2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
44 #define env cpu_single_env
47 int tb_invalidated_flag
;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState
*env
)
54 return cpu_has_work(env
);
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
62 longjmp(env
->jmp_env
, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
70 #if !defined(CONFIG_SOFTMMU)
72 struct ucontext
*uc
= puc
;
73 #elif defined(__OpenBSD__)
74 struct sigcontext
*uc
= puc
;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
84 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
92 env
->exception_index
= -1;
93 longjmp(env
->jmp_env
, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
100 unsigned long next_tb
;
101 TranslationBlock
*tb
;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles
> CF_COUNT_MASK
)
106 max_cycles
= CF_COUNT_MASK
;
108 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
110 env
->current_tb
= tb
;
111 /* execute the generated code */
112 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
114 if ((next_tb
& 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env
, tb
);
119 tb_phys_invalidate(tb
, -1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
129 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
131 tb_invalidated_flag
= 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc
= get_phys_addr_code(env
, pc
);
137 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
139 h
= tb_phys_hash_func(phys_pc
);
140 ptb1
= &tb_phys_hash
[h
];
146 tb
->page_addr
[0] == phys_page1
&&
147 tb
->cs_base
== cs_base
&&
148 tb
->flags
== flags
) {
149 /* check next page if needed */
150 if (tb
->page_addr
[1] != -1) {
151 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
153 phys_page2
= get_phys_addr_code(env
, virt_page2
);
154 if (tb
->page_addr
[1] == phys_page2
)
160 ptb1
= &tb
->phys_hash_next
;
163 /* if no translated code available, then translate it now */
164 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
167 /* we add the TB in the virtual pc hash table */
168 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
172 static inline TranslationBlock
*tb_find_fast(void)
174 TranslationBlock
*tb
;
175 target_ulong cs_base
, pc
;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
182 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
183 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
184 tb
->flags
!= flags
)) {
185 tb
= tb_find_slow(pc
, cs_base
, flags
);
190 static CPUDebugExcpHandler
*debug_excp_handler
;
192 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
194 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
196 debug_excp_handler
= handler
;
200 static void cpu_handle_debug_exception(CPUState
*env
)
204 if (!env
->watchpoint_hit
)
205 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
206 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
208 if (debug_excp_handler
)
209 debug_excp_handler(env
);
212 /* main execution loop */
214 int cpu_exec(CPUState
*env1
)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret
, interrupt_request
;
219 TranslationBlock
*tb
;
221 unsigned long next_tb
;
223 if (cpu_halted(env1
) == EXCP_HALTED
)
226 cpu_single_env
= env1
;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
237 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
238 CC_OP
= CC_OP_EFLAGS
;
239 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env
->cc_op
= CC_OP_FLAGS
;
243 env
->cc_dest
= env
->sr
& 0xf;
244 env
->cc_x
= (env
->sr
>> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
254 #error unsupported target CPU
256 env
->exception_index
= -1;
258 /* prepare setjmp context for exception handling */
260 if (setjmp(env
->jmp_env
) == 0) {
261 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
263 env
= cpu_single_env
;
264 #define env cpu_single_env
266 env
->current_tb
= NULL
;
267 /* if an exception is pending, we execute it here */
268 if (env
->exception_index
>= 0) {
269 if (env
->exception_index
>= EXCP_INTERRUPT
) {
270 /* exit request from the cpu execution loop */
271 ret
= env
->exception_index
;
272 if (ret
== EXCP_DEBUG
)
273 cpu_handle_debug_exception(env
);
276 #if defined(CONFIG_USER_ONLY)
277 /* if user mode only, we simulate a fake exception
278 which will be handled outside the cpu execution
280 #if defined(TARGET_I386)
281 do_interrupt_user(env
->exception_index
,
282 env
->exception_is_int
,
284 env
->exception_next_eip
);
285 /* successfully delivered */
286 env
->old_exception
= -1;
288 ret
= env
->exception_index
;
291 #if defined(TARGET_I386)
292 /* simulate a real cpu exception. On i386, it can
293 trigger new exceptions, but we do not handle
294 double or triple faults yet. */
295 do_interrupt(env
->exception_index
,
296 env
->exception_is_int
,
298 env
->exception_next_eip
, 0);
299 /* successfully delivered */
300 env
->old_exception
= -1;
301 #elif defined(TARGET_PPC)
303 #elif defined(TARGET_MICROBLAZE)
305 #elif defined(TARGET_MIPS)
307 #elif defined(TARGET_SPARC)
309 #elif defined(TARGET_ARM)
311 #elif defined(TARGET_SH4)
313 #elif defined(TARGET_ALPHA)
315 #elif defined(TARGET_CRIS)
317 #elif defined(TARGET_M68K)
322 env
->exception_index
= -1;
325 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0 && env
->exit_request
== 0) {
327 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
328 ret
= kqemu_cpu_exec(env
);
329 /* put eflags in CPU temporary format */
330 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
331 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
332 CC_OP
= CC_OP_EFLAGS
;
333 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
336 longjmp(env
->jmp_env
, 1);
337 } else if (ret
== 2) {
338 /* softmmu execution needed */
340 if (env
->interrupt_request
!= 0 || env
->exit_request
!= 0) {
341 /* hardware interrupt will be executed just after */
343 /* otherwise, we restart */
344 longjmp(env
->jmp_env
, 1);
352 longjmp(env
->jmp_env
, 1);
355 next_tb
= 0; /* force lookup of first TB */
357 interrupt_request
= env
->interrupt_request
;
358 if (unlikely(interrupt_request
)) {
359 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
360 /* Mask out external interrupts for this step. */
361 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
366 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
367 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
368 env
->exception_index
= EXCP_DEBUG
;
371 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
372 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
373 defined(TARGET_MICROBLAZE)
374 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
375 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
377 env
->exception_index
= EXCP_HLT
;
381 #if defined(TARGET_I386)
382 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
383 svm_check_intercept(SVM_EXIT_INIT
);
385 env
->exception_index
= EXCP_HALTED
;
387 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
389 } else if (env
->hflags2
& HF2_GIF_MASK
) {
390 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
391 !(env
->hflags
& HF_SMM_MASK
)) {
392 svm_check_intercept(SVM_EXIT_SMI
);
393 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
396 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
397 !(env
->hflags2
& HF2_NMI_MASK
)) {
398 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
399 env
->hflags2
|= HF2_NMI_MASK
;
400 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
402 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
403 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
404 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
406 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
407 (((env
->hflags2
& HF2_VINTR_MASK
) &&
408 (env
->hflags2
& HF2_HIF_MASK
)) ||
409 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
410 (env
->eflags
& IF_MASK
&&
411 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
413 svm_check_intercept(SVM_EXIT_INTR
);
414 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
415 intno
= cpu_get_pic_interrupt(env
);
416 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
417 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
419 env
= cpu_single_env
;
420 #define env cpu_single_env
422 do_interrupt(intno
, 0, 0, 0, 1);
423 /* ensure that no TB jump will be modified as
424 the program flow was changed */
426 #if !defined(CONFIG_USER_ONLY)
427 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
428 (env
->eflags
& IF_MASK
) &&
429 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
431 /* FIXME: this should respect TPR */
432 svm_check_intercept(SVM_EXIT_VINTR
);
433 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
434 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
435 do_interrupt(intno
, 0, 0, 0, 1);
436 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
441 #elif defined(TARGET_PPC)
443 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
447 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
448 ppc_hw_interrupt(env
);
449 if (env
->pending_interrupts
== 0)
450 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
453 #elif defined(TARGET_MICROBLAZE)
454 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
455 && (env
->sregs
[SR_MSR
] & MSR_IE
)
456 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
457 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
458 env
->exception_index
= EXCP_IRQ
;
462 #elif defined(TARGET_MIPS)
463 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
464 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
465 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
466 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
467 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
468 !(env
->hflags
& MIPS_HFLAG_DM
)) {
470 env
->exception_index
= EXCP_EXT_INTERRUPT
;
475 #elif defined(TARGET_SPARC)
476 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
477 cpu_interrupts_enabled(env
)) {
478 int pil
= env
->interrupt_index
& 15;
479 int type
= env
->interrupt_index
& 0xf0;
481 if (((type
== TT_EXTINT
) &&
482 (pil
== 15 || pil
> env
->psrpil
)) ||
484 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
485 env
->exception_index
= env
->interrupt_index
;
487 env
->interrupt_index
= 0;
488 #if !defined(CONFIG_USER_ONLY)
493 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
494 //do_interrupt(0, 0, 0, 0, 0);
495 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
497 #elif defined(TARGET_ARM)
498 if (interrupt_request
& CPU_INTERRUPT_FIQ
499 && !(env
->uncached_cpsr
& CPSR_F
)) {
500 env
->exception_index
= EXCP_FIQ
;
504 /* ARMv7-M interrupt return works by loading a magic value
505 into the PC. On real hardware the load causes the
506 return to occur. The qemu implementation performs the
507 jump normally, then does the exception return when the
508 CPU tries to execute code at the magic address.
509 This will cause the magic PC value to be pushed to
510 the stack if an interrupt occured at the wrong time.
511 We avoid this by disabling interrupts when
512 pc contains a magic address. */
513 if (interrupt_request
& CPU_INTERRUPT_HARD
514 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
515 || !(env
->uncached_cpsr
& CPSR_I
))) {
516 env
->exception_index
= EXCP_IRQ
;
520 #elif defined(TARGET_SH4)
521 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
525 #elif defined(TARGET_ALPHA)
526 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
530 #elif defined(TARGET_CRIS)
531 if (interrupt_request
& CPU_INTERRUPT_HARD
532 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
533 env
->exception_index
= EXCP_IRQ
;
537 if (interrupt_request
& CPU_INTERRUPT_NMI
538 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
539 env
->exception_index
= EXCP_NMI
;
543 #elif defined(TARGET_M68K)
544 if (interrupt_request
& CPU_INTERRUPT_HARD
545 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
546 < env
->pending_level
) {
547 /* Real hardware gets the interrupt vector via an
548 IACK cycle at this point. Current emulated
549 hardware doesn't rely on this, so we
550 provide/save the vector when the interrupt is
552 env
->exception_index
= env
->pending_vector
;
557 /* Don't use the cached interupt_request value,
558 do_interrupt may have updated the EXITTB flag. */
559 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
560 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
561 /* ensure that no TB jump will be modified as
562 the program flow was changed */
566 if (unlikely(env
->exit_request
)) {
567 env
->exit_request
= 0;
568 env
->exception_index
= EXCP_INTERRUPT
;
571 #ifdef CONFIG_DEBUG_EXEC
572 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
573 /* restore flags in standard format */
575 #if defined(TARGET_I386)
576 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
577 log_cpu_state(env
, X86_DUMP_CCOP
);
578 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
579 #elif defined(TARGET_ARM)
580 log_cpu_state(env
, 0);
581 #elif defined(TARGET_SPARC)
582 log_cpu_state(env
, 0);
583 #elif defined(TARGET_PPC)
584 log_cpu_state(env
, 0);
585 #elif defined(TARGET_M68K)
586 cpu_m68k_flush_flags(env
, env
->cc_op
);
587 env
->cc_op
= CC_OP_FLAGS
;
588 env
->sr
= (env
->sr
& 0xffe0)
589 | env
->cc_dest
| (env
->cc_x
<< 4);
590 log_cpu_state(env
, 0);
591 #elif defined(TARGET_MICROBLAZE)
592 log_cpu_state(env
, 0);
593 #elif defined(TARGET_MIPS)
594 log_cpu_state(env
, 0);
595 #elif defined(TARGET_SH4)
596 log_cpu_state(env
, 0);
597 #elif defined(TARGET_ALPHA)
598 log_cpu_state(env
, 0);
599 #elif defined(TARGET_CRIS)
600 log_cpu_state(env
, 0);
602 #error unsupported target CPU
608 /* Note: we do it here to avoid a gcc bug on Mac OS X when
609 doing it in tb_find_slow */
610 if (tb_invalidated_flag
) {
611 /* as some TB could have been invalidated because
612 of memory exceptions while generating the code, we
613 must recompute the hash index here */
615 tb_invalidated_flag
= 0;
617 #ifdef CONFIG_DEBUG_EXEC
618 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
619 (long)tb
->tc_ptr
, tb
->pc
,
620 lookup_symbol(tb
->pc
));
622 /* see if we can patch the calling TB. When the TB
623 spans two pages, we cannot safely do a direct
628 (env
->kqemu_enabled
!= 2) &&
630 tb
->page_addr
[1] == -1) {
631 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
634 spin_unlock(&tb_lock
);
635 env
->current_tb
= tb
;
637 /* cpu_interrupt might be called while translating the
638 TB, but before it is linked into a potentially
639 infinite loop and becomes env->current_tb. Avoid
640 starting execution if there is a pending interrupt. */
641 if (unlikely (env
->exit_request
))
642 env
->current_tb
= NULL
;
644 while (env
->current_tb
) {
646 /* execute the generated code */
647 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
649 env
= cpu_single_env
;
650 #define env cpu_single_env
652 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
653 env
->current_tb
= NULL
;
654 if ((next_tb
& 3) == 2) {
655 /* Instruction counter expired. */
657 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
659 cpu_pc_from_tb(env
, tb
);
660 insns_left
= env
->icount_decr
.u32
;
661 if (env
->icount_extra
&& insns_left
>= 0) {
662 /* Refill decrementer and continue execution. */
663 env
->icount_extra
+= insns_left
;
664 if (env
->icount_extra
> 0xffff) {
667 insns_left
= env
->icount_extra
;
669 env
->icount_extra
-= insns_left
;
670 env
->icount_decr
.u16
.low
= insns_left
;
672 if (insns_left
> 0) {
673 /* Execute remaining instructions. */
674 cpu_exec_nocache(insns_left
, tb
);
676 env
->exception_index
= EXCP_INTERRUPT
;
682 /* reset soft MMU for next block (it can currently
683 only be set by a memory fault) */
684 #if defined(CONFIG_KQEMU)
685 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
686 if (kqemu_is_ok(env
) &&
687 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
698 #if defined(TARGET_I386)
699 /* restore flags in standard format */
700 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
701 #elif defined(TARGET_ARM)
702 /* XXX: Save/restore host fpu exception state?. */
703 #elif defined(TARGET_SPARC)
704 #elif defined(TARGET_PPC)
705 #elif defined(TARGET_M68K)
706 cpu_m68k_flush_flags(env
, env
->cc_op
);
707 env
->cc_op
= CC_OP_FLAGS
;
708 env
->sr
= (env
->sr
& 0xffe0)
709 | env
->cc_dest
| (env
->cc_x
<< 4);
710 #elif defined(TARGET_MICROBLAZE)
711 #elif defined(TARGET_MIPS)
712 #elif defined(TARGET_SH4)
713 #elif defined(TARGET_ALPHA)
714 #elif defined(TARGET_CRIS)
717 #error unsupported target CPU
720 /* restore global registers */
721 #include "hostregs_helper.h"
723 /* fail safe : never use cpu_single_env outside cpu_exec() */
724 cpu_single_env
= NULL
;
728 /* must only be called from the generated code as an exception can be
730 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
732 /* XXX: cannot enable it yet because it yields to MMU exception
733 where NIP != read address on PowerPC */
735 target_ulong phys_addr
;
736 phys_addr
= get_phys_addr_code(env
, start
);
737 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
741 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
743 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
745 CPUX86State
*saved_env
;
749 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
751 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
752 (selector
<< 4), 0xffff, 0);
754 helper_load_seg(seg_reg
, selector
);
759 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
761 CPUX86State
*saved_env
;
766 helper_fsave(ptr
, data32
);
771 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
773 CPUX86State
*saved_env
;
778 helper_frstor(ptr
, data32
);
783 #endif /* TARGET_I386 */
785 #if !defined(CONFIG_SOFTMMU)
787 #if defined(TARGET_I386)
789 /* 'pc' is the host PC at which the exception was raised. 'address' is
790 the effective address of the memory exception. 'is_write' is 1 if a
791 write caused the exception and otherwise 0'. 'old_set' is the
792 signal set which should be restored */
793 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
794 int is_write
, sigset_t
*old_set
,
797 TranslationBlock
*tb
;
801 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
802 #if defined(DEBUG_SIGNAL)
803 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
804 pc
, address
, is_write
, *(unsigned long *)old_set
);
806 /* XXX: locking issue */
807 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
811 /* see if it is an MMU fault */
812 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
814 return 0; /* not an MMU fault */
816 return 1; /* the MMU fault was handled without causing real CPU fault */
817 /* now we have a real cpu fault */
820 /* the PC is inside the translated code. It means that we have
821 a virtual CPU fault */
822 cpu_restore_state(tb
, env
, pc
, puc
);
826 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
827 env
->eip
, env
->cr
[2], env
->error_code
);
829 /* we restore the process signal mask as the sigreturn should
830 do it (XXX: use sigsetjmp) */
831 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
832 raise_exception_err(env
->exception_index
, env
->error_code
);
834 /* activate soft MMU for this block */
835 env
->hflags
|= HF_SOFTMMU_MASK
;
836 cpu_resume_from_signal(env
, puc
);
838 /* never comes here */
842 #elif defined(TARGET_ARM)
843 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
844 int is_write
, sigset_t
*old_set
,
847 TranslationBlock
*tb
;
851 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
852 #if defined(DEBUG_SIGNAL)
853 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
854 pc
, address
, is_write
, *(unsigned long *)old_set
);
856 /* XXX: locking issue */
857 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
860 /* see if it is an MMU fault */
861 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
863 return 0; /* not an MMU fault */
865 return 1; /* the MMU fault was handled without causing real CPU fault */
866 /* now we have a real cpu fault */
869 /* the PC is inside the translated code. It means that we have
870 a virtual CPU fault */
871 cpu_restore_state(tb
, env
, pc
, puc
);
873 /* we restore the process signal mask as the sigreturn should
874 do it (XXX: use sigsetjmp) */
875 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
877 /* never comes here */
880 #elif defined(TARGET_SPARC)
881 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
882 int is_write
, sigset_t
*old_set
,
885 TranslationBlock
*tb
;
889 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
890 #if defined(DEBUG_SIGNAL)
891 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
892 pc
, address
, is_write
, *(unsigned long *)old_set
);
894 /* XXX: locking issue */
895 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
898 /* see if it is an MMU fault */
899 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
901 return 0; /* not an MMU fault */
903 return 1; /* the MMU fault was handled without causing real CPU fault */
904 /* now we have a real cpu fault */
907 /* the PC is inside the translated code. It means that we have
908 a virtual CPU fault */
909 cpu_restore_state(tb
, env
, pc
, puc
);
911 /* we restore the process signal mask as the sigreturn should
912 do it (XXX: use sigsetjmp) */
913 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
915 /* never comes here */
918 #elif defined (TARGET_PPC)
919 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
920 int is_write
, sigset_t
*old_set
,
923 TranslationBlock
*tb
;
927 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
928 #if defined(DEBUG_SIGNAL)
929 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
930 pc
, address
, is_write
, *(unsigned long *)old_set
);
932 /* XXX: locking issue */
933 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
937 /* see if it is an MMU fault */
938 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
940 return 0; /* not an MMU fault */
942 return 1; /* the MMU fault was handled without causing real CPU fault */
944 /* now we have a real cpu fault */
947 /* the PC is inside the translated code. It means that we have
948 a virtual CPU fault */
949 cpu_restore_state(tb
, env
, pc
, puc
);
953 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
954 env
->nip
, env
->error_code
, tb
);
956 /* we restore the process signal mask as the sigreturn should
957 do it (XXX: use sigsetjmp) */
958 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
961 /* activate soft MMU for this block */
962 cpu_resume_from_signal(env
, puc
);
964 /* never comes here */
968 #elif defined(TARGET_M68K)
969 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
970 int is_write
, sigset_t
*old_set
,
973 TranslationBlock
*tb
;
977 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
978 #if defined(DEBUG_SIGNAL)
979 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
980 pc
, address
, is_write
, *(unsigned long *)old_set
);
982 /* XXX: locking issue */
983 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
986 /* see if it is an MMU fault */
987 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
989 return 0; /* not an MMU fault */
991 return 1; /* the MMU fault was handled without causing real CPU fault */
992 /* now we have a real cpu fault */
995 /* the PC is inside the translated code. It means that we have
996 a virtual CPU fault */
997 cpu_restore_state(tb
, env
, pc
, puc
);
999 /* we restore the process signal mask as the sigreturn should
1000 do it (XXX: use sigsetjmp) */
1001 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1003 /* never comes here */
1007 #elif defined (TARGET_MIPS)
1008 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1009 int is_write
, sigset_t
*old_set
,
1012 TranslationBlock
*tb
;
1016 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1017 #if defined(DEBUG_SIGNAL)
1018 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1019 pc
, address
, is_write
, *(unsigned long *)old_set
);
1021 /* XXX: locking issue */
1022 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1026 /* see if it is an MMU fault */
1027 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1029 return 0; /* not an MMU fault */
1031 return 1; /* the MMU fault was handled without causing real CPU fault */
1033 /* now we have a real cpu fault */
1034 tb
= tb_find_pc(pc
);
1036 /* the PC is inside the translated code. It means that we have
1037 a virtual CPU fault */
1038 cpu_restore_state(tb
, env
, pc
, puc
);
1042 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1043 env
->PC
, env
->error_code
, tb
);
1045 /* we restore the process signal mask as the sigreturn should
1046 do it (XXX: use sigsetjmp) */
1047 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1050 /* activate soft MMU for this block */
1051 cpu_resume_from_signal(env
, puc
);
1053 /* never comes here */
1057 #elif defined (TARGET_MICROBLAZE)
1058 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1059 int is_write
, sigset_t
*old_set
,
1062 TranslationBlock
*tb
;
1066 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1067 #if defined(DEBUG_SIGNAL)
1068 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1069 pc
, address
, is_write
, *(unsigned long *)old_set
);
1071 /* XXX: locking issue */
1072 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1076 /* see if it is an MMU fault */
1077 ret
= cpu_mb_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1079 return 0; /* not an MMU fault */
1081 return 1; /* the MMU fault was handled without causing real CPU fault */
1083 /* now we have a real cpu fault */
1084 tb
= tb_find_pc(pc
);
1086 /* the PC is inside the translated code. It means that we have
1087 a virtual CPU fault */
1088 cpu_restore_state(tb
, env
, pc
, puc
);
1092 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1093 env
->PC
, env
->error_code
, tb
);
1095 /* we restore the process signal mask as the sigreturn should
1096 do it (XXX: use sigsetjmp) */
1097 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1100 /* activate soft MMU for this block */
1101 cpu_resume_from_signal(env
, puc
);
1103 /* never comes here */
1107 #elif defined (TARGET_SH4)
1108 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1109 int is_write
, sigset_t
*old_set
,
1112 TranslationBlock
*tb
;
1116 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1117 #if defined(DEBUG_SIGNAL)
1118 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1119 pc
, address
, is_write
, *(unsigned long *)old_set
);
1121 /* XXX: locking issue */
1122 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1126 /* see if it is an MMU fault */
1127 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1129 return 0; /* not an MMU fault */
1131 return 1; /* the MMU fault was handled without causing real CPU fault */
1133 /* now we have a real cpu fault */
1134 tb
= tb_find_pc(pc
);
1136 /* the PC is inside the translated code. It means that we have
1137 a virtual CPU fault */
1138 cpu_restore_state(tb
, env
, pc
, puc
);
1141 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1142 env
->nip
, env
->error_code
, tb
);
1144 /* we restore the process signal mask as the sigreturn should
1145 do it (XXX: use sigsetjmp) */
1146 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1148 /* never comes here */
1152 #elif defined (TARGET_ALPHA)
1153 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1154 int is_write
, sigset_t
*old_set
,
1157 TranslationBlock
*tb
;
1161 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1162 #if defined(DEBUG_SIGNAL)
1163 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1164 pc
, address
, is_write
, *(unsigned long *)old_set
);
1166 /* XXX: locking issue */
1167 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1171 /* see if it is an MMU fault */
1172 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1174 return 0; /* not an MMU fault */
1176 return 1; /* the MMU fault was handled without causing real CPU fault */
1178 /* now we have a real cpu fault */
1179 tb
= tb_find_pc(pc
);
1181 /* the PC is inside the translated code. It means that we have
1182 a virtual CPU fault */
1183 cpu_restore_state(tb
, env
, pc
, puc
);
1186 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1187 env
->nip
, env
->error_code
, tb
);
1189 /* we restore the process signal mask as the sigreturn should
1190 do it (XXX: use sigsetjmp) */
1191 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1193 /* never comes here */
1196 #elif defined (TARGET_CRIS)
1197 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1198 int is_write
, sigset_t
*old_set
,
1201 TranslationBlock
*tb
;
1205 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1206 #if defined(DEBUG_SIGNAL)
1207 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1208 pc
, address
, is_write
, *(unsigned long *)old_set
);
1210 /* XXX: locking issue */
1211 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1215 /* see if it is an MMU fault */
1216 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1218 return 0; /* not an MMU fault */
1220 return 1; /* the MMU fault was handled without causing real CPU fault */
1222 /* now we have a real cpu fault */
1223 tb
= tb_find_pc(pc
);
1225 /* the PC is inside the translated code. It means that we have
1226 a virtual CPU fault */
1227 cpu_restore_state(tb
, env
, pc
, puc
);
1229 /* we restore the process signal mask as the sigreturn should
1230 do it (XXX: use sigsetjmp) */
1231 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1233 /* never comes here */
1238 #error unsupported target CPU
1241 #if defined(__i386__)
1243 #if defined(__APPLE__)
1244 # include <sys/ucontext.h>
1246 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1247 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1248 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1249 # define MASK_sig(context) ((context)->uc_sigmask)
1250 #elif defined(__OpenBSD__)
1251 # define EIP_sig(context) ((context)->sc_eip)
1252 # define TRAP_sig(context) ((context)->sc_trapno)
1253 # define ERROR_sig(context) ((context)->sc_err)
1254 # define MASK_sig(context) ((context)->sc_mask)
1256 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1257 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1258 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1259 # define MASK_sig(context) ((context)->uc_sigmask)
1262 int cpu_signal_handler(int host_signum
, void *pinfo
,
1265 siginfo_t
*info
= pinfo
;
1266 #if defined(__OpenBSD__)
1267 struct sigcontext
*uc
= puc
;
1269 struct ucontext
*uc
= puc
;
1278 #define REG_TRAPNO TRAPNO
1281 trapno
= TRAP_sig(uc
);
1282 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1284 (ERROR_sig(uc
) >> 1) & 1 : 0,
1285 &MASK_sig(uc
), puc
);
1288 #elif defined(__x86_64__)
1291 #define PC_sig(context) _UC_MACHINE_PC(context)
1292 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
1293 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
1294 #define MASK_sig(context) ((context)->uc_sigmask)
1295 #elif defined(__OpenBSD__)
1296 #define PC_sig(context) ((context)->sc_rip)
1297 #define TRAP_sig(context) ((context)->sc_trapno)
1298 #define ERROR_sig(context) ((context)->sc_err)
1299 #define MASK_sig(context) ((context)->sc_mask)
1301 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
1302 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1303 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1304 #define MASK_sig(context) ((context)->uc_sigmask)
1307 int cpu_signal_handler(int host_signum
, void *pinfo
,
1310 siginfo_t
*info
= pinfo
;
1313 ucontext_t
*uc
= puc
;
1314 #elif defined(__OpenBSD__)
1315 struct sigcontext
*uc
= puc
;
1317 struct ucontext
*uc
= puc
;
1321 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1322 TRAP_sig(uc
) == 0xe ?
1323 (ERROR_sig(uc
) >> 1) & 1 : 0,
1324 &MASK_sig(uc
), puc
);
1327 #elif defined(_ARCH_PPC)
1329 /***********************************************************************
1330 * signal context platform-specific definitions
1334 /* All Registers access - only for local access */
1335 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1336 /* Gpr Registers access */
1337 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1338 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1339 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1340 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1341 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1342 # define LR_sig(context) REG_sig(link, context) /* Link register */
1343 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1344 /* Float Registers access */
1345 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1346 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1347 /* Exception Registers access */
1348 # define DAR_sig(context) REG_sig(dar, context)
1349 # define DSISR_sig(context) REG_sig(dsisr, context)
1350 # define TRAP_sig(context) REG_sig(trap, context)
1354 # include <sys/ucontext.h>
1355 typedef struct ucontext SIGCONTEXT
;
1356 /* All Registers access - only for local access */
1357 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1358 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1359 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1360 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1361 /* Gpr Registers access */
1362 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1363 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1364 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1365 # define CTR_sig(context) REG_sig(ctr, context)
1366 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1367 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1368 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1369 /* Float Registers access */
1370 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1371 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1372 /* Exception Registers access */
1373 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1374 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1375 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1376 #endif /* __APPLE__ */
1378 int cpu_signal_handler(int host_signum
, void *pinfo
,
1381 siginfo_t
*info
= pinfo
;
1382 struct ucontext
*uc
= puc
;
1390 if (DSISR_sig(uc
) & 0x00800000)
1393 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1396 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1397 is_write
, &uc
->uc_sigmask
, puc
);
1400 #elif defined(__alpha__)
1402 int cpu_signal_handler(int host_signum
, void *pinfo
,
1405 siginfo_t
*info
= pinfo
;
1406 struct ucontext
*uc
= puc
;
1407 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1408 uint32_t insn
= *pc
;
1411 /* XXX: need kernel patch to get write flag faster */
1412 switch (insn
>> 26) {
1427 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1428 is_write
, &uc
->uc_sigmask
, puc
);
1430 #elif defined(__sparc__)
1432 int cpu_signal_handler(int host_signum
, void *pinfo
,
1435 siginfo_t
*info
= pinfo
;
1438 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1439 uint32_t *regs
= (uint32_t *)(info
+ 1);
1440 void *sigmask
= (regs
+ 20);
1441 /* XXX: is there a standard glibc define ? */
1442 unsigned long pc
= regs
[1];
1445 struct sigcontext
*sc
= puc
;
1446 unsigned long pc
= sc
->sigc_regs
.tpc
;
1447 void *sigmask
= (void *)sc
->sigc_mask
;
1448 #elif defined(__OpenBSD__)
1449 struct sigcontext
*uc
= puc
;
1450 unsigned long pc
= uc
->sc_pc
;
1451 void *sigmask
= (void *)(long)uc
->sc_mask
;
1455 /* XXX: need kernel patch to get write flag faster */
1457 insn
= *(uint32_t *)pc
;
1458 if ((insn
>> 30) == 3) {
1459 switch((insn
>> 19) & 0x3f) {
1483 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1484 is_write
, sigmask
, NULL
);
1487 #elif defined(__arm__)
1489 int cpu_signal_handler(int host_signum
, void *pinfo
,
1492 siginfo_t
*info
= pinfo
;
1493 struct ucontext
*uc
= puc
;
1497 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1498 pc
= uc
->uc_mcontext
.gregs
[R15
];
1500 pc
= uc
->uc_mcontext
.arm_pc
;
1502 /* XXX: compute is_write */
1504 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1506 &uc
->uc_sigmask
, puc
);
1509 #elif defined(__mc68000)
1511 int cpu_signal_handler(int host_signum
, void *pinfo
,
1514 siginfo_t
*info
= pinfo
;
1515 struct ucontext
*uc
= puc
;
1519 pc
= uc
->uc_mcontext
.gregs
[16];
1520 /* XXX: compute is_write */
1522 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1524 &uc
->uc_sigmask
, puc
);
1527 #elif defined(__ia64)
1530 /* This ought to be in <bits/siginfo.h>... */
1531 # define __ISR_VALID 1
1534 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1536 siginfo_t
*info
= pinfo
;
1537 struct ucontext
*uc
= puc
;
1541 ip
= uc
->uc_mcontext
.sc_ip
;
1542 switch (host_signum
) {
1548 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1549 /* ISR.W (write-access) is bit 33: */
1550 is_write
= (info
->si_isr
>> 33) & 1;
1556 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1558 &uc
->uc_sigmask
, puc
);
1561 #elif defined(__s390__)
1563 int cpu_signal_handler(int host_signum
, void *pinfo
,
1566 siginfo_t
*info
= pinfo
;
1567 struct ucontext
*uc
= puc
;
1571 pc
= uc
->uc_mcontext
.psw
.addr
;
1572 /* XXX: compute is_write */
1574 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1575 is_write
, &uc
->uc_sigmask
, puc
);
1578 #elif defined(__mips__)
1580 int cpu_signal_handler(int host_signum
, void *pinfo
,
1583 siginfo_t
*info
= pinfo
;
1584 struct ucontext
*uc
= puc
;
1585 greg_t pc
= uc
->uc_mcontext
.pc
;
1588 /* XXX: compute is_write */
1590 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1591 is_write
, &uc
->uc_sigmask
, puc
);
1594 #elif defined(__hppa__)
1596 int cpu_signal_handler(int host_signum
, void *pinfo
,
1599 struct siginfo
*info
= pinfo
;
1600 struct ucontext
*uc
= puc
;
1604 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1605 /* FIXME: compute is_write */
1607 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1609 &uc
->uc_sigmask
, puc
);
1614 #error host CPU specific signal handler needed
1618 #endif /* !defined(CONFIG_SOFTMMU) */