ARM: ACPI: Add power button device in ACPI DSDT table
[qemu.git] / util / iov.c
bloba0d5934e8eecb011089390df92cbd1f7cd532e6f
1 /*
2 * Helpers for getting linearized buffers from iov / filling buffers into iovs
4 * Copyright IBM, Corp. 2007, 2008
5 * Copyright (C) 2010 Red Hat, Inc.
7 * Author(s):
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Amit Shah <amit.shah@redhat.com>
10 * Michael Tokarev <mjt@tls.msk.ru>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
19 #include "qemu/iov.h"
20 #include "qemu/sockets.h"
22 size_t iov_from_buf(const struct iovec *iov, unsigned int iov_cnt,
23 size_t offset, const void *buf, size_t bytes)
25 size_t done;
26 unsigned int i;
27 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
28 if (offset < iov[i].iov_len) {
29 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
30 memcpy(iov[i].iov_base + offset, buf + done, len);
31 done += len;
32 offset = 0;
33 } else {
34 offset -= iov[i].iov_len;
37 assert(offset == 0);
38 return done;
41 size_t iov_to_buf(const struct iovec *iov, const unsigned int iov_cnt,
42 size_t offset, void *buf, size_t bytes)
44 size_t done;
45 unsigned int i;
46 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
47 if (offset < iov[i].iov_len) {
48 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
49 memcpy(buf + done, iov[i].iov_base + offset, len);
50 done += len;
51 offset = 0;
52 } else {
53 offset -= iov[i].iov_len;
56 assert(offset == 0);
57 return done;
60 size_t iov_memset(const struct iovec *iov, const unsigned int iov_cnt,
61 size_t offset, int fillc, size_t bytes)
63 size_t done;
64 unsigned int i;
65 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
66 if (offset < iov[i].iov_len) {
67 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
68 memset(iov[i].iov_base + offset, fillc, len);
69 done += len;
70 offset = 0;
71 } else {
72 offset -= iov[i].iov_len;
75 assert(offset == 0);
76 return done;
79 size_t iov_size(const struct iovec *iov, const unsigned int iov_cnt)
81 size_t len;
82 unsigned int i;
84 len = 0;
85 for (i = 0; i < iov_cnt; i++) {
86 len += iov[i].iov_len;
88 return len;
91 /* helper function for iov_send_recv() */
92 static ssize_t
93 do_send_recv(int sockfd, struct iovec *iov, unsigned iov_cnt, bool do_send)
95 #ifdef CONFIG_POSIX
96 ssize_t ret;
97 struct msghdr msg;
98 memset(&msg, 0, sizeof(msg));
99 msg.msg_iov = iov;
100 msg.msg_iovlen = iov_cnt;
101 do {
102 ret = do_send
103 ? sendmsg(sockfd, &msg, 0)
104 : recvmsg(sockfd, &msg, 0);
105 } while (ret < 0 && errno == EINTR);
106 return ret;
107 #else
108 /* else send piece-by-piece */
109 /*XXX Note: windows has WSASend() and WSARecv() */
110 unsigned i = 0;
111 ssize_t ret = 0;
112 while (i < iov_cnt) {
113 ssize_t r = do_send
114 ? send(sockfd, iov[i].iov_base, iov[i].iov_len, 0)
115 : recv(sockfd, iov[i].iov_base, iov[i].iov_len, 0);
116 if (r > 0) {
117 ret += r;
118 } else if (!r) {
119 break;
120 } else if (errno == EINTR) {
121 continue;
122 } else {
123 /* else it is some "other" error,
124 * only return if there was no data processed. */
125 if (ret == 0) {
126 ret = -1;
128 break;
130 i++;
132 return ret;
133 #endif
136 ssize_t iov_send_recv(int sockfd, const struct iovec *_iov, unsigned iov_cnt,
137 size_t offset, size_t bytes,
138 bool do_send)
140 ssize_t total = 0;
141 ssize_t ret;
142 size_t orig_len, tail;
143 unsigned niov;
144 struct iovec *local_iov, *iov;
146 if (bytes <= 0) {
147 return 0;
150 local_iov = g_new0(struct iovec, iov_cnt);
151 iov_copy(local_iov, iov_cnt, _iov, iov_cnt, offset, bytes);
152 offset = 0;
153 iov = local_iov;
155 while (bytes > 0) {
156 /* Find the start position, skipping `offset' bytes:
157 * first, skip all full-sized vector elements, */
158 for (niov = 0; niov < iov_cnt && offset >= iov[niov].iov_len; ++niov) {
159 offset -= iov[niov].iov_len;
162 /* niov == iov_cnt would only be valid if bytes == 0, which
163 * we already ruled out in the loop condition. */
164 assert(niov < iov_cnt);
165 iov += niov;
166 iov_cnt -= niov;
168 if (offset) {
169 /* second, skip `offset' bytes from the (now) first element,
170 * undo it on exit */
171 iov[0].iov_base += offset;
172 iov[0].iov_len -= offset;
174 /* Find the end position skipping `bytes' bytes: */
175 /* first, skip all full-sized elements */
176 tail = bytes;
177 for (niov = 0; niov < iov_cnt && iov[niov].iov_len <= tail; ++niov) {
178 tail -= iov[niov].iov_len;
180 if (tail) {
181 /* second, fixup the last element, and remember the original
182 * length */
183 assert(niov < iov_cnt);
184 assert(iov[niov].iov_len > tail);
185 orig_len = iov[niov].iov_len;
186 iov[niov++].iov_len = tail;
187 ret = do_send_recv(sockfd, iov, niov, do_send);
188 /* Undo the changes above before checking for errors */
189 iov[niov-1].iov_len = orig_len;
190 } else {
191 ret = do_send_recv(sockfd, iov, niov, do_send);
193 if (offset) {
194 iov[0].iov_base -= offset;
195 iov[0].iov_len += offset;
198 if (ret < 0) {
199 assert(errno != EINTR);
200 g_free(local_iov);
201 if (errno == EAGAIN && total > 0) {
202 return total;
204 return -1;
207 if (ret == 0 && !do_send) {
208 /* recv returns 0 when the peer has performed an orderly
209 * shutdown. */
210 break;
213 /* Prepare for the next iteration */
214 offset += ret;
215 total += ret;
216 bytes -= ret;
219 g_free(local_iov);
220 return total;
224 void iov_hexdump(const struct iovec *iov, const unsigned int iov_cnt,
225 FILE *fp, const char *prefix, size_t limit)
227 int v;
228 size_t size = 0;
229 char *buf;
231 for (v = 0; v < iov_cnt; v++) {
232 size += iov[v].iov_len;
234 size = size > limit ? limit : size;
235 buf = g_malloc(size);
236 iov_to_buf(iov, iov_cnt, 0, buf, size);
237 qemu_hexdump(buf, fp, prefix, size);
238 g_free(buf);
241 unsigned iov_copy(struct iovec *dst_iov, unsigned int dst_iov_cnt,
242 const struct iovec *iov, unsigned int iov_cnt,
243 size_t offset, size_t bytes)
245 size_t len;
246 unsigned int i, j;
247 for (i = 0, j = 0; i < iov_cnt && j < dst_iov_cnt && bytes; i++) {
248 if (offset >= iov[i].iov_len) {
249 offset -= iov[i].iov_len;
250 continue;
252 len = MIN(bytes, iov[i].iov_len - offset);
254 dst_iov[j].iov_base = iov[i].iov_base + offset;
255 dst_iov[j].iov_len = len;
256 j++;
257 bytes -= len;
258 offset = 0;
260 assert(offset == 0);
261 return j;
264 /* io vectors */
266 void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
268 qiov->iov = g_new(struct iovec, alloc_hint);
269 qiov->niov = 0;
270 qiov->nalloc = alloc_hint;
271 qiov->size = 0;
274 void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
276 int i;
278 qiov->iov = iov;
279 qiov->niov = niov;
280 qiov->nalloc = -1;
281 qiov->size = 0;
282 for (i = 0; i < niov; i++)
283 qiov->size += iov[i].iov_len;
286 void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
288 assert(qiov->nalloc != -1);
290 if (qiov->niov == qiov->nalloc) {
291 qiov->nalloc = 2 * qiov->nalloc + 1;
292 qiov->iov = g_renew(struct iovec, qiov->iov, qiov->nalloc);
294 qiov->iov[qiov->niov].iov_base = base;
295 qiov->iov[qiov->niov].iov_len = len;
296 qiov->size += len;
297 ++qiov->niov;
301 * Concatenates (partial) iovecs from src_iov to the end of dst.
302 * It starts copying after skipping `soffset' bytes at the
303 * beginning of src and adds individual vectors from src to
304 * dst copies up to `sbytes' bytes total, or up to the end
305 * of src_iov if it comes first. This way, it is okay to specify
306 * very large value for `sbytes' to indicate "up to the end
307 * of src".
308 * Only vector pointers are processed, not the actual data buffers.
310 size_t qemu_iovec_concat_iov(QEMUIOVector *dst,
311 struct iovec *src_iov, unsigned int src_cnt,
312 size_t soffset, size_t sbytes)
314 int i;
315 size_t done;
317 if (!sbytes) {
318 return 0;
320 assert(dst->nalloc != -1);
321 for (i = 0, done = 0; done < sbytes && i < src_cnt; i++) {
322 if (soffset < src_iov[i].iov_len) {
323 size_t len = MIN(src_iov[i].iov_len - soffset, sbytes - done);
324 qemu_iovec_add(dst, src_iov[i].iov_base + soffset, len);
325 done += len;
326 soffset = 0;
327 } else {
328 soffset -= src_iov[i].iov_len;
331 assert(soffset == 0); /* offset beyond end of src */
333 return done;
337 * Concatenates (partial) iovecs from src to the end of dst.
338 * It starts copying after skipping `soffset' bytes at the
339 * beginning of src and adds individual vectors from src to
340 * dst copies up to `sbytes' bytes total, or up to the end
341 * of src if it comes first. This way, it is okay to specify
342 * very large value for `sbytes' to indicate "up to the end
343 * of src".
344 * Only vector pointers are processed, not the actual data buffers.
346 void qemu_iovec_concat(QEMUIOVector *dst,
347 QEMUIOVector *src, size_t soffset, size_t sbytes)
349 qemu_iovec_concat_iov(dst, src->iov, src->niov, soffset, sbytes);
353 * Check if the contents of the iovecs are all zero
355 bool qemu_iovec_is_zero(QEMUIOVector *qiov)
357 int i;
358 for (i = 0; i < qiov->niov; i++) {
359 size_t offs = QEMU_ALIGN_DOWN(qiov->iov[i].iov_len, 4 * sizeof(long));
360 uint8_t *ptr = qiov->iov[i].iov_base;
361 if (offs && !buffer_is_zero(qiov->iov[i].iov_base, offs)) {
362 return false;
364 for (; offs < qiov->iov[i].iov_len; offs++) {
365 if (ptr[offs]) {
366 return false;
370 return true;
373 void qemu_iovec_destroy(QEMUIOVector *qiov)
375 assert(qiov->nalloc != -1);
377 qemu_iovec_reset(qiov);
378 g_free(qiov->iov);
379 qiov->nalloc = 0;
380 qiov->iov = NULL;
383 void qemu_iovec_reset(QEMUIOVector *qiov)
385 assert(qiov->nalloc != -1);
387 qiov->niov = 0;
388 qiov->size = 0;
391 size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
392 void *buf, size_t bytes)
394 return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
397 size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
398 const void *buf, size_t bytes)
400 return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
403 size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
404 int fillc, size_t bytes)
406 return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
410 * Check that I/O vector contents are identical
412 * The IO vectors must have the same structure (same length of all parts).
413 * A typical usage is to compare vectors created with qemu_iovec_clone().
415 * @a: I/O vector
416 * @b: I/O vector
417 * @ret: Offset to first mismatching byte or -1 if match
419 ssize_t qemu_iovec_compare(QEMUIOVector *a, QEMUIOVector *b)
421 int i;
422 ssize_t offset = 0;
424 assert(a->niov == b->niov);
425 for (i = 0; i < a->niov; i++) {
426 size_t len = 0;
427 uint8_t *p = (uint8_t *)a->iov[i].iov_base;
428 uint8_t *q = (uint8_t *)b->iov[i].iov_base;
430 assert(a->iov[i].iov_len == b->iov[i].iov_len);
431 while (len < a->iov[i].iov_len && *p++ == *q++) {
432 len++;
435 offset += len;
437 if (len != a->iov[i].iov_len) {
438 return offset;
441 return -1;
444 typedef struct {
445 int src_index;
446 struct iovec *src_iov;
447 void *dest_base;
448 } IOVectorSortElem;
450 static int sortelem_cmp_src_base(const void *a, const void *b)
452 const IOVectorSortElem *elem_a = a;
453 const IOVectorSortElem *elem_b = b;
455 /* Don't overflow */
456 if (elem_a->src_iov->iov_base < elem_b->src_iov->iov_base) {
457 return -1;
458 } else if (elem_a->src_iov->iov_base > elem_b->src_iov->iov_base) {
459 return 1;
460 } else {
461 return 0;
465 static int sortelem_cmp_src_index(const void *a, const void *b)
467 const IOVectorSortElem *elem_a = a;
468 const IOVectorSortElem *elem_b = b;
470 return elem_a->src_index - elem_b->src_index;
474 * Copy contents of I/O vector
476 * The relative relationships of overlapping iovecs are preserved. This is
477 * necessary to ensure identical semantics in the cloned I/O vector.
479 void qemu_iovec_clone(QEMUIOVector *dest, const QEMUIOVector *src, void *buf)
481 IOVectorSortElem sortelems[src->niov];
482 void *last_end;
483 int i;
485 /* Sort by source iovecs by base address */
486 for (i = 0; i < src->niov; i++) {
487 sortelems[i].src_index = i;
488 sortelems[i].src_iov = &src->iov[i];
490 qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_base);
492 /* Allocate buffer space taking into account overlapping iovecs */
493 last_end = NULL;
494 for (i = 0; i < src->niov; i++) {
495 struct iovec *cur = sortelems[i].src_iov;
496 ptrdiff_t rewind = 0;
498 /* Detect overlap */
499 if (last_end && last_end > cur->iov_base) {
500 rewind = last_end - cur->iov_base;
503 sortelems[i].dest_base = buf - rewind;
504 buf += cur->iov_len - MIN(rewind, cur->iov_len);
505 last_end = MAX(cur->iov_base + cur->iov_len, last_end);
508 /* Sort by source iovec index and build destination iovec */
509 qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_index);
510 for (i = 0; i < src->niov; i++) {
511 qemu_iovec_add(dest, sortelems[i].dest_base, src->iov[i].iov_len);
515 size_t iov_discard_front(struct iovec **iov, unsigned int *iov_cnt,
516 size_t bytes)
518 size_t total = 0;
519 struct iovec *cur;
521 for (cur = *iov; *iov_cnt > 0; cur++) {
522 if (cur->iov_len > bytes) {
523 cur->iov_base += bytes;
524 cur->iov_len -= bytes;
525 total += bytes;
526 break;
529 bytes -= cur->iov_len;
530 total += cur->iov_len;
531 *iov_cnt -= 1;
534 *iov = cur;
535 return total;
538 size_t iov_discard_back(struct iovec *iov, unsigned int *iov_cnt,
539 size_t bytes)
541 size_t total = 0;
542 struct iovec *cur;
544 if (*iov_cnt == 0) {
545 return 0;
548 cur = iov + (*iov_cnt - 1);
550 while (*iov_cnt > 0) {
551 if (cur->iov_len > bytes) {
552 cur->iov_len -= bytes;
553 total += bytes;
554 break;
557 bytes -= cur->iov_len;
558 total += cur->iov_len;
559 cur--;
560 *iov_cnt -= 1;
563 return total;
566 void qemu_iovec_discard_back(QEMUIOVector *qiov, size_t bytes)
568 size_t total;
569 unsigned int niov = qiov->niov;
571 assert(qiov->size >= bytes);
572 total = iov_discard_back(qiov->iov, &niov, bytes);
573 assert(total == bytes);
575 qiov->niov = niov;
576 qiov->size -= bytes;