcg_single,
5820 tcg_shift, tcg_fpstatus);
5822 } else {
5823 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5824 if (is_signed) {
5825 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5826 tcg_shift, tcg_fpstatus);
5827 } else {
5828 gen_helper_vfp_touls(tcg_dest, tcg_single,
5829 tcg_shift, tcg_fpstatus);
5831 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5832 tcg_temp_free_i32(tcg_dest);
5834 tcg_temp_free_i32(tcg_single);
5835 break;
5837 case 3: /* float16 */
5838 tcg_single = read_fp_sreg(s, rn);
5839 if (sf) {
5840 if (is_signed) {
5841 gen_helper_vfp_tosqh(tcg_int, tcg_single,
5842 tcg_shift, tcg_fpstatus);
5843 } else {
5844 gen_helper_vfp_touqh(tcg_int, tcg_single,
5845 tcg_shift, tcg_fpstatus);
5847 } else {
5848 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5849 if (is_signed) {
5850 gen_helper_vfp_toslh(tcg_dest, tcg_single,
5851 tcg_shift, tcg_fpstatus);
5852 } else {
5853 gen_helper_vfp_toulh(tcg_dest, tcg_single,
5854 tcg_shift, tcg_fpstatus);
5856 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5857 tcg_temp_free_i32(tcg_dest);
5859 tcg_temp_free_i32(tcg_single);
5860 break;
5862 default:
5863 g_assert_not_reached();
5866 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5867 tcg_temp_free_i32(tcg_rmode);
5870 tcg_temp_free_ptr(tcg_fpstatus);
5871 tcg_temp_free_i32(tcg_shift);
5874 /* Floating point <-> fixed point conversions
5875 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5876 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5877 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5878 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5880 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5882 int rd = extract32(insn, 0, 5);
5883 int rn = extract32(insn, 5, 5);
5884 int scale = extract32(insn, 10, 6);
5885 int opcode = extract32(insn, 16, 3);
5886 int rmode = extract32(insn, 19, 2);
5887 int type = extract32(insn, 22, 2);
5888 bool sbit = extract32(insn, 29, 1);
5889 bool sf = extract32(insn, 31, 1);
5890 bool itof;
5892 if (sbit || (!sf && scale < 32)) {
5893 unallocated_encoding(s);
5894 return;
5897 switch (type) {
5898 case 0: /* float32 */
5899 case 1: /* float64 */
5900 break;
5901 case 3: /* float16 */
5902 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5903 break;
5905 /* fallthru */
5906 default:
5907 unallocated_encoding(s);
5908 return;
5911 switch ((rmode << 3) | opcode) {
5912 case 0x2: /* SCVTF */
5913 case 0x3: /* UCVTF */
5914 itof = true;
5915 break;
5916 case 0x18: /* FCVTZS */
5917 case 0x19: /* FCVTZU */
5918 itof = false;
5919 break;
5920 default:
5921 unallocated_encoding(s);
5922 return;
5925 if (!fp_access_check(s)) {
5926 return;
5929 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5932 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5934 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5935 * without conversion.
5938 if (itof) {
5939 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5940 TCGv_i64 tmp;
5942 switch (type) {
5943 case 0:
5944 /* 32 bit */
5945 tmp = tcg_temp_new_i64();
5946 tcg_gen_ext32u_i64(tmp, tcg_rn);
5947 write_fp_dreg(s, rd, tmp);
5948 tcg_temp_free_i64(tmp);
5949 break;
5950 case 1:
5951 /* 64 bit */
5952 write_fp_dreg(s, rd, tcg_rn);
5953 break;
5954 case 2:
5955 /* 64 bit to top half. */
5956 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5957 clear_vec_high(s, true, rd);
5958 break;
5959 case 3:
5960 /* 16 bit */
5961 tmp = tcg_temp_new_i64();
5962 tcg_gen_ext16u_i64(tmp, tcg_rn);
5963 write_fp_dreg(s, rd, tmp);
5964 tcg_temp_free_i64(tmp);
5965 break;
5966 default:
5967 g_assert_not_reached();
5969 } else {
5970 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5972 switch (type) {
5973 case 0:
5974 /* 32 bit */
5975 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5976 break;
5977 case 1:
5978 /* 64 bit */
5979 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5980 break;
5981 case 2:
5982 /* 64 bits from top half */
5983 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5984 break;
5985 case 3:
5986 /* 16 bit */
5987 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
5988 break;
5989 default:
5990 g_assert_not_reached();
5995 /* Floating point <-> integer conversions
5996 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5997 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5998 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5999 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6001 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6003 int rd = extract32(insn, 0, 5);
6004 int rn = extract32(insn, 5, 5);
6005 int opcode = extract32(insn, 16, 3);
6006 int rmode = extract32(insn, 19, 2);
6007 int type = extract32(insn, 22, 2);
6008 bool sbit = extract32(insn, 29, 1);
6009 bool sf = extract32(insn, 31, 1);
6011 if (sbit) {
6012 unallocated_encoding(s);
6013 return;
6016 if (opcode > 5) {
6017 /* FMOV */
6018 bool itof = opcode & 1;
6020 if (rmode >= 2) {
6021 unallocated_encoding(s);
6022 return;
6025 switch (sf << 3 | type << 1 | rmode) {
6026 case 0x0: /* 32 bit */
6027 case 0xa: /* 64 bit */
6028 case 0xd: /* 64 bit to top half of quad */
6029 break;
6030 case 0x6: /* 16-bit float, 32-bit int */
6031 case 0xe: /* 16-bit float, 64-bit int */
6032 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
6033 break;
6035 /* fallthru */
6036 default:
6037 /* all other sf/type/rmode combinations are invalid */
6038 unallocated_encoding(s);
6039 return;
6042 if (!fp_access_check(s)) {
6043 return;
6045 handle_fmov(s, rd, rn, type, itof);
6046 } else {
6047 /* actual FP conversions */
6048 bool itof = extract32(opcode, 1, 1);
6050 if (rmode != 0 && opcode > 1) {
6051 unallocated_encoding(s);
6052 return;
6054 switch (type) {
6055 case 0: /* float32 */
6056 case 1: /* float64 */
6057 break;
6058 case 3: /* float16 */
6059 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
6060 break;
6062 /* fallthru */
6063 default:
6064 unallocated_encoding(s);
6065 return;
6068 if (!fp_access_check(s)) {
6069 return;
6071 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6075 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6076 * 31 30 29 28 25 24 0
6077 * +---+---+---+---------+-----------------------------+
6078 * | | 0 | | 1 1 1 1 | |
6079 * +---+---+---+---------+-----------------------------+
6081 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6083 if (extract32(insn, 24, 1)) {
6084 /* Floating point data-processing (3 source) */
6085 disas_fp_3src(s, insn);
6086 } else if (extract32(insn, 21, 1) == 0) {
6087 /* Floating point to fixed point conversions */
6088 disas_fp_fixed_conv(s, insn);
6089 } else {
6090 switch (extract32(insn, 10, 2)) {
6091 case 1:
6092 /* Floating point conditional compare */
6093 disas_fp_ccomp(s, insn);
6094 break;
6095 case 2:
6096 /* Floating point data-processing (2 source) */
6097 disas_fp_2src(s, insn);
6098 break;
6099 case 3:
6100 /* Floating point conditional select */
6101 disas_fp_csel(s, insn);
6102 break;
6103 case 0:
6104 switch (ctz32(extract32(insn, 12, 4))) {
6105 case 0: /* [15:12] == xxx1 */
6106 /* Floating point immediate */
6107 disas_fp_imm(s, insn);
6108 break;
6109 case 1: /* [15:12] == xx10 */
6110 /* Floating point compare */
6111 disas_fp_compare(s, insn);
6112 break;
6113 case 2: /* [15:12] == x100 */
6114 /* Floating point data-processing (1 source) */
6115 disas_fp_1src(s, insn);
6116 break;
6117 case 3: /* [15:12] == 1000 */
6118 unallocated_encoding(s);
6119 break;
6120 default: /* [15:12] == 0000 */
6121 /* Floating point <-> integer conversions */
6122 disas_fp_int_conv(s, insn);
6123 break;
6125 break;
6130 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6131 int pos)
6133 /* Extract 64 bits from the middle of two concatenated 64 bit
6134 * vector register slices left:right. The extracted bits start
6135 * at 'pos' bits into the right (least significant) side.
6136 * We return the result in tcg_right, and guarantee not to
6137 * trash tcg_left.
6139 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6140 assert(pos > 0 && pos < 64);
6142 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6143 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6144 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6146 tcg_temp_free_i64(tcg_tmp);
6149 /* EXT
6150 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6151 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6152 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6153 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6155 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6157 int is_q = extract32(insn, 30, 1);
6158 int op2 = extract32(insn, 22, 2);
6159 int imm4 = extract32(insn, 11, 4);
6160 int rm = extract32(insn, 16, 5);
6161 int rn = extract32(insn, 5, 5);
6162 int rd = extract32(insn, 0, 5);
6163 int pos = imm4 << 3;
6164 TCGv_i64 tcg_resl, tcg_resh;
6166 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6167 unallocated_encoding(s);
6168 return;
6171 if (!fp_access_check(s)) {
6172 return;
6175 tcg_resh = tcg_temp_new_i64();
6176 tcg_resl = tcg_temp_new_i64();
6178 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6179 * either extracting 128 bits from a 128:128 concatenation, or
6180 * extracting 64 bits from a 64:64 concatenation.
6182 if (!is_q) {
6183 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6184 if (pos != 0) {
6185 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6186 do_ext64(s, tcg_resh, tcg_resl, pos);
6188 tcg_gen_movi_i64(tcg_resh, 0);
6189 } else {
6190 TCGv_i64 tcg_hh;
6191 typedef struct {
6192 int reg;
6193 int elt;
6194 } EltPosns;
6195 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6196 EltPosns *elt = eltposns;
6198 if (pos >= 64) {
6199 elt++;
6200 pos -= 64;
6203 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6204 elt++;
6205 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6206 elt++;
6207 if (pos != 0) {
6208 do_ext64(s, tcg_resh, tcg_resl, pos);
6209 tcg_hh = tcg_temp_new_i64();
6210 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6211 do_ext64(s, tcg_hh, tcg_resh, pos);
6212 tcg_temp_free_i64(tcg_hh);
6216 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6217 tcg_temp_free_i64(tcg_resl);
6218 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6219 tcg_temp_free_i64(tcg_resh);
6222 /* TBL/TBX
6223 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
6224 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6225 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
6226 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6228 static void disas_simd_tb(DisasContext *s, uint32_t insn)
6230 int op2 = extract32(insn, 22, 2);
6231 int is_q = extract32(insn, 30, 1);
6232 int rm = extract32(insn, 16, 5);
6233 int rn = extract32(insn, 5, 5);
6234 int rd = extract32(insn, 0, 5);
6235 int is_tblx = extract32(insn, 12, 1);
6236 int len = extract32(insn, 13, 2);
6237 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
6238 TCGv_i32 tcg_regno, tcg_numregs;
6240 if (op2 != 0) {
6241 unallocated_encoding(s);
6242 return;
6245 if (!fp_access_check(s)) {
6246 return;
6249 /* This does a table lookup: for every byte element in the input
6250 * we index into a table formed from up to four vector registers,
6251 * and then the output is the result of the lookups. Our helper
6252 * function does the lookup operation for a single 64 bit part of
6253 * the input.
6255 tcg_resl = tcg_temp_new_i64();
6256 tcg_resh = tcg_temp_new_i64();
6258 if (is_tblx) {
6259 read_vec_element(s, tcg_resl, rd, 0, MO_64);
6260 } else {
6261 tcg_gen_movi_i64(tcg_resl, 0);
6263 if (is_tblx && is_q) {
6264 read_vec_element(s, tcg_resh, rd, 1, MO_64);
6265 } else {
6266 tcg_gen_movi_i64(tcg_resh, 0);
6269 tcg_idx = tcg_temp_new_i64();
6270 tcg_regno = tcg_const_i32(rn);
6271 tcg_numregs = tcg_const_i32(len + 1);
6272 read_vec_element(s, tcg_idx, rm, 0, MO_64);
6273 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
6274 tcg_regno, tcg_numregs);
6275 if (is_q) {
6276 read_vec_element(s, tcg_idx, rm, 1, MO_64);
6277 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
6278 tcg_regno, tcg_numregs);
6280 tcg_temp_free_i64(tcg_idx);
6281 tcg_temp_free_i32(tcg_regno);
6282 tcg_temp_free_i32(tcg_numregs);
6284 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6285 tcg_temp_free_i64(tcg_resl);
6286 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6287 tcg_temp_free_i64(tcg_resh);
6290 /* ZIP/UZP/TRN
6291 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
6292 * +---+---+-------------+------+---+------+---+------------------+------+
6293 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
6294 * +---+---+-------------+------+---+------+---+------------------+------+
6296 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
6298 int rd = extract32(insn, 0, 5);
6299 int rn = extract32(insn, 5, 5);
6300 int rm = extract32(insn, 16, 5);
6301 int size = extract32(insn, 22, 2);
6302 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
6303 * bit 2 indicates 1 vs 2 variant of the insn.
6305 int opcode = extract32(insn, 12, 2);
6306 bool part = extract32(insn, 14, 1);
6307 bool is_q = extract32(insn, 30, 1);
6308 int esize = 8 << size;
6309 int i, ofs;
6310 int datasize = is_q ? 128 : 64;
6311 int elements = datasize / esize;
6312 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
6314 if (opcode == 0 || (size == 3 && !is_q)) {
6315 unallocated_encoding(s);
6316 return;
6319 if (!fp_access_check(s)) {
6320 return;
6323 tcg_resl = tcg_const_i64(0);
6324 tcg_resh = tcg_const_i64(0);
6325 tcg_res = tcg_temp_new_i64();
6327 for (i = 0; i < elements; i++) {
6328 switch (opcode) {
6329 case 1: /* UZP1/2 */
6331 int midpoint = elements / 2;
6332 if (i < midpoint) {
6333 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
6334 } else {
6335 read_vec_element(s, tcg_res, rm,
6336 2 * (i - midpoint) + part, size);
6338 break;
6340 case 2: /* TRN1/2 */
6341 if (i & 1) {
6342 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
6343 } else {
6344 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
6346 break;
6347 case 3: /* ZIP1/2 */
6349 int base = part * elements / 2;
6350 if (i & 1) {
6351 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
6352 } else {
6353 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
6355 break;
6357 default:
6358 g_assert_not_reached();
6361 ofs = i * esize;
6362 if (ofs < 64) {
6363 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
6364 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
6365 } else {
6366 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
6367 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
6371 tcg_temp_free_i64(tcg_res);
6373 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6374 tcg_temp_free_i64(tcg_resl);
6375 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6376 tcg_temp_free_i64(tcg_resh);
6380 * do_reduction_op helper
6382 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
6383 * important for correct NaN propagation that we do these
6384 * operations in exactly the order specified by the pseudocode.
6386 * This is a recursive function, TCG temps should be freed by the
6387 * calling function once it is done with the values.
6389 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
6390 int esize, int size, int vmap, TCGv_ptr fpst)
6392 if (esize == size) {
6393 int element;
6394 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
6395 TCGv_i32 tcg_elem;
6397 /* We should have one register left here */
6398 assert(ctpop8(vmap) == 1);
6399 element = ctz32(vmap);
6400 assert(element < 8);
6402 tcg_elem = tcg_temp_new_i32();
6403 read_vec_element_i32(s, tcg_elem, rn, element, msize);
6404 return tcg_elem;
6405 } else {
6406 int bits = size / 2;
6407 int shift = ctpop8(vmap) / 2;
6408 int vmap_lo = (vmap >> shift) & vmap;
6409 int vmap_hi = (vmap & ~vmap_lo);
6410 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
6412 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
6413 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
6414 tcg_res = tcg_temp_new_i32();
6416 switch (fpopcode) {
6417 case 0x0c: /* fmaxnmv half-precision */
6418 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6419 break;
6420 case 0x0f: /* fmaxv half-precision */
6421 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
6422 break;
6423 case 0x1c: /* fminnmv half-precision */
6424 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6425 break;
6426 case 0x1f: /* fminv half-precision */
6427 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
6428 break;
6429 case 0x2c: /* fmaxnmv */
6430 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
6431 break;
6432 case 0x2f: /* fmaxv */
6433 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
6434 break;
6435 case 0x3c: /* fminnmv */
6436 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
6437 break;
6438 case 0x3f: /* fminv */
6439 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
6440 break;
6441 default:
6442 g_assert_not_reached();
6445 tcg_temp_free_i32(tcg_hi);
6446 tcg_temp_free_i32(tcg_lo);
6447 return tcg_res;
6451 /* AdvSIMD across lanes
6452 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6453 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6454 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6455 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6457 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
6459 int rd = extract32(insn, 0, 5);
6460 int rn = extract32(insn, 5, 5);
6461 int size = extract32(insn, 22, 2);
6462 int opcode = extract32(insn, 12, 5);
6463 bool is_q = extract32(insn, 30, 1);
6464 bool is_u = extract32(insn, 29, 1);
6465 bool is_fp = false;
6466 bool is_min = false;
6467 int esize;
6468 int elements;
6469 int i;
6470 TCGv_i64 tcg_res, tcg_elt;
6472 switch (opcode) {
6473 case 0x1b: /* ADDV */
6474 if (is_u) {
6475 unallocated_encoding(s);
6476 return;
6478 /* fall through */
6479 case 0x3: /* SADDLV, UADDLV */
6480 case 0xa: /* SMAXV, UMAXV */
6481 case 0x1a: /* SMINV, UMINV */
6482 if (size == 3 || (size == 2 && !is_q)) {
6483 unallocated_encoding(s);
6484 return;
6486 break;
6487 case 0xc: /* FMAXNMV, FMINNMV */
6488 case 0xf: /* FMAXV, FMINV */
6489 /* Bit 1 of size field encodes min vs max and the actual size
6490 * depends on the encoding of the U bit. If not set (and FP16
6491 * enabled) then we do half-precision float instead of single
6492 * precision.
6494 is_min = extract32(size, 1, 1);
6495 is_fp = true;
6496 if (!is_u && arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
6497 size = 1;
6498 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
6499 unallocated_encoding(s);
6500 return;
6501 } else {
6502 size = 2;
6504 break;
6505 default:
6506 unallocated_encoding(s);
6507 return;
6510 if (!fp_access_check(s)) {
6511 return;
6514 esize = 8 << size;
6515 elements = (is_q ? 128 : 64) / esize;
6517 tcg_res = tcg_temp_new_i64();
6518 tcg_elt = tcg_temp_new_i64();
6520 /* These instructions operate across all lanes of a vector
6521 * to produce a single result. We can guarantee that a 64
6522 * bit intermediate is sufficient:
6523 * + for [US]ADDLV the maximum element size is 32 bits, and
6524 * the result type is 64 bits
6525 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
6526 * same as the element size, which is 32 bits at most
6527 * For the integer operations we can choose to work at 64
6528 * or 32 bits and truncate at the end; for simplicity
6529 * we use 64 bits always. The floating point
6530 * ops do require 32 bit intermediates, though.
6532 if (!is_fp) {
6533 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
6535 for (i = 1; i < elements; i++) {
6536 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
6538 switch (opcode) {
6539 case 0x03: /* SADDLV / UADDLV */
6540 case 0x1b: /* ADDV */
6541 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
6542 break;
6543 case 0x0a: /* SMAXV / UMAXV */
6544 if (is_u) {
6545 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
6546 } else {
6547 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
6549 break;
6550 case 0x1a: /* SMINV / UMINV */
6551 if (is_u) {
6552 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
6553 } else {
6554 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
6556 break;
6557 default:
6558 g_assert_not_reached();
6562 } else {
6563 /* Floating point vector reduction ops which work across 32
6564 * bit (single) or 16 bit (half-precision) intermediates.
6565 * Note that correct NaN propagation requires that we do these
6566 * operations in exactly the order specified by the pseudocode.
6568 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
6569 int fpopcode = opcode | is_min << 4 | is_u << 5;
6570 int vmap = (1 << elements) - 1;
6571 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
6572 (is_q ? 128 : 64), vmap, fpst);
6573 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
6574 tcg_temp_free_i32(tcg_res32);
6575 tcg_temp_free_ptr(fpst);
6578 tcg_temp_free_i64(tcg_elt);
6580 /* Now truncate the result to the width required for the final output */
6581 if (opcode == 0x03) {
6582 /* SADDLV, UADDLV: result is 2*esize */
6583 size++;
6586 switch (size) {
6587 case 0:
6588 tcg_gen_ext8u_i64(tcg_res, tcg_res);
6589 break;
6590 case 1:
6591 tcg_gen_ext16u_i64(tcg_res, tcg_res);
6592 break;
6593 case 2:
6594 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6595 break;
6596 case 3:
6597 break;
6598 default:
6599 g_assert_not_reached();
6602 write_fp_dreg(s, rd, tcg_res);
6603 tcg_temp_free_i64(tcg_res);
6606 /* DUP (Element, Vector)
6608 * 31 30 29 21 20 16 15 10 9 5 4 0
6609 * +---+---+-------------------+--------+-------------+------+------+
6610 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6611 * +---+---+-------------------+--------+-------------+------+------+
6613 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6615 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
6616 int imm5)
6618 int size = ctz32(imm5);
6619 int index = imm5 >> (size + 1);
6621 if (size > 3 || (size == 3 && !is_q)) {
6622 unallocated_encoding(s);
6623 return;
6626 if (!fp_access_check(s)) {
6627 return;
6630 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
6631 vec_reg_offset(s, rn, index, size),
6632 is_q ? 16 : 8, vec_full_reg_size(s));
6635 /* DUP (element, scalar)
6636 * 31 21 20 16 15 10 9 5 4 0
6637 * +-----------------------+--------+-------------+------+------+
6638 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6639 * +-----------------------+--------+-------------+------+------+
6641 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
6642 int imm5)
6644 int size = ctz32(imm5);
6645 int index;
6646 TCGv_i64 tmp;
6648 if (size > 3) {
6649 unallocated_encoding(s);
6650 return;
6653 if (!fp_access_check(s)) {
6654 return;
6657 index = imm5 >> (size + 1);
6659 /* This instruction just extracts the specified element and
6660 * zero-extends it into the bottom of the destination register.
6662 tmp = tcg_temp_new_i64();
6663 read_vec_element(s, tmp, rn, index, size);
6664 write_fp_dreg(s, rd, tmp);
6665 tcg_temp_free_i64(tmp);
6668 /* DUP (General)
6670 * 31 30 29 21 20 16 15 10 9 5 4 0
6671 * +---+---+-------------------+--------+-------------+------+------+
6672 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
6673 * +---+---+-------------------+--------+-------------+------+------+
6675 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6677 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
6678 int imm5)
6680 int size = ctz32(imm5);
6681 uint32_t dofs, oprsz, maxsz;
6683 if (size > 3 || ((size == 3) && !is_q)) {
6684 unallocated_encoding(s);
6685 return;
6688 if (!fp_access_check(s)) {
6689 return;
6692 dofs = vec_full_reg_offset(s, rd);
6693 oprsz = is_q ? 16 : 8;
6694 maxsz = vec_full_reg_size(s);
6696 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
6699 /* INS (Element)
6701 * 31 21 20 16 15 14 11 10 9 5 4 0
6702 * +-----------------------+--------+------------+---+------+------+
6703 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6704 * +-----------------------+--------+------------+---+------+------+
6706 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6707 * index: encoded in imm5<4:size+1>
6709 static void handle_simd_inse(DisasContext *s, int rd, int rn,
6710 int imm4, int imm5)
6712 int size = ctz32(imm5);
6713 int src_index, dst_index;
6714 TCGv_i64 tmp;
6716 if (size > 3) {
6717 unallocated_encoding(s);
6718 return;
6721 if (!fp_access_check(s)) {
6722 return;
6725 dst_index = extract32(imm5, 1+size, 5);
6726 src_index = extract32(imm4, size, 4);
6728 tmp = tcg_temp_new_i64();
6730 read_vec_element(s, tmp, rn, src_index, size);
6731 write_vec_element(s, tmp, rd, dst_index, size);
6733 tcg_temp_free_i64(tmp);
6737 /* INS (General)
6739 * 31 21 20 16 15 10 9 5 4 0
6740 * +-----------------------+--------+-------------+------+------+
6741 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
6742 * +-----------------------+--------+-------------+------+------+
6744 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6745 * index: encoded in imm5<4:size+1>
6747 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
6749 int size = ctz32(imm5);
6750 int idx;
6752 if (size > 3) {
6753 unallocated_encoding(s);
6754 return;
6757 if (!fp_access_check(s)) {
6758 return;
6761 idx = extract32(imm5, 1 + size, 4 - size);
6762 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
6766 * UMOV (General)
6767 * SMOV (General)
6769 * 31 30 29 21 20 16 15 12 10 9 5 4 0
6770 * +---+---+-------------------+--------+-------------+------+------+
6771 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
6772 * +---+---+-------------------+--------+-------------+------+------+
6774 * U: unsigned when set
6775 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6777 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
6778 int rn, int rd, int imm5)
6780 int size = ctz32(imm5);
6781 int element;
6782 TCGv_i64 tcg_rd;
6784 /* Check for UnallocatedEncodings */
6785 if (is_signed) {
6786 if (size > 2 || (size == 2 && !is_q)) {
6787 unallocated_encoding(s);
6788 return;
6790 } else {
6791 if (size > 3
6792 || (size < 3 && is_q)
6793 || (size == 3 && !is_q)) {
6794 unallocated_encoding(s);
6795 return;
6799 if (!fp_access_check(s)) {
6800 return;
6803 element = extract32(imm5, 1+size, 4);
6805 tcg_rd = cpu_reg(s, rd);
6806 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6807 if (is_signed && !is_q) {
6808 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6812 /* AdvSIMD copy
6813 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6814 * +---+---+----+-----------------+------+---+------+---+------+------+
6815 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6816 * +---+---+----+-----------------+------+---+------+---+------+------+
6818 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6820 int rd = extract32(insn, 0, 5);
6821 int rn = extract32(insn, 5, 5);
6822 int imm4 = extract32(insn, 11, 4);
6823 int op = extract32(insn, 29, 1);
6824 int is_q = extract32(insn, 30, 1);
6825 int imm5 = extract32(insn, 16, 5);
6827 if (op) {
6828 if (is_q) {
6829 /* INS (element) */
6830 handle_simd_inse(s, rd, rn, imm4, imm5);
6831 } else {
6832 unallocated_encoding(s);
6834 } else {
6835 switch (imm4) {
6836 case 0:
6837 /* DUP (element - vector) */
6838 handle_simd_dupe(s, is_q, rd, rn, imm5);
6839 break;
6840 case 1:
6841 /* DUP (general) */
6842 handle_simd_dupg(s, is_q, rd, rn, imm5);
6843 break;
6844 case 3:
6845 if (is_q) {
6846 /* INS (general) */
6847 handle_simd_insg(s, rd, rn, imm5);
6848 } else {
6849 unallocated_encoding(s);
6851 break;
6852 case 5:
6853 case 7:
6854 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6855 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6856 break;
6857 default:
6858 unallocated_encoding(s);
6859 break;
6864 /* AdvSIMD modified immediate
6865 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6866 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6867 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6868 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6870 * There are a number of operations that can be carried out here:
6871 * MOVI - move (shifted) imm into register
6872 * MVNI - move inverted (shifted) imm into register
6873 * ORR - bitwise OR of (shifted) imm with register
6874 * BIC - bitwise clear of (shifted) imm with register
6875 * With ARMv8.2 we also have:
6876 * FMOV half-precision
6878 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6880 int rd = extract32(insn, 0, 5);
6881 int cmode = extract32(insn, 12, 4);
6882 int cmode_3_1 = extract32(cmode, 1, 3);
6883 int cmode_0 = extract32(cmode, 0, 1);
6884 int o2 = extract32(insn, 11, 1);
6885 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6886 bool is_neg = extract32(insn, 29, 1);
6887 bool is_q = extract32(insn, 30, 1);
6888 uint64_t imm = 0;
6890 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6891 /* Check for FMOV (vector, immediate) - half-precision */
6892 if (!(arm_dc_feature(s, ARM_FEATURE_V8_FP16) && o2 && cmode == 0xf)) {
6893 unallocated_encoding(s);
6894 return;
6898 if (!fp_access_check(s)) {
6899 return;
6902 /* See AdvSIMDExpandImm() in ARM ARM */
6903 switch (cmode_3_1) {
6904 case 0: /* Replicate(Zeros(24):imm8, 2) */
6905 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6906 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6907 case 3: /* Replicate(imm8:Zeros(24), 2) */
6909 int shift = cmode_3_1 * 8;
6910 imm = bitfield_replicate(abcdefgh << shift, 32);
6911 break;
6913 case 4: /* Replicate(Zeros(8):imm8, 4) */
6914 case 5: /* Replicate(imm8:Zeros(8), 4) */
6916 int shift = (cmode_3_1 & 0x1) * 8;
6917 imm = bitfield_replicate(abcdefgh << shift, 16);
6918 break;
6920 case 6:
6921 if (cmode_0) {
6922 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6923 imm = (abcdefgh << 16) | 0xffff;
6924 } else {
6925 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6926 imm = (abcdefgh << 8) | 0xff;
6928 imm = bitfield_replicate(imm, 32);
6929 break;
6930 case 7:
6931 if (!cmode_0 && !is_neg) {
6932 imm = bitfield_replicate(abcdefgh, 8);
6933 } else if (!cmode_0 && is_neg) {
6934 int i;
6935 imm = 0;
6936 for (i = 0; i < 8; i++) {
6937 if ((abcdefgh) & (1 << i)) {
6938 imm |= 0xffULL << (i * 8);
6941 } else if (cmode_0) {
6942 if (is_neg) {
6943 imm = (abcdefgh & 0x3f) << 48;
6944 if (abcdefgh & 0x80) {
6945 imm |= 0x8000000000000000ULL;
6947 if (abcdefgh & 0x40) {
6948 imm |= 0x3fc0000000000000ULL;
6949 } else {
6950 imm |= 0x4000000000000000ULL;
6952 } else {
6953 if (o2) {
6954 /* FMOV (vector, immediate) - half-precision */
6955 imm = vfp_expand_imm(MO_16, abcdefgh);
6956 /* now duplicate across the lanes */
6957 imm = bitfield_replicate(imm, 16);
6958 } else {
6959 imm = (abcdefgh & 0x3f) << 19;
6960 if (abcdefgh & 0x80) {
6961 imm |= 0x80000000;
6963 if (abcdefgh & 0x40) {
6964 imm |= 0x3e000000;
6965 } else {
6966 imm |= 0x40000000;
6968 imm |= (imm << 32);
6972 break;
6973 default:
6974 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
6975 g_assert_not_reached();
6978 if (cmode_3_1 != 7 && is_neg) {
6979 imm = ~imm;
6982 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
6983 /* MOVI or MVNI, with MVNI negation handled above. */
6984 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
6985 vec_full_reg_size(s), imm);
6986 } else {
6987 /* ORR or BIC, with BIC negation to AND handled above. */
6988 if (is_neg) {
6989 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
6990 } else {
6991 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
6996 /* AdvSIMD scalar copy
6997 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6998 * +-----+----+-----------------+------+---+------+---+------+------+
6999 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7000 * +-----+----+-----------------+------+---+------+---+------+------+
7002 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7004 int rd = extract32(insn, 0, 5);
7005 int rn = extract32(insn, 5, 5);
7006 int imm4 = extract32(insn, 11, 4);
7007 int imm5 = extract32(insn, 16, 5);
7008 int op = extract32(insn, 29, 1);
7010 if (op != 0 || imm4 != 0) {
7011 unallocated_encoding(s);
7012 return;
7015 /* DUP (element, scalar) */
7016 handle_simd_dupes(s, rd, rn, imm5);
7019 /* AdvSIMD scalar pairwise
7020 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7021 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7022 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7023 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7025 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7027 int u = extract32(insn, 29, 1);
7028 int size = extract32(insn, 22, 2);
7029 int opcode = extract32(insn, 12, 5);
7030 int rn = extract32(insn, 5, 5);
7031 int rd = extract32(insn, 0, 5);
7032 TCGv_ptr fpst;
7034 /* For some ops (the FP ones), size[1] is part of the encoding.
7035 * For ADDP strictly it is not but size[1] is always 1 for valid
7036 * encodings.
7038 opcode |= (extract32(size, 1, 1) << 5);
7040 switch (opcode) {
7041 case 0x3b: /* ADDP */
7042 if (u || size != 3) {
7043 unallocated_encoding(s);
7044 return;
7046 if (!fp_access_check(s)) {
7047 return;
7050 fpst = NULL;
7051 break;
7052 case 0xc: /* FMAXNMP */
7053 case 0xd: /* FADDP */
7054 case 0xf: /* FMAXP */
7055 case 0x2c: /* FMINNMP */
7056 case 0x2f: /* FMINP */
7057 /* FP op, size[0] is 32 or 64 bit*/
7058 if (!u) {
7059 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7060 unallocated_encoding(s);
7061 return;
7062 } else {
7063 size = MO_16;
7065 } else {
7066 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7069 if (!fp_access_check(s)) {
7070 return;
7073 fpst = get_fpstatus_ptr(size == MO_16);
7074 break;
7075 default:
7076 unallocated_encoding(s);
7077 return;
7080 if (size == MO_64) {
7081 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7082 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7083 TCGv_i64 tcg_res = tcg_temp_new_i64();
7085 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7086 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7088 switch (opcode) {
7089 case 0x3b: /* ADDP */
7090 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7091 break;
7092 case 0xc: /* FMAXNMP */
7093 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7094 break;
7095 case 0xd: /* FADDP */
7096 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7097 break;
7098 case 0xf: /* FMAXP */
7099 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7100 break;
7101 case 0x2c: /* FMINNMP */
7102 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7103 break;
7104 case 0x2f: /* FMINP */
7105 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7106 break;
7107 default:
7108 g_assert_not_reached();
7111 write_fp_dreg(s, rd, tcg_res);
7113 tcg_temp_free_i64(tcg_op1);
7114 tcg_temp_free_i64(tcg_op2);
7115 tcg_temp_free_i64(tcg_res);
7116 } else {
7117 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7118 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7119 TCGv_i32 tcg_res = tcg_temp_new_i32();
7121 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7122 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7124 if (size == MO_16) {
7125 switch (opcode) {
7126 case 0xc: /* FMAXNMP */
7127 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7128 break;
7129 case 0xd: /* FADDP */
7130 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7131 break;
7132 case 0xf: /* FMAXP */
7133 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7134 break;
7135 case 0x2c: /* FMINNMP */
7136 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7137 break;
7138 case 0x2f: /* FMINP */
7139 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7140 break;
7141 default:
7142 g_assert_not_reached();
7144 } else {
7145 switch (opcode) {
7146 case 0xc: /* FMAXNMP */
7147 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7148 break;
7149 case 0xd: /* FADDP */
7150 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7151 break;
7152 case 0xf: /* FMAXP */
7153 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7154 break;
7155 case 0x2c: /* FMINNMP */
7156 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7157 break;
7158 case 0x2f: /* FMINP */
7159 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7160 break;
7161 default:
7162 g_assert_not_reached();
7166 write_fp_sreg(s, rd, tcg_res);
7168 tcg_temp_free_i32(tcg_op1);
7169 tcg_temp_free_i32(tcg_op2);
7170 tcg_temp_free_i32(tcg_res);
7173 if (fpst) {
7174 tcg_temp_free_ptr(fpst);
7179 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7181 * This code is handles the common shifting code and is used by both
7182 * the vector and scalar code.
7184 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7185 TCGv_i64 tcg_rnd, bool accumulate,
7186 bool is_u, int size, int shift)
7188 bool extended_result = false;
7189 bool round = tcg_rnd != NULL;
7190 int ext_lshift = 0;
7191 TCGv_i64 tcg_src_hi;
7193 if (round && size == 3) {
7194 extended_result = true;
7195 ext_lshift = 64 - shift;
7196 tcg_src_hi = tcg_temp_new_i64();
7197 } else if (shift == 64) {
7198 if (!accumulate && is_u) {
7199 /* result is zero */
7200 tcg_gen_movi_i64(tcg_res, 0);
7201 return;
7205 /* Deal with the rounding step */
7206 if (round) {
7207 if (extended_result) {
7208 TCGv_i64 tcg_zero = tcg_const_i64(0);
7209 if (!is_u) {
7210 /* take care of sign extending tcg_res */
7211 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7212 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7213 tcg_src, tcg_src_hi,
7214 tcg_rnd, tcg_zero);
7215 } else {
7216 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7217 tcg_src, tcg_zero,
7218 tcg_rnd, tcg_zero);
7220 tcg_temp_free_i64(tcg_zero);
7221 } else {
7222 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7226 /* Now do the shift right */
7227 if (round && extended_result) {
7228 /* extended case, >64 bit precision required */
7229 if (ext_lshift == 0) {
7230 /* special case, only high bits matter */
7231 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7232 } else {
7233 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7234 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7235 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7237 } else {
7238 if (is_u) {
7239 if (shift == 64) {
7240 /* essentially shifting in 64 zeros */
7241 tcg_gen_movi_i64(tcg_src, 0);
7242 } else {
7243 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7245 } else {
7246 if (shift == 64) {
7247 /* effectively extending the sign-bit */
7248 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7249 } else {
7250 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7255 if (accumulate) {
7256 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7257 } else {
7258 tcg_gen_mov_i64(tcg_res, tcg_src);
7261 if (extended_result) {
7262 tcg_temp_free_i64(tcg_src_hi);
7266 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7267 static void handle_scalar_simd_shri(DisasContext *s,
7268 bool is_u, int immh, int immb,
7269 int opcode, int rn, int rd)
7271 const int size = 3;
7272 int immhb = immh << 3 | immb;
7273 int shift = 2 * (8 << size) - immhb;
7274 bool accumulate = false;
7275 bool round = false;
7276 bool insert = false;
7277 TCGv_i64 tcg_rn;
7278 TCGv_i64 tcg_rd;
7279 TCGv_i64 tcg_round;
7281 if (!extract32(immh, 3, 1)) {
7282 unallocated_encoding(s);
7283 return;
7286 if (!fp_access_check(s)) {
7287 return;
7290 switch (opcode) {
7291 case 0x02: /* SSRA / USRA (accumulate) */
7292 accumulate = true;
7293 break;
7294 case 0x04: /* SRSHR / URSHR (rounding) */
7295 round = true;
7296 break;
7297 case 0x06: /* SRSRA / URSRA (accum + rounding) */
7298 accumulate = round = true;
7299 break;
7300 case 0x08: /* SRI */
7301 insert = true;
7302 break;
7305 if (round) {
7306 uint64_t round_const = 1ULL << (shift - 1);
7307 tcg_round = tcg_const_i64(round_const);
7308 } else {
7309 tcg_round = NULL;
7312 tcg_rn = read_fp_dreg(s, rn);
7313 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7315 if (insert) {
7316 /* shift count same as element size is valid but does nothing;
7317 * special case to avoid potential shift by 64.
7319 int esize = 8 << size;
7320 if (shift != esize) {
7321 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
7322 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
7324 } else {
7325 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7326 accumulate, is_u, size, shift);
7329 write_fp_dreg(s, rd, tcg_rd);
7331 tcg_temp_free_i64(tcg_rn);
7332 tcg_temp_free_i64(tcg_rd);
7333 if (round) {
7334 tcg_temp_free_i64(tcg_round);
7338 /* SHL/SLI - Scalar shift left */
7339 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
7340 int immh, int immb, int opcode,
7341 int rn, int rd)
7343 int size = 32 - clz32(immh) - 1;
7344 int immhb = immh << 3 | immb;
7345 int shift = immhb - (8 << size);
7346 TCGv_i64 tcg_rn = new_tmp_a64(s);
7347 TCGv_i64 tcg_rd = new_tmp_a64(s);
7349 if (!extract32(immh, 3, 1)) {
7350 unallocated_encoding(s);
7351 return;
7354 if (!fp_access_check(s)) {
7355 return;
7358 tcg_rn = read_fp_dreg(s, rn);
7359 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7361 if (insert) {
7362 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
7363 } else {
7364 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
7367 write_fp_dreg(s, rd, tcg_rd);
7369 tcg_temp_free_i64(tcg_rn);
7370 tcg_temp_free_i64(tcg_rd);
7373 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
7374 * (signed/unsigned) narrowing */
7375 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
7376 bool is_u_shift, bool is_u_narrow,
7377 int immh, int immb, int opcode,
7378 int rn, int rd)
7380 int immhb = immh << 3 | immb;
7381 int size = 32 - clz32(immh) - 1;
7382 int esize = 8 << size;
7383 int shift = (2 * esize) - immhb;
7384 int elements = is_scalar ? 1 : (64 / esize);
7385 bool round = extract32(opcode, 0, 1);
7386 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
7387 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
7388 TCGv_i32 tcg_rd_narrowed;
7389 TCGv_i64 tcg_final;
7391 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
7392 { gen_helper_neon_narrow_sat_s8,
7393 gen_helper_neon_unarrow_sat8 },
7394 { gen_helper_neon_narrow_sat_s16,
7395 gen_helper_neon_unarrow_sat16 },
7396 { gen_helper_neon_narrow_sat_s32,
7397 gen_helper_neon_unarrow_sat32 },
7398 { NULL, NULL },
7400 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
7401 gen_helper_neon_narrow_sat_u8,
7402 gen_helper_neon_narrow_sat_u16,
7403 gen_helper_neon_narrow_sat_u32,
7404 NULL
7406 NeonGenNarrowEnvFn *narrowfn;
7408 int i;
7410 assert(size < 4);
7412 if (extract32(immh, 3, 1)) {
7413 unallocated_encoding(s);
7414 return;
7417 if (!fp_access_check(s)) {
7418 return;
7421 if (is_u_shift) {
7422 narrowfn = unsigned_narrow_fns[size];
7423 } else {
7424 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
7427 tcg_rn = tcg_temp_new_i64();
7428 tcg_rd = tcg_temp_new_i64();
7429 tcg_rd_narrowed = tcg_temp_new_i32();
7430 tcg_final = tcg_const_i64(0);
7432 if (round) {
7433 uint64_t round_const = 1ULL << (shift - 1);
7434 tcg_round = tcg_const_i64(round_const);
7435 } else {
7436 tcg_round = NULL;
7439 for (i = 0; i < elements; i++) {
7440 read_vec_element(s, tcg_rn, rn, i, ldop);
7441 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7442 false, is_u_shift, size+1, shift);
7443 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
7444 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
7445 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
7448 if (!is_q) {
7449 write_vec_element(s, tcg_final, rd, 0, MO_64);
7450 } else {
7451 write_vec_element(s, tcg_final, rd, 1, MO_64);
7454 if (round) {
7455 tcg_temp_free_i64(tcg_round);
7457 tcg_temp_free_i64(tcg_rn);
7458 tcg_temp_free_i64(tcg_rd);
7459 tcg_temp_free_i32(tcg_rd_narrowed);
7460 tcg_temp_free_i64(tcg_final);
7462 clear_vec_high(s, is_q, rd);
7465 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
7466 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
7467 bool src_unsigned, bool dst_unsigned,
7468 int immh, int immb, int rn, int rd)
7470 int immhb = immh << 3 | immb;
7471 int size = 32 - clz32(immh) - 1;
7472 int shift = immhb - (8 << size);
7473 int pass;
7475 assert(immh != 0);
7476 assert(!(scalar && is_q));
7478 if (!scalar) {
7479 if (!is_q && extract32(immh, 3, 1)) {
7480 unallocated_encoding(s);
7481 return;
7484 /* Since we use the variable-shift helpers we must
7485 * replicate the shift count into each element of
7486 * the tcg_shift value.
7488 switch (size) {
7489 case 0:
7490 shift |= shift << 8;
7491 /* fall through */
7492 case 1:
7493 shift |= shift << 16;
7494 break;
7495 case 2:
7496 case 3:
7497 break;
7498 default:
7499 g_assert_not_reached();
7503 if (!fp_access_check(s)) {
7504 return;
7507 if (size == 3) {
7508 TCGv_i64 tcg_shift = tcg_const_i64(shift);
7509 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
7510 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
7511 { NULL, gen_helper_neon_qshl_u64 },
7513 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
7514 int maxpass = is_q ? 2 : 1;
7516 for (pass = 0; pass < maxpass; pass++) {
7517 TCGv_i64 tcg_op = tcg_temp_new_i64();
7519 read_vec_element(s, tcg_op, rn, pass, MO_64);
7520 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7521 write_vec_element(s, tcg_op, rd, pass, MO_64);
7523 tcg_temp_free_i64(tcg_op);
7525 tcg_temp_free_i64(tcg_shift);
7526 clear_vec_high(s, is_q, rd);
7527 } else {
7528 TCGv_i32 tcg_shift = tcg_const_i32(shift);
7529 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
7531 { gen_helper_neon_qshl_s8,
7532 gen_helper_neon_qshl_s16,
7533 gen_helper_neon_qshl_s32 },
7534 { gen_helper_neon_qshlu_s8,
7535 gen_helper_neon_qshlu_s16,
7536 gen_helper_neon_qshlu_s32 }
7537 }, {
7538 { NULL, NULL, NULL },
7539 { gen_helper_neon_qshl_u8,
7540 gen_helper_neon_qshl_u16,
7541 gen_helper_neon_qshl_u32 }
7544 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
7545 TCGMemOp memop = scalar ? size : MO_32;
7546 int maxpass = scalar ? 1 : is_q ? 4 : 2;
7548 for (pass = 0; pass < maxpass; pass++) {
7549 TCGv_i32 tcg_op = tcg_temp_new_i32();
7551 read_vec_element_i32(s, tcg_op, rn, pass, memop);
7552 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7553 if (scalar) {
7554 switch (size) {
7555 case 0:
7556 tcg_gen_ext8u_i32(tcg_op, tcg_op);
7557 break;
7558 case 1:
7559 tcg_gen_ext16u_i32(tcg_op, tcg_op);
7560 break;
7561 case 2:
7562 break;
7563 default:
7564 g_assert_not_reached();
7566 write_fp_sreg(s, rd, tcg_op);
7567 } else {
7568 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7571 tcg_temp_free_i32(tcg_op);
7573 tcg_temp_free_i32(tcg_shift);
7575 if (!scalar) {
7576 clear_vec_high(s, is_q, rd);
7581 /* Common vector code for handling integer to FP conversion */
7582 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
7583 int elements, int is_signed,
7584 int fracbits, int size)
7586 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
7587 TCGv_i32 tcg_shift = NULL;
7589 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
7590 int pass;
7592 if (fracbits || size == MO_64) {
7593 tcg_shift = tcg_const_i32(fracbits);
7596 if (size == MO_64) {
7597 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
7598 TCGv_i64 tcg_double = tcg_temp_new_i64();
7600 for (pass = 0; pass < elements; pass++) {
7601 read_vec_element(s, tcg_int64, rn, pass, mop);
7603 if (is_signed) {
7604 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
7605 tcg_shift, tcg_fpst);
7606 } else {
7607 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
7608 tcg_shift, tcg_fpst);
7610 if (elements == 1) {
7611 write_fp_dreg(s, rd, tcg_double);
7612 } else {
7613 write_vec_element(s, tcg_double, rd, pass, MO_64);
7617 tcg_temp_free_i64(tcg_int64);
7618 tcg_temp_free_i64(tcg_double);
7620 } else {
7621 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
7622 TCGv_i32 tcg_float = tcg_temp_new_i32();
7624 for (pass = 0; pass < elements; pass++) {
7625 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
7627 switch (size) {
7628 case MO_32:
7629 if (fracbits) {
7630 if (is_signed) {
7631 gen_helper_vfp_sltos(tcg_float, tcg_int32,
7632 tcg_shift, tcg_fpst);
7633 } else {
7634 gen_helper_vfp_ultos(tcg_float, tcg_int32,
7635 tcg_shift, tcg_fpst);
7637 } else {
7638 if (is_signed) {
7639 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
7640 } else {
7641 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
7644 break;
7645 case MO_16:
7646 if (fracbits) {
7647 if (is_signed) {
7648 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
7649 tcg_shift, tcg_fpst);
7650 } else {
7651 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
7652 tcg_shift, tcg_fpst);
7654 } else {
7655 if (is_signed) {
7656 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
7657 } else {
7658 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
7661 break;
7662 default:
7663 g_assert_not_reached();
7666 if (elements == 1) {
7667 write_fp_sreg(s, rd, tcg_float);
7668 } else {
7669 write_vec_element_i32(s, tcg_float, rd, pass, size);
7673 tcg_temp_free_i32(tcg_int32);
7674 tcg_temp_free_i32(tcg_float);
7677 tcg_temp_free_ptr(tcg_fpst);
7678 if (tcg_shift) {
7679 tcg_temp_free_i32(tcg_shift);
7682 clear_vec_high(s, elements << size == 16, rd);
7685 /* UCVTF/SCVTF - Integer to FP conversion */
7686 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
7687 bool is_q, bool is_u,
7688 int immh, int immb, int opcode,
7689 int rn, int rd)
7691 int size, elements, fracbits;
7692 int immhb = immh << 3 | immb;
7694 if (immh & 8) {
7695 size = MO_64;
7696 if (!is_scalar && !is_q) {
7697 unallocated_encoding(s);
7698 return;
7700 } else if (immh & 4) {
7701 size = MO_32;
7702 } else if (immh & 2) {
7703 size = MO_16;
7704 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7705 unallocated_encoding(s);
7706 return;
7708 } else {
7709 /* immh == 0 would be a failure of the decode logic */
7710 g_assert(immh == 1);
7711 unallocated_encoding(s);
7712 return;
7715 if (is_scalar) {
7716 elements = 1;
7717 } else {
7718 elements = (8 << is_q) >> size;
7720 fracbits = (16 << size) - immhb;
7722 if (!fp_access_check(s)) {
7723 return;
7726 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
7729 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
7730 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
7731 bool is_q, bool is_u,
7732 int immh, int immb, int rn, int rd)
7734 int immhb = immh << 3 | immb;
7735 int pass, size, fracbits;
7736 TCGv_ptr tcg_fpstatus;
7737 TCGv_i32 tcg_rmode, tcg_shift;
7739 if (immh & 0x8) {
7740 size = MO_64;
7741 if (!is_scalar && !is_q) {
7742 unallocated_encoding(s);
7743 return;
7745 } else if (immh & 0x4) {
7746 size = MO_32;
7747 } else if (immh & 0x2) {
7748 size = MO_16;
7749 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7750 unallocated_encoding(s);
7751 return;
7753 } else {
7754 /* Should have split out AdvSIMD modified immediate earlier. */
7755 assert(immh == 1);
7756 unallocated_encoding(s);
7757 return;
7760 if (!fp_access_check(s)) {
7761 return;
7764 assert(!(is_scalar && is_q));
7766 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
7767 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
7768 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7769 fracbits = (16 << size) - immhb;
7770 tcg_shift = tcg_const_i32(fracbits);
7772 if (size == MO_64) {
7773 int maxpass = is_scalar ? 1 : 2;
7775 for (pass = 0; pass < maxpass; pass++) {
7776 TCGv_i64 tcg_op = tcg_temp_new_i64();
7778 read_vec_element(s, tcg_op, rn, pass, MO_64);
7779 if (is_u) {
7780 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7781 } else {
7782 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7784 write_vec_element(s, tcg_op, rd, pass, MO_64);
7785 tcg_temp_free_i64(tcg_op);
7787 clear_vec_high(s, is_q, rd);
7788 } else {
7789 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
7790 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
7792 switch (size) {
7793 case MO_16:
7794 if (is_u) {
7795 fn = gen_helper_vfp_touhh;
7796 } else {
7797 fn = gen_helper_vfp_toshh;
7799 break;
7800 case MO_32:
7801 if (is_u) {
7802 fn = gen_helper_vfp_touls;
7803 } else {
7804 fn = gen_helper_vfp_tosls;
7806 break;
7807 default:
7808 g_assert_not_reached();
7811 for (pass = 0; pass < maxpass; pass++) {
7812 TCGv_i32 tcg_op = tcg_temp_new_i32();
7814 read_vec_element_i32(s, tcg_op, rn, pass, size);
7815 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7816 if (is_scalar) {
7817 write_fp_sreg(s, rd, tcg_op);
7818 } else {
7819 write_vec_element_i32(s, tcg_op, rd, pass, size);
7821 tcg_temp_free_i32(tcg_op);
7823 if (!is_scalar) {
7824 clear_vec_high(s, is_q, rd);
7828 tcg_temp_free_ptr(tcg_fpstatus);
7829 tcg_temp_free_i32(tcg_shift);
7830 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7831 tcg_temp_free_i32(tcg_rmode);
7834 /* AdvSIMD scalar shift by immediate
7835 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
7836 * +-----+---+-------------+------+------+--------+---+------+------+
7837 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
7838 * +-----+---+-------------+------+------+--------+---+------+------+
7840 * This is the scalar version so it works on a fixed sized registers
7842 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
7844 int rd = extract32(insn, 0, 5);
7845 int rn = extract32(insn, 5, 5);
7846 int opcode = extract32(insn, 11, 5);
7847 int immb = extract32(insn, 16, 3);
7848 int immh = extract32(insn, 19, 4);
7849 bool is_u = extract32(insn, 29, 1);
7851 if (immh == 0) {
7852 unallocated_encoding(s);
7853 return;
7856 switch (opcode) {
7857 case 0x08: /* SRI */
7858 if (!is_u) {
7859 unallocated_encoding(s);
7860 return;
7862 /* fall through */
7863 case 0x00: /* SSHR / USHR */
7864 case 0x02: /* SSRA / USRA */
7865 case 0x04: /* SRSHR / URSHR */
7866 case 0x06: /* SRSRA / URSRA */
7867 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
7868 break;
7869 case 0x0a: /* SHL / SLI */
7870 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
7871 break;
7872 case 0x1c: /* SCVTF, UCVTF */
7873 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
7874 opcode, rn, rd);
7875 break;
7876 case 0x10: /* SQSHRUN, SQSHRUN2 */
7877 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7878 if (!is_u) {
7879 unallocated_encoding(s);
7880 return;
7882 handle_vec_simd_sqshrn(s, true, false, false, true,
7883 immh, immb, opcode, rn, rd);
7884 break;
7885 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7886 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7887 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7888 immh, immb, opcode, rn, rd);
7889 break;
7890 case 0xc: /* SQSHLU */
7891 if (!is_u) {
7892 unallocated_encoding(s);
7893 return;
7895 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7896 break;
7897 case 0xe: /* SQSHL, UQSHL */
7898 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7899 break;
7900 case 0x1f: /* FCVTZS, FCVTZU */
7901 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7902 break;
7903 default:
7904 unallocated_encoding(s);
7905 break;
7909 /* AdvSIMD scalar three different
7910 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7911 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7912 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7913 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7915 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7917 bool is_u = extract32(insn, 29, 1);
7918 int size = extract32(insn, 22, 2);
7919 int opcode = extract32(insn, 12, 4);
7920 int rm = extract32(insn, 16, 5);
7921 int rn = extract32(insn, 5, 5);
7922 int rd = extract32(insn, 0, 5);
7924 if (is_u) {
7925 unallocated_encoding(s);
7926 return;
7929 switch (opcode) {
7930 case 0x9: /* SQDMLAL, SQDMLAL2 */
7931 case 0xb: /* SQDMLSL, SQDMLSL2 */
7932 case 0xd: /* SQDMULL, SQDMULL2 */
7933 if (size == 0 || size == 3) {
7934 unallocated_encoding(s);
7935 return;
7937 break;
7938 default:
7939 unallocated_encoding(s);
7940 return;
7943 if (!fp_access_check(s)) {
7944 return;
7947 if (size == 2) {
7948 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7949 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7950 TCGv_i64 tcg_res = tcg_temp_new_i64();
7952 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7953 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7955 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7956 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7958 switch (opcode) {
7959 case 0xd: /* SQDMULL, SQDMULL2 */
7960 break;
7961 case 0xb: /* SQDMLSL, SQDMLSL2 */
7962 tcg_gen_neg_i64(tcg_res, tcg_res);
7963 /* fall through */
7964 case 0x9: /* SQDMLAL, SQDMLAL2 */
7965 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7966 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7967 tcg_res, tcg_op1);
7968 break;
7969 default:
7970 g_assert_not_reached();
7973 write_fp_dreg(s, rd, tcg_res);
7975 tcg_temp_free_i64(tcg_op1);
7976 tcg_temp_free_i64(tcg_op2);
7977 tcg_temp_free_i64(tcg_res);
7978 } else {
7979 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
7980 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
7981 TCGv_i64 tcg_res = tcg_temp_new_i64();
7983 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7984 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7986 switch (opcode) {
7987 case 0xd: /* SQDMULL, SQDMULL2 */
7988 break;
7989 case 0xb: /* SQDMLSL, SQDMLSL2 */
7990 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7991 /* fall through */
7992 case 0x9: /* SQDMLAL, SQDMLAL2 */
7994 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7995 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7996 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7997 tcg_res, tcg_op3);
7998 tcg_temp_free_i64(tcg_op3);
7999 break;
8001 default:
8002 g_assert_not_reached();
8005 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8006 write_fp_dreg(s, rd, tcg_res);
8008 tcg_temp_free_i32(tcg_op1);
8009 tcg_temp_free_i32(tcg_op2);
8010 tcg_temp_free_i64(tcg_res);
8014 /* CMTST : test is "if (X & Y != 0)". */
8015 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
8017 tcg_gen_and_i32(d, a, b);
8018 tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0);
8019 tcg_gen_neg_i32(d, d);
8022 static void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
8024 tcg_gen_and_i64(d, a, b);
8025 tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0);
8026 tcg_gen_neg_i64(d, d);
8029 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
8031 tcg_gen_and_vec(vece, d, a, b);
8032 tcg_gen_dupi_vec(vece, a, 0);
8033 tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
8036 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8037 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8039 /* Handle 64x64->64 opcodes which are shared between the scalar
8040 * and vector 3-same groups. We cover every opcode where size == 3
8041 * is valid in either the three-reg-same (integer, not pairwise)
8042 * or scalar-three-reg-same groups.
8044 TCGCond cond;
8046 switch (opcode) {
8047 case 0x1: /* SQADD */
8048 if (u) {
8049 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8050 } else {
8051 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8053 break;
8054 case 0x5: /* SQSUB */
8055 if (u) {
8056 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8057 } else {
8058 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8060 break;
8061 case 0x6: /* CMGT, CMHI */
8062 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8063 * We implement this using setcond (test) and then negating.
8065 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8066 do_cmop:
8067 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8068 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8069 break;
8070 case 0x7: /* CMGE, CMHS */
8071 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8072 goto do_cmop;
8073 case 0x11: /* CMTST, CMEQ */
8074 if (u) {
8075 cond = TCG_COND_EQ;
8076 goto do_cmop;
8078 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8079 break;
8080 case 0x8: /* SSHL, USHL */
8081 if (u) {
8082 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8083 } else {
8084 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8086 break;
8087 case 0x9: /* SQSHL, UQSHL */
8088 if (u) {
8089 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8090 } else {
8091 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8093 break;
8094 case 0xa: /* SRSHL, URSHL */
8095 if (u) {
8096 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8097 } else {
8098 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8100 break;
8101 case 0xb: /* SQRSHL, UQRSHL */
8102 if (u) {
8103 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8104 } else {
8105 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8107 break;
8108 case 0x10: /* ADD, SUB */
8109 if (u) {
8110 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8111 } else {
8112 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8114 break;
8115 default:
8116 g_assert_not_reached();
8120 /* Handle the 3-same-operands float operations; shared by the scalar
8121 * and vector encodings. The caller must filter out any encodings
8122 * not allocated for the encoding it is dealing with.
8124 static void handle_3same_float(DisasContext *s, int size, int elements,
8125 int fpopcode, int rd, int rn, int rm)
8127 int pass;
8128 TCGv_ptr fpst = get_fpstatus_ptr(false);
8130 for (pass = 0; pass < elements; pass++) {
8131 if (size) {
8132 /* Double */
8133 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8134 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8135 TCGv_i64 tcg_res = tcg_temp_new_i64();
8137 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8138 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8140 switch (fpopcode) {
8141 case 0x39: /* FMLS */
8142 /* As usual for ARM, separate negation for fused multiply-add */
8143 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8144 /* fall through */
8145 case 0x19: /* FMLA */
8146 read_vec_element(s, tcg_res, rd, pass, MO_64);
8147 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8148 tcg_res, fpst);
8149 break;
8150 case 0x18: /* FMAXNM */
8151 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8152 break;
8153 case 0x1a: /* FADD */
8154 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8155 break;
8156 case 0x1b: /* FMULX */
8157 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8158 break;
8159 case 0x1c: /* FCMEQ */
8160 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8161 break;
8162 case 0x1e: /* FMAX */
8163 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8164 break;
8165 case 0x1f: /* FRECPS */
8166 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8167 break;
8168 case 0x38: /* FMINNM */
8169 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8170 break;
8171 case 0x3a: /* FSUB */
8172 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8173 break;
8174 case 0x3e: /* FMIN */
8175 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8176 break;
8177 case 0x3f: /* FRSQRTS */
8178 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8179 break;
8180 case 0x5b: /* FMUL */
8181 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8182 break;
8183 case 0x5c: /* FCMGE */
8184 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8185 break;
8186 case 0x5d: /* FACGE */
8187 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8188 break;
8189 case 0x5f: /* FDIV */
8190 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8191 break;
8192 case 0x7a: /* FABD */
8193 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8194 gen_helper_vfp_absd(tcg_res, tcg_res);
8195 break;
8196 case 0x7c: /* FCMGT */
8197 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8198 break;
8199 case 0x7d: /* FACGT */
8200 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8201 break;
8202 default:
8203 g_assert_not_reached();
8206 write_vec_element(s, tcg_res, rd, pass, MO_64);
8208 tcg_temp_free_i64(tcg_res);
8209 tcg_temp_free_i64(tcg_op1);
8210 tcg_temp_free_i64(tcg_op2);
8211 } else {
8212 /* Single */
8213 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8214 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8215 TCGv_i32 tcg_res = tcg_temp_new_i32();
8217 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8218 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8220 switch (fpopcode) {
8221 case 0x39: /* FMLS */
8222 /* As usual for ARM, separate negation for fused multiply-add */
8223 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8224 /* fall through */
8225 case 0x19: /* FMLA */
8226 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8227 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8228 tcg_res, fpst);
8229 break;
8230 case 0x1a: /* FADD */
8231 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8232 break;
8233 case 0x1b: /* FMULX */
8234 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8235 break;
8236 case 0x1c: /* FCMEQ */
8237 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8238 break;
8239 case 0x1e: /* FMAX */
8240 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8241 break;
8242 case 0x1f: /* FRECPS */
8243 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8244 break;
8245 case 0x18: /* FMAXNM */
8246 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8247 break;
8248 case 0x38: /* FMINNM */
8249 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8250 break;
8251 case 0x3a: /* FSUB */
8252 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8253 break;
8254 case 0x3e: /* FMIN */
8255 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8256 break;
8257 case 0x3f: /* FRSQRTS */
8258 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8259 break;
8260 case 0x5b: /* FMUL */
8261 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8262 break;
8263 case 0x5c: /* FCMGE */
8264 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8265 break;
8266 case 0x5d: /* FACGE */
8267 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8268 break;
8269 case 0x5f: /* FDIV */
8270 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8271 break;
8272 case 0x7a: /* FABD */
8273 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8274 gen_helper_vfp_abss(tcg_res, tcg_res);
8275 break;
8276 case 0x7c: /* FCMGT */
8277 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8278 break;
8279 case 0x7d: /* FACGT */
8280 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8281 break;
8282 default:
8283 g_assert_not_reached();
8286 if (elements == 1) {
8287 /* scalar single so clear high part */
8288 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8290 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8291 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8292 tcg_temp_free_i64(tcg_tmp);
8293 } else {
8294 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8297 tcg_temp_free_i32(tcg_res);
8298 tcg_temp_free_i32(tcg_op1);
8299 tcg_temp_free_i32(tcg_op2);
8303 tcg_temp_free_ptr(fpst);
8305 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8308 /* AdvSIMD scalar three same
8309 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
8310 * +-----+---+-----------+------+---+------+--------+---+------+------+
8311 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
8312 * +-----+---+-----------+------+---+------+--------+---+------+------+
8314 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8316 int rd = extract32(insn, 0, 5);
8317 int rn = extract32(insn, 5, 5);
8318 int opcode = extract32(insn, 11, 5);
8319 int rm = extract32(insn, 16, 5);
8320 int size = extract32(insn, 22, 2);
8321 bool u = extract32(insn, 29, 1);
8322 TCGv_i64 tcg_rd;
8324 if (opcode >= 0x18) {
8325 /* Floating point: U, size[1] and opcode indicate operation */
8326 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8327 switch (fpopcode) {
8328 case 0x1b: /* FMULX */
8329 case 0x1f: /* FRECPS */
8330 case 0x3f: /* FRSQRTS */
8331 case 0x5d: /* FACGE */
8332 case 0x7d: /* FACGT */
8333 case 0x1c: /* FCMEQ */
8334 case 0x5c: /* FCMGE */
8335 case 0x7c: /* FCMGT */
8336 case 0x7a: /* FABD */
8337 break;
8338 default:
8339 unallocated_encoding(s);
8340 return;
8343 if (!fp_access_check(s)) {
8344 return;
8347 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8348 return;
8351 switch (opcode) {
8352 case 0x1: /* SQADD, UQADD */
8353 case 0x5: /* SQSUB, UQSUB */
8354 case 0x9: /* SQSHL, UQSHL */
8355 case 0xb: /* SQRSHL, UQRSHL */
8356 break;
8357 case 0x8: /* SSHL, USHL */
8358 case 0xa: /* SRSHL, URSHL */
8359 case 0x6: /* CMGT, CMHI */
8360 case 0x7: /* CMGE, CMHS */
8361 case 0x11: /* CMTST, CMEQ */
8362 case 0x10: /* ADD, SUB (vector) */
8363 if (size != 3) {
8364 unallocated_encoding(s);
8365 return;
8367 break;
8368 case 0x16: /* SQDMULH, SQRDMULH (vector) */
8369 if (size != 1 && size != 2) {
8370 unallocated_encoding(s);
8371 return;
8373 break;
8374 default:
8375 unallocated_encoding(s);
8376 return;
8379 if (!fp_access_check(s)) {
8380 return;
8383 tcg_rd = tcg_temp_new_i64();
8385 if (size == 3) {
8386 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8387 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8389 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8390 tcg_temp_free_i64(tcg_rn);
8391 tcg_temp_free_i64(tcg_rm);
8392 } else {
8393 /* Do a single operation on the lowest element in the vector.
8394 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8395 * no side effects for all these operations.
8396 * OPTME: special-purpose helpers would avoid doing some
8397 * unnecessary work in the helper for the 8 and 16 bit cases.
8399 NeonGenTwoOpEnvFn *genenvfn;
8400 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8401 TCGv_i32 tcg_rm = tcg_temp_new_i32();
8402 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
8404 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8405 read_vec_element_i32(s, tcg_rm, rm, 0, size);
8407 switch (opcode) {
8408 case 0x1: /* SQADD, UQADD */
8410 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8411 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
8412 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
8413 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
8415 genenvfn = fns[size][u];
8416 break;
8418 case 0x5: /* SQSUB, UQSUB */
8420 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8421 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
8422 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
8423 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
8425 genenvfn = fns[size][u];
8426 break;
8428 case 0x9: /* SQSHL, UQSHL */
8430 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8431 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
8432 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
8433 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
8435 genenvfn = fns[size][u];
8436 break;
8438 case 0xb: /* SQRSHL, UQRSHL */
8440 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8441 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
8442 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
8443 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
8445 genenvfn = fns[size][u];
8446 break;
8448 case 0x16: /* SQDMULH, SQRDMULH */
8450 static NeonGenTwoOpEnvFn * const fns[2][2] = {
8451 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
8452 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
8454 assert(size == 1 || size == 2);
8455 genenvfn = fns[size - 1][u];
8456 break;
8458 default:
8459 g_assert_not_reached();
8462 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
8463 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
8464 tcg_temp_free_i32(tcg_rd32);
8465 tcg_temp_free_i32(tcg_rn);
8466 tcg_temp_free_i32(tcg_rm);
8469 write_fp_dreg(s, rd, tcg_rd);
8471 tcg_temp_free_i64(tcg_rd);
8474 /* AdvSIMD scalar three same FP16
8475 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
8476 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8477 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
8478 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8479 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
8480 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
8482 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
8483 uint32_t insn)
8485 int rd = extract32(insn, 0, 5);
8486 int rn = extract32(insn, 5, 5);
8487 int opcode = extract32(insn, 11, 3);
8488 int rm = extract32(insn, 16, 5);
8489 bool u = extract32(insn, 29, 1);
8490 bool a = extract32(insn, 23, 1);
8491 int fpopcode = opcode | (a << 3) | (u << 4);
8492 TCGv_ptr fpst;
8493 TCGv_i32 tcg_op1;
8494 TCGv_i32 tcg_op2;
8495 TCGv_i32 tcg_res;
8497 switch (fpopcode) {
8498 case 0x03: /* FMULX */
8499 case 0x04: /* FCMEQ (reg) */
8500 case 0x07: /* FRECPS */
8501 case 0x0f: /* FRSQRTS */
8502 case 0x14: /* FCMGE (reg) */
8503 case 0x15: /* FACGE */
8504 case 0x1a: /* FABD */
8505 case 0x1c: /* FCMGT (reg) */
8506 case 0x1d: /* FACGT */
8507 break;
8508 default:
8509 unallocated_encoding(s);
8510 return;
8513 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
8514 unallocated_encoding(s);
8517 if (!fp_access_check(s)) {
8518 return;
8521 fpst = get_fpstatus_ptr(true);
8523 tcg_op1 = read_fp_hreg(s, rn);
8524 tcg_op2 = read_fp_hreg(s, rm);
8525 tcg_res = tcg_temp_new_i32();
8527 switch (fpopcode) {
8528 case 0x03: /* FMULX */
8529 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
8530 break;
8531 case 0x04: /* FCMEQ (reg) */
8532 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8533 break;
8534 case 0x07: /* FRECPS */
8535 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8536 break;
8537 case 0x0f: /* FRSQRTS */
8538 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8539 break;
8540 case 0x14: /* FCMGE (reg) */
8541 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8542 break;
8543 case 0x15: /* FACGE */
8544 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8545 break;
8546 case 0x1a: /* FABD */
8547 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
8548 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
8549 break;
8550 case 0x1c: /* FCMGT (reg) */
8551 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8552 break;
8553 case 0x1d: /* FACGT */
8554 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8555 break;
8556 default:
8557 g_assert_not_reached();
8560 write_fp_sreg(s, rd, tcg_res);
8563 tcg_temp_free_i32(tcg_res);
8564 tcg_temp_free_i32(tcg_op1);
8565 tcg_temp_free_i32(tcg_op2);
8566 tcg_temp_free_ptr(fpst);
8569 /* AdvSIMD scalar three same extra
8570 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8571 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8572 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
8573 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8575 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
8576 uint32_t insn)
8578 int rd = extract32(insn, 0, 5);
8579 int rn = extract32(insn, 5, 5);
8580 int opcode = extract32(insn, 11, 4);
8581 int rm = extract32(insn, 16, 5);
8582 int size = extract32(insn, 22, 2);
8583 bool u = extract32(insn, 29, 1);
8584 TCGv_i32 ele1, ele2, ele3;
8585 TCGv_i64 res;
8586 int feature;
8588 switch (u * 16 + opcode) {
8589 case 0x10: /* SQRDMLAH (vector) */
8590 case 0x11: /* SQRDMLSH (vector) */
8591 if (size != 1 && size != 2) {
8592 unallocated_encoding(s);
8593 return;
8595 feature = ARM_FEATURE_V8_RDM;
8596 break;
8597 default:
8598 unallocated_encoding(s);
8599 return;
8601 if (!arm_dc_feature(s, feature)) {
8602 unallocated_encoding(s);
8603 return;
8605 if (!fp_access_check(s)) {
8606 return;
8609 /* Do a single operation on the lowest element in the vector.
8610 * We use the standard Neon helpers and rely on 0 OP 0 == 0
8611 * with no side effects for all these operations.
8612 * OPTME: special-purpose helpers would avoid doing some
8613 * unnecessary work in the helper for the 16 bit cases.
8615 ele1 = tcg_temp_new_i32();
8616 ele2 = tcg_temp_new_i32();
8617 ele3 = tcg_temp_new_i32();
8619 read_vec_element_i32(s, ele1, rn, 0, size);
8620 read_vec_element_i32(s, ele2, rm, 0, size);
8621 read_vec_element_i32(s, ele3, rd, 0, size);
8623 switch (opcode) {
8624 case 0x0: /* SQRDMLAH */
8625 if (size == 1) {
8626 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
8627 } else {
8628 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
8630 break;
8631 case 0x1: /* SQRDMLSH */
8632 if (size == 1) {
8633 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
8634 } else {
8635 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
8637 break;
8638 default:
8639 g_assert_not_reached();
8641 tcg_temp_free_i32(ele1);
8642 tcg_temp_free_i32(ele2);
8644 res = tcg_temp_new_i64();
8645 tcg_gen_extu_i32_i64(res, ele3);
8646 tcg_temp_free_i32(ele3);
8648 write_fp_dreg(s, rd, res);
8649 tcg_temp_free_i64(res);
8652 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
8653 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
8654 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
8656 /* Handle 64->64 opcodes which are shared between the scalar and
8657 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
8658 * is valid in either group and also the double-precision fp ops.
8659 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
8660 * requires them.
8662 TCGCond cond;
8664 switch (opcode) {
8665 case 0x4: /* CLS, CLZ */
8666 if (u) {
8667 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8668 } else {
8669 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
8671 break;
8672 case 0x5: /* NOT */
8673 /* This opcode is shared with CNT and RBIT but we have earlier
8674 * enforced that size == 3 if and only if this is the NOT insn.
8676 tcg_gen_not_i64(tcg_rd, tcg_rn);
8677 break;
8678 case 0x7: /* SQABS, SQNEG */
8679 if (u) {
8680 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
8681 } else {
8682 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
8684 break;
8685 case 0xa: /* CMLT */
8686 /* 64 bit integer comparison against zero, result is
8687 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
8688 * subtracting 1.
8690 cond = TCG_COND_LT;
8691 do_cmop:
8692 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
8693 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8694 break;
8695 case 0x8: /* CMGT, CMGE */
8696 cond = u ? TCG_COND_GE : TCG_COND_GT;
8697 goto do_cmop;
8698 case 0x9: /* CMEQ, CMLE */
8699 cond = u ? TCG_COND_LE : TCG_COND_EQ;
8700 goto do_cmop;
8701 case 0xb: /* ABS, NEG */
8702 if (u) {
8703 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8704 } else {
8705 TCGv_i64 tcg_zero = tcg_const_i64(0);
8706 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8707 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
8708 tcg_rn, tcg_rd);
8709 tcg_temp_free_i64(tcg_zero);
8711 break;
8712 case 0x2f: /* FABS */
8713 gen_helper_vfp_absd(tcg_rd, tcg_rn);
8714 break;
8715 case 0x6f: /* FNEG */
8716 gen_helper_vfp_negd(tcg_rd, tcg_rn);
8717 break;
8718 case 0x7f: /* FSQRT */
8719 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
8720 break;
8721 case 0x1a: /* FCVTNS */
8722 case 0x1b: /* FCVTMS */
8723 case 0x1c: /* FCVTAS */
8724 case 0x3a: /* FCVTPS */
8725 case 0x3b: /* FCVTZS */
8727 TCGv_i32 tcg_shift = tcg_const_i32(0);
8728 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8729 tcg_temp_free_i32(tcg_shift);
8730 break;
8732 case 0x5a: /* FCVTNU */
8733 case 0x5b: /* FCVTMU */
8734 case 0x5c: /* FCVTAU */
8735 case 0x7a: /* FCVTPU */
8736 case 0x7b: /* FCVTZU */
8738 TCGv_i32 tcg_shift = tcg_const_i32(0);
8739 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8740 tcg_temp_free_i32(tcg_shift);
8741 break;
8743 case 0x18: /* FRINTN */
8744 case 0x19: /* FRINTM */
8745 case 0x38: /* FRINTP */
8746 case 0x39: /* FRINTZ */
8747 case 0x58: /* FRINTA */
8748 case 0x79: /* FRINTI */
8749 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
8750 break;
8751 case 0x59: /* FRINTX */
8752 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
8753 break;
8754 default:
8755 g_assert_not_reached();
8759 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
8760 bool is_scalar, bool is_u, bool is_q,
8761 int size, int rn, int rd)
8763 bool is_double = (size == MO_64);
8764 TCGv_ptr fpst;
8766 if (!fp_access_check(s)) {
8767 return;
8770 fpst = get_fpstatus_ptr(size == MO_16);
8772 if (is_double) {
8773 TCGv_i64 tcg_op = tcg_temp_new_i64();
8774 TCGv_i64 tcg_zero = tcg_const_i64(0);
8775 TCGv_i64 tcg_res = tcg_temp_new_i64();
8776 NeonGenTwoDoubleOPFn *genfn;
8777 bool swap = false;
8778 int pass;
8780 switch (opcode) {
8781 case 0x2e: /* FCMLT (zero) */
8782 swap = true;
8783 /* fallthrough */
8784 case 0x2c: /* FCMGT (zero) */
8785 genfn = gen_helper_neon_cgt_f64;
8786 break;
8787 case 0x2d: /* FCMEQ (zero) */
8788 genfn = gen_helper_neon_ceq_f64;
8789 break;
8790 case 0x6d: /* FCMLE (zero) */
8791 swap = true;
8792 /* fall through */
8793 case 0x6c: /* FCMGE (zero) */
8794 genfn = gen_helper_neon_cge_f64;
8795 break;
8796 default:
8797 g_assert_not_reached();
8800 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8801 read_vec_element(s, tcg_op, rn, pass, MO_64);
8802 if (swap) {
8803 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8804 } else {
8805 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8807 write_vec_element(s, tcg_res, rd, pass, MO_64);
8809 tcg_temp_free_i64(tcg_res);
8810 tcg_temp_free_i64(tcg_zero);
8811 tcg_temp_free_i64(tcg_op);
8813 clear_vec_high(s, !is_scalar, rd);
8814 } else {
8815 TCGv_i32 tcg_op = tcg_temp_new_i32();
8816 TCGv_i32 tcg_zero = tcg_const_i32(0);
8817 TCGv_i32 tcg_res = tcg_temp_new_i32();
8818 NeonGenTwoSingleOPFn *genfn;
8819 bool swap = false;
8820 int pass, maxpasses;
8822 if (size == MO_16) {
8823 switch (opcode) {
8824 case 0x2e: /* FCMLT (zero) */
8825 swap = true;
8826 /* fall through */
8827 case 0x2c: /* FCMGT (zero) */
8828 genfn = gen_helper_advsimd_cgt_f16;
8829 break;
8830 case 0x2d: /* FCMEQ (zero) */
8831 genfn = gen_helper_advsimd_ceq_f16;
8832 break;
8833 case 0x6d: /* FCMLE (zero) */
8834 swap = true;
8835 /* fall through */
8836 case 0x6c: /* FCMGE (zero) */
8837 genfn = gen_helper_advsimd_cge_f16;
8838 break;
8839 default:
8840 g_assert_not_reached();
8842 } else {
8843 switch (opcode) {
8844 case 0x2e: /* FCMLT (zero) */
8845 swap = true;
8846 /* fall through */
8847 case 0x2c: /* FCMGT (zero) */
8848 genfn = gen_helper_neon_cgt_f32;
8849 break;
8850 case 0x2d: /* FCMEQ (zero) */
8851 genfn = gen_helper_neon_ceq_f32;
8852 break;
8853 case 0x6d: /* FCMLE (zero) */
8854 swap = true;
8855 /* fall through */
8856 case 0x6c: /* FCMGE (zero) */
8857 genfn = gen_helper_neon_cge_f32;
8858 break;
8859 default:
8860 g_assert_not_reached();
8864 if (is_scalar) {
8865 maxpasses = 1;
8866 } else {
8867 int vector_size = 8 << is_q;
8868 maxpasses = vector_size >> size;
8871 for (pass = 0; pass < maxpasses; pass++) {
8872 read_vec_element_i32(s, tcg_op, rn, pass, size);
8873 if (swap) {
8874 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8875 } else {
8876 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8878 if (is_scalar) {
8879 write_fp_sreg(s, rd, tcg_res);
8880 } else {
8881 write_vec_element_i32(s, tcg_res, rd, pass, size);
8884 tcg_temp_free_i32(tcg_res);
8885 tcg_temp_free_i32(tcg_zero);
8886 tcg_temp_free_i32(tcg_op);
8887 if (!is_scalar) {
8888 clear_vec_high(s, is_q, rd);
8892 tcg_temp_free_ptr(fpst);
8895 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
8896 bool is_scalar, bool is_u, bool is_q,
8897 int size, int rn, int rd)
8899 bool is_double = (size == 3);
8900 TCGv_ptr fpst = get_fpstatus_ptr(false);
8902 if (is_double) {
8903 TCGv_i64 tcg_op = tcg_temp_new_i64();
8904 TCGv_i64 tcg_res = tcg_temp_new_i64();
8905 int pass;
8907 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8908 read_vec_element(s, tcg_op, rn, pass, MO_64);
8909 switch (opcode) {
8910 case 0x3d: /* FRECPE */
8911 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
8912 break;
8913 case 0x3f: /* FRECPX */
8914 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
8915 break;
8916 case 0x7d: /* FRSQRTE */
8917 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
8918 break;
8919 default:
8920 g_assert_not_reached();
8922 write_vec_element(s, tcg_res, rd, pass, MO_64);
8924 tcg_temp_free_i64(tcg_res);
8925 tcg_temp_free_i64(tcg_op);
8926 clear_vec_high(s, !is_scalar, rd);
8927 } else {
8928 TCGv_i32 tcg_op = tcg_temp_new_i32();
8929 TCGv_i32 tcg_res = tcg_temp_new_i32();
8930 int pass, maxpasses;
8932 if (is_scalar) {
8933 maxpasses = 1;
8934 } else {
8935 maxpasses = is_q ? 4 : 2;
8938 for (pass = 0; pass < maxpasses; pass++) {
8939 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
8941 switch (opcode) {
8942 case 0x3c: /* URECPE */
8943 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
8944 break;
8945 case 0x3d: /* FRECPE */
8946 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
8947 break;
8948 case 0x3f: /* FRECPX */
8949 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
8950 break;
8951 case 0x7d: /* FRSQRTE */
8952 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
8953 break;
8954 default:
8955 g_assert_not_reached();
8958 if (is_scalar) {
8959 write_fp_sreg(s, rd, tcg_res);
8960 } else {
8961 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8964 tcg_temp_free_i32(tcg_res);
8965 tcg_temp_free_i32(tcg_op);
8966 if (!is_scalar) {
8967 clear_vec_high(s, is_q, rd);
8970 tcg_temp_free_ptr(fpst);
8973 static void handle_2misc_narrow(DisasContext *s, bool scalar,
8974 int opcode, bool u, bool is_q,
8975 int size, int rn, int rd)
8977 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
8978 * in the source becomes a size element in the destination).
8980 int pass;
8981 TCGv_i32 tcg_res[2];
8982 int destelt = is_q ? 2 : 0;
8983 int passes = scalar ? 1 : 2;
8985 if (scalar) {
8986 tcg_res[1] = tcg_const_i32(0);
8989 for (pass = 0; pass < passes; pass++) {
8990 TCGv_i64 tcg_op = tcg_temp_new_i64();
8991 NeonGenNarrowFn *genfn = NULL;
8992 NeonGenNarrowEnvFn *genenvfn = NULL;
8994 if (scalar) {
8995 read_vec_element(s, tcg_op, rn, pass, size + 1);
8996 } else {
8997 read_vec_element(s, tcg_op, rn, pass, MO_64);
8999 tcg_res[pass] = tcg_temp_new_i32();
9001 switch (opcode) {
9002 case 0x12: /* XTN, SQXTUN */
9004 static NeonGenNarrowFn * const xtnfns[3] = {
9005 gen_helper_neon_narrow_u8,
9006 gen_helper_neon_narrow_u16,
9007 tcg_gen_extrl_i64_i32,
9009 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9010 gen_helper_neon_unarrow_sat8,
9011 gen_helper_neon_unarrow_sat16,
9012 gen_helper_neon_unarrow_sat32,
9014 if (u) {
9015 genenvfn = sqxtunfns[size];
9016 } else {
9017 genfn = xtnfns[size];
9019 break;
9021 case 0x14: /* SQXTN, UQXTN */
9023 static NeonGenNarrowEnvFn * const fns[3][2] = {
9024 { gen_helper_neon_narrow_sat_s8,
9025 gen_helper_neon_narrow_sat_u8 },
9026 { gen_helper_neon_narrow_sat_s16,
9027 gen_helper_neon_narrow_sat_u16 },
9028 { gen_helper_neon_narrow_sat_s32,
9029 gen_helper_neon_narrow_sat_u32 },
9031 genenvfn = fns[size][u];
9032 break;
9034 case 0x16: /* FCVTN, FCVTN2 */
9035 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9036 if (size == 2) {
9037 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9038 } else {
9039 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9040 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9041 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9042 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
9043 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
9044 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9045 tcg_temp_free_i32(tcg_lo);
9046 tcg_temp_free_i32(tcg_hi);
9048 break;
9049 case 0x56: /* FCVTXN, FCVTXN2 */
9050 /* 64 bit to 32 bit float conversion
9051 * with von Neumann rounding (round to odd)
9053 assert(size == 2);
9054 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9055 break;
9056 default:
9057 g_assert_not_reached();
9060 if (genfn) {
9061 genfn(tcg_res[pass], tcg_op);
9062 } else if (genenvfn) {
9063 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9066 tcg_temp_free_i64(tcg_op);
9069 for (pass = 0; pass < 2; pass++) {
9070 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9071 tcg_temp_free_i32(tcg_res[pass]);
9073 clear_vec_high(s, is_q, rd);
9076 /* Remaining saturating accumulating ops */
9077 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9078 bool is_q, int size, int rn, int rd)
9080 bool is_double = (size == 3);
9082 if (is_double) {
9083 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9084 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9085 int pass;
9087 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9088 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9089 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9091 if (is_u) { /* USQADD */
9092 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9093 } else { /* SUQADD */
9094 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9096 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9098 tcg_temp_free_i64(tcg_rd);
9099 tcg_temp_free_i64(tcg_rn);
9100 clear_vec_high(s, !is_scalar, rd);
9101 } else {
9102 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9103 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9104 int pass, maxpasses;
9106 if (is_scalar) {
9107 maxpasses = 1;
9108 } else {
9109 maxpasses = is_q ? 4 : 2;
9112 for (pass = 0; pass < maxpasses; pass++) {
9113 if (is_scalar) {
9114 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9115 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9116 } else {
9117 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9118 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9121 if (is_u) { /* USQADD */
9122 switch (size) {
9123 case 0:
9124 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9125 break;
9126 case 1:
9127 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9128 break;
9129 case 2:
9130 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9131 break;
9132 default:
9133 g_assert_not_reached();
9135 } else { /* SUQADD */
9136 switch (size) {
9137 case 0:
9138 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9139 break;
9140 case 1:
9141 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9142 break;
9143 case 2:
9144 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9145 break;
9146 default:
9147 g_assert_not_reached();
9151 if (is_scalar) {
9152 TCGv_i64 tcg_zero = tcg_const_i64(0);
9153 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9154 tcg_temp_free_i64(tcg_zero);
9156 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9158 tcg_temp_free_i32(tcg_rd);
9159 tcg_temp_free_i32(tcg_rn);
9160 clear_vec_high(s, is_q, rd);
9164 /* AdvSIMD scalar two reg misc
9165 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9166 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9167 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9168 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9170 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9172 int rd = extract32(insn, 0, 5);
9173 int rn = extract32(insn, 5, 5);
9174 int opcode = extract32(insn, 12, 5);
9175 int size = extract32(insn, 22, 2);
9176 bool u = extract32(insn, 29, 1);
9177 bool is_fcvt = false;
9178 int rmode;
9179 TCGv_i32 tcg_rmode;
9180 TCGv_ptr tcg_fpstatus;
9182 switch (opcode) {
9183 case 0x3: /* USQADD / SUQADD*/
9184 if (!fp_access_check(s)) {
9185 return;
9187 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9188 return;
9189 case 0x7: /* SQABS / SQNEG */
9190 break;
9191 case 0xa: /* CMLT */
9192 if (u) {
9193 unallocated_encoding(s);
9194 return;
9196 /* fall through */
9197 case 0x8: /* CMGT, CMGE */
9198 case 0x9: /* CMEQ, CMLE */
9199 case 0xb: /* ABS, NEG */
9200 if (size != 3) {
9201 unallocated_encoding(s);
9202 return;
9204 break;
9205 case 0x12: /* SQXTUN */
9206 if (!u) {
9207 unallocated_encoding(s);
9208 return;
9210 /* fall through */
9211 case 0x14: /* SQXTN, UQXTN */
9212 if (size == 3) {
9213 unallocated_encoding(s);
9214 return;
9216 if (!fp_access_check(s)) {
9217 return;
9219 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9220 return;
9221 case 0xc ... 0xf:
9222 case 0x16 ... 0x1d:
9223 case 0x1f:
9224 /* Floating point: U, size[1] and opcode indicate operation;
9225 * size[0] indicates single or double precision.
9227 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9228 size = extract32(size, 0, 1) ? 3 : 2;
9229 switch (opcode) {
9230 case 0x2c: /* FCMGT (zero) */
9231 case 0x2d: /* FCMEQ (zero) */
9232 case 0x2e: /* FCMLT (zero) */
9233 case 0x6c: /* FCMGE (zero) */
9234 case 0x6d: /* FCMLE (zero) */
9235 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9236 return;
9237 case 0x1d: /* SCVTF */
9238 case 0x5d: /* UCVTF */
9240 bool is_signed = (opcode == 0x1d);
9241 if (!fp_access_check(s)) {
9242 return;
9244 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9245 return;
9247 case 0x3d: /* FRECPE */
9248 case 0x3f: /* FRECPX */
9249 case 0x7d: /* FRSQRTE */
9250 if (!fp_access_check(s)) {
9251 return;
9253 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9254 return;
9255 case 0x1a: /* FCVTNS */
9256 case 0x1b: /* FCVTMS */
9257 case 0x3a: /* FCVTPS */
9258 case 0x3b: /* FCVTZS */
9259 case 0x5a: /* FCVTNU */
9260 case 0x5b: /* FCVTMU */
9261 case 0x7a: /* FCVTPU */
9262 case 0x7b: /* FCVTZU */
9263 is_fcvt = true;
9264 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9265 break;
9266 case 0x1c: /* FCVTAS */
9267 case 0x5c: /* FCVTAU */
9268 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9269 is_fcvt = true;
9270 rmode = FPROUNDING_TIEAWAY;
9271 break;
9272 case 0x56: /* FCVTXN, FCVTXN2 */
9273 if (size == 2) {
9274 unallocated_encoding(s);
9275 return;
9277 if (!fp_access_check(s)) {
9278 return;
9280 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9281 return;
9282 default:
9283 unallocated_encoding(s);
9284 return;
9286 break;
9287 default:
9288 unallocated_encoding(s);
9289 return;
9292 if (!fp_access_check(s)) {
9293 return;
9296 if (is_fcvt) {
9297 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9298 tcg_fpstatus = get_fpstatus_ptr(false);
9299 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9300 } else {
9301 tcg_rmode = NULL;
9302 tcg_fpstatus = NULL;
9305 if (size == 3) {
9306 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9307 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9309 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9310 write_fp_dreg(s, rd, tcg_rd);
9311 tcg_temp_free_i64(tcg_rd);
9312 tcg_temp_free_i64(tcg_rn);
9313 } else {
9314 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9315 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9317 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9319 switch (opcode) {
9320 case 0x7: /* SQABS, SQNEG */
9322 NeonGenOneOpEnvFn *genfn;
9323 static NeonGenOneOpEnvFn * const fns[3][2] = {
9324 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9325 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9326 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9328 genfn = fns[size][u];
9329 genfn(tcg_rd, cpu_env, tcg_rn);
9330 break;
9332 case 0x1a: /* FCVTNS */
9333 case 0x1b: /* FCVTMS */
9334 case 0x1c: /* FCVTAS */
9335 case 0x3a: /* FCVTPS */
9336 case 0x3b: /* FCVTZS */
9338 TCGv_i32 tcg_shift = tcg_const_i32(0);
9339 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9340 tcg_temp_free_i32(tcg_shift);
9341 break;
9343 case 0x5a: /* FCVTNU */
9344 case 0x5b: /* FCVTMU */
9345 case 0x5c: /* FCVTAU */
9346 case 0x7a: /* FCVTPU */
9347 case 0x7b: /* FCVTZU */
9349 TCGv_i32 tcg_shift = tcg_const_i32(0);
9350 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9351 tcg_temp_free_i32(tcg_shift);
9352 break;
9354 default:
9355 g_assert_not_reached();
9358 write_fp_sreg(s, rd, tcg_rd);
9359 tcg_temp_free_i32(tcg_rd);
9360 tcg_temp_free_i32(tcg_rn);
9363 if (is_fcvt) {
9364 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9365 tcg_temp_free_i32(tcg_rmode);
9366 tcg_temp_free_ptr(tcg_fpstatus);
9370 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9372 tcg_gen_vec_sar8i_i64(a, a, shift);
9373 tcg_gen_vec_add8_i64(d, d, a);
9376 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9378 tcg_gen_vec_sar16i_i64(a, a, shift);
9379 tcg_gen_vec_add16_i64(d, d, a);
9382 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9384 tcg_gen_sari_i32(a, a, shift);
9385 tcg_gen_add_i32(d, d, a);
9388 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9390 tcg_gen_sari_i64(a, a, shift);
9391 tcg_gen_add_i64(d, d, a);
9394 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9396 tcg_gen_sari_vec(vece, a, a, sh);
9397 tcg_gen_add_vec(vece, d, d, a);
9400 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9402 tcg_gen_vec_shr8i_i64(a, a, shift);
9403 tcg_gen_vec_add8_i64(d, d, a);
9406 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9408 tcg_gen_vec_shr16i_i64(a, a, shift);
9409 tcg_gen_vec_add16_i64(d, d, a);
9412 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9414 tcg_gen_shri_i32(a, a, shift);
9415 tcg_gen_add_i32(d, d, a);
9418 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9420 tcg_gen_shri_i64(a, a, shift);
9421 tcg_gen_add_i64(d, d, a);
9424 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9426 tcg_gen_shri_vec(vece, a, a, sh);
9427 tcg_gen_add_vec(vece, d, d, a);
9430 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9432 uint64_t mask = dup_const(MO_8, 0xff >> shift);
9433 TCGv_i64 t = tcg_temp_new_i64();
9435 tcg_gen_shri_i64(t, a, shift);
9436 tcg_gen_andi_i64(t, t, mask);
9437 tcg_gen_andi_i64(d, d, ~mask);
9438 tcg_gen_or_i64(d, d, t);
9439 tcg_temp_free_i64(t);
9442 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9444 uint64_t mask = dup_const(MO_16, 0xffff >> shift);
9445 TCGv_i64 t = tcg_temp_new_i64();
9447 tcg_gen_shri_i64(t, a, shift);
9448 tcg_gen_andi_i64(t, t, mask);
9449 tcg_gen_andi_i64(d, d, ~mask);
9450 tcg_gen_or_i64(d, d, t);
9451 tcg_temp_free_i64(t);
9454 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9456 tcg_gen_shri_i32(a, a, shift);
9457 tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
9460 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9462 tcg_gen_shri_i64(a, a, shift);
9463 tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
9466 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9468 uint64_t mask = (2ull << ((8 << vece) - 1)) - 1;
9469 TCGv_vec t = tcg_temp_new_vec_matching(d);
9470 TCGv_vec m = tcg_temp_new_vec_matching(d);
9472 tcg_gen_dupi_vec(vece, m, mask ^ (mask >> sh));
9473 tcg_gen_shri_vec(vece, t, a, sh);
9474 tcg_gen_and_vec(vece, d, d, m);
9475 tcg_gen_or_vec(vece, d, d, t);
9477 tcg_temp_free_vec(t);
9478 tcg_temp_free_vec(m);
9481 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9482 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9483 int immh, int immb, int opcode, int rn, int rd)
9485 static const GVecGen2i ssra_op[4] = {
9486 { .fni8 = gen_ssra8_i64,
9487 .fniv = gen_ssra_vec,
9488 .load_dest = true,
9489 .opc = INDEX_op_sari_vec,
9490 .vece = MO_8 },
9491 { .fni8 = gen_ssra16_i64,
9492 .fniv = gen_ssra_vec,
9493 .load_dest = true,
9494 .opc = INDEX_op_sari_vec,
9495 .vece = MO_16 },
9496 { .fni4 = gen_ssra32_i32,
9497 .fniv = gen_ssra_vec,
9498 .load_dest = true,
9499 .opc = INDEX_op_sari_vec,
9500 .vece = MO_32 },
9501 { .fni8 = gen_ssra64_i64,
9502 .fniv = gen_ssra_vec,
9503 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9504 .load_dest = true,
9505 .opc = INDEX_op_sari_vec,
9506 .vece = MO_64 },
9508 static const GVecGen2i usra_op[4] = {
9509 { .fni8 = gen_usra8_i64,
9510 .fniv = gen_usra_vec,
9511 .load_dest = true,
9512 .opc = INDEX_op_shri_vec,
9513 .vece = MO_8, },
9514 { .fni8 = gen_usra16_i64,
9515 .fniv = gen_usra_vec,
9516 .load_dest = true,
9517 .opc = INDEX_op_shri_vec,
9518 .vece = MO_16, },
9519 { .fni4 = gen_usra32_i32,
9520 .fniv = gen_usra_vec,
9521 .load_dest = true,
9522 .opc = INDEX_op_shri_vec,
9523 .vece = MO_32, },
9524 { .fni8 = gen_usra64_i64,
9525 .fniv = gen_usra_vec,
9526 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9527 .load_dest = true,
9528 .opc = INDEX_op_shri_vec,
9529 .vece = MO_64, },
9531 static const GVecGen2i sri_op[4] = {
9532 { .fni8 = gen_shr8_ins_i64,
9533 .fniv = gen_shr_ins_vec,
9534 .load_dest = true,
9535 .opc = INDEX_op_shri_vec,
9536 .vece = MO_8 },
9537 { .fni8 = gen_shr16_ins_i64,
9538 .fniv = gen_shr_ins_vec,
9539 .load_dest = true,
9540 .opc = INDEX_op_shri_vec,
9541 .vece = MO_16 },
9542 { .fni4 = gen_shr32_ins_i32,
9543 .fniv = gen_shr_ins_vec,
9544 .load_dest = true,
9545 .opc = INDEX_op_shri_vec,
9546 .vece = MO_32 },
9547 { .fni8 = gen_shr64_ins_i64,
9548 .fniv = gen_shr_ins_vec,
9549 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9550 .load_dest = true,
9551 .opc = INDEX_op_shri_vec,
9552 .vece = MO_64 },
9555 int size = 32 - clz32(immh) - 1;
9556 int immhb = immh << 3 | immb;
9557 int shift = 2 * (8 << size) - immhb;
9558 bool accumulate = false;
9559 int dsize = is_q ? 128 : 64;
9560 int esize = 8 << size;
9561 int elements = dsize/esize;
9562 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9563 TCGv_i64 tcg_rn = new_tmp_a64(s);
9564 TCGv_i64 tcg_rd = new_tmp_a64(s);
9565 TCGv_i64 tcg_round;
9566 uint64_t round_const;
9567 int i;
9569 if (extract32(immh, 3, 1) && !is_q) {
9570 unallocated_encoding(s);
9571 return;
9573 tcg_debug_assert(size <= 3);
9575 if (!fp_access_check(s)) {
9576 return;
9579 switch (opcode) {
9580 case 0x02: /* SSRA / USRA (accumulate) */
9581 if (is_u) {
9582 /* Shift count same as element size produces zero to add. */
9583 if (shift == 8 << size) {
9584 goto done;
9586 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9587 } else {
9588 /* Shift count same as element size produces all sign to add. */
9589 if (shift == 8 << size) {
9590 shift -= 1;
9592 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9594 return;
9595 case 0x08: /* SRI */
9596 /* Shift count same as element size is valid but does nothing. */
9597 if (shift == 8 << size) {
9598 goto done;
9600 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9601 return;
9603 case 0x00: /* SSHR / USHR */
9604 if (is_u) {
9605 if (shift == 8 << size) {
9606 /* Shift count the same size as element size produces zero. */
9607 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9608 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9609 } else {
9610 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9612 } else {
9613 /* Shift count the same size as element size produces all sign. */
9614 if (shift == 8 << size) {
9615 shift -= 1;
9617 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9619 return;
9621 case 0x04: /* SRSHR / URSHR (rounding) */
9622 break;
9623 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9624 accumulate = true;
9625 break;
9626 default:
9627 g_assert_not_reached();
9630 round_const = 1ULL << (shift - 1);
9631 tcg_round = tcg_const_i64(round_const);
9633 for (i = 0; i < elements; i++) {
9634 read_vec_element(s, tcg_rn, rn, i, memop);
9635 if (accumulate) {
9636 read_vec_element(s, tcg_rd, rd, i, memop);
9639 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9640 accumulate, is_u, size, shift);
9642 write_vec_element(s, tcg_rd, rd, i, size);
9644 tcg_temp_free_i64(tcg_round);
9646 done:
9647 clear_vec_high(s, is_q, rd);
9650 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9652 uint64_t mask = dup_const(MO_8, 0xff << shift);
9653 TCGv_i64 t = tcg_temp_new_i64();
9655 tcg_gen_shli_i64(t, a, shift);
9656 tcg_gen_andi_i64(t, t, mask);
9657 tcg_gen_andi_i64(d, d, ~mask);
9658 tcg_gen_or_i64(d, d, t);
9659 tcg_temp_free_i64(t);
9662 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9664 uint64_t mask = dup_const(MO_16, 0xffff << shift);
9665 TCGv_i64 t = tcg_temp_new_i64();
9667 tcg_gen_shli_i64(t, a, shift);
9668 tcg_gen_andi_i64(t, t, mask);
9669 tcg_gen_andi_i64(d, d, ~mask);
9670 tcg_gen_or_i64(d, d, t);
9671 tcg_temp_free_i64(t);
9674 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9676 tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
9679 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9681 tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
9684 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9686 uint64_t mask = (1ull << sh) - 1;
9687 TCGv_vec t = tcg_temp_new_vec_matching(d);
9688 TCGv_vec m = tcg_temp_new_vec_matching(d);
9690 tcg_gen_dupi_vec(vece, m, mask);
9691 tcg_gen_shli_vec(vece, t, a, sh);
9692 tcg_gen_and_vec(vece, d, d, m);
9693 tcg_gen_or_vec(vece, d, d, t);
9695 tcg_temp_free_vec(t);
9696 tcg_temp_free_vec(m);
9699 /* SHL/SLI - Vector shift left */
9700 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9701 int immh, int immb, int opcode, int rn, int rd)
9703 static const GVecGen2i shi_op[4] = {
9704 { .fni8 = gen_shl8_ins_i64,
9705 .fniv = gen_shl_ins_vec,
9706 .opc = INDEX_op_shli_vec,
9707 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9708 .load_dest = true,
9709 .vece = MO_8 },
9710 { .fni8 = gen_shl16_ins_i64,
9711 .fniv = gen_shl_ins_vec,
9712 .opc = INDEX_op_shli_vec,
9713 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9714 .load_dest = true,
9715 .vece = MO_16 },
9716 { .fni4 = gen_shl32_ins_i32,
9717 .fniv = gen_shl_ins_vec,
9718 .opc = INDEX_op_shli_vec,
9719 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9720 .load_dest = true,
9721 .vece = MO_32 },
9722 { .fni8 = gen_shl64_ins_i64,
9723 .fniv = gen_shl_ins_vec,
9724 .opc = INDEX_op_shli_vec,
9725 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9726 .load_dest = true,
9727 .vece = MO_64 },
9729 int size = 32 - clz32(immh) - 1;
9730 int immhb = immh << 3 | immb;
9731 int shift = immhb - (8 << size);
9733 if (extract32(immh, 3, 1) && !is_q) {
9734 unallocated_encoding(s);
9735 return;
9738 if (size > 3 && !is_q) {
9739 unallocated_encoding(s);
9740 return;
9743 if (!fp_access_check(s)) {
9744 return;
9747 if (insert) {
9748 gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]);
9749 } else {
9750 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
9754 /* USHLL/SHLL - Vector shift left with widening */
9755 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
9756 int immh, int immb, int opcode, int rn, int rd)
9758 int size = 32 - clz32(immh) - 1;
9759 int immhb = immh << 3 | immb;
9760 int shift = immhb - (8 << size);
9761 int dsize = 64;
9762 int esize = 8 << size;
9763 int elements = dsize/esize;
9764 TCGv_i64 tcg_rn = new_tmp_a64(s);
9765 TCGv_i64 tcg_rd = new_tmp_a64(s);
9766 int i;
9768 if (size >= 3) {
9769 unallocated_encoding(s);
9770 return;
9773 if (!fp_access_check(s)) {
9774 return;
9777 /* For the LL variants the store is larger than the load,
9778 * so if rd == rn we would overwrite parts of our input.
9779 * So load everything right now and use shifts in the main loop.
9781 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
9783 for (i = 0; i < elements; i++) {
9784 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
9785 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
9786 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
9787 write_vec_element(s, tcg_rd, rd, i, size + 1);
9791 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
9792 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
9793 int immh, int immb, int opcode, int rn, int rd)
9795 int immhb = immh << 3 | immb;
9796 int size = 32 - clz32(immh) - 1;
9797 int dsize = 64;
9798 int esize = 8 << size;
9799 int elements = dsize/esize;
9800 int shift = (2 * esize) - immhb;
9801 bool round = extract32(opcode, 0, 1);
9802 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
9803 TCGv_i64 tcg_round;
9804 int i;
9806 if (extract32(immh, 3, 1)) {
9807 unallocated_encoding(s);
9808 return;
9811 if (!fp_access_check(s)) {
9812 return;
9815 tcg_rn = tcg_temp_new_i64();
9816 tcg_rd = tcg_temp_new_i64();
9817 tcg_final = tcg_temp_new_i64();
9818 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
9820 if (round) {
9821 uint64_t round_const = 1ULL << (shift - 1);
9822 tcg_round = tcg_const_i64(round_const);
9823 } else {
9824 tcg_round = NULL;
9827 for (i = 0; i < elements; i++) {
9828 read_vec_element(s, tcg_rn, rn, i, size+1);
9829 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9830 false, true, size+1, shift);
9832 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9835 if (!is_q) {
9836 write_vec_element(s, tcg_final, rd, 0, MO_64);
9837 } else {
9838 write_vec_element(s, tcg_final, rd, 1, MO_64);
9840 if (round) {
9841 tcg_temp_free_i64(tcg_round);
9843 tcg_temp_free_i64(tcg_rn);
9844 tcg_temp_free_i64(tcg_rd);
9845 tcg_temp_free_i64(tcg_final);
9847 clear_vec_high(s, is_q, rd);
9851 /* AdvSIMD shift by immediate
9852 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9853 * +---+---+---+-------------+------+------+--------+---+------+------+
9854 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9855 * +---+---+---+-------------+------+------+--------+---+------+------+
9857 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
9859 int rd = extract32(insn, 0, 5);
9860 int rn = extract32(insn, 5, 5);
9861 int opcode = extract32(insn, 11, 5);
9862 int immb = extract32(insn, 16, 3);
9863 int immh = extract32(insn, 19, 4);
9864 bool is_u = extract32(insn, 29, 1);
9865 bool is_q = extract32(insn, 30, 1);
9867 switch (opcode) {
9868 case 0x08: /* SRI */
9869 if (!is_u) {
9870 unallocated_encoding(s);
9871 return;
9873 /* fall through */
9874 case 0x00: /* SSHR / USHR */
9875 case 0x02: /* SSRA / USRA (accumulate) */
9876 case 0x04: /* SRSHR / URSHR (rounding) */
9877 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9878 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
9879 break;
9880 case 0x0a: /* SHL / SLI */
9881 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9882 break;
9883 case 0x10: /* SHRN */
9884 case 0x11: /* RSHRN / SQRSHRUN */
9885 if (is_u) {
9886 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
9887 opcode, rn, rd);
9888 } else {
9889 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
9891 break;
9892 case 0x12: /* SQSHRN / UQSHRN */
9893 case 0x13: /* SQRSHRN / UQRSHRN */
9894 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
9895 opcode, rn, rd);
9896 break;
9897 case 0x14: /* SSHLL / USHLL */
9898 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9899 break;
9900 case 0x1c: /* SCVTF / UCVTF */
9901 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
9902 opcode, rn, rd);
9903 break;
9904 case 0xc: /* SQSHLU */
9905 if (!is_u) {
9906 unallocated_encoding(s);
9907 return;
9909 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
9910 break;
9911 case 0xe: /* SQSHL, UQSHL */
9912 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
9913 break;
9914 case 0x1f: /* FCVTZS/ FCVTZU */
9915 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
9916 return;
9917 default:
9918 unallocated_encoding(s);
9919 return;
9923 /* Generate code to do a "long" addition or subtraction, ie one done in
9924 * TCGv_i64 on vector lanes twice the width specified by size.
9926 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
9927 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
9929 static NeonGenTwo64OpFn * const fns[3][2] = {
9930 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
9931 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
9932 { tcg_gen_add_i64, tcg_gen_sub_i64 },
9934 NeonGenTwo64OpFn *genfn;
9935 assert(size < 3);
9937 genfn = fns[size][is_sub];
9938 genfn(tcg_res, tcg_op1, tcg_op2);
9941 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
9942 int opcode, int rd, int rn, int rm)
9944 /* 3-reg-different widening insns: 64 x 64 -> 128 */
9945 TCGv_i64 tcg_res[2];
9946 int pass, accop;
9948 tcg_res[0] = tcg_temp_new_i64();
9949 tcg_res[1] = tcg_temp_new_i64();
9951 /* Does this op do an adding accumulate, a subtracting accumulate,
9952 * or no accumulate at all?
9954 switch (opcode) {
9955 case 5:
9956 case 8:
9957 case 9:
9958 accop = 1;
9959 break;
9960 case 10:
9961 case 11:
9962 accop = -1;
9963 break;
9964 default:
9965 accop = 0;
9966 break;
9969 if (accop != 0) {
9970 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
9971 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
9974 /* size == 2 means two 32x32->64 operations; this is worth special
9975 * casing because we can generally handle it inline.
9977 if (size == 2) {
9978 for (pass = 0; pass < 2; pass++) {
9979 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9980 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9981 TCGv_i64 tcg_passres;
9982 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
9984 int elt = pass + is_q * 2;
9986 read_vec_element(s, tcg_op1, rn, elt, memop);
9987 read_vec_element(s, tcg_op2, rm, elt, memop);
9989 if (accop == 0) {
9990 tcg_passres = tcg_res[pass];
9991 } else {
9992 tcg_passres = tcg_temp_new_i64();
9995 switch (opcode) {
9996 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9997 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
9998 break;
9999 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10000 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10001 break;
10002 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10003 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10005 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10006 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10008 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10009 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10010 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10011 tcg_passres,
10012 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10013 tcg_temp_free_i64(tcg_tmp1);
10014 tcg_temp_free_i64(tcg_tmp2);
10015 break;
10017 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10018 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10019 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10020 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10021 break;
10022 case 9: /* SQDMLAL, SQDMLAL2 */
10023 case 11: /* SQDMLSL, SQDMLSL2 */
10024 case 13: /* SQDMULL, SQDMULL2 */
10025 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10026 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10027 tcg_passres, tcg_passres);
10028 break;
10029 default:
10030 g_assert_not_reached();
10033 if (opcode == 9 || opcode == 11) {
10034 /* saturating accumulate ops */
10035 if (accop < 0) {
10036 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10038 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10039 tcg_res[pass], tcg_passres);
10040 } else if (accop > 0) {
10041 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10042 } else if (accop < 0) {
10043 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10046 if (accop != 0) {
10047 tcg_temp_free_i64(tcg_passres);
10050 tcg_temp_free_i64(tcg_op1);
10051 tcg_temp_free_i64(tcg_op2);
10053 } else {
10054 /* size 0 or 1, generally helper functions */
10055 for (pass = 0; pass < 2; pass++) {
10056 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10057 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10058 TCGv_i64 tcg_passres;
10059 int elt = pass + is_q * 2;
10061 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10062 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10064 if (accop == 0) {
10065 tcg_passres = tcg_res[pass];
10066 } else {
10067 tcg_passres = tcg_temp_new_i64();
10070 switch (opcode) {
10071 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10072 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10074 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10075 static NeonGenWidenFn * const widenfns[2][2] = {
10076 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10077 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10079 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10081 widenfn(tcg_op2_64, tcg_op2);
10082 widenfn(tcg_passres, tcg_op1);
10083 gen_neon_addl(size, (opcode == 2), tcg_passres,
10084 tcg_passres, tcg_op2_64);
10085 tcg_temp_free_i64(tcg_op2_64);
10086 break;
10088 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10089 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10090 if (size == 0) {
10091 if (is_u) {
10092 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10093 } else {
10094 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10096 } else {
10097 if (is_u) {
10098 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10099 } else {
10100 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10103 break;
10104 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10105 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10106 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10107 if (size == 0) {
10108 if (is_u) {
10109 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10110 } else {
10111 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10113 } else {
10114 if (is_u) {
10115 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10116 } else {
10117 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10120 break;
10121 case 9: /* SQDMLAL, SQDMLAL2 */
10122 case 11: /* SQDMLSL, SQDMLSL2 */
10123 case 13: /* SQDMULL, SQDMULL2 */
10124 assert(size == 1);
10125 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10126 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10127 tcg_passres, tcg_passres);
10128 break;
10129 case 14: /* PMULL */
10130 assert(size == 0);
10131 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10132 break;
10133 default:
10134 g_assert_not_reached();
10136 tcg_temp_free_i32(tcg_op1);
10137 tcg_temp_free_i32(tcg_op2);
10139 if (accop != 0) {
10140 if (opcode == 9 || opcode == 11) {
10141 /* saturating accumulate ops */
10142 if (accop < 0) {
10143 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10145 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10146 tcg_res[pass],
10147 tcg_passres);
10148 } else {
10149 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10150 tcg_res[pass], tcg_passres);
10152 tcg_temp_free_i64(tcg_passres);
10157 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10158 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10159 tcg_temp_free_i64(tcg_res[0]);
10160 tcg_temp_free_i64(tcg_res[1]);
10163 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10164 int opcode, int rd, int rn, int rm)
10166 TCGv_i64 tcg_res[2];
10167 int part = is_q ? 2 : 0;
10168 int pass;
10170 for (pass = 0; pass < 2; pass++) {
10171 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10172 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10173 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10174 static NeonGenWidenFn * const widenfns[3][2] = {
10175 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10176 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10177 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10179 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10181 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10182 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10183 widenfn(tcg_op2_wide, tcg_op2);
10184 tcg_temp_free_i32(tcg_op2);
10185 tcg_res[pass] = tcg_temp_new_i64();
10186 gen_neon_addl(size, (opcode == 3),
10187 tcg_res[pass], tcg_op1, tcg_op2_wide);
10188 tcg_temp_free_i64(tcg_op1);
10189 tcg_temp_free_i64(tcg_op2_wide);
10192 for (pass = 0; pass < 2; pass++) {
10193 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10194 tcg_temp_free_i64(tcg_res[pass]);
10198 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10200 tcg_gen_addi_i64(in, in, 1U << 31);
10201 tcg_gen_extrh_i64_i32(res, in);
10204 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10205 int opcode, int rd, int rn, int rm)
10207 TCGv_i32 tcg_res[2];
10208 int part = is_q ? 2 : 0;
10209 int pass;
10211 for (pass = 0; pass < 2; pass++) {
10212 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10213 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10214 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10215 static NeonGenNarrowFn * const narrowfns[3][2] = {
10216 { gen_helper_neon_narrow_high_u8,
10217 gen_helper_neon_narrow_round_high_u8 },
10218 { gen_helper_neon_narrow_high_u16,
10219 gen_helper_neon_narrow_round_high_u16 },
10220 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10222 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10224 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10225 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10227 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10229 tcg_temp_free_i64(tcg_op1);
10230 tcg_temp_free_i64(tcg_op2);
10232 tcg_res[pass] = tcg_temp_new_i32();
10233 gennarrow(tcg_res[pass], tcg_wideres);
10234 tcg_temp_free_i64(tcg_wideres);
10237 for (pass = 0; pass < 2; pass++) {
10238 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10239 tcg_temp_free_i32(tcg_res[pass]);
10241 clear_vec_high(s, is_q, rd);
10244 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10246 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10247 * is the only three-reg-diff instruction which produces a
10248 * 128-bit wide result from a single operation. However since
10249 * it's possible to calculate the two halves more or less
10250 * separately we just use two helper calls.
10252 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10253 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10254 TCGv_i64 tcg_res = tcg_temp_new_i64();
10256 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10257 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10258 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10259 write_vec_element(s, tcg_res, rd, 0, MO_64);
10260 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10261 write_vec_element(s, tcg_res, rd, 1, MO_64);
10263 tcg_temp_free_i64(tcg_op1);
10264 tcg_temp_free_i64(tcg_op2);
10265 tcg_temp_free_i64(tcg_res);
10268 /* AdvSIMD three different
10269 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10270 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10271 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10272 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10274 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10276 /* Instructions in this group fall into three basic classes
10277 * (in each case with the operation working on each element in
10278 * the input vectors):
10279 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10280 * 128 bit input)
10281 * (2) wide 64 x 128 -> 128
10282 * (3) narrowing 128 x 128 -> 64
10283 * Here we do initial decode, catch unallocated cases and
10284 * dispatch to separate functions for each class.
10286 int is_q = extract32(insn, 30, 1);
10287 int is_u = extract32(insn, 29, 1);
10288 int size = extract32(insn, 22, 2);
10289 int opcode = extract32(insn, 12, 4);
10290 int rm = extract32(insn, 16, 5);
10291 int rn = extract32(insn, 5, 5);
10292 int rd = extract32(insn, 0, 5);
10294 switch (opcode) {
10295 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10296 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10297 /* 64 x 128 -> 128 */
10298 if (size == 3) {
10299 unallocated_encoding(s);
10300 return;
10302 if (!fp_access_check(s)) {
10303 return;
10305 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10306 break;
10307 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10308 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10309 /* 128 x 128 -> 64 */
10310 if (size == 3) {
10311 unallocated_encoding(s);
10312 return;
10314 if (!fp_access_check(s)) {
10315 return;
10317 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10318 break;
10319 case 14: /* PMULL, PMULL2 */
10320 if (is_u || size == 1 || size == 2) {
10321 unallocated_encoding(s);
10322 return;
10324 if (size == 3) {
10325 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
10326 unallocated_encoding(s);
10327 return;
10329 if (!fp_access_check(s)) {
10330 return;
10332 handle_pmull_64(s, is_q, rd, rn, rm);
10333 return;
10335 goto is_widening;
10336 case 9: /* SQDMLAL, SQDMLAL2 */
10337 case 11: /* SQDMLSL, SQDMLSL2 */
10338 case 13: /* SQDMULL, SQDMULL2 */
10339 if (is_u || size == 0) {
10340 unallocated_encoding(s);
10341 return;
10343 /* fall through */
10344 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10345 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10346 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10347 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10348 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10349 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10350 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10351 /* 64 x 64 -> 128 */
10352 if (size == 3) {
10353 unallocated_encoding(s);
10354 return;
10356 is_widening:
10357 if (!fp_access_check(s)) {
10358 return;
10361 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10362 break;
10363 default:
10364 /* opcode 15 not allocated */
10365 unallocated_encoding(s);
10366 break;
10370 static void gen_bsl_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10372 tcg_gen_xor_i64(rn, rn, rm);
10373 tcg_gen_and_i64(rn, rn, rd);
10374 tcg_gen_xor_i64(rd, rm, rn);
10377 static void gen_bit_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10379 tcg_gen_xor_i64(rn, rn, rd);
10380 tcg_gen_and_i64(rn, rn, rm);
10381 tcg_gen_xor_i64(rd, rd, rn);
10384 static void gen_bif_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10386 tcg_gen_xor_i64(rn, rn, rd);
10387 tcg_gen_andc_i64(rn, rn, rm);
10388 tcg_gen_xor_i64(rd, rd, rn);
10391 static void gen_bsl_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10393 tcg_gen_xor_vec(vece, rn, rn, rm);
10394 tcg_gen_and_vec(vece, rn, rn, rd);
10395 tcg_gen_xor_vec(vece, rd, rm, rn);
10398 static void gen_bit_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10400 tcg_gen_xor_vec(vece, rn, rn, rd);
10401 tcg_gen_and_vec(vece, rn, rn, rm);
10402 tcg_gen_xor_vec(vece, rd, rd, rn);
10405 static void gen_bif_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10407 tcg_gen_xor_vec(vece, rn, rn, rd);
10408 tcg_gen_andc_vec(vece, rn, rn, rm);
10409 tcg_gen_xor_vec(vece, rd, rd, rn);
10412 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10413 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10415 static const GVecGen3 bsl_op = {
10416 .fni8 = gen_bsl_i64,
10417 .fniv = gen_bsl_vec,
10418 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10419 .load_dest = true
10421 static const GVecGen3 bit_op = {
10422 .fni8 = gen_bit_i64,
10423 .fniv = gen_bit_vec,
10424 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10425 .load_dest = true
10427 static const GVecGen3 bif_op = {
10428 .fni8 = gen_bif_i64,
10429 .fniv = gen_bif_vec,
10430 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10431 .load_dest = true
10434 int rd = extract32(insn, 0, 5);
10435 int rn = extract32(insn, 5, 5);
10436 int rm = extract32(insn, 16, 5);
10437 int size = extract32(insn, 22, 2);
10438 bool is_u = extract32(insn, 29, 1);
10439 bool is_q = extract32(insn, 30, 1);
10441 if (!fp_access_check(s)) {
10442 return;
10445 switch (size + 4 * is_u) {
10446 case 0: /* AND */
10447 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10448 return;
10449 case 1: /* BIC */
10450 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10451 return;
10452 case 2: /* ORR */
10453 if (rn == rm) { /* MOV */
10454 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
10455 } else {
10456 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10458 return;
10459 case 3: /* ORN */
10460 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10461 return;
10462 case 4: /* EOR */
10463 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10464 return;
10466 case 5: /* BSL bitwise select */
10467 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
10468 return;
10469 case 6: /* BIT, bitwise insert if true */
10470 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
10471 return;
10472 case 7: /* BIF, bitwise insert if false */
10473 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
10474 return;
10476 default:
10477 g_assert_not_reached();
10481 /* Pairwise op subgroup of C3.6.16.
10483 * This is called directly or via the handle_3same_float for float pairwise
10484 * operations where the opcode and size are calculated differently.
10486 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10487 int size, int rn, int rm, int rd)
10489 TCGv_ptr fpst;
10490 int pass;
10492 /* Floating point operations need fpst */
10493 if (opcode >= 0x58) {
10494 fpst = get_fpstatus_ptr(false);
10495 } else {
10496 fpst = NULL;
10499 if (!fp_access_check(s)) {
10500 return;
10503 /* These operations work on the concatenated rm:rn, with each pair of
10504 * adjacent elements being operated on to produce an element in the result.
10506 if (size == 3) {
10507 TCGv_i64 tcg_res[2];
10509 for (pass = 0; pass < 2; pass++) {
10510 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10511 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10512 int passreg = (pass == 0) ? rn : rm;
10514 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10515 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10516 tcg_res[pass] = tcg_temp_new_i64();
10518 switch (opcode) {
10519 case 0x17: /* ADDP */
10520 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10521 break;
10522 case 0x58: /* FMAXNMP */
10523 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10524 break;
10525 case 0x5a: /* FADDP */
10526 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10527 break;
10528 case 0x5e: /* FMAXP */
10529 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10530 break;
10531 case 0x78: /* FMINNMP */
10532 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10533 break;
10534 case 0x7e: /* FMINP */
10535 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10536 break;
10537 default:
10538 g_assert_not_reached();
10541 tcg_temp_free_i64(tcg_op1);
10542 tcg_temp_free_i64(tcg_op2);
10545 for (pass = 0; pass < 2; pass++) {
10546 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10547 tcg_temp_free_i64(tcg_res[pass]);
10549 } else {
10550 int maxpass = is_q ? 4 : 2;
10551 TCGv_i32 tcg_res[4];
10553 for (pass = 0; pass < maxpass; pass++) {
10554 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10555 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10556 NeonGenTwoOpFn *genfn = NULL;
10557 int passreg = pass < (maxpass / 2) ? rn : rm;
10558 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10560 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10561 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10562 tcg_res[pass] = tcg_temp_new_i32();
10564 switch (opcode) {
10565 case 0x17: /* ADDP */
10567 static NeonGenTwoOpFn * const fns[3] = {
10568 gen_helper_neon_padd_u8,
10569 gen_helper_neon_padd_u16,
10570 tcg_gen_add_i32,
10572 genfn = fns[size];
10573 break;
10575 case 0x14: /* SMAXP, UMAXP */
10577 static NeonGenTwoOpFn * const fns[3][2] = {
10578 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10579 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10580 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10582 genfn = fns[size][u];
10583 break;
10585 case 0x15: /* SMINP, UMINP */
10587 static NeonGenTwoOpFn * const fns[3][2] = {
10588 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10589 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10590 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10592 genfn = fns[size][u];
10593 break;
10595 /* The FP operations are all on single floats (32 bit) */
10596 case 0x58: /* FMAXNMP */
10597 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10598 break;
10599 case 0x5a: /* FADDP */
10600 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10601 break;
10602 case 0x5e: /* FMAXP */
10603 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10604 break;
10605 case 0x78: /* FMINNMP */
10606 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10607 break;
10608 case 0x7e: /* FMINP */
10609 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10610 break;
10611 default:
10612 g_assert_not_reached();
10615 /* FP ops called directly, otherwise call now */
10616 if (genfn) {
10617 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10620 tcg_temp_free_i32(tcg_op1);
10621 tcg_temp_free_i32(tcg_op2);
10624 for (pass = 0; pass < maxpass; pass++) {
10625 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10626 tcg_temp_free_i32(tcg_res[pass]);
10628 clear_vec_high(s, is_q, rd);
10631 if (fpst) {
10632 tcg_temp_free_ptr(fpst);
10636 /* Floating point op subgroup of C3.6.16. */
10637 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10639 /* For floating point ops, the U, size[1] and opcode bits
10640 * together indicate the operation. size[0] indicates single
10641 * or double.
10643 int fpopcode = extract32(insn, 11, 5)
10644 | (extract32(insn, 23, 1) << 5)
10645 | (extract32(insn, 29, 1) << 6);
10646 int is_q = extract32(insn, 30, 1);
10647 int size = extract32(insn, 22, 1);
10648 int rm = extract32(insn, 16, 5);
10649 int rn = extract32(insn, 5, 5);
10650 int rd = extract32(insn, 0, 5);
10652 int datasize = is_q ? 128 : 64;
10653 int esize = 32 << size;
10654 int elements = datasize / esize;
10656 if (size == 1 && !is_q) {
10657 unallocated_encoding(s);
10658 return;
10661 switch (fpopcode) {
10662 case 0x58: /* FMAXNMP */
10663 case 0x5a: /* FADDP */
10664 case 0x5e: /* FMAXP */
10665 case 0x78: /* FMINNMP */
10666 case 0x7e: /* FMINP */
10667 if (size && !is_q) {
10668 unallocated_encoding(s);
10669 return;
10671 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10672 rn, rm, rd);
10673 return;
10674 case 0x1b: /* FMULX */
10675 case 0x1f: /* FRECPS */
10676 case 0x3f: /* FRSQRTS */
10677 case 0x5d: /* FACGE */
10678 case 0x7d: /* FACGT */
10679 case 0x19: /* FMLA */
10680 case 0x39: /* FMLS */
10681 case 0x18: /* FMAXNM */
10682 case 0x1a: /* FADD */
10683 case 0x1c: /* FCMEQ */
10684 case 0x1e: /* FMAX */
10685 case 0x38: /* FMINNM */
10686 case 0x3a: /* FSUB */
10687 case 0x3e: /* FMIN */
10688 case 0x5b: /* FMUL */
10689 case 0x5c: /* FCMGE */
10690 case 0x5f: /* FDIV */
10691 case 0x7a: /* FABD */
10692 case 0x7c: /* FCMGT */
10693 if (!fp_access_check(s)) {
10694 return;
10697 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10698 return;
10699 default:
10700 unallocated_encoding(s);
10701 return;
10705 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10707 gen_helper_neon_mul_u8(a, a, b);
10708 gen_helper_neon_add_u8(d, d, a);
10711 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10713 gen_helper_neon_mul_u16(a, a, b);
10714 gen_helper_neon_add_u16(d, d, a);
10717 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10719 tcg_gen_mul_i32(a, a, b);
10720 tcg_gen_add_i32(d, d, a);
10723 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10725 tcg_gen_mul_i64(a, a, b);
10726 tcg_gen_add_i64(d, d, a);
10729 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10731 tcg_gen_mul_vec(vece, a, a, b);
10732 tcg_gen_add_vec(vece, d, d, a);
10735 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10737 gen_helper_neon_mul_u8(a, a, b);
10738 gen_helper_neon_sub_u8(d, d, a);
10741 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10743 gen_helper_neon_mul_u16(a, a, b);
10744 gen_helper_neon_sub_u16(d, d, a);
10747 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10749 tcg_gen_mul_i32(a, a, b);
10750 tcg_gen_sub_i32(d, d, a);
10753 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10755 tcg_gen_mul_i64(a, a, b);
10756 tcg_gen_sub_i64(d, d, a);
10759 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10761 tcg_gen_mul_vec(vece, a, a, b);
10762 tcg_gen_sub_vec(vece, d, d, a);
10765 /* Integer op subgroup of C3.6.16. */
10766 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10768 static const GVecGen3 cmtst_op[4] = {
10769 { .fni4 = gen_helper_neon_tst_u8,
10770 .fniv = gen_cmtst_vec,
10771 .vece = MO_8 },
10772 { .fni4 = gen_helper_neon_tst_u16,
10773 .fniv = gen_cmtst_vec,
10774 .vece = MO_16 },
10775 { .fni4 = gen_cmtst_i32,
10776 .fniv = gen_cmtst_vec,
10777 .vece = MO_32 },
10778 { .fni8 = gen_cmtst_i64,
10779 .fniv = gen_cmtst_vec,
10780 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10781 .vece = MO_64 },
10783 static const GVecGen3 mla_op[4] = {
10784 { .fni4 = gen_mla8_i32,
10785 .fniv = gen_mla_vec,
10786 .opc = INDEX_op_mul_vec,
10787 .load_dest = true,
10788 .vece = MO_8 },
10789 { .fni4 = gen_mla16_i32,
10790 .fniv = gen_mla_vec,
10791 .opc = INDEX_op_mul_vec,
10792 .load_dest = true,
10793 .vece = MO_16 },
10794 { .fni4 = gen_mla32_i32,
10795 .fniv = gen_mla_vec,
10796 .opc = INDEX_op_mul_vec,
10797 .load_dest = true,
10798 .vece = MO_32 },
10799 { .fni8 = gen_mla64_i64,
10800 .fniv = gen_mla_vec,
10801 .opc = INDEX_op_mul_vec,
10802 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10803 .load_dest = true,
10804 .vece = MO_64 },
10806 static const GVecGen3 mls_op[4] = {
10807 { .fni4 = gen_mls8_i32,
10808 .fniv = gen_mls_vec,
10809 .opc = INDEX_op_mul_vec,
10810 .load_dest = true,
10811 .vece = MO_8 },
10812 { .fni4 = gen_mls16_i32,
10813 .fniv = gen_mls_vec,
10814 .opc = INDEX_op_mul_vec,
10815 .load_dest = true,
10816 .vece = MO_16 },
10817 { .fni4 = gen_mls32_i32,
10818 .fniv = gen_mls_vec,
10819 .opc = INDEX_op_mul_vec,
10820 .load_dest = true,
10821 .vece = MO_32 },
10822 { .fni8 = gen_mls64_i64,
10823 .fniv = gen_mls_vec,
10824 .opc = INDEX_op_mul_vec,
10825 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10826 .load_dest = true,
10827 .vece = MO_64 },
10830 int is_q = extract32(insn, 30, 1);
10831 int u = extract32(insn, 29, 1);
10832 int size = extract32(insn, 22, 2);
10833 int opcode = extract32(insn, 11, 5);
10834 int rm = extract32(insn, 16, 5);
10835 int rn = extract32(insn, 5, 5);
10836 int rd = extract32(insn, 0, 5);
10837 int pass;
10838 TCGCond cond;
10840 switch (opcode) {
10841 case 0x13: /* MUL, PMUL */
10842 if (u && size != 0) {
10843 unallocated_encoding(s);
10844 return;
10846 /* fall through */
10847 case 0x0: /* SHADD, UHADD */
10848 case 0x2: /* SRHADD, URHADD */
10849 case 0x4: /* SHSUB, UHSUB */
10850 case 0xc: /* SMAX, UMAX */
10851 case 0xd: /* SMIN, UMIN */
10852 case 0xe: /* SABD, UABD */
10853 case 0xf: /* SABA, UABA */
10854 case 0x12: /* MLA, MLS */
10855 if (size == 3) {
10856 unallocated_encoding(s);
10857 return;
10859 break;
10860 case 0x16: /* SQDMULH, SQRDMULH */
10861 if (size == 0 || size == 3) {
10862 unallocated_encoding(s);
10863 return;
10865 break;
10866 default:
10867 if (size == 3 && !is_q) {
10868 unallocated_encoding(s);
10869 return;
10871 break;
10874 if (!fp_access_check(s)) {
10875 return;
10878 switch (opcode) {
10879 case 0x10: /* ADD, SUB */
10880 if (u) {
10881 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10882 } else {
10883 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10885 return;
10886 case 0x13: /* MUL, PMUL */
10887 if (!u) { /* MUL */
10888 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10889 return;
10891 break;
10892 case 0x12: /* MLA, MLS */
10893 if (u) {
10894 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10895 } else {
10896 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10898 return;
10899 case 0x11:
10900 if (!u) { /* CMTST */
10901 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
10902 return;
10904 /* else CMEQ */
10905 cond = TCG_COND_EQ;
10906 goto do_gvec_cmp;
10907 case 0x06: /* CMGT, CMHI */
10908 cond = u ? TCG_COND_GTU : TCG_COND_GT;
10909 goto do_gvec_cmp;
10910 case 0x07: /* CMGE, CMHS */
10911 cond = u ? TCG_COND_GEU : TCG_COND_GE;
10912 do_gvec_cmp:
10913 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
10914 vec_full_reg_offset(s, rn),
10915 vec_full_reg_offset(s, rm),
10916 is_q ? 16 : 8, vec_full_reg_size(s));
10917 return;
10920 if (size == 3) {
10921 assert(is_q);
10922 for (pass = 0; pass < 2; pass++) {
10923 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10924 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10925 TCGv_i64 tcg_res = tcg_temp_new_i64();
10927 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10928 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10930 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
10932 write_vec_element(s, tcg_res, rd, pass, MO_64);
10934 tcg_temp_free_i64(tcg_res);
10935 tcg_temp_free_i64(tcg_op1);
10936 tcg_temp_free_i64(tcg_op2);
10938 } else {
10939 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10940 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10941 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10942 TCGv_i32 tcg_res = tcg_temp_new_i32();
10943 NeonGenTwoOpFn *genfn = NULL;
10944 NeonGenTwoOpEnvFn *genenvfn = NULL;
10946 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
10947 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
10949 switch (opcode) {
10950 case 0x0: /* SHADD, UHADD */
10952 static NeonGenTwoOpFn * const fns[3][2] = {
10953 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
10954 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
10955 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
10957 genfn = fns[size][u];
10958 break;
10960 case 0x1: /* SQADD, UQADD */
10962 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10963 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
10964 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
10965 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
10967 genenvfn = fns[size][u];
10968 break;
10970 case 0x2: /* SRHADD, URHADD */
10972 static NeonGenTwoOpFn * const fns[3][2] = {
10973 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
10974 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
10975 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
10977 genfn = fns[size][u];
10978 break;
10980 case 0x4: /* SHSUB, UHSUB */
10982 static NeonGenTwoOpFn * const fns[3][2] = {
10983 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
10984 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
10985 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
10987 genfn = fns[size][u];
10988 break;
10990 case 0x5: /* SQSUB, UQSUB */
10992 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10993 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
10994 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
10995 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
10997 genenvfn = fns[size][u];
10998 break;
11000 case 0x8: /* SSHL, USHL */
11002 static NeonGenTwoOpFn * const fns[3][2] = {
11003 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
11004 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
11005 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
11007 genfn = fns[size][u];
11008 break;
11010 case 0x9: /* SQSHL, UQSHL */
11012 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11013 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11014 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11015 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11017 genenvfn = fns[size][u];
11018 break;
11020 case 0xa: /* SRSHL, URSHL */
11022 static NeonGenTwoOpFn * const fns[3][2] = {
11023 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11024 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11025 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11027 genfn = fns[size][u];
11028 break;
11030 case 0xb: /* SQRSHL, UQRSHL */
11032 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11033 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11034 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11035 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11037 genenvfn = fns[size][u];
11038 break;
11040 case 0xc: /* SMAX, UMAX */
11042 static NeonGenTwoOpFn * const fns[3][2] = {
11043 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
11044 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
11045 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11047 genfn = fns[size][u];
11048 break;
11051 case 0xd: /* SMIN, UMIN */
11053 static NeonGenTwoOpFn * const fns[3][2] = {
11054 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
11055 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
11056 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11058 genfn = fns[size][u];
11059 break;
11061 case 0xe: /* SABD, UABD */
11062 case 0xf: /* SABA, UABA */
11064 static NeonGenTwoOpFn * const fns[3][2] = {
11065 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11066 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11067 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11069 genfn = fns[size][u];
11070 break;
11072 case 0x13: /* MUL, PMUL */
11073 assert(u); /* PMUL */
11074 assert(size == 0);
11075 genfn = gen_helper_neon_mul_p8;
11076 break;
11077 case 0x16: /* SQDMULH, SQRDMULH */
11079 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11080 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11081 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11083 assert(size == 1 || size == 2);
11084 genenvfn = fns[size - 1][u];
11085 break;
11087 default:
11088 g_assert_not_reached();
11091 if (genenvfn) {
11092 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11093 } else {
11094 genfn(tcg_res, tcg_op1, tcg_op2);
11097 if (opcode == 0xf) {
11098 /* SABA, UABA: accumulating ops */
11099 static NeonGenTwoOpFn * const fns[3] = {
11100 gen_helper_neon_add_u8,
11101 gen_helper_neon_add_u16,
11102 tcg_gen_add_i32,
11105 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11106 fns[size](tcg_res, tcg_op1, tcg_res);
11109 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11111 tcg_temp_free_i32(tcg_res);
11112 tcg_temp_free_i32(tcg_op1);
11113 tcg_temp_free_i32(tcg_op2);
11116 clear_vec_high(s, is_q, rd);
11119 /* AdvSIMD three same
11120 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11121 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11122 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11123 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11125 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11127 int opcode = extract32(insn, 11, 5);
11129 switch (opcode) {
11130 case 0x3: /* logic ops */
11131 disas_simd_3same_logic(s, insn);
11132 break;
11133 case 0x17: /* ADDP */
11134 case 0x14: /* SMAXP, UMAXP */
11135 case 0x15: /* SMINP, UMINP */
11137 /* Pairwise operations */
11138 int is_q = extract32(insn, 30, 1);
11139 int u = extract32(insn, 29, 1);
11140 int size = extract32(insn, 22, 2);
11141 int rm = extract32(insn, 16, 5);
11142 int rn = extract32(insn, 5, 5);
11143 int rd = extract32(insn, 0, 5);
11144 if (opcode == 0x17) {
11145 if (u || (size == 3 && !is_q)) {
11146 unallocated_encoding(s);
11147 return;
11149 } else {
11150 if (size == 3) {
11151 unallocated_encoding(s);
11152 return;
11155 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11156 break;
11158 case 0x18 ... 0x31:
11159 /* floating point ops, sz[1] and U are part of opcode */
11160 disas_simd_3same_float(s, insn);
11161 break;
11162 default:
11163 disas_simd_3same_int(s, insn);
11164 break;
11169 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11171 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11172 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11173 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11174 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11176 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11177 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11180 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11182 int opcode, fpopcode;
11183 int is_q, u, a, rm, rn, rd;
11184 int datasize, elements;
11185 int pass;
11186 TCGv_ptr fpst;
11187 bool pairwise = false;
11189 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
11190 unallocated_encoding(s);
11191 return;
11194 if (!fp_access_check(s)) {
11195 return;
11198 /* For these floating point ops, the U, a and opcode bits
11199 * together indicate the operation.
11201 opcode = extract32(insn, 11, 3);
11202 u = extract32(insn, 29, 1);
11203 a = extract32(insn, 23, 1);
11204 is_q = extract32(insn, 30, 1);
11205 rm = extract32(insn, 16, 5);
11206 rn = extract32(insn, 5, 5);
11207 rd = extract32(insn, 0, 5);
11209 fpopcode = opcode | (a << 3) | (u << 4);
11210 datasize = is_q ? 128 : 64;
11211 elements = datasize / 16;
11213 switch (fpopcode) {
11214 case 0x10: /* FMAXNMP */
11215 case 0x12: /* FADDP */
11216 case 0x16: /* FMAXP */
11217 case 0x18: /* FMINNMP */
11218 case 0x1e: /* FMINP */
11219 pairwise = true;
11220 break;
11223 fpst = get_fpstatus_ptr(true);
11225 if (pairwise) {
11226 int maxpass = is_q ? 8 : 4;
11227 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11228 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11229 TCGv_i32 tcg_res[8];
11231 for (pass = 0; pass < maxpass; pass++) {
11232 int passreg = pass < (maxpass / 2) ? rn : rm;
11233 int passelt = (pass << 1) & (maxpass - 1);
11235 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11236 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11237 tcg_res[pass] = tcg_temp_new_i32();
11239 switch (fpopcode) {
11240 case 0x10: /* FMAXNMP */
11241 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11242 fpst);
11243 break;
11244 case 0x12: /* FADDP */
11245 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11246 break;
11247 case 0x16: /* FMAXP */
11248 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11249 break;
11250 case 0x18: /* FMINNMP */
11251 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11252 fpst);
11253 break;
11254 case 0x1e: /* FMINP */
11255 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11256 break;
11257 default:
11258 g_assert_not_reached();
11262 for (pass = 0; pass < maxpass; pass++) {
11263 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11264 tcg_temp_free_i32(tcg_res[pass]);
11267 tcg_temp_free_i32(tcg_op1);
11268 tcg_temp_free_i32(tcg_op2);
11270 } else {
11271 for (pass = 0; pass < elements; pass++) {
11272 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11273 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11274 TCGv_i32 tcg_res = tcg_temp_new_i32();
11276 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11277 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11279 switch (fpopcode) {
11280 case 0x0: /* FMAXNM */
11281 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11282 break;
11283 case 0x1: /* FMLA */
11284 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11285 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11286 fpst);
11287 break;
11288 case 0x2: /* FADD */
11289 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11290 break;
11291 case 0x3: /* FMULX */
11292 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11293 break;
11294 case 0x4: /* FCMEQ */
11295 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11296 break;
11297 case 0x6: /* FMAX */
11298 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11299 break;
11300 case 0x7: /* FRECPS */
11301 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11302 break;
11303 case 0x8: /* FMINNM */
11304 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11305 break;
11306 case 0x9: /* FMLS */
11307 /* As usual for ARM, separate negation for fused multiply-add */
11308 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11309 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11310 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11311 fpst);
11312 break;
11313 case 0xa: /* FSUB */
11314 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11315 break;
11316 case 0xe: /* FMIN */
11317 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11318 break;
11319 case 0xf: /* FRSQRTS */
11320 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11321 break;
11322 case 0x13: /* FMUL */
11323 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11324 break;
11325 case 0x14: /* FCMGE */
11326 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11327 break;
11328 case 0x15: /* FACGE */
11329 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11330 break;
11331 case 0x17: /* FDIV */
11332 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11333 break;
11334 case 0x1a: /* FABD */
11335 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11336 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11337 break;
11338 case 0x1c: /* FCMGT */
11339 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11340 break;
11341 case 0x1d: /* FACGT */
11342 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11343 break;
11344 default:
11345 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11346 __func__, insn, fpopcode, s->pc);
11347 g_assert_not_reached();
11350 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11351 tcg_temp_free_i32(tcg_res);
11352 tcg_temp_free_i32(tcg_op1);
11353 tcg_temp_free_i32(tcg_op2);
11357 tcg_temp_free_ptr(fpst);
11359 clear_vec_high(s, is_q, rd);
11362 /* AdvSIMD three same extra
11363 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11364 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11365 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11366 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11368 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11370 int rd = extract32(insn, 0, 5);
11371 int rn = extract32(insn, 5, 5);
11372 int opcode = extract32(insn, 11, 4);
11373 int rm = extract32(insn, 16, 5);
11374 int size = extract32(insn, 22, 2);
11375 bool u = extract32(insn, 29, 1);
11376 bool is_q = extract32(insn, 30, 1);
11377 int feature, rot;
11379 switch (u * 16 + opcode) {
11380 case 0x10: /* SQRDMLAH (vector) */
11381 case 0x11: /* SQRDMLSH (vector) */
11382 if (size != 1 && size != 2) {
11383 unallocated_encoding(s);
11384 return;
11386 feature = ARM_FEATURE_V8_RDM;
11387 break;
11388 case 0x8: /* FCMLA, #0 */
11389 case 0x9: /* FCMLA, #90 */
11390 case 0xa: /* FCMLA, #180 */
11391 case 0xb: /* FCMLA, #270 */
11392 case 0xc: /* FCADD, #90 */
11393 case 0xe: /* FCADD, #270 */
11394 if (size == 0
11395 || (size == 1 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16))
11396 || (size == 3 && !is_q)) {
11397 unallocated_encoding(s);
11398 return;
11400 feature = ARM_FEATURE_V8_FCMA;
11401 break;
11402 default:
11403 unallocated_encoding(s);
11404 return;
11406 if (!arm_dc_feature(s, feature)) {
11407 unallocated_encoding(s);
11408 return;
11410 if (!fp_access_check(s)) {
11411 return;
11414 switch (opcode) {
11415 case 0x0: /* SQRDMLAH (vector) */
11416 switch (size) {
11417 case 1:
11418 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11419 break;
11420 case 2:
11421 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11422 break;
11423 default:
11424 g_assert_not_reached();
11426 return;
11428 case 0x1: /* SQRDMLSH (vector) */
11429 switch (size) {
11430 case 1:
11431 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11432 break;
11433 case 2:
11434 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11435 break;
11436 default:
11437 g_assert_not_reached();
11439 return;
11441 case 0x8: /* FCMLA, #0 */
11442 case 0x9: /* FCMLA, #90 */
11443 case 0xa: /* FCMLA, #180 */
11444 case 0xb: /* FCMLA, #270 */
11445 rot = extract32(opcode, 0, 2);
11446 switch (size) {
11447 case 1:
11448 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11449 gen_helper_gvec_fcmlah);
11450 break;
11451 case 2:
11452 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11453 gen_helper_gvec_fcmlas);
11454 break;
11455 case 3:
11456 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11457 gen_helper_gvec_fcmlad);
11458 break;
11459 default:
11460 g_assert_not_reached();
11462 return;
11464 case 0xc: /* FCADD, #90 */
11465 case 0xe: /* FCADD, #270 */
11466 rot = extract32(opcode, 1, 1);
11467 switch (size) {
11468 case 1:
11469 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11470 gen_helper_gvec_fcaddh);
11471 break;
11472 case 2:
11473 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11474 gen_helper_gvec_fcadds);
11475 break;
11476 case 3:
11477 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11478 gen_helper_gvec_fcaddd);
11479 break;
11480 default:
11481 g_assert_not_reached();
11483 return;
11485 default:
11486 g_assert_not_reached();
11490 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11491 int size, int rn, int rd)
11493 /* Handle 2-reg-misc ops which are widening (so each size element
11494 * in the source becomes a 2*size element in the destination.
11495 * The only instruction like this is FCVTL.
11497 int pass;
11499 if (size == 3) {
11500 /* 32 -> 64 bit fp conversion */
11501 TCGv_i64 tcg_res[2];
11502 int srcelt = is_q ? 2 : 0;
11504 for (pass = 0; pass < 2; pass++) {
11505 TCGv_i32 tcg_op = tcg_temp_new_i32();
11506 tcg_res[pass] = tcg_temp_new_i64();
11508 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11509 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11510 tcg_temp_free_i32(tcg_op);
11512 for (pass = 0; pass < 2; pass++) {
11513 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11514 tcg_temp_free_i64(tcg_res[pass]);
11516 } else {
11517 /* 16 -> 32 bit fp conversion */
11518 int srcelt = is_q ? 4 : 0;
11519 TCGv_i32 tcg_res[4];
11521 for (pass = 0; pass < 4; pass++) {
11522 tcg_res[pass] = tcg_temp_new_i32();
11524 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11525 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11526 cpu_env);
11528 for (pass = 0; pass < 4; pass++) {
11529 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11530 tcg_temp_free_i32(tcg_res[pass]);
11535 static void handle_rev(DisasContext *s, int opcode, bool u,
11536 bool is_q, int size, int rn, int rd)
11538 int op = (opcode << 1) | u;
11539 int opsz = op + size;
11540 int grp_size = 3 - opsz;
11541 int dsize = is_q ? 128 : 64;
11542 int i;
11544 if (opsz >= 3) {
11545 unallocated_encoding(s);
11546 return;
11549 if (!fp_access_check(s)) {
11550 return;
11553 if (size == 0) {
11554 /* Special case bytes, use bswap op on each group of elements */
11555 int groups = dsize / (8 << grp_size);
11557 for (i = 0; i < groups; i++) {
11558 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11560 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11561 switch (grp_size) {
11562 case MO_16:
11563 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11564 break;
11565 case MO_32:
11566 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11567 break;
11568 case MO_64:
11569 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11570 break;
11571 default:
11572 g_assert_not_reached();
11574 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11575 tcg_temp_free_i64(tcg_tmp);
11577 clear_vec_high(s, is_q, rd);
11578 } else {
11579 int revmask = (1 << grp_size) - 1;
11580 int esize = 8 << size;
11581 int elements = dsize / esize;
11582 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11583 TCGv_i64 tcg_rd = tcg_const_i64(0);
11584 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11586 for (i = 0; i < elements; i++) {
11587 int e_rev = (i & 0xf) ^ revmask;
11588 int off = e_rev * esize;
11589 read_vec_element(s, tcg_rn, rn, i, size);
11590 if (off >= 64) {
11591 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11592 tcg_rn, off - 64, esize);
11593 } else {
11594 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11597 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11598 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11600 tcg_temp_free_i64(tcg_rd_hi);
11601 tcg_temp_free_i64(tcg_rd);
11602 tcg_temp_free_i64(tcg_rn);
11606 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11607 bool is_q, int size, int rn, int rd)
11609 /* Implement the pairwise operations from 2-misc:
11610 * SADDLP, UADDLP, SADALP, UADALP.
11611 * These all add pairs of elements in the input to produce a
11612 * double-width result element in the output (possibly accumulating).
11614 bool accum = (opcode == 0x6);
11615 int maxpass = is_q ? 2 : 1;
11616 int pass;
11617 TCGv_i64 tcg_res[2];
11619 if (size == 2) {
11620 /* 32 + 32 -> 64 op */
11621 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11623 for (pass = 0; pass < maxpass; pass++) {
11624 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11625 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11627 tcg_res[pass] = tcg_temp_new_i64();
11629 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11630 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11631 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11632 if (accum) {
11633 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11634 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11637 tcg_temp_free_i64(tcg_op1);
11638 tcg_temp_free_i64(tcg_op2);
11640 } else {
11641 for (pass = 0; pass < maxpass; pass++) {
11642 TCGv_i64 tcg_op = tcg_temp_new_i64();
11643 NeonGenOneOpFn *genfn;
11644 static NeonGenOneOpFn * const fns[2][2] = {
11645 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11646 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11649 genfn = fns[size][u];
11651 tcg_res[pass] = tcg_temp_new_i64();
11653 read_vec_element(s, tcg_op, rn, pass, MO_64);
11654 genfn(tcg_res[pass], tcg_op);
11656 if (accum) {
11657 read_vec_element(s, tcg_op, rd, pass, MO_64);
11658 if (size == 0) {
11659 gen_helper_neon_addl_u16(tcg_res[pass],
11660 tcg_res[pass], tcg_op);
11661 } else {
11662 gen_helper_neon_addl_u32(tcg_res[pass],
11663 tcg_res[pass], tcg_op);
11666 tcg_temp_free_i64(tcg_op);
11669 if (!is_q) {
11670 tcg_res[1] = tcg_const_i64(0);
11672 for (pass = 0; pass < 2; pass++) {
11673 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11674 tcg_temp_free_i64(tcg_res[pass]);
11678 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11680 /* Implement SHLL and SHLL2 */
11681 int pass;
11682 int part = is_q ? 2 : 0;
11683 TCGv_i64 tcg_res[2];
11685 for (pass = 0; pass < 2; pass++) {
11686 static NeonGenWidenFn * const widenfns[3] = {
11687 gen_helper_neon_widen_u8,
11688 gen_helper_neon_widen_u16,
11689 tcg_gen_extu_i32_i64,
11691 NeonGenWidenFn *widenfn = widenfns[size];
11692 TCGv_i32 tcg_op = tcg_temp_new_i32();
11694 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11695 tcg_res[pass] = tcg_temp_new_i64();
11696 widenfn(tcg_res[pass], tcg_op);
11697 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11699 tcg_temp_free_i32(tcg_op);
11702 for (pass = 0; pass < 2; pass++) {
11703 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11704 tcg_temp_free_i64(tcg_res[pass]);
11708 /* AdvSIMD two reg misc
11709 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11710 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11711 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11712 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11714 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11716 int size = extract32(insn, 22, 2);
11717 int opcode = extract32(insn, 12, 5);
11718 bool u = extract32(insn, 29, 1);
11719 bool is_q = extract32(insn, 30, 1);
11720 int rn = extract32(insn, 5, 5);
11721 int rd = extract32(insn, 0, 5);
11722 bool need_fpstatus = false;
11723 bool need_rmode = false;
11724 int rmode = -1;
11725 TCGv_i32 tcg_rmode;
11726 TCGv_ptr tcg_fpstatus;
11728 switch (opcode) {
11729 case 0x0: /* REV64, REV32 */
11730 case 0x1: /* REV16 */
11731 handle_rev(s, opcode, u, is_q, size, rn, rd);
11732 return;
11733 case 0x5: /* CNT, NOT, RBIT */
11734 if (u && size == 0) {
11735 /* NOT */
11736 break;
11737 } else if (u && size == 1) {
11738 /* RBIT */
11739 break;
11740 } else if (!u && size == 0) {
11741 /* CNT */
11742 break;
11744 unallocated_encoding(s);
11745 return;
11746 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11747 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11748 if (size == 3) {
11749 unallocated_encoding(s);
11750 return;
11752 if (!fp_access_check(s)) {
11753 return;
11756 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11757 return;
11758 case 0x4: /* CLS, CLZ */
11759 if (size == 3) {
11760 unallocated_encoding(s);
11761 return;
11763 break;
11764 case 0x2: /* SADDLP, UADDLP */
11765 case 0x6: /* SADALP, UADALP */
11766 if (size == 3) {
11767 unallocated_encoding(s);
11768 return;
11770 if (!fp_access_check(s)) {
11771 return;
11773 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11774 return;
11775 case 0x13: /* SHLL, SHLL2 */
11776 if (u == 0 || size == 3) {
11777 unallocated_encoding(s);
11778 return;
11780 if (!fp_access_check(s)) {
11781 return;
11783 handle_shll(s, is_q, size, rn, rd);
11784 return;
11785 case 0xa: /* CMLT */
11786 if (u == 1) {
11787 unallocated_encoding(s);
11788 return;
11790 /* fall through */
11791 case 0x8: /* CMGT, CMGE */
11792 case 0x9: /* CMEQ, CMLE */
11793 case 0xb: /* ABS, NEG */
11794 if (size == 3 && !is_q) {
11795 unallocated_encoding(s);
11796 return;
11798 break;
11799 case 0x3: /* SUQADD, USQADD */
11800 if (size == 3 && !is_q) {
11801 unallocated_encoding(s);
11802 return;
11804 if (!fp_access_check(s)) {
11805 return;
11807 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11808 return;
11809 case 0x7: /* SQABS, SQNEG */
11810 if (size == 3 && !is_q) {
11811 unallocated_encoding(s);
11812 return;
11814 break;
11815 case 0xc ... 0xf:
11816 case 0x16 ... 0x1d:
11817 case 0x1f:
11819 /* Floating point: U, size[1] and opcode indicate operation;
11820 * size[0] indicates single or double precision.
11822 int is_double = extract32(size, 0, 1);
11823 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11824 size = is_double ? 3 : 2;
11825 switch (opcode) {
11826 case 0x2f: /* FABS */
11827 case 0x6f: /* FNEG */
11828 if (size == 3 && !is_q) {
11829 unallocated_encoding(s);
11830 return;
11832 break;
11833 case 0x1d: /* SCVTF */
11834 case 0x5d: /* UCVTF */
11836 bool is_signed = (opcode == 0x1d) ? true : false;
11837 int elements = is_double ? 2 : is_q ? 4 : 2;
11838 if (is_double && !is_q) {
11839 unallocated_encoding(s);
11840 return;
11842 if (!fp_access_check(s)) {
11843 return;
11845 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11846 return;
11848 case 0x2c: /* FCMGT (zero) */
11849 case 0x2d: /* FCMEQ (zero) */
11850 case 0x2e: /* FCMLT (zero) */
11851 case 0x6c: /* FCMGE (zero) */
11852 case 0x6d: /* FCMLE (zero) */
11853 if (size == 3 && !is_q) {
11854 unallocated_encoding(s);
11855 return;
11857 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11858 return;
11859 case 0x7f: /* FSQRT */
11860 if (size == 3 && !is_q) {
11861 unallocated_encoding(s);
11862 return;
11864 break;
11865 case 0x1a: /* FCVTNS */
11866 case 0x1b: /* FCVTMS */
11867 case 0x3a: /* FCVTPS */
11868 case 0x3b: /* FCVTZS */
11869 case 0x5a: /* FCVTNU */
11870 case 0x5b: /* FCVTMU */
11871 case 0x7a: /* FCVTPU */
11872 case 0x7b: /* FCVTZU */
11873 need_fpstatus = true;
11874 need_rmode = true;
11875 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11876 if (size == 3 && !is_q) {
11877 unallocated_encoding(s);
11878 return;
11880 break;
11881 case 0x5c: /* FCVTAU */
11882 case 0x1c: /* FCVTAS */
11883 need_fpstatus = true;
11884 need_rmode = true;
11885 rmode = FPROUNDING_TIEAWAY;
11886 if (size == 3 && !is_q) {
11887 unallocated_encoding(s);
11888 return;
11890 break;
11891 case 0x3c: /* URECPE */
11892 if (size == 3) {
11893 unallocated_encoding(s);
11894 return;
11896 /* fall through */
11897 case 0x3d: /* FRECPE */
11898 case 0x7d: /* FRSQRTE */
11899 if (size == 3 && !is_q) {
11900 unallocated_encoding(s);
11901 return;
11903 if (!fp_access_check(s)) {
11904 return;
11906 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11907 return;
11908 case 0x56: /* FCVTXN, FCVTXN2 */
11909 if (size == 2) {
11910 unallocated_encoding(s);
11911 return;
11913 /* fall through */
11914 case 0x16: /* FCVTN, FCVTN2 */
11915 /* handle_2misc_narrow does a 2*size -> size operation, but these
11916 * instructions encode the source size rather than dest size.
11918 if (!fp_access_check(s)) {
11919 return;
11921 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11922 return;
11923 case 0x17: /* FCVTL, FCVTL2 */
11924 if (!fp_access_check(s)) {
11925 return;
11927 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11928 return;
11929 case 0x18: /* FRINTN */
11930 case 0x19: /* FRINTM */
11931 case 0x38: /* FRINTP */
11932 case 0x39: /* FRINTZ */
11933 need_rmode = true;
11934 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11935 /* fall through */
11936 case 0x59: /* FRINTX */
11937 case 0x79: /* FRINTI */
11938 need_fpstatus = true;
11939 if (size == 3 && !is_q) {
11940 unallocated_encoding(s);
11941 return;
11943 break;
11944 case 0x58: /* FRINTA */
11945 need_rmode = true;
11946 rmode = FPROUNDING_TIEAWAY;
11947 need_fpstatus = true;
11948 if (size == 3 && !is_q) {
11949 unallocated_encoding(s);
11950 return;
11952 break;
11953 case 0x7c: /* URSQRTE */
11954 if (size == 3) {
11955 unallocated_encoding(s);
11956 return;
11958 need_fpstatus = true;
11959 break;
11960 default:
11961 unallocated_encoding(s);
11962 return;
11964 break;
11966 default:
11967 unallocated_encoding(s);
11968 return;
11971 if (!fp_access_check(s)) {
11972 return;
11975 if (need_fpstatus || need_rmode) {
11976 tcg_fpstatus = get_fpstatus_ptr(false);
11977 } else {
11978 tcg_fpstatus = NULL;
11980 if (need_rmode) {
11981 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11982 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11983 } else {
11984 tcg_rmode = NULL;
11987 switch (opcode) {
11988 case 0x5:
11989 if (u && size == 0) { /* NOT */
11990 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11991 return;
11993 break;
11994 case 0xb:
11995 if (u) { /* NEG */
11996 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11997 return;
11999 break;
12002 if (size == 3) {
12003 /* All 64-bit element operations can be shared with scalar 2misc */
12004 int pass;
12006 /* Coverity claims (size == 3 && !is_q) has been eliminated
12007 * from all paths leading to here.
12009 tcg_debug_assert(is_q);
12010 for (pass = 0; pass < 2; pass++) {
12011 TCGv_i64 tcg_op = tcg_temp_new_i64();
12012 TCGv_i64 tcg_res = tcg_temp_new_i64();
12014 read_vec_element(s, tcg_op, rn, pass, MO_64);
12016 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12017 tcg_rmode, tcg_fpstatus);
12019 write_vec_element(s, tcg_res, rd, pass, MO_64);
12021 tcg_temp_free_i64(tcg_res);
12022 tcg_temp_free_i64(tcg_op);
12024 } else {
12025 int pass;
12027 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12028 TCGv_i32 tcg_op = tcg_temp_new_i32();
12029 TCGv_i32 tcg_res = tcg_temp_new_i32();
12030 TCGCond cond;
12032 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12034 if (size == 2) {
12035 /* Special cases for 32 bit elements */
12036 switch (opcode) {
12037 case 0xa: /* CMLT */
12038 /* 32 bit integer comparison against zero, result is
12039 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12040 * and inverting.
12042 cond = TCG_COND_LT;
12043 do_cmop:
12044 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12045 tcg_gen_neg_i32(tcg_res, tcg_res);
12046 break;
12047 case 0x8: /* CMGT, CMGE */
12048 cond = u ? TCG_COND_GE : TCG_COND_GT;
12049 goto do_cmop;
12050 case 0x9: /* CMEQ, CMLE */
12051 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12052 goto do_cmop;
12053 case 0x4: /* CLS */
12054 if (u) {
12055 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12056 } else {
12057 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12059 break;
12060 case 0x7: /* SQABS, SQNEG */
12061 if (u) {
12062 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12063 } else {
12064 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12066 break;
12067 case 0xb: /* ABS, NEG */
12068 if (u) {
12069 tcg_gen_neg_i32(tcg_res, tcg_op);
12070 } else {
12071 TCGv_i32 tcg_zero = tcg_const_i32(0);
12072 tcg_gen_neg_i32(tcg_res, tcg_op);
12073 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
12074 tcg_zero, tcg_op, tcg_res);
12075 tcg_temp_free_i32(tcg_zero);
12077 break;
12078 case 0x2f: /* FABS */
12079 gen_helper_vfp_abss(tcg_res, tcg_op);
12080 break;
12081 case 0x6f: /* FNEG */
12082 gen_helper_vfp_negs(tcg_res, tcg_op);
12083 break;
12084 case 0x7f: /* FSQRT */
12085 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12086 break;
12087 case 0x1a: /* FCVTNS */
12088 case 0x1b: /* FCVTMS */
12089 case 0x1c: /* FCVTAS */
12090 case 0x3a: /* FCVTPS */
12091 case 0x3b: /* FCVTZS */
12093 TCGv_i32 tcg_shift = tcg_const_i32(0);
12094 gen_helper_vfp_tosls(tcg_res, tcg_op,
12095 tcg_shift, tcg_fpstatus);
12096 tcg_temp_free_i32(tcg_shift);
12097 break;
12099 case 0x5a: /* FCVTNU */
12100 case 0x5b: /* FCVTMU */
12101 case 0x5c: /* FCVTAU */
12102 case 0x7a: /* FCVTPU */
12103 case 0x7b: /* FCVTZU */
12105 TCGv_i32 tcg_shift = tcg_const_i32(0);
12106 gen_helper_vfp_touls(tcg_res, tcg_op,
12107 tcg_shift, tcg_fpstatus);
12108 tcg_temp_free_i32(tcg_shift);
12109 break;
12111 case 0x18: /* FRINTN */
12112 case 0x19: /* FRINTM */
12113 case 0x38: /* FRINTP */
12114 case 0x39: /* FRINTZ */
12115 case 0x58: /* FRINTA */
12116 case 0x79: /* FRINTI */
12117 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12118 break;
12119 case 0x59: /* FRINTX */
12120 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12121 break;
12122 case 0x7c: /* URSQRTE */
12123 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12124 break;
12125 default:
12126 g_assert_not_reached();
12128 } else {
12129 /* Use helpers for 8 and 16 bit elements */
12130 switch (opcode) {
12131 case 0x5: /* CNT, RBIT */
12132 /* For these two insns size is part of the opcode specifier
12133 * (handled earlier); they always operate on byte elements.
12135 if (u) {
12136 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12137 } else {
12138 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12140 break;
12141 case 0x7: /* SQABS, SQNEG */
12143 NeonGenOneOpEnvFn *genfn;
12144 static NeonGenOneOpEnvFn * const fns[2][2] = {
12145 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12146 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12148 genfn = fns[size][u];
12149 genfn(tcg_res, cpu_env, tcg_op);
12150 break;
12152 case 0x8: /* CMGT, CMGE */
12153 case 0x9: /* CMEQ, CMLE */
12154 case 0xa: /* CMLT */
12156 static NeonGenTwoOpFn * const fns[3][2] = {
12157 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12158 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12159 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12161 NeonGenTwoOpFn *genfn;
12162 int comp;
12163 bool reverse;
12164 TCGv_i32 tcg_zero = tcg_const_i32(0);
12166 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12167 comp = (opcode - 0x8) * 2 + u;
12168 /* ...but LE, LT are implemented as reverse GE, GT */
12169 reverse = (comp > 2);
12170 if (reverse) {
12171 comp = 4 - comp;
12173 genfn = fns[comp][size];
12174 if (reverse) {
12175 genfn(tcg_res, tcg_zero, tcg_op);
12176 } else {
12177 genfn(tcg_res, tcg_op, tcg_zero);
12179 tcg_temp_free_i32(tcg_zero);
12180 break;
12182 case 0xb: /* ABS, NEG */
12183 if (u) {
12184 TCGv_i32 tcg_zero = tcg_const_i32(0);
12185 if (size) {
12186 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
12187 } else {
12188 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
12190 tcg_temp_free_i32(tcg_zero);
12191 } else {
12192 if (size) {
12193 gen_helper_neon_abs_s16(tcg_res, tcg_op);
12194 } else {
12195 gen_helper_neon_abs_s8(tcg_res, tcg_op);
12198 break;
12199 case 0x4: /* CLS, CLZ */
12200 if (u) {
12201 if (size == 0) {
12202 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12203 } else {
12204 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12206 } else {
12207 if (size == 0) {
12208 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12209 } else {
12210 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12213 break;
12214 default:
12215 g_assert_not_reached();
12219 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12221 tcg_temp_free_i32(tcg_res);
12222 tcg_temp_free_i32(tcg_op);
12225 clear_vec_high(s, is_q, rd);
12227 if (need_rmode) {
12228 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12229 tcg_temp_free_i32(tcg_rmode);
12231 if (need_fpstatus) {
12232 tcg_temp_free_ptr(tcg_fpstatus);
12236 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12238 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12239 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12240 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12241 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12242 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12243 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12245 * This actually covers two groups where scalar access is governed by
12246 * bit 28. A bunch of the instructions (float to integral) only exist
12247 * in the vector form and are un-allocated for the scalar decode. Also
12248 * in the scalar decode Q is always 1.
12250 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12252 int fpop, opcode, a, u;
12253 int rn, rd;
12254 bool is_q;
12255 bool is_scalar;
12256 bool only_in_vector = false;
12258 int pass;
12259 TCGv_i32 tcg_rmode = NULL;
12260 TCGv_ptr tcg_fpstatus = NULL;
12261 bool need_rmode = false;
12262 bool need_fpst = true;
12263 int rmode;
12265 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
12266 unallocated_encoding(s);
12267 return;
12270 rd = extract32(insn, 0, 5);
12271 rn = extract32(insn, 5, 5);
12273 a = extract32(insn, 23, 1);
12274 u = extract32(insn, 29, 1);
12275 is_scalar = extract32(insn, 28, 1);
12276 is_q = extract32(insn, 30, 1);
12278 opcode = extract32(insn, 12, 5);
12279 fpop = deposit32(opcode, 5, 1, a);
12280 fpop = deposit32(fpop, 6, 1, u);
12282 rd = extract32(insn, 0, 5);
12283 rn = extract32(insn, 5, 5);
12285 switch (fpop) {
12286 case 0x1d: /* SCVTF */
12287 case 0x5d: /* UCVTF */
12289 int elements;
12291 if (is_scalar) {
12292 elements = 1;
12293 } else {
12294 elements = (is_q ? 8 : 4);
12297 if (!fp_access_check(s)) {
12298 return;
12300 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12301 return;
12303 break;
12304 case 0x2c: /* FCMGT (zero) */
12305 case 0x2d: /* FCMEQ (zero) */
12306 case 0x2e: /* FCMLT (zero) */
12307 case 0x6c: /* FCMGE (zero) */
12308 case 0x6d: /* FCMLE (zero) */
12309 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12310 return;
12311 case 0x3d: /* FRECPE */
12312 case 0x3f: /* FRECPX */
12313 break;
12314 case 0x18: /* FRINTN */
12315 need_rmode = true;
12316 only_in_vector = true;
12317 rmode = FPROUNDING_TIEEVEN;
12318 break;
12319 case 0x19: /* FRINTM */
12320 need_rmode = true;
12321 only_in_vector = true;
12322 rmode = FPROUNDING_NEGINF;
12323 break;
12324 case 0x38: /* FRINTP */
12325 need_rmode = true;
12326 only_in_vector = true;
12327 rmode = FPROUNDING_POSINF;
12328 break;
12329 case 0x39: /* FRINTZ */
12330 need_rmode = true;
12331 only_in_vector = true;
12332 rmode = FPROUNDING_ZERO;
12333 break;
12334 case 0x58: /* FRINTA */
12335 need_rmode = true;
12336 only_in_vector = true;
12337 rmode = FPROUNDING_TIEAWAY;
12338 break;
12339 case 0x59: /* FRINTX */
12340 case 0x79: /* FRINTI */
12341 only_in_vector = true;
12342 /* current rounding mode */
12343 break;
12344 case 0x1a: /* FCVTNS */
12345 need_rmode = true;
12346 rmode = FPROUNDING_TIEEVEN;
12347 break;
12348 case 0x1b: /* FCVTMS */
12349 need_rmode = true;
12350 rmode = FPROUNDING_NEGINF;
12351 break;
12352 case 0x1c: /* FCVTAS */
12353 need_rmode = true;
12354 rmode = FPROUNDING_TIEAWAY;
12355 break;
12356 case 0x3a: /* FCVTPS */
12357 need_rmode = true;
12358 rmode = FPROUNDING_POSINF;
12359 break;
12360 case 0x3b: /* FCVTZS */
12361 need_rmode = true;
12362 rmode = FPROUNDING_ZERO;
12363 break;
12364 case 0x5a: /* FCVTNU */
12365 need_rmode = true;
12366 rmode = FPROUNDING_TIEEVEN;
12367 break;
12368 case 0x5b: /* FCVTMU */
12369 need_rmode = true;
12370 rmode = FPROUNDING_NEGINF;
12371 break;
12372 case 0x5c: /* FCVTAU */
12373 need_rmode = true;
12374 rmode = FPROUNDING_TIEAWAY;
12375 break;
12376 case 0x7a: /* FCVTPU */
12377 need_rmode = true;
12378 rmode = FPROUNDING_POSINF;
12379 break;
12380 case 0x7b: /* FCVTZU */
12381 need_rmode = true;
12382 rmode = FPROUNDING_ZERO;
12383 break;
12384 case 0x2f: /* FABS */
12385 case 0x6f: /* FNEG */
12386 need_fpst = false;
12387 break;
12388 case 0x7d: /* FRSQRTE */
12389 case 0x7f: /* FSQRT (vector) */
12390 break;
12391 default:
12392 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12393 g_assert_not_reached();
12397 /* Check additional constraints for the scalar encoding */
12398 if (is_scalar) {
12399 if (!is_q) {
12400 unallocated_encoding(s);
12401 return;
12403 /* FRINTxx is only in the vector form */
12404 if (only_in_vector) {
12405 unallocated_encoding(s);
12406 return;
12410 if (!fp_access_check(s)) {
12411 return;
12414 if (need_rmode || need_fpst) {
12415 tcg_fpstatus = get_fpstatus_ptr(true);
12418 if (need_rmode) {
12419 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12420 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12423 if (is_scalar) {
12424 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12425 TCGv_i32 tcg_res = tcg_temp_new_i32();
12427 switch (fpop) {
12428 case 0x1a: /* FCVTNS */
12429 case 0x1b: /* FCVTMS */
12430 case 0x1c: /* FCVTAS */
12431 case 0x3a: /* FCVTPS */
12432 case 0x3b: /* FCVTZS */
12433 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12434 break;
12435 case 0x3d: /* FRECPE */
12436 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12437 break;
12438 case 0x3f: /* FRECPX */
12439 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12440 break;
12441 case 0x5a: /* FCVTNU */
12442 case 0x5b: /* FCVTMU */
12443 case 0x5c: /* FCVTAU */
12444 case 0x7a: /* FCVTPU */
12445 case 0x7b: /* FCVTZU */
12446 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12447 break;
12448 case 0x6f: /* FNEG */
12449 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12450 break;
12451 case 0x7d: /* FRSQRTE */
12452 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12453 break;
12454 default:
12455 g_assert_not_reached();
12458 /* limit any sign extension going on */
12459 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12460 write_fp_sreg(s, rd, tcg_res);
12462 tcg_temp_free_i32(tcg_res);
12463 tcg_temp_free_i32(tcg_op);
12464 } else {
12465 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12466 TCGv_i32 tcg_op = tcg_temp_new_i32();
12467 TCGv_i32 tcg_res = tcg_temp_new_i32();
12469 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12471 switch (fpop) {
12472 case 0x1a: /* FCVTNS */
12473 case 0x1b: /* FCVTMS */
12474 case 0x1c: /* FCVTAS */
12475 case 0x3a: /* FCVTPS */
12476 case 0x3b: /* FCVTZS */
12477 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12478 break;
12479 case 0x3d: /* FRECPE */
12480 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12481 break;
12482 case 0x5a: /* FCVTNU */
12483 case 0x5b: /* FCVTMU */
12484 case 0x5c: /* FCVTAU */
12485 case 0x7a: /* FCVTPU */
12486 case 0x7b: /* FCVTZU */
12487 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12488 break;
12489 case 0x18: /* FRINTN */
12490 case 0x19: /* FRINTM */
12491 case 0x38: /* FRINTP */
12492 case 0x39: /* FRINTZ */
12493 case 0x58: /* FRINTA */
12494 case 0x79: /* FRINTI */
12495 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12496 break;
12497 case 0x59: /* FRINTX */
12498 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12499 break;
12500 case 0x2f: /* FABS */
12501 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12502 break;
12503 case 0x6f: /* FNEG */
12504 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12505 break;
12506 case 0x7d: /* FRSQRTE */
12507 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12508 break;
12509 case 0x7f: /* FSQRT */
12510 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12511 break;
12512 default:
12513 g_assert_not_reached();
12516 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12518 tcg_temp_free_i32(tcg_res);
12519 tcg_temp_free_i32(tcg_op);
12522 clear_vec_high(s, is_q, rd);
12525 if (tcg_rmode) {
12526 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12527 tcg_temp_free_i32(tcg_rmode);
12530 if (tcg_fpstatus) {
12531 tcg_temp_free_ptr(tcg_fpstatus);
12535 /* AdvSIMD scalar x indexed element
12536 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12537 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12538 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12539 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12540 * AdvSIMD vector x indexed element
12541 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12542 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12543 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12544 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12546 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12548 /* This encoding has two kinds of instruction:
12549 * normal, where we perform elt x idxelt => elt for each
12550 * element in the vector
12551 * long, where we perform elt x idxelt and generate a result of
12552 * double the width of the input element
12553 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12555 bool is_scalar = extract32(insn, 28, 1);
12556 bool is_q = extract32(insn, 30, 1);
12557 bool u = extract32(insn, 29, 1);
12558 int size = extract32(insn, 22, 2);
12559 int l = extract32(insn, 21, 1);
12560 int m = extract32(insn, 20, 1);
12561 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12562 int rm = extract32(insn, 16, 4);
12563 int opcode = extract32(insn, 12, 4);
12564 int h = extract32(insn, 11, 1);
12565 int rn = extract32(insn, 5, 5);
12566 int rd = extract32(insn, 0, 5);
12567 bool is_long = false;
12568 int is_fp = 0;
12569 bool is_fp16 = false;
12570 int index;
12571 TCGv_ptr fpst;
12573 switch (16 * u + opcode) {
12574 case 0x08: /* MUL */
12575 case 0x10: /* MLA */
12576 case 0x14: /* MLS */
12577 if (is_scalar) {
12578 unallocated_encoding(s);
12579 return;
12581 break;
12582 case 0x02: /* SMLAL, SMLAL2 */
12583 case 0x12: /* UMLAL, UMLAL2 */
12584 case 0x06: /* SMLSL, SMLSL2 */
12585 case 0x16: /* UMLSL, UMLSL2 */
12586 case 0x0a: /* SMULL, SMULL2 */
12587 case 0x1a: /* UMULL, UMULL2 */
12588 if (is_scalar) {
12589 unallocated_encoding(s);
12590 return;
12592 is_long = true;
12593 break;
12594 case 0x03: /* SQDMLAL, SQDMLAL2 */
12595 case 0x07: /* SQDMLSL, SQDMLSL2 */
12596 case 0x0b: /* SQDMULL, SQDMULL2 */
12597 is_long = true;
12598 break;
12599 case 0x0c: /* SQDMULH */
12600 case 0x0d: /* SQRDMULH */
12601 break;
12602 case 0x01: /* FMLA */
12603 case 0x05: /* FMLS */
12604 case 0x09: /* FMUL */
12605 case 0x19: /* FMULX */
12606 is_fp = 1;
12607 break;
12608 case 0x1d: /* SQRDMLAH */
12609 case 0x1f: /* SQRDMLSH */
12610 if (!arm_dc_feature(s, ARM_FEATURE_V8_RDM)) {
12611 unallocated_encoding(s);
12612 return;
12614 break;
12615 case 0x11: /* FCMLA #0 */
12616 case 0x13: /* FCMLA #90 */
12617 case 0x15: /* FCMLA #180 */
12618 case 0x17: /* FCMLA #270 */
12619 if (!arm_dc_feature(s, ARM_FEATURE_V8_FCMA)) {
12620 unallocated_encoding(s);
12621 return;
12623 is_fp = 2;
12624 break;
12625 default:
12626 unallocated_encoding(s);
12627 return;
12630 switch (is_fp) {
12631 case 1: /* normal fp */
12632 /* convert insn encoded size to TCGMemOp size */
12633 switch (size) {
12634 case 0: /* half-precision */
12635 size = MO_16;
12636 is_fp16 = true;
12637 break;
12638 case MO_32: /* single precision */
12639 case MO_64: /* double precision */
12640 break;
12641 default:
12642 unallocated_encoding(s);
12643 return;
12645 break;
12647 case 2: /* complex fp */
12648 /* Each indexable element is a complex pair. */
12649 size <<= 1;
12650 switch (size) {
12651 case MO_32:
12652 if (h && !is_q) {
12653 unallocated_encoding(s);
12654 return;
12656 is_fp16 = true;
12657 break;
12658 case MO_64:
12659 break;
12660 default:
12661 unallocated_encoding(s);
12662 return;
12664 break;
12666 default: /* integer */
12667 switch (size) {
12668 case MO_8:
12669 case MO_64:
12670 unallocated_encoding(s);
12671 return;
12673 break;
12675 if (is_fp16 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
12676 unallocated_encoding(s);
12677 return;
12680 /* Given TCGMemOp size, adjust register and indexing. */
12681 switch (size) {
12682 case MO_16:
12683 index = h << 2 | l << 1 | m;
12684 break;
12685 case MO_32:
12686 index = h << 1 | l;
12687 rm |= m << 4;
12688 break;
12689 case MO_64:
12690 if (l || !is_q) {
12691 unallocated_encoding(s);
12692 return;
12694 index = h;
12695 rm |= m << 4;
12696 break;
12697 default:
12698 g_assert_not_reached();
12701 if (!fp_access_check(s)) {
12702 return;
12705 if (is_fp) {
12706 fpst = get_fpstatus_ptr(is_fp16);
12707 } else {
12708 fpst = NULL;
12711 switch (16 * u + opcode) {
12712 case 0x11: /* FCMLA #0 */
12713 case 0x13: /* FCMLA #90 */
12714 case 0x15: /* FCMLA #180 */
12715 case 0x17: /* FCMLA #270 */
12716 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12717 vec_full_reg_offset(s, rn),
12718 vec_reg_offset(s, rm, index, size), fpst,
12719 is_q ? 16 : 8, vec_full_reg_size(s),
12720 extract32(insn, 13, 2), /* rot */
12721 size == MO_64
12722 ? gen_helper_gvec_fcmlas_idx
12723 : gen_helper_gvec_fcmlah_idx);
12724 tcg_temp_free_ptr(fpst);
12725 return;
12728 if (size == 3) {
12729 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12730 int pass;
12732 assert(is_fp && is_q && !is_long);
12734 read_vec_element(s, tcg_idx, rm, index, MO_64);
12736 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12737 TCGv_i64 tcg_op = tcg_temp_new_i64();
12738 TCGv_i64 tcg_res = tcg_temp_new_i64();
12740 read_vec_element(s, tcg_op, rn, pass, MO_64);
12742 switch (16 * u + opcode) {
12743 case 0x05: /* FMLS */
12744 /* As usual for ARM, separate negation for fused multiply-add */
12745 gen_helper_vfp_negd(tcg_op, tcg_op);
12746 /* fall through */
12747 case 0x01: /* FMLA */
12748 read_vec_element(s, tcg_res, rd, pass, MO_64);
12749 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12750 break;
12751 case 0x09: /* FMUL */
12752 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12753 break;
12754 case 0x19: /* FMULX */
12755 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12756 break;
12757 default:
12758 g_assert_not_reached();
12761 write_vec_element(s, tcg_res, rd, pass, MO_64);
12762 tcg_temp_free_i64(tcg_op);
12763 tcg_temp_free_i64(tcg_res);
12766 tcg_temp_free_i64(tcg_idx);
12767 clear_vec_high(s, !is_scalar, rd);
12768 } else if (!is_long) {
12769 /* 32 bit floating point, or 16 or 32 bit integer.
12770 * For the 16 bit scalar case we use the usual Neon helpers and
12771 * rely on the fact that 0 op 0 == 0 with no side effects.
12773 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12774 int pass, maxpasses;
12776 if (is_scalar) {
12777 maxpasses = 1;
12778 } else {
12779 maxpasses = is_q ? 4 : 2;
12782 read_vec_element_i32(s, tcg_idx, rm, index, size);
12784 if (size == 1 && !is_scalar) {
12785 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12786 * the index into both halves of the 32 bit tcg_idx and then use
12787 * the usual Neon helpers.
12789 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12792 for (pass = 0; pass < maxpasses; pass++) {
12793 TCGv_i32 tcg_op = tcg_temp_new_i32();
12794 TCGv_i32 tcg_res = tcg_temp_new_i32();
12796 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12798 switch (16 * u + opcode) {
12799 case 0x08: /* MUL */
12800 case 0x10: /* MLA */
12801 case 0x14: /* MLS */
12803 static NeonGenTwoOpFn * const fns[2][2] = {
12804 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12805 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12807 NeonGenTwoOpFn *genfn;
12808 bool is_sub = opcode == 0x4;
12810 if (size == 1) {
12811 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12812 } else {
12813 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12815 if (opcode == 0x8) {
12816 break;
12818 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12819 genfn = fns[size - 1][is_sub];
12820 genfn(tcg_res, tcg_op, tcg_res);
12821 break;
12823 case 0x05: /* FMLS */
12824 case 0x01: /* FMLA */
12825 read_vec_element_i32(s, tcg_res, rd, pass,
12826 is_scalar ? size : MO_32);
12827 switch (size) {
12828 case 1:
12829 if (opcode == 0x5) {
12830 /* As usual for ARM, separate negation for fused
12831 * multiply-add */
12832 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12834 if (is_scalar) {
12835 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12836 tcg_res, fpst);
12837 } else {
12838 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12839 tcg_res, fpst);
12841 break;
12842 case 2:
12843 if (opcode == 0x5) {
12844 /* As usual for ARM, separate negation for
12845 * fused multiply-add */
12846 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12848 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12849 tcg_res, fpst);
12850 break;
12851 default:
12852 g_assert_not_reached();
12854 break;
12855 case 0x09: /* FMUL */
12856 switch (size) {
12857 case 1:
12858 if (is_scalar) {
12859 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12860 tcg_idx, fpst);
12861 } else {
12862 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12863 tcg_idx, fpst);
12865 break;
12866 case 2:
12867 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12868 break;
12869 default:
12870 g_assert_not_reached();
12872 break;
12873 case 0x19: /* FMULX */
12874 switch (size) {
12875 case 1:
12876 if (is_scalar) {
12877 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12878 tcg_idx, fpst);
12879 } else {
12880 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12881 tcg_idx, fpst);
12883 break;
12884 case 2:
12885 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12886 break;
12887 default:
12888 g_assert_not_reached();
12890 break;
12891 case 0x0c: /* SQDMULH */
12892 if (size == 1) {
12893 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12894 tcg_op, tcg_idx);
12895 } else {
12896 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12897 tcg_op, tcg_idx);
12899 break;
12900 case 0x0d: /* SQRDMULH */
12901 if (size == 1) {
12902 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12903 tcg_op, tcg_idx);
12904 } else {
12905 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
12906 tcg_op, tcg_idx);
12908 break;
12909 case 0x1d: /* SQRDMLAH */
12910 read_vec_element_i32(s, tcg_res, rd, pass,
12911 is_scalar ? size : MO_32);
12912 if (size == 1) {
12913 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
12914 tcg_op, tcg_idx, tcg_res);
12915 } else {
12916 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
12917 tcg_op, tcg_idx, tcg_res);
12919 break;
12920 case 0x1f: /* SQRDMLSH */
12921 read_vec_element_i32(s, tcg_res, rd, pass,
12922 is_scalar ? size : MO_32);
12923 if (size == 1) {
12924 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
12925 tcg_op, tcg_idx, tcg_res);
12926 } else {
12927 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
12928 tcg_op, tcg_idx, tcg_res);
12930 break;
12931 default:
12932 g_assert_not_reached();
12935 if (is_scalar) {
12936 write_fp_sreg(s, rd, tcg_res);
12937 } else {
12938 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12941 tcg_temp_free_i32(tcg_op);
12942 tcg_temp_free_i32(tcg_res);
12945 tcg_temp_free_i32(tcg_idx);
12946 clear_vec_high(s, is_q, rd);
12947 } else {
12948 /* long ops: 16x16->32 or 32x32->64 */
12949 TCGv_i64 tcg_res[2];
12950 int pass;
12951 bool satop = extract32(opcode, 0, 1);
12952 TCGMemOp memop = MO_32;
12954 if (satop || !u) {
12955 memop |= MO_SIGN;
12958 if (size == 2) {
12959 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12961 read_vec_element(s, tcg_idx, rm, index, memop);
12963 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12964 TCGv_i64 tcg_op = tcg_temp_new_i64();
12965 TCGv_i64 tcg_passres;
12966 int passelt;
12968 if (is_scalar) {
12969 passelt = 0;
12970 } else {
12971 passelt = pass + (is_q * 2);
12974 read_vec_element(s, tcg_op, rn, passelt, memop);
12976 tcg_res[pass] = tcg_temp_new_i64();
12978 if (opcode == 0xa || opcode == 0xb) {
12979 /* Non-accumulating ops */
12980 tcg_passres = tcg_res[pass];
12981 } else {
12982 tcg_passres = tcg_temp_new_i64();
12985 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12986 tcg_temp_free_i64(tcg_op);
12988 if (satop) {
12989 /* saturating, doubling */
12990 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
12991 tcg_passres, tcg_passres);
12994 if (opcode == 0xa || opcode == 0xb) {
12995 continue;
12998 /* Accumulating op: handle accumulate step */
12999 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13001 switch (opcode) {
13002 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13003 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13004 break;
13005 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13006 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13007 break;
13008 case 0x7: /* SQDMLSL, SQDMLSL2 */
13009 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13010 /* fall through */
13011 case 0x3: /* SQDMLAL, SQDMLAL2 */
13012 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13013 tcg_res[pass],
13014 tcg_passres);
13015 break;
13016 default:
13017 g_assert_not_reached();
13019 tcg_temp_free_i64(tcg_passres);
13021 tcg_temp_free_i64(tcg_idx);
13023 clear_vec_high(s, !is_scalar, rd);
13024 } else {
13025 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13027 assert(size == 1);
13028 read_vec_element_i32(s, tcg_idx, rm, index, size);
13030 if (!is_scalar) {
13031 /* The simplest way to handle the 16x16 indexed ops is to
13032 * duplicate the index into both halves of the 32 bit tcg_idx
13033 * and then use the usual Neon helpers.
13035 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13038 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13039 TCGv_i32 tcg_op = tcg_temp_new_i32();
13040 TCGv_i64 tcg_passres;
13042 if (is_scalar) {
13043 read_vec_element_i32(s, tcg_op, rn, pass, size);
13044 } else {
13045 read_vec_element_i32(s, tcg_op, rn,
13046 pass + (is_q * 2), MO_32);
13049 tcg_res[pass] = tcg_temp_new_i64();
13051 if (opcode == 0xa || opcode == 0xb) {
13052 /* Non-accumulating ops */
13053 tcg_passres = tcg_res[pass];
13054 } else {
13055 tcg_passres = tcg_temp_new_i64();
13058 if (memop & MO_SIGN) {
13059 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13060 } else {
13061 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13063 if (satop) {
13064 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13065 tcg_passres, tcg_passres);
13067 tcg_temp_free_i32(tcg_op);
13069 if (opcode == 0xa || opcode == 0xb) {
13070 continue;
13073 /* Accumulating op: handle accumulate step */
13074 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13076 switch (opcode) {
13077 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13078 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13079 tcg_passres);
13080 break;
13081 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13082 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13083 tcg_passres);
13084 break;
13085 case 0x7: /* SQDMLSL, SQDMLSL2 */
13086 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13087 /* fall through */
13088 case 0x3: /* SQDMLAL, SQDMLAL2 */
13089 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13090 tcg_res[pass],
13091 tcg_passres);
13092 break;
13093 default:
13094 g_assert_not_reached();
13096 tcg_temp_free_i64(tcg_passres);
13098 tcg_temp_free_i32(tcg_idx);
13100 if (is_scalar) {
13101 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13105 if (is_scalar) {
13106 tcg_res[1] = tcg_const_i64(0);
13109 for (pass = 0; pass < 2; pass++) {
13110 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13111 tcg_temp_free_i64(tcg_res[pass]);
13115 if (fpst) {
13116 tcg_temp_free_ptr(fpst);
13120 /* Crypto AES
13121 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13122 * +-----------------+------+-----------+--------+-----+------+------+
13123 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13124 * +-----------------+------+-----------+--------+-----+------+------+
13126 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13128 int size = extract32(insn, 22, 2);
13129 int opcode = extract32(insn, 12, 5);
13130 int rn = extract32(insn, 5, 5);
13131 int rd = extract32(insn, 0, 5);
13132 int decrypt;
13133 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13134 TCGv_i32 tcg_decrypt;
13135 CryptoThreeOpIntFn *genfn;
13137 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
13138 || size != 0) {
13139 unallocated_encoding(s);
13140 return;
13143 switch (opcode) {
13144 case 0x4: /* AESE */
13145 decrypt = 0;
13146 genfn = gen_helper_crypto_aese;
13147 break;
13148 case 0x6: /* AESMC */
13149 decrypt = 0;
13150 genfn = gen_helper_crypto_aesmc;
13151 break;
13152 case 0x5: /* AESD */
13153 decrypt = 1;
13154 genfn = gen_helper_crypto_aese;
13155 break;
13156 case 0x7: /* AESIMC */
13157 decrypt = 1;
13158 genfn = gen_helper_crypto_aesmc;
13159 break;
13160 default:
13161 unallocated_encoding(s);
13162 return;
13165 if (!fp_access_check(s)) {
13166 return;
13169 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13170 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13171 tcg_decrypt = tcg_const_i32(decrypt);
13173 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13175 tcg_temp_free_ptr(tcg_rd_ptr);
13176 tcg_temp_free_ptr(tcg_rn_ptr);
13177 tcg_temp_free_i32(tcg_decrypt);
13180 /* Crypto three-reg SHA
13181 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13182 * +-----------------+------+---+------+---+--------+-----+------+------+
13183 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13184 * +-----------------+------+---+------+---+--------+-----+------+------+
13186 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13188 int size = extract32(insn, 22, 2);
13189 int opcode = extract32(insn, 12, 3);
13190 int rm = extract32(insn, 16, 5);
13191 int rn = extract32(insn, 5, 5);
13192 int rd = extract32(insn, 0, 5);
13193 CryptoThreeOpFn *genfn;
13194 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13195 int feature = ARM_FEATURE_V8_SHA256;
13197 if (size != 0) {
13198 unallocated_encoding(s);
13199 return;
13202 switch (opcode) {
13203 case 0: /* SHA1C */
13204 case 1: /* SHA1P */
13205 case 2: /* SHA1M */
13206 case 3: /* SHA1SU0 */
13207 genfn = NULL;
13208 feature = ARM_FEATURE_V8_SHA1;
13209 break;
13210 case 4: /* SHA256H */
13211 genfn = gen_helper_crypto_sha256h;
13212 break;
13213 case 5: /* SHA256H2 */
13214 genfn = gen_helper_crypto_sha256h2;
13215 break;
13216 case 6: /* SHA256SU1 */
13217 genfn = gen_helper_crypto_sha256su1;
13218 break;
13219 default:
13220 unallocated_encoding(s);
13221 return;
13224 if (!arm_dc_feature(s, feature)) {
13225 unallocated_encoding(s);
13226 return;
13229 if (!fp_access_check(s)) {
13230 return;
13233 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13234 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13235 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13237 if (genfn) {
13238 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13239 } else {
13240 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13242 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13243 tcg_rm_ptr, tcg_opcode);
13244 tcg_temp_free_i32(tcg_opcode);
13247 tcg_temp_free_ptr(tcg_rd_ptr);
13248 tcg_temp_free_ptr(tcg_rn_ptr);
13249 tcg_temp_free_ptr(tcg_rm_ptr);
13252 /* Crypto two-reg SHA
13253 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13254 * +-----------------+------+-----------+--------+-----+------+------+
13255 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13256 * +-----------------+------+-----------+--------+-----+------+------+
13258 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13260 int size = extract32(insn, 22, 2);
13261 int opcode = extract32(insn, 12, 5);
13262 int rn = extract32(insn, 5, 5);
13263 int rd = extract32(insn, 0, 5);
13264 CryptoTwoOpFn *genfn;
13265 int feature;
13266 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13268 if (size != 0) {
13269 unallocated_encoding(s);
13270 return;
13273 switch (opcode) {
13274 case 0: /* SHA1H */
13275 feature = ARM_FEATURE_V8_SHA1;
13276 genfn = gen_helper_crypto_sha1h;
13277 break;
13278 case 1: /* SHA1SU1 */
13279 feature = ARM_FEATURE_V8_SHA1;
13280 genfn = gen_helper_crypto_sha1su1;
13281 break;
13282 case 2: /* SHA256SU0 */
13283 feature = ARM_FEATURE_V8_SHA256;
13284 genfn = gen_helper_crypto_sha256su0;
13285 break;
13286 default:
13287 unallocated_encoding(s);
13288 return;
13291 if (!arm_dc_feature(s, feature)) {
13292 unallocated_encoding(s);
13293 return;
13296 if (!fp_access_check(s)) {
13297 return;
13300 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13301 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13303 genfn(tcg_rd_ptr, tcg_rn_ptr);
13305 tcg_temp_free_ptr(tcg_rd_ptr);
13306 tcg_temp_free_ptr(tcg_rn_ptr);
13309 /* Crypto three-reg SHA512
13310 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13311 * +-----------------------+------+---+---+-----+--------+------+------+
13312 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13313 * +-----------------------+------+---+---+-----+--------+------+------+
13315 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13317 int opcode = extract32(insn, 10, 2);
13318 int o = extract32(insn, 14, 1);
13319 int rm = extract32(insn, 16, 5);
13320 int rn = extract32(insn, 5, 5);
13321 int rd = extract32(insn, 0, 5);
13322 int feature;
13323 CryptoThreeOpFn *genfn;
13325 if (o == 0) {
13326 switch (opcode) {
13327 case 0: /* SHA512H */
13328 feature = ARM_FEATURE_V8_SHA512;
13329 genfn = gen_helper_crypto_sha512h;
13330 break;
13331 case 1: /* SHA512H2 */
13332 feature = ARM_FEATURE_V8_SHA512;
13333 genfn = gen_helper_crypto_sha512h2;
13334 break;
13335 case 2: /* SHA512SU1 */
13336 feature = ARM_FEATURE_V8_SHA512;
13337 genfn = gen_helper_crypto_sha512su1;
13338 break;
13339 case 3: /* RAX1 */
13340 feature = ARM_FEATURE_V8_SHA3;
13341 genfn = NULL;
13342 break;
13344 } else {
13345 switch (opcode) {
13346 case 0: /* SM3PARTW1 */
13347 feature = ARM_FEATURE_V8_SM3;
13348 genfn = gen_helper_crypto_sm3partw1;
13349 break;
13350 case 1: /* SM3PARTW2 */
13351 feature = ARM_FEATURE_V8_SM3;
13352 genfn = gen_helper_crypto_sm3partw2;
13353 break;
13354 case 2: /* SM4EKEY */
13355 feature = ARM_FEATURE_V8_SM4;
13356 genfn = gen_helper_crypto_sm4ekey;
13357 break;
13358 default:
13359 unallocated_encoding(s);
13360 return;
13364 if (!arm_dc_feature(s, feature)) {
13365 unallocated_encoding(s);
13366 return;
13369 if (!fp_access_check(s)) {
13370 return;
13373 if (genfn) {
13374 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13376 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13377 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13378 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13380 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13382 tcg_temp_free_ptr(tcg_rd_ptr);
13383 tcg_temp_free_ptr(tcg_rn_ptr);
13384 tcg_temp_free_ptr(tcg_rm_ptr);
13385 } else {
13386 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13387 int pass;
13389 tcg_op1 = tcg_temp_new_i64();
13390 tcg_op2 = tcg_temp_new_i64();
13391 tcg_res[0] = tcg_temp_new_i64();
13392 tcg_res[1] = tcg_temp_new_i64();
13394 for (pass = 0; pass < 2; pass++) {
13395 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13396 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13398 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13399 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13401 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13402 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13404 tcg_temp_free_i64(tcg_op1);
13405 tcg_temp_free_i64(tcg_op2);
13406 tcg_temp_free_i64(tcg_res[0]);
13407 tcg_temp_free_i64(tcg_res[1]);
13411 /* Crypto two-reg SHA512
13412 * 31 12 11 10 9 5 4 0
13413 * +-----------------------------------------+--------+------+------+
13414 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13415 * +-----------------------------------------+--------+------+------+
13417 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13419 int opcode = extract32(insn, 10, 2);
13420 int rn = extract32(insn, 5, 5);
13421 int rd = extract32(insn, 0, 5);
13422 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13423 int feature;
13424 CryptoTwoOpFn *genfn;
13426 switch (opcode) {
13427 case 0: /* SHA512SU0 */
13428 feature = ARM_FEATURE_V8_SHA512;
13429 genfn = gen_helper_crypto_sha512su0;
13430 break;
13431 case 1: /* SM4E */
13432 feature = ARM_FEATURE_V8_SM4;
13433 genfn = gen_helper_crypto_sm4e;
13434 break;
13435 default:
13436 unallocated_encoding(s);
13437 return;
13440 if (!arm_dc_feature(s, feature)) {
13441 unallocated_encoding(s);
13442 return;
13445 if (!fp_access_check(s)) {
13446 return;
13449 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13450 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13452 genfn(tcg_rd_ptr, tcg_rn_ptr);
13454 tcg_temp_free_ptr(tcg_rd_ptr);
13455 tcg_temp_free_ptr(tcg_rn_ptr);
13458 /* Crypto four-register
13459 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13460 * +-------------------+-----+------+---+------+------+------+
13461 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13462 * +-------------------+-----+------+---+------+------+------+
13464 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13466 int op0 = extract32(insn, 21, 2);
13467 int rm = extract32(insn, 16, 5);
13468 int ra = extract32(insn, 10, 5);
13469 int rn = extract32(insn, 5, 5);
13470 int rd = extract32(insn, 0, 5);
13471 int feature;
13473 switch (op0) {
13474 case 0: /* EOR3 */
13475 case 1: /* BCAX */
13476 feature = ARM_FEATURE_V8_SHA3;
13477 break;
13478 case 2: /* SM3SS1 */
13479 feature = ARM_FEATURE_V8_SM3;
13480 break;
13481 default:
13482 unallocated_encoding(s);
13483 return;
13486 if (!arm_dc_feature(s, feature)) {
13487 unallocated_encoding(s);
13488 return;
13491 if (!fp_access_check(s)) {
13492 return;
13495 if (op0 < 2) {
13496 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13497 int pass;
13499 tcg_op1 = tcg_temp_new_i64();
13500 tcg_op2 = tcg_temp_new_i64();
13501 tcg_op3 = tcg_temp_new_i64();
13502 tcg_res[0] = tcg_temp_new_i64();
13503 tcg_res[1] = tcg_temp_new_i64();
13505 for (pass = 0; pass < 2; pass++) {
13506 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13507 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13508 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13510 if (op0 == 0) {
13511 /* EOR3 */
13512 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13513 } else {
13514 /* BCAX */
13515 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13517 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13519 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13520 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13522 tcg_temp_free_i64(tcg_op1);
13523 tcg_temp_free_i64(tcg_op2);
13524 tcg_temp_free_i64(tcg_op3);
13525 tcg_temp_free_i64(tcg_res[0]);
13526 tcg_temp_free_i64(tcg_res[1]);
13527 } else {
13528 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13530 tcg_op1 = tcg_temp_new_i32();
13531 tcg_op2 = tcg_temp_new_i32();
13532 tcg_op3 = tcg_temp_new_i32();
13533 tcg_res = tcg_temp_new_i32();
13534 tcg_zero = tcg_const_i32(0);
13536 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13537 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13538 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13540 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13541 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13542 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13543 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13545 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13546 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13547 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13548 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13550 tcg_temp_free_i32(tcg_op1);
13551 tcg_temp_free_i32(tcg_op2);
13552 tcg_temp_free_i32(tcg_op3);
13553 tcg_temp_free_i32(tcg_res);
13554 tcg_temp_free_i32(tcg_zero);
13558 /* Crypto XAR
13559 * 31 21 20 16 15 10 9 5 4 0
13560 * +-----------------------+------+--------+------+------+
13561 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13562 * +-----------------------+------+--------+------+------+
13564 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13566 int rm = extract32(insn, 16, 5);
13567 int imm6 = extract32(insn, 10, 6);
13568 int rn = extract32(insn, 5, 5);
13569 int rd = extract32(insn, 0, 5);
13570 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13571 int pass;
13573 if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) {
13574 unallocated_encoding(s);
13575 return;
13578 if (!fp_access_check(s)) {
13579 return;
13582 tcg_op1 = tcg_temp_new_i64();
13583 tcg_op2 = tcg_temp_new_i64();
13584 tcg_res[0] = tcg_temp_new_i64();
13585 tcg_res[1] = tcg_temp_new_i64();
13587 for (pass = 0; pass < 2; pass++) {
13588 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13589 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13591 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13592 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13594 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13595 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13597 tcg_temp_free_i64(tcg_op1);
13598 tcg_temp_free_i64(tcg_op2);
13599 tcg_temp_free_i64(tcg_res[0]);
13600 tcg_temp_free_i64(tcg_res[1]);
13603 /* Crypto three-reg imm2
13604 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13605 * +-----------------------+------+-----+------+--------+------+------+
13606 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13607 * +-----------------------+------+-----+------+--------+------+------+
13609 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13611 int opcode = extract32(insn, 10, 2);
13612 int imm2 = extract32(insn, 12, 2);
13613 int rm = extract32(insn, 16, 5);
13614 int rn = extract32(insn, 5, 5);
13615 int rd = extract32(insn, 0, 5);
13616 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13617 TCGv_i32 tcg_imm2, tcg_opcode;
13619 if (!arm_dc_feature(s, ARM_FEATURE_V8_SM3)) {
13620 unallocated_encoding(s);
13621 return;
13624 if (!fp_access_check(s)) {
13625 return;
13628 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13629 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13630 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13631 tcg_imm2 = tcg_const_i32(imm2);
13632 tcg_opcode = tcg_const_i32(opcode);
13634 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13635 tcg_opcode);
13637 tcg_temp_free_ptr(tcg_rd_ptr);
13638 tcg_temp_free_ptr(tcg_rn_ptr);
13639 tcg_temp_free_ptr(tcg_rm_ptr);
13640 tcg_temp_free_i32(tcg_imm2);
13641 tcg_temp_free_i32(tcg_opcode);
13644 /* C3.6 Data processing - SIMD, inc Crypto
13646 * As the decode gets a little complex we are using a table based
13647 * approach for this part of the decode.
13649 static const AArch64DecodeTable data_proc_simd[] = {
13650 /* pattern , mask , fn */
13651 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13652 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13653 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13654 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13655 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13656 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13657 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13658 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13659 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13660 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13661 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13662 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13663 { 0x2e000000, 0xbf208400, disas_simd_ext },
13664 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13665 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13666 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13667 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13668 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13669 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13670 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13671 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13672 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13673 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13674 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13675 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13676 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13677 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13678 { 0xce800000, 0xffe00000, disas_crypto_xar },
13679 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13680 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13681 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13682 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13683 { 0x00000000, 0x00000000, NULL }
13686 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13688 /* Note that this is called with all non-FP cases from
13689 * table C3-6 so it must UNDEF for entries not specifically
13690 * allocated to instructions in that table.
13692 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13693 if (fn) {
13694 fn(s, insn);
13695 } else {
13696 unallocated_encoding(s);
13700 /* C3.6 Data processing - SIMD and floating point */
13701 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13703 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13704 disas_data_proc_fp(s, insn);
13705 } else {
13706 /* SIMD, including crypto */
13707 disas_data_proc_simd(s, insn);
13711 /* C3.1 A64 instruction index by encoding */
13712 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13714 uint32_t insn;
13716 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13717 s->insn = insn;
13718 s->pc += 4;
13720 s->fp_access_checked = false;
13722 switch (extract32(insn, 25, 4)) {
13723 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
13724 unallocated_encoding(s);
13725 break;
13726 case 0x8: case 0x9: /* Data processing - immediate */
13727 disas_data_proc_imm(s, insn);
13728 break;
13729 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13730 disas_b_exc_sys(s, insn);
13731 break;
13732 case 0x4:
13733 case 0x6:
13734 case 0xc:
13735 case 0xe: /* Loads and stores */
13736 disas_ldst(s, insn);
13737 break;
13738 case 0x5:
13739 case 0xd: /* Data processing - register */
13740 disas_data_proc_reg(s, insn);
13741 break;
13742 case 0x7:
13743 case 0xf: /* Data processing - SIMD and floating point */
13744 disas_data_proc_simd_fp(s, insn);
13745 break;
13746 default:
13747 assert(FALSE); /* all 15 cases should be handled above */
13748 break;
13751 /* if we allocated any temporaries, free them here */
13752 free_tmp_a64(s);
13755 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13756 CPUState *cpu)
13758 DisasContext *dc = container_of(dcbase, DisasContext, base);
13759 CPUARMState *env = cpu->env_ptr;
13760 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13761 int bound;
13763 dc->pc = dc->base.pc_first;
13764 dc->condjmp = 0;
13766 dc->aarch64 = 1;
13767 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
13768 * there is no secure EL1, so we route exceptions to EL3.
13770 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
13771 !arm_el_is_aa64(env, 3);
13772 dc->thumb = 0;
13773 dc->sctlr_b = 0;
13774 dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
13775 dc->condexec_mask = 0;
13776 dc->condexec_cond = 0;
13777 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
13778 dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
13779 dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
13780 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13781 #if !defined(CONFIG_USER_ONLY)
13782 dc->user = (dc->current_el == 0);
13783 #endif
13784 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
13785 dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags);
13786 dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16;
13787 dc->vec_len = 0;
13788 dc->vec_stride = 0;
13789 dc->cp_regs = arm_cpu->cp_regs;
13790 dc->features = env->features;
13792 /* Single step state. The code-generation logic here is:
13793 * SS_ACTIVE == 0:
13794 * generate code with no special handling for single-stepping (except
13795 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13796 * this happens anyway because those changes are all system register or
13797 * PSTATE writes).
13798 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13799 * emit code for one insn
13800 * emit code to clear PSTATE.SS
13801 * emit code to generate software step exception for completed step
13802 * end TB (as usual for having generated an exception)
13803 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13804 * emit code to generate a software step exception
13805 * end the TB
13807 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
13808 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
13809 dc->is_ldex = false;
13810 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
13812 /* Bound the number of insns to execute to those left on the page. */
13813 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13815 /* If architectural single step active, limit to 1. */
13816 if (dc->ss_active) {
13817 bound = 1;
13819 dc->base.max_insns = MIN(dc->base.max_insns, bound);
13821 init_tmp_a64_array(dc);
13824 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13826 tcg_clear_temp_count();
13829 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13831 DisasContext *dc = container_of(dcbase, DisasContext, base);
13833 tcg_gen_insn_start(dc->pc, 0, 0);
13834 dc->insn_start = tcg_last_op();
13837 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
13838 const CPUBreakpoint *bp)
13840 DisasContext *dc = container_of(dcbase, DisasContext, base);
13842 if (bp->flags & BP_CPU) {
13843 gen_a64_set_pc_im(dc->pc);
13844 gen_helper_check_breakpoints(cpu_env);
13845 /* End the TB early; it likely won't be executed */
13846 dc->base.is_jmp = DISAS_TOO_MANY;
13847 } else {
13848 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
13849 /* The address covered by the breakpoint must be
13850 included in [tb->pc, tb->pc + tb->size) in order
13851 to for it to be properly cleared -- thus we
13852 increment the PC here so that the logic setting
13853 tb->size below does the right thing. */
13854 dc->pc += 4;
13855 dc->base.is_jmp = DISAS_NORETURN;
13858 return true;
13861 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13863 DisasContext *dc = container_of(dcbase, DisasContext, base);
13864 CPUARMState *env = cpu->env_ptr;
13866 if (dc->ss_active && !dc->pstate_ss) {
13867 /* Singlestep state is Active-pending.
13868 * If we're in this state at the start of a TB then either
13869 * a) we just took an exception to an EL which is being debugged
13870 * and this is the first insn in the exception handler
13871 * b) debug exceptions were masked and we just unmasked them
13872 * without changing EL (eg by clearing PSTATE.D)
13873 * In either case we're going to take a swstep exception in the
13874 * "did not step an insn" case, and so the syndrome ISV and EX
13875 * bits should be zero.
13877 assert(dc->base.num_insns == 1);
13878 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
13879 default_exception_el(dc));
13880 dc->base.is_jmp = DISAS_NORETURN;
13881 } else {
13882 disas_a64_insn(env, dc);
13885 dc->base.pc_next = dc->pc;
13886 translator_loop_temp_check(&dc->base);
13889 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13891 DisasContext *dc = container_of(dcbase, DisasContext, base);
13893 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
13894 /* Note that this means single stepping WFI doesn't halt the CPU.
13895 * For conditional branch insns this is harmless unreachable code as
13896 * gen_goto_tb() has already handled emitting the debug exception
13897 * (and thus a tb-jump is not possible when singlestepping).
13899 switch (dc->base.is_jmp) {
13900 default:
13901 gen_a64_set_pc_im(dc->pc);
13902 /* fall through */
13903 case DISAS_EXIT:
13904 case DISAS_JUMP:
13905 if (dc->base.singlestep_enabled) {
13906 gen_exception_internal(EXCP_DEBUG);
13907 } else {
13908 gen_step_complete_exception(dc);
13910 break;
13911 case DISAS_NORETURN:
13912 break;
13914 } else {
13915 switch (dc->base.is_jmp) {
13916 case DISAS_NEXT:
13917 case DISAS_TOO_MANY:
13918 gen_goto_tb(dc, 1, dc->pc);
13919 break;
13920 default:
13921 case DISAS_UPDATE:
13922 gen_a64_set_pc_im(dc->pc);
13923 /* fall through */
13924 case DISAS_EXIT:
13925 tcg_gen_exit_tb(0);
13926 break;
13927 case DISAS_JUMP:
13928 tcg_gen_lookup_and_goto_ptr();
13929 break;
13930 case DISAS_NORETURN:
13931 case DISAS_SWI:
13932 break;
13933 case DISAS_WFE:
13934 gen_a64_set_pc_im(dc->pc);
13935 gen_helper_wfe(cpu_env);
13936 break;
13937 case DISAS_YIELD:
13938 gen_a64_set_pc_im(dc->pc);
13939 gen_helper_yield(cpu_env);
13940 break;
13941 case DISAS_WFI:
13943 /* This is a special case because we don't want to just halt the CPU
13944 * if trying to debug across a WFI.
13946 TCGv_i32 tmp = tcg_const_i32(4);
13948 gen_a64_set_pc_im(dc->pc);
13949 gen_helper_wfi(cpu_env, tmp);
13950 tcg_temp_free_i32(tmp);
13951 /* The helper doesn't necessarily throw an exception, but we
13952 * must go back to the main loop to check for interrupts anyway.
13954 tcg_gen_exit_tb(0);
13955 break;
13960 /* Functions above can change dc->pc, so re-align db->pc_next */
13961 dc->base.pc_next = dc->pc;
13964 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
13965 CPUState *cpu)
13967 DisasContext *dc = container_of(dcbase, DisasContext, base);
13969 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
13970 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
13973 const TranslatorOps aarch64_translator_ops = {
13974 .init_disas_context = aarch64_tr_init_disas_context,
13975 .tb_start = aarch64_tr_tb_start,
13976 .insn_start = aarch64_tr_insn_start,
13977 .breakpoint_check = aarch64_tr_breakpoint_check,
13978 .translate_insn = aarch64_tr_translate_insn,
13979 .tb_stop = aarch64_tr_tb_stop,
13980 .disas_log = aarch64_tr_disas_log,