block_int-common.h: split function pointers in BdrvChildClass
[qemu.git] / hw / nvme / ctrl.c
blob03760ddeae8cda0ae4c260cc73f379840e6389cf
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * subsys=<subsys_id>
39 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
40 * zoned=<true|false[optional]>, \
41 * subsys=<subsys_id>,detached=<true|false[optional]>
43 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
44 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
45 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
46 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
48 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
49 * For example:
50 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
51 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
53 * The PMR will use BAR 4/5 exclusively.
55 * To place controller(s) and namespace(s) to a subsystem, then provide
56 * nvme-subsys device as above.
58 * nvme subsystem device parameters
59 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60 * - `nqn`
61 * This parameter provides the `<nqn_id>` part of the string
62 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
63 * of subsystem controllers. Note that `<nqn_id>` should be unique per
64 * subsystem, but this is not enforced by QEMU. If not specified, it will
65 * default to the value of the `id` parameter (`<subsys_id>`).
67 * nvme device parameters
68 * ~~~~~~~~~~~~~~~~~~~~~~
69 * - `subsys`
70 * Specifying this parameter attaches the controller to the subsystem and
71 * the SUBNQN field in the controller will report the NQN of the subsystem
72 * device. This also enables multi controller capability represented in
73 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
74 * Namesapce Sharing Capabilities).
76 * - `aerl`
77 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
78 * of concurrently outstanding Asynchronous Event Request commands support
79 * by the controller. This is a 0's based value.
81 * - `aer_max_queued`
82 * This is the maximum number of events that the device will enqueue for
83 * completion when there are no outstanding AERs. When the maximum number of
84 * enqueued events are reached, subsequent events will be dropped.
86 * - `mdts`
87 * Indicates the maximum data transfer size for a command that transfers data
88 * between host-accessible memory and the controller. The value is specified
89 * as a power of two (2^n) and is in units of the minimum memory page size
90 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
92 * - `vsl`
93 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
94 * this value is specified as a power of two (2^n) and is in units of the
95 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
96 * KiB).
98 * - `zoned.zasl`
99 * Indicates the maximum data transfer size for the Zone Append command. Like
100 * `mdts`, the value is specified as a power of two (2^n) and is in units of
101 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
102 * defaulting to the value of `mdts`).
104 * - `zoned.auto_transition`
105 * Indicates if zones in zone state implicitly opened can be automatically
106 * transitioned to zone state closed for resource management purposes.
107 * Defaults to 'on'.
109 * nvme namespace device parameters
110 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
111 * - `shared`
112 * When the parent nvme device (as defined explicitly by the 'bus' parameter
113 * or implicitly by the most recently defined NvmeBus) is linked to an
114 * nvme-subsys device, the namespace will be attached to all controllers in
115 * the subsystem. If set to 'off' (the default), the namespace will remain a
116 * private namespace and may only be attached to a single controller at a
117 * time.
119 * - `detached`
120 * This parameter is only valid together with the `subsys` parameter. If left
121 * at the default value (`false/off`), the namespace will be attached to all
122 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
123 * namespace will be available in the subsystem but not attached to any
124 * controllers.
126 * Setting `zoned` to true selects Zoned Command Set at the namespace.
127 * In this case, the following namespace properties are available to configure
128 * zoned operation:
129 * zoned.zone_size=<zone size in bytes, default: 128MiB>
130 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
132 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
133 * The value 0 (default) forces zone capacity to be the same as zone
134 * size. The value of this property may not exceed zone size.
136 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
137 * This value needs to be specified in 64B units. If it is zero,
138 * namespace(s) will not support zone descriptor extensions.
140 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
141 * The default value means there is no limit to the number of
142 * concurrently active zones.
144 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
145 * The default value means there is no limit to the number of
146 * concurrently open zones.
148 * zoned.cross_read=<enable RAZB, default: false>
149 * Setting this property to true enables Read Across Zone Boundaries.
152 #include "qemu/osdep.h"
153 #include "qemu/cutils.h"
154 #include "qemu/error-report.h"
155 #include "qemu/log.h"
156 #include "qemu/units.h"
157 #include "qapi/error.h"
158 #include "qapi/visitor.h"
159 #include "sysemu/sysemu.h"
160 #include "sysemu/block-backend.h"
161 #include "sysemu/hostmem.h"
162 #include "hw/pci/msix.h"
163 #include "migration/vmstate.h"
165 #include "nvme.h"
166 #include "dif.h"
167 #include "trace.h"
169 #define NVME_MAX_IOQPAIRS 0xffff
170 #define NVME_DB_SIZE 4
171 #define NVME_SPEC_VER 0x00010400
172 #define NVME_CMB_BIR 2
173 #define NVME_PMR_BIR 4
174 #define NVME_TEMPERATURE 0x143
175 #define NVME_TEMPERATURE_WARNING 0x157
176 #define NVME_TEMPERATURE_CRITICAL 0x175
177 #define NVME_NUM_FW_SLOTS 1
178 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
180 #define NVME_GUEST_ERR(trace, fmt, ...) \
181 do { \
182 (trace_##trace)(__VA_ARGS__); \
183 qemu_log_mask(LOG_GUEST_ERROR, #trace \
184 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
185 } while (0)
187 static const bool nvme_feature_support[NVME_FID_MAX] = {
188 [NVME_ARBITRATION] = true,
189 [NVME_POWER_MANAGEMENT] = true,
190 [NVME_TEMPERATURE_THRESHOLD] = true,
191 [NVME_ERROR_RECOVERY] = true,
192 [NVME_VOLATILE_WRITE_CACHE] = true,
193 [NVME_NUMBER_OF_QUEUES] = true,
194 [NVME_INTERRUPT_COALESCING] = true,
195 [NVME_INTERRUPT_VECTOR_CONF] = true,
196 [NVME_WRITE_ATOMICITY] = true,
197 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
198 [NVME_TIMESTAMP] = true,
199 [NVME_HOST_BEHAVIOR_SUPPORT] = true,
200 [NVME_COMMAND_SET_PROFILE] = true,
203 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
204 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
205 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
206 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
207 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
208 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
209 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
210 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
211 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
214 static const uint32_t nvme_cse_acs[256] = {
215 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
216 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
217 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
218 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
219 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
220 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
221 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
222 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
223 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
224 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
225 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
226 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
229 static const uint32_t nvme_cse_iocs_none[256];
231 static const uint32_t nvme_cse_iocs_nvm[256] = {
232 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
233 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
234 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
235 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
236 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
237 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
238 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
239 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
242 static const uint32_t nvme_cse_iocs_zoned[256] = {
243 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
244 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
245 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
246 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
247 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
248 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
249 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
250 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
251 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
252 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
253 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
256 static void nvme_process_sq(void *opaque);
258 static uint16_t nvme_sqid(NvmeRequest *req)
260 return le16_to_cpu(req->sq->sqid);
263 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
264 NvmeZoneState state)
266 if (QTAILQ_IN_USE(zone, entry)) {
267 switch (nvme_get_zone_state(zone)) {
268 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
269 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
270 break;
271 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
272 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
273 break;
274 case NVME_ZONE_STATE_CLOSED:
275 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
276 break;
277 case NVME_ZONE_STATE_FULL:
278 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
279 default:
284 nvme_set_zone_state(zone, state);
286 switch (state) {
287 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
288 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
289 break;
290 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
291 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
292 break;
293 case NVME_ZONE_STATE_CLOSED:
294 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
295 break;
296 case NVME_ZONE_STATE_FULL:
297 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
298 case NVME_ZONE_STATE_READ_ONLY:
299 break;
300 default:
301 zone->d.za = 0;
305 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
306 uint32_t opn, uint32_t zrwa)
308 if (ns->params.max_active_zones != 0 &&
309 ns->nr_active_zones + act > ns->params.max_active_zones) {
310 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
311 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
314 if (ns->params.max_open_zones != 0 &&
315 ns->nr_open_zones + opn > ns->params.max_open_zones) {
316 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
317 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
320 if (zrwa > ns->zns.numzrwa) {
321 return NVME_NOZRWA | NVME_DNR;
324 return NVME_SUCCESS;
328 * Check if we can open a zone without exceeding open/active limits.
329 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
331 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
333 return nvme_zns_check_resources(ns, act, opn, 0);
336 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
338 hwaddr hi, lo;
340 if (!n->cmb.cmse) {
341 return false;
344 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
345 hi = lo + int128_get64(n->cmb.mem.size);
347 return addr >= lo && addr < hi;
350 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
352 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
353 return &n->cmb.buf[addr - base];
356 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
358 hwaddr hi;
360 if (!n->pmr.cmse) {
361 return false;
364 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
366 return addr >= n->pmr.cba && addr < hi;
369 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
371 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
374 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
376 hwaddr hi, lo;
379 * The purpose of this check is to guard against invalid "local" access to
380 * the iomem (i.e. controller registers). Thus, we check against the range
381 * covered by the 'bar0' MemoryRegion since that is currently composed of
382 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
383 * that if the device model is ever changed to allow the CMB to be located
384 * in BAR0 as well, then this must be changed.
386 lo = n->bar0.addr;
387 hi = lo + int128_get64(n->bar0.size);
389 return addr >= lo && addr < hi;
392 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
394 hwaddr hi = addr + size - 1;
395 if (hi < addr) {
396 return 1;
399 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
400 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
401 return 0;
404 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
405 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
406 return 0;
409 return pci_dma_read(&n->parent_obj, addr, buf, size);
412 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
414 hwaddr hi = addr + size - 1;
415 if (hi < addr) {
416 return 1;
419 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
420 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
421 return 0;
424 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
425 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
426 return 0;
429 return pci_dma_write(&n->parent_obj, addr, buf, size);
432 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
434 return nsid &&
435 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
438 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
440 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
443 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
445 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
448 static void nvme_inc_cq_tail(NvmeCQueue *cq)
450 cq->tail++;
451 if (cq->tail >= cq->size) {
452 cq->tail = 0;
453 cq->phase = !cq->phase;
457 static void nvme_inc_sq_head(NvmeSQueue *sq)
459 sq->head = (sq->head + 1) % sq->size;
462 static uint8_t nvme_cq_full(NvmeCQueue *cq)
464 return (cq->tail + 1) % cq->size == cq->head;
467 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
469 return sq->head == sq->tail;
472 static void nvme_irq_check(NvmeCtrl *n)
474 uint32_t intms = ldl_le_p(&n->bar.intms);
476 if (msix_enabled(&(n->parent_obj))) {
477 return;
479 if (~intms & n->irq_status) {
480 pci_irq_assert(&n->parent_obj);
481 } else {
482 pci_irq_deassert(&n->parent_obj);
486 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
488 if (cq->irq_enabled) {
489 if (msix_enabled(&(n->parent_obj))) {
490 trace_pci_nvme_irq_msix(cq->vector);
491 msix_notify(&(n->parent_obj), cq->vector);
492 } else {
493 trace_pci_nvme_irq_pin();
494 assert(cq->vector < 32);
495 n->irq_status |= 1 << cq->vector;
496 nvme_irq_check(n);
498 } else {
499 trace_pci_nvme_irq_masked();
503 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
505 if (cq->irq_enabled) {
506 if (msix_enabled(&(n->parent_obj))) {
507 return;
508 } else {
509 assert(cq->vector < 32);
510 if (!n->cq_pending) {
511 n->irq_status &= ~(1 << cq->vector);
513 nvme_irq_check(n);
518 static void nvme_req_clear(NvmeRequest *req)
520 req->ns = NULL;
521 req->opaque = NULL;
522 req->aiocb = NULL;
523 memset(&req->cqe, 0x0, sizeof(req->cqe));
524 req->status = NVME_SUCCESS;
527 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
529 if (dma) {
530 pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
531 sg->flags = NVME_SG_DMA;
532 } else {
533 qemu_iovec_init(&sg->iov, 0);
536 sg->flags |= NVME_SG_ALLOC;
539 static inline void nvme_sg_unmap(NvmeSg *sg)
541 if (!(sg->flags & NVME_SG_ALLOC)) {
542 return;
545 if (sg->flags & NVME_SG_DMA) {
546 qemu_sglist_destroy(&sg->qsg);
547 } else {
548 qemu_iovec_destroy(&sg->iov);
551 memset(sg, 0x0, sizeof(*sg));
555 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
556 * holds both data and metadata. This function splits the data and metadata
557 * into two separate QSG/IOVs.
559 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
560 NvmeSg *mdata)
562 NvmeSg *dst = data;
563 uint32_t trans_len, count = ns->lbasz;
564 uint64_t offset = 0;
565 bool dma = sg->flags & NVME_SG_DMA;
566 size_t sge_len;
567 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
568 int sg_idx = 0;
570 assert(sg->flags & NVME_SG_ALLOC);
572 while (sg_len) {
573 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
575 trans_len = MIN(sg_len, count);
576 trans_len = MIN(trans_len, sge_len - offset);
578 if (dst) {
579 if (dma) {
580 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
581 trans_len);
582 } else {
583 qemu_iovec_add(&dst->iov,
584 sg->iov.iov[sg_idx].iov_base + offset,
585 trans_len);
589 sg_len -= trans_len;
590 count -= trans_len;
591 offset += trans_len;
593 if (count == 0) {
594 dst = (dst == data) ? mdata : data;
595 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
598 if (sge_len == offset) {
599 offset = 0;
600 sg_idx++;
605 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
606 size_t len)
608 if (!len) {
609 return NVME_SUCCESS;
612 trace_pci_nvme_map_addr_cmb(addr, len);
614 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
615 return NVME_DATA_TRAS_ERROR;
618 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
620 return NVME_SUCCESS;
623 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
624 size_t len)
626 if (!len) {
627 return NVME_SUCCESS;
630 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
631 return NVME_DATA_TRAS_ERROR;
634 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
636 return NVME_SUCCESS;
639 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
641 bool cmb = false, pmr = false;
643 if (!len) {
644 return NVME_SUCCESS;
647 trace_pci_nvme_map_addr(addr, len);
649 if (nvme_addr_is_iomem(n, addr)) {
650 return NVME_DATA_TRAS_ERROR;
653 if (nvme_addr_is_cmb(n, addr)) {
654 cmb = true;
655 } else if (nvme_addr_is_pmr(n, addr)) {
656 pmr = true;
659 if (cmb || pmr) {
660 if (sg->flags & NVME_SG_DMA) {
661 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
664 if (sg->iov.niov + 1 > IOV_MAX) {
665 goto max_mappings_exceeded;
668 if (cmb) {
669 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
670 } else {
671 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
675 if (!(sg->flags & NVME_SG_DMA)) {
676 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
679 if (sg->qsg.nsg + 1 > IOV_MAX) {
680 goto max_mappings_exceeded;
683 qemu_sglist_add(&sg->qsg, addr, len);
685 return NVME_SUCCESS;
687 max_mappings_exceeded:
688 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
689 "number of mappings exceed 1024");
690 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
693 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
695 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
698 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
699 uint64_t prp2, uint32_t len)
701 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
702 trans_len = MIN(len, trans_len);
703 int num_prps = (len >> n->page_bits) + 1;
704 uint16_t status;
705 int ret;
707 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
709 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
711 status = nvme_map_addr(n, sg, prp1, trans_len);
712 if (status) {
713 goto unmap;
716 len -= trans_len;
717 if (len) {
718 if (len > n->page_size) {
719 uint64_t prp_list[n->max_prp_ents];
720 uint32_t nents, prp_trans;
721 int i = 0;
724 * The first PRP list entry, pointed to by PRP2 may contain offset.
725 * Hence, we need to calculate the number of entries in based on
726 * that offset.
728 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
729 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
730 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
731 if (ret) {
732 trace_pci_nvme_err_addr_read(prp2);
733 status = NVME_DATA_TRAS_ERROR;
734 goto unmap;
736 while (len != 0) {
737 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
739 if (i == nents - 1 && len > n->page_size) {
740 if (unlikely(prp_ent & (n->page_size - 1))) {
741 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
742 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
743 goto unmap;
746 i = 0;
747 nents = (len + n->page_size - 1) >> n->page_bits;
748 nents = MIN(nents, n->max_prp_ents);
749 prp_trans = nents * sizeof(uint64_t);
750 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
751 prp_trans);
752 if (ret) {
753 trace_pci_nvme_err_addr_read(prp_ent);
754 status = NVME_DATA_TRAS_ERROR;
755 goto unmap;
757 prp_ent = le64_to_cpu(prp_list[i]);
760 if (unlikely(prp_ent & (n->page_size - 1))) {
761 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
762 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
763 goto unmap;
766 trans_len = MIN(len, n->page_size);
767 status = nvme_map_addr(n, sg, prp_ent, trans_len);
768 if (status) {
769 goto unmap;
772 len -= trans_len;
773 i++;
775 } else {
776 if (unlikely(prp2 & (n->page_size - 1))) {
777 trace_pci_nvme_err_invalid_prp2_align(prp2);
778 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
779 goto unmap;
781 status = nvme_map_addr(n, sg, prp2, len);
782 if (status) {
783 goto unmap;
788 return NVME_SUCCESS;
790 unmap:
791 nvme_sg_unmap(sg);
792 return status;
796 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
797 * number of bytes mapped in len.
799 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
800 NvmeSglDescriptor *segment, uint64_t nsgld,
801 size_t *len, NvmeCmd *cmd)
803 dma_addr_t addr, trans_len;
804 uint32_t dlen;
805 uint16_t status;
807 for (int i = 0; i < nsgld; i++) {
808 uint8_t type = NVME_SGL_TYPE(segment[i].type);
810 switch (type) {
811 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
812 if (cmd->opcode == NVME_CMD_WRITE) {
813 continue;
815 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
816 break;
817 case NVME_SGL_DESCR_TYPE_SEGMENT:
818 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
819 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
820 default:
821 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
824 dlen = le32_to_cpu(segment[i].len);
826 if (!dlen) {
827 continue;
830 if (*len == 0) {
832 * All data has been mapped, but the SGL contains additional
833 * segments and/or descriptors. The controller might accept
834 * ignoring the rest of the SGL.
836 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
837 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
838 break;
841 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
842 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
845 trans_len = MIN(*len, dlen);
847 if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
848 goto next;
851 addr = le64_to_cpu(segment[i].addr);
853 if (UINT64_MAX - addr < dlen) {
854 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
857 status = nvme_map_addr(n, sg, addr, trans_len);
858 if (status) {
859 return status;
862 next:
863 *len -= trans_len;
866 return NVME_SUCCESS;
869 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
870 size_t len, NvmeCmd *cmd)
873 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
874 * dynamically allocating a potentially huge SGL. The spec allows the SGL
875 * to be larger (as in number of bytes required to describe the SGL
876 * descriptors and segment chain) than the command transfer size, so it is
877 * not bounded by MDTS.
879 const int SEG_CHUNK_SIZE = 256;
881 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
882 uint64_t nsgld;
883 uint32_t seg_len;
884 uint16_t status;
885 hwaddr addr;
886 int ret;
888 sgld = &sgl;
889 addr = le64_to_cpu(sgl.addr);
891 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
893 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
896 * If the entire transfer can be described with a single data block it can
897 * be mapped directly.
899 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
900 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
901 if (status) {
902 goto unmap;
905 goto out;
908 for (;;) {
909 switch (NVME_SGL_TYPE(sgld->type)) {
910 case NVME_SGL_DESCR_TYPE_SEGMENT:
911 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
912 break;
913 default:
914 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
917 seg_len = le32_to_cpu(sgld->len);
919 /* check the length of the (Last) Segment descriptor */
920 if ((!seg_len || seg_len & 0xf) &&
921 (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
922 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
925 if (UINT64_MAX - addr < seg_len) {
926 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
929 nsgld = seg_len / sizeof(NvmeSglDescriptor);
931 while (nsgld > SEG_CHUNK_SIZE) {
932 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
933 trace_pci_nvme_err_addr_read(addr);
934 status = NVME_DATA_TRAS_ERROR;
935 goto unmap;
938 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
939 &len, cmd);
940 if (status) {
941 goto unmap;
944 nsgld -= SEG_CHUNK_SIZE;
945 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
948 ret = nvme_addr_read(n, addr, segment, nsgld *
949 sizeof(NvmeSglDescriptor));
950 if (ret) {
951 trace_pci_nvme_err_addr_read(addr);
952 status = NVME_DATA_TRAS_ERROR;
953 goto unmap;
956 last_sgld = &segment[nsgld - 1];
959 * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
960 * then we are done.
962 switch (NVME_SGL_TYPE(last_sgld->type)) {
963 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
964 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
965 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
966 if (status) {
967 goto unmap;
970 goto out;
972 default:
973 break;
977 * If the last descriptor was not a Data Block or Bit Bucket, then the
978 * current segment must not be a Last Segment.
980 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
981 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
982 goto unmap;
985 sgld = last_sgld;
986 addr = le64_to_cpu(sgld->addr);
989 * Do not map the last descriptor; it will be a Segment or Last Segment
990 * descriptor and is handled by the next iteration.
992 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
993 if (status) {
994 goto unmap;
998 out:
999 /* if there is any residual left in len, the SGL was too short */
1000 if (len) {
1001 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1002 goto unmap;
1005 return NVME_SUCCESS;
1007 unmap:
1008 nvme_sg_unmap(sg);
1009 return status;
1012 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1013 NvmeCmd *cmd)
1015 uint64_t prp1, prp2;
1017 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1018 case NVME_PSDT_PRP:
1019 prp1 = le64_to_cpu(cmd->dptr.prp1);
1020 prp2 = le64_to_cpu(cmd->dptr.prp2);
1022 return nvme_map_prp(n, sg, prp1, prp2, len);
1023 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1024 case NVME_PSDT_SGL_MPTR_SGL:
1025 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1026 default:
1027 return NVME_INVALID_FIELD;
1031 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1032 NvmeCmd *cmd)
1034 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1035 hwaddr mptr = le64_to_cpu(cmd->mptr);
1036 uint16_t status;
1038 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1039 NvmeSglDescriptor sgl;
1041 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1042 return NVME_DATA_TRAS_ERROR;
1045 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1046 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1047 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1050 return status;
1053 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1054 status = nvme_map_addr(n, sg, mptr, len);
1055 if (status) {
1056 nvme_sg_unmap(sg);
1059 return status;
1062 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1064 NvmeNamespace *ns = req->ns;
1065 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1066 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1067 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1068 size_t len = nvme_l2b(ns, nlb);
1069 uint16_t status;
1071 if (nvme_ns_ext(ns) &&
1072 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1073 NvmeSg sg;
1075 len += nvme_m2b(ns, nlb);
1077 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1078 if (status) {
1079 return status;
1082 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1083 nvme_sg_split(&sg, ns, &req->sg, NULL);
1084 nvme_sg_unmap(&sg);
1086 return NVME_SUCCESS;
1089 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1092 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1094 NvmeNamespace *ns = req->ns;
1095 size_t len = nvme_m2b(ns, nlb);
1096 uint16_t status;
1098 if (nvme_ns_ext(ns)) {
1099 NvmeSg sg;
1101 len += nvme_l2b(ns, nlb);
1103 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1104 if (status) {
1105 return status;
1108 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1109 nvme_sg_split(&sg, ns, NULL, &req->sg);
1110 nvme_sg_unmap(&sg);
1112 return NVME_SUCCESS;
1115 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1118 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1119 uint32_t len, uint32_t bytes,
1120 int32_t skip_bytes, int64_t offset,
1121 NvmeTxDirection dir)
1123 hwaddr addr;
1124 uint32_t trans_len, count = bytes;
1125 bool dma = sg->flags & NVME_SG_DMA;
1126 int64_t sge_len;
1127 int sg_idx = 0;
1128 int ret;
1130 assert(sg->flags & NVME_SG_ALLOC);
1132 while (len) {
1133 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1135 if (sge_len - offset < 0) {
1136 offset -= sge_len;
1137 sg_idx++;
1138 continue;
1141 if (sge_len == offset) {
1142 offset = 0;
1143 sg_idx++;
1144 continue;
1147 trans_len = MIN(len, count);
1148 trans_len = MIN(trans_len, sge_len - offset);
1150 if (dma) {
1151 addr = sg->qsg.sg[sg_idx].base + offset;
1152 } else {
1153 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1156 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1157 ret = nvme_addr_read(n, addr, ptr, trans_len);
1158 } else {
1159 ret = nvme_addr_write(n, addr, ptr, trans_len);
1162 if (ret) {
1163 return NVME_DATA_TRAS_ERROR;
1166 ptr += trans_len;
1167 len -= trans_len;
1168 count -= trans_len;
1169 offset += trans_len;
1171 if (count == 0) {
1172 count = bytes;
1173 offset += skip_bytes;
1177 return NVME_SUCCESS;
1180 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1181 NvmeTxDirection dir)
1183 assert(sg->flags & NVME_SG_ALLOC);
1185 if (sg->flags & NVME_SG_DMA) {
1186 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1187 dma_addr_t residual;
1189 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1190 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1191 } else {
1192 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1195 if (unlikely(residual)) {
1196 trace_pci_nvme_err_invalid_dma();
1197 return NVME_INVALID_FIELD | NVME_DNR;
1199 } else {
1200 size_t bytes;
1202 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1203 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1204 } else {
1205 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1208 if (unlikely(bytes != len)) {
1209 trace_pci_nvme_err_invalid_dma();
1210 return NVME_INVALID_FIELD | NVME_DNR;
1214 return NVME_SUCCESS;
1217 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1218 NvmeRequest *req)
1220 uint16_t status;
1222 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1223 if (status) {
1224 return status;
1227 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1230 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1231 NvmeRequest *req)
1233 uint16_t status;
1235 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1236 if (status) {
1237 return status;
1240 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1243 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1244 NvmeTxDirection dir, NvmeRequest *req)
1246 NvmeNamespace *ns = req->ns;
1247 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1248 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1249 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1251 if (nvme_ns_ext(ns) &&
1252 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1253 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1254 ns->lbaf.ms, 0, dir);
1257 return nvme_tx(n, &req->sg, ptr, len, dir);
1260 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1261 NvmeTxDirection dir, NvmeRequest *req)
1263 NvmeNamespace *ns = req->ns;
1264 uint16_t status;
1266 if (nvme_ns_ext(ns)) {
1267 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1268 ns->lbasz, ns->lbasz, dir);
1271 nvme_sg_unmap(&req->sg);
1273 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1274 if (status) {
1275 return status;
1278 return nvme_tx(n, &req->sg, ptr, len, dir);
1281 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1282 BlockCompletionFunc *cb, NvmeRequest *req)
1284 assert(req->sg.flags & NVME_SG_ALLOC);
1286 if (req->sg.flags & NVME_SG_DMA) {
1287 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1288 cb, req);
1289 } else {
1290 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1294 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1295 BlockCompletionFunc *cb, NvmeRequest *req)
1297 assert(req->sg.flags & NVME_SG_ALLOC);
1299 if (req->sg.flags & NVME_SG_DMA) {
1300 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1301 cb, req);
1302 } else {
1303 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1307 static void nvme_post_cqes(void *opaque)
1309 NvmeCQueue *cq = opaque;
1310 NvmeCtrl *n = cq->ctrl;
1311 NvmeRequest *req, *next;
1312 bool pending = cq->head != cq->tail;
1313 int ret;
1315 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1316 NvmeSQueue *sq;
1317 hwaddr addr;
1319 if (nvme_cq_full(cq)) {
1320 break;
1323 sq = req->sq;
1324 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1325 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1326 req->cqe.sq_head = cpu_to_le16(sq->head);
1327 addr = cq->dma_addr + cq->tail * n->cqe_size;
1328 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1329 sizeof(req->cqe));
1330 if (ret) {
1331 trace_pci_nvme_err_addr_write(addr);
1332 trace_pci_nvme_err_cfs();
1333 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1334 break;
1336 QTAILQ_REMOVE(&cq->req_list, req, entry);
1337 nvme_inc_cq_tail(cq);
1338 nvme_sg_unmap(&req->sg);
1339 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1341 if (cq->tail != cq->head) {
1342 if (cq->irq_enabled && !pending) {
1343 n->cq_pending++;
1346 nvme_irq_assert(n, cq);
1350 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1352 assert(cq->cqid == req->sq->cqid);
1353 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1354 le32_to_cpu(req->cqe.result),
1355 le32_to_cpu(req->cqe.dw1),
1356 req->status);
1358 if (req->status) {
1359 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1360 req->status, req->cmd.opcode);
1363 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1364 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1365 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1368 static void nvme_process_aers(void *opaque)
1370 NvmeCtrl *n = opaque;
1371 NvmeAsyncEvent *event, *next;
1373 trace_pci_nvme_process_aers(n->aer_queued);
1375 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1376 NvmeRequest *req;
1377 NvmeAerResult *result;
1379 /* can't post cqe if there is nothing to complete */
1380 if (!n->outstanding_aers) {
1381 trace_pci_nvme_no_outstanding_aers();
1382 break;
1385 /* ignore if masked (cqe posted, but event not cleared) */
1386 if (n->aer_mask & (1 << event->result.event_type)) {
1387 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1388 continue;
1391 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1392 n->aer_queued--;
1394 n->aer_mask |= 1 << event->result.event_type;
1395 n->outstanding_aers--;
1397 req = n->aer_reqs[n->outstanding_aers];
1399 result = (NvmeAerResult *) &req->cqe.result;
1400 result->event_type = event->result.event_type;
1401 result->event_info = event->result.event_info;
1402 result->log_page = event->result.log_page;
1403 g_free(event);
1405 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1406 result->log_page);
1408 nvme_enqueue_req_completion(&n->admin_cq, req);
1412 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1413 uint8_t event_info, uint8_t log_page)
1415 NvmeAsyncEvent *event;
1417 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1419 if (n->aer_queued == n->params.aer_max_queued) {
1420 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1421 return;
1424 event = g_new(NvmeAsyncEvent, 1);
1425 event->result = (NvmeAerResult) {
1426 .event_type = event_type,
1427 .event_info = event_info,
1428 .log_page = log_page,
1431 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1432 n->aer_queued++;
1434 nvme_process_aers(n);
1437 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1439 uint8_t aer_info;
1441 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1442 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1443 return;
1446 switch (event) {
1447 case NVME_SMART_SPARE:
1448 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1449 break;
1450 case NVME_SMART_TEMPERATURE:
1451 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1452 break;
1453 case NVME_SMART_RELIABILITY:
1454 case NVME_SMART_MEDIA_READ_ONLY:
1455 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1456 case NVME_SMART_PMR_UNRELIABLE:
1457 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1458 break;
1459 default:
1460 return;
1463 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1466 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1468 n->aer_mask &= ~(1 << event_type);
1469 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1470 nvme_process_aers(n);
1474 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1476 uint8_t mdts = n->params.mdts;
1478 if (mdts && len > n->page_size << mdts) {
1479 trace_pci_nvme_err_mdts(len);
1480 return NVME_INVALID_FIELD | NVME_DNR;
1483 return NVME_SUCCESS;
1486 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1487 uint32_t nlb)
1489 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1491 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1492 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1493 return NVME_LBA_RANGE | NVME_DNR;
1496 return NVME_SUCCESS;
1499 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1500 uint32_t nlb, int flags)
1502 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1504 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1505 int64_t offset = nvme_l2b(ns, slba);
1506 int ret;
1509 * `pnum` holds the number of bytes after offset that shares the same
1510 * allocation status as the byte at offset. If `pnum` is different from
1511 * `bytes`, we should check the allocation status of the next range and
1512 * continue this until all bytes have been checked.
1514 do {
1515 bytes -= pnum;
1517 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1518 if (ret < 0) {
1519 return ret;
1523 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1524 !!(ret & BDRV_BLOCK_ZERO));
1526 if (!(ret & flags)) {
1527 return 1;
1530 offset += pnum;
1531 } while (pnum != bytes);
1533 return 0;
1536 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1537 uint32_t nlb)
1539 int ret;
1540 Error *err = NULL;
1542 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1543 if (ret) {
1544 if (ret < 0) {
1545 error_setg_errno(&err, -ret, "unable to get block status");
1546 error_report_err(err);
1548 return NVME_INTERNAL_DEV_ERROR;
1551 return NVME_DULB;
1554 return NVME_SUCCESS;
1557 static void nvme_aio_err(NvmeRequest *req, int ret)
1559 uint16_t status = NVME_SUCCESS;
1560 Error *local_err = NULL;
1562 switch (req->cmd.opcode) {
1563 case NVME_CMD_READ:
1564 status = NVME_UNRECOVERED_READ;
1565 break;
1566 case NVME_CMD_FLUSH:
1567 case NVME_CMD_WRITE:
1568 case NVME_CMD_WRITE_ZEROES:
1569 case NVME_CMD_ZONE_APPEND:
1570 status = NVME_WRITE_FAULT;
1571 break;
1572 default:
1573 status = NVME_INTERNAL_DEV_ERROR;
1574 break;
1577 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1579 error_setg_errno(&local_err, -ret, "aio failed");
1580 error_report_err(local_err);
1583 * Set the command status code to the first encountered error but allow a
1584 * subsequent Internal Device Error to trump it.
1586 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1587 return;
1590 req->status = status;
1593 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1595 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1596 slba / ns->zone_size;
1599 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1601 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1603 if (zone_idx >= ns->num_zones) {
1604 return NULL;
1607 return &ns->zone_array[zone_idx];
1610 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1612 uint64_t zslba = zone->d.zslba;
1614 switch (nvme_get_zone_state(zone)) {
1615 case NVME_ZONE_STATE_EMPTY:
1616 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1617 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1618 case NVME_ZONE_STATE_CLOSED:
1619 return NVME_SUCCESS;
1620 case NVME_ZONE_STATE_FULL:
1621 trace_pci_nvme_err_zone_is_full(zslba);
1622 return NVME_ZONE_FULL;
1623 case NVME_ZONE_STATE_OFFLINE:
1624 trace_pci_nvme_err_zone_is_offline(zslba);
1625 return NVME_ZONE_OFFLINE;
1626 case NVME_ZONE_STATE_READ_ONLY:
1627 trace_pci_nvme_err_zone_is_read_only(zslba);
1628 return NVME_ZONE_READ_ONLY;
1629 default:
1630 assert(false);
1633 return NVME_INTERNAL_DEV_ERROR;
1636 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1637 uint64_t slba, uint32_t nlb)
1639 uint64_t zcap = nvme_zone_wr_boundary(zone);
1640 uint16_t status;
1642 status = nvme_check_zone_state_for_write(zone);
1643 if (status) {
1644 return status;
1647 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1648 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1650 if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1651 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1652 return NVME_ZONE_INVALID_WRITE;
1654 } else {
1655 if (unlikely(slba != zone->w_ptr)) {
1656 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1657 zone->w_ptr);
1658 return NVME_ZONE_INVALID_WRITE;
1662 if (unlikely((slba + nlb) > zcap)) {
1663 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1664 return NVME_ZONE_BOUNDARY_ERROR;
1667 return NVME_SUCCESS;
1670 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1672 switch (nvme_get_zone_state(zone)) {
1673 case NVME_ZONE_STATE_EMPTY:
1674 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1675 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1676 case NVME_ZONE_STATE_FULL:
1677 case NVME_ZONE_STATE_CLOSED:
1678 case NVME_ZONE_STATE_READ_ONLY:
1679 return NVME_SUCCESS;
1680 case NVME_ZONE_STATE_OFFLINE:
1681 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1682 return NVME_ZONE_OFFLINE;
1683 default:
1684 assert(false);
1687 return NVME_INTERNAL_DEV_ERROR;
1690 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1691 uint32_t nlb)
1693 NvmeZone *zone;
1694 uint64_t bndry, end;
1695 uint16_t status;
1697 zone = nvme_get_zone_by_slba(ns, slba);
1698 assert(zone);
1700 bndry = nvme_zone_rd_boundary(ns, zone);
1701 end = slba + nlb;
1703 status = nvme_check_zone_state_for_read(zone);
1704 if (status) {
1706 } else if (unlikely(end > bndry)) {
1707 if (!ns->params.cross_zone_read) {
1708 status = NVME_ZONE_BOUNDARY_ERROR;
1709 } else {
1711 * Read across zone boundary - check that all subsequent
1712 * zones that are being read have an appropriate state.
1714 do {
1715 zone++;
1716 status = nvme_check_zone_state_for_read(zone);
1717 if (status) {
1718 break;
1720 } while (end > nvme_zone_rd_boundary(ns, zone));
1724 return status;
1727 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1729 switch (nvme_get_zone_state(zone)) {
1730 case NVME_ZONE_STATE_FULL:
1731 return NVME_SUCCESS;
1733 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1734 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1735 nvme_aor_dec_open(ns);
1736 /* fallthrough */
1737 case NVME_ZONE_STATE_CLOSED:
1738 nvme_aor_dec_active(ns);
1740 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1741 zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1742 if (ns->params.numzrwa) {
1743 ns->zns.numzrwa++;
1747 /* fallthrough */
1748 case NVME_ZONE_STATE_EMPTY:
1749 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1750 return NVME_SUCCESS;
1752 default:
1753 return NVME_ZONE_INVAL_TRANSITION;
1757 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1759 switch (nvme_get_zone_state(zone)) {
1760 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1761 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1762 nvme_aor_dec_open(ns);
1763 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1764 /* fall through */
1765 case NVME_ZONE_STATE_CLOSED:
1766 return NVME_SUCCESS;
1768 default:
1769 return NVME_ZONE_INVAL_TRANSITION;
1773 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1775 switch (nvme_get_zone_state(zone)) {
1776 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1777 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1778 nvme_aor_dec_open(ns);
1779 /* fallthrough */
1780 case NVME_ZONE_STATE_CLOSED:
1781 nvme_aor_dec_active(ns);
1783 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1784 if (ns->params.numzrwa) {
1785 ns->zns.numzrwa++;
1789 /* fallthrough */
1790 case NVME_ZONE_STATE_FULL:
1791 zone->w_ptr = zone->d.zslba;
1792 zone->d.wp = zone->w_ptr;
1793 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1794 /* fallthrough */
1795 case NVME_ZONE_STATE_EMPTY:
1796 return NVME_SUCCESS;
1798 default:
1799 return NVME_ZONE_INVAL_TRANSITION;
1803 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1805 NvmeZone *zone;
1807 if (ns->params.max_open_zones &&
1808 ns->nr_open_zones == ns->params.max_open_zones) {
1809 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1810 if (zone) {
1812 * Automatically close this implicitly open zone.
1814 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1815 nvme_zrm_close(ns, zone);
1820 enum {
1821 NVME_ZRM_AUTO = 1 << 0,
1822 NVME_ZRM_ZRWA = 1 << 1,
1825 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1826 NvmeZone *zone, int flags)
1828 int act = 0;
1829 uint16_t status;
1831 switch (nvme_get_zone_state(zone)) {
1832 case NVME_ZONE_STATE_EMPTY:
1833 act = 1;
1835 /* fallthrough */
1837 case NVME_ZONE_STATE_CLOSED:
1838 if (n->params.auto_transition_zones) {
1839 nvme_zrm_auto_transition_zone(ns);
1841 status = nvme_zns_check_resources(ns, act, 1,
1842 (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1843 if (status) {
1844 return status;
1847 if (act) {
1848 nvme_aor_inc_active(ns);
1851 nvme_aor_inc_open(ns);
1853 if (flags & NVME_ZRM_AUTO) {
1854 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1855 return NVME_SUCCESS;
1858 /* fallthrough */
1860 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1861 if (flags & NVME_ZRM_AUTO) {
1862 return NVME_SUCCESS;
1865 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1867 /* fallthrough */
1869 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1870 if (flags & NVME_ZRM_ZRWA) {
1871 ns->zns.numzrwa--;
1873 zone->d.za |= NVME_ZA_ZRWA_VALID;
1876 return NVME_SUCCESS;
1878 default:
1879 return NVME_ZONE_INVAL_TRANSITION;
1883 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1884 NvmeZone *zone)
1886 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1889 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1890 uint32_t nlb)
1892 zone->d.wp += nlb;
1894 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1895 nvme_zrm_finish(ns, zone);
1899 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1900 uint32_t nlbc)
1902 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1904 nlbc = nzrwafgs * ns->zns.zrwafg;
1906 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1908 zone->w_ptr += nlbc;
1910 nvme_advance_zone_wp(ns, zone, nlbc);
1913 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1915 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1916 NvmeZone *zone;
1917 uint64_t slba;
1918 uint32_t nlb;
1920 slba = le64_to_cpu(rw->slba);
1921 nlb = le16_to_cpu(rw->nlb) + 1;
1922 zone = nvme_get_zone_by_slba(ns, slba);
1923 assert(zone);
1925 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1926 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1927 uint64_t elba = slba + nlb - 1;
1929 if (elba > ezrwa) {
1930 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1933 return;
1936 nvme_advance_zone_wp(ns, zone, nlb);
1939 static inline bool nvme_is_write(NvmeRequest *req)
1941 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1943 return rw->opcode == NVME_CMD_WRITE ||
1944 rw->opcode == NVME_CMD_ZONE_APPEND ||
1945 rw->opcode == NVME_CMD_WRITE_ZEROES;
1948 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1950 return qemu_get_aio_context();
1953 static void nvme_misc_cb(void *opaque, int ret)
1955 NvmeRequest *req = opaque;
1957 trace_pci_nvme_misc_cb(nvme_cid(req));
1959 if (ret) {
1960 nvme_aio_err(req, ret);
1963 nvme_enqueue_req_completion(nvme_cq(req), req);
1966 void nvme_rw_complete_cb(void *opaque, int ret)
1968 NvmeRequest *req = opaque;
1969 NvmeNamespace *ns = req->ns;
1970 BlockBackend *blk = ns->blkconf.blk;
1971 BlockAcctCookie *acct = &req->acct;
1972 BlockAcctStats *stats = blk_get_stats(blk);
1974 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
1976 if (ret) {
1977 block_acct_failed(stats, acct);
1978 nvme_aio_err(req, ret);
1979 } else {
1980 block_acct_done(stats, acct);
1983 if (ns->params.zoned && nvme_is_write(req)) {
1984 nvme_finalize_zoned_write(ns, req);
1987 nvme_enqueue_req_completion(nvme_cq(req), req);
1990 static void nvme_rw_cb(void *opaque, int ret)
1992 NvmeRequest *req = opaque;
1993 NvmeNamespace *ns = req->ns;
1995 BlockBackend *blk = ns->blkconf.blk;
1997 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
1999 if (ret) {
2000 goto out;
2003 if (ns->lbaf.ms) {
2004 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2005 uint64_t slba = le64_to_cpu(rw->slba);
2006 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2007 uint64_t offset = nvme_moff(ns, slba);
2009 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2010 size_t mlen = nvme_m2b(ns, nlb);
2012 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2013 BDRV_REQ_MAY_UNMAP,
2014 nvme_rw_complete_cb, req);
2015 return;
2018 if (nvme_ns_ext(ns) || req->cmd.mptr) {
2019 uint16_t status;
2021 nvme_sg_unmap(&req->sg);
2022 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2023 if (status) {
2024 ret = -EFAULT;
2025 goto out;
2028 if (req->cmd.opcode == NVME_CMD_READ) {
2029 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2032 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2036 out:
2037 nvme_rw_complete_cb(req, ret);
2040 static void nvme_verify_cb(void *opaque, int ret)
2042 NvmeBounceContext *ctx = opaque;
2043 NvmeRequest *req = ctx->req;
2044 NvmeNamespace *ns = req->ns;
2045 BlockBackend *blk = ns->blkconf.blk;
2046 BlockAcctCookie *acct = &req->acct;
2047 BlockAcctStats *stats = blk_get_stats(blk);
2048 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2049 uint64_t slba = le64_to_cpu(rw->slba);
2050 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2051 uint16_t apptag = le16_to_cpu(rw->apptag);
2052 uint16_t appmask = le16_to_cpu(rw->appmask);
2053 uint64_t reftag = le32_to_cpu(rw->reftag);
2054 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2055 uint16_t status;
2057 reftag |= cdw3 << 32;
2059 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2061 if (ret) {
2062 block_acct_failed(stats, acct);
2063 nvme_aio_err(req, ret);
2064 goto out;
2067 block_acct_done(stats, acct);
2069 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2070 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2071 ctx->mdata.iov.size, slba);
2072 if (status) {
2073 req->status = status;
2074 goto out;
2077 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2078 ctx->mdata.bounce, ctx->mdata.iov.size,
2079 prinfo, slba, apptag, appmask, &reftag);
2082 out:
2083 qemu_iovec_destroy(&ctx->data.iov);
2084 g_free(ctx->data.bounce);
2086 qemu_iovec_destroy(&ctx->mdata.iov);
2087 g_free(ctx->mdata.bounce);
2089 g_free(ctx);
2091 nvme_enqueue_req_completion(nvme_cq(req), req);
2095 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2097 NvmeBounceContext *ctx = opaque;
2098 NvmeRequest *req = ctx->req;
2099 NvmeNamespace *ns = req->ns;
2100 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2101 uint64_t slba = le64_to_cpu(rw->slba);
2102 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2103 size_t mlen = nvme_m2b(ns, nlb);
2104 uint64_t offset = nvme_moff(ns, slba);
2105 BlockBackend *blk = ns->blkconf.blk;
2107 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2109 if (ret) {
2110 goto out;
2113 ctx->mdata.bounce = g_malloc(mlen);
2115 qemu_iovec_reset(&ctx->mdata.iov);
2116 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2118 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2119 nvme_verify_cb, ctx);
2120 return;
2122 out:
2123 nvme_verify_cb(ctx, ret);
2126 struct nvme_compare_ctx {
2127 struct {
2128 QEMUIOVector iov;
2129 uint8_t *bounce;
2130 } data;
2132 struct {
2133 QEMUIOVector iov;
2134 uint8_t *bounce;
2135 } mdata;
2138 static void nvme_compare_mdata_cb(void *opaque, int ret)
2140 NvmeRequest *req = opaque;
2141 NvmeNamespace *ns = req->ns;
2142 NvmeCtrl *n = nvme_ctrl(req);
2143 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2144 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2145 uint16_t apptag = le16_to_cpu(rw->apptag);
2146 uint16_t appmask = le16_to_cpu(rw->appmask);
2147 uint64_t reftag = le32_to_cpu(rw->reftag);
2148 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2149 struct nvme_compare_ctx *ctx = req->opaque;
2150 g_autofree uint8_t *buf = NULL;
2151 BlockBackend *blk = ns->blkconf.blk;
2152 BlockAcctCookie *acct = &req->acct;
2153 BlockAcctStats *stats = blk_get_stats(blk);
2154 uint16_t status = NVME_SUCCESS;
2156 reftag |= cdw3 << 32;
2158 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2160 if (ret) {
2161 block_acct_failed(stats, acct);
2162 nvme_aio_err(req, ret);
2163 goto out;
2166 buf = g_malloc(ctx->mdata.iov.size);
2168 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2169 NVME_TX_DIRECTION_TO_DEVICE, req);
2170 if (status) {
2171 req->status = status;
2172 goto out;
2175 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2176 uint64_t slba = le64_to_cpu(rw->slba);
2177 uint8_t *bufp;
2178 uint8_t *mbufp = ctx->mdata.bounce;
2179 uint8_t *end = mbufp + ctx->mdata.iov.size;
2180 int16_t pil = 0;
2182 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2183 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2184 slba, apptag, appmask, &reftag);
2185 if (status) {
2186 req->status = status;
2187 goto out;
2191 * When formatted with protection information, do not compare the DIF
2192 * tuple.
2194 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2195 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2198 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2199 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2200 req->status = NVME_CMP_FAILURE;
2201 goto out;
2205 goto out;
2208 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2209 req->status = NVME_CMP_FAILURE;
2210 goto out;
2213 block_acct_done(stats, acct);
2215 out:
2216 qemu_iovec_destroy(&ctx->data.iov);
2217 g_free(ctx->data.bounce);
2219 qemu_iovec_destroy(&ctx->mdata.iov);
2220 g_free(ctx->mdata.bounce);
2222 g_free(ctx);
2224 nvme_enqueue_req_completion(nvme_cq(req), req);
2227 static void nvme_compare_data_cb(void *opaque, int ret)
2229 NvmeRequest *req = opaque;
2230 NvmeCtrl *n = nvme_ctrl(req);
2231 NvmeNamespace *ns = req->ns;
2232 BlockBackend *blk = ns->blkconf.blk;
2233 BlockAcctCookie *acct = &req->acct;
2234 BlockAcctStats *stats = blk_get_stats(blk);
2236 struct nvme_compare_ctx *ctx = req->opaque;
2237 g_autofree uint8_t *buf = NULL;
2238 uint16_t status;
2240 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2242 if (ret) {
2243 block_acct_failed(stats, acct);
2244 nvme_aio_err(req, ret);
2245 goto out;
2248 buf = g_malloc(ctx->data.iov.size);
2250 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2251 NVME_TX_DIRECTION_TO_DEVICE, req);
2252 if (status) {
2253 req->status = status;
2254 goto out;
2257 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2258 req->status = NVME_CMP_FAILURE;
2259 goto out;
2262 if (ns->lbaf.ms) {
2263 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2264 uint64_t slba = le64_to_cpu(rw->slba);
2265 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2266 size_t mlen = nvme_m2b(ns, nlb);
2267 uint64_t offset = nvme_moff(ns, slba);
2269 ctx->mdata.bounce = g_malloc(mlen);
2271 qemu_iovec_init(&ctx->mdata.iov, 1);
2272 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2274 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2275 nvme_compare_mdata_cb, req);
2276 return;
2279 block_acct_done(stats, acct);
2281 out:
2282 qemu_iovec_destroy(&ctx->data.iov);
2283 g_free(ctx->data.bounce);
2284 g_free(ctx);
2286 nvme_enqueue_req_completion(nvme_cq(req), req);
2289 typedef struct NvmeDSMAIOCB {
2290 BlockAIOCB common;
2291 BlockAIOCB *aiocb;
2292 NvmeRequest *req;
2293 QEMUBH *bh;
2294 int ret;
2296 NvmeDsmRange *range;
2297 unsigned int nr;
2298 unsigned int idx;
2299 } NvmeDSMAIOCB;
2301 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2303 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2305 /* break nvme_dsm_cb loop */
2306 iocb->idx = iocb->nr;
2307 iocb->ret = -ECANCELED;
2309 if (iocb->aiocb) {
2310 blk_aio_cancel_async(iocb->aiocb);
2311 iocb->aiocb = NULL;
2312 } else {
2314 * We only reach this if nvme_dsm_cancel() has already been called or
2315 * the command ran to completion and nvme_dsm_bh is scheduled to run.
2317 assert(iocb->idx == iocb->nr);
2321 static const AIOCBInfo nvme_dsm_aiocb_info = {
2322 .aiocb_size = sizeof(NvmeDSMAIOCB),
2323 .cancel_async = nvme_dsm_cancel,
2326 static void nvme_dsm_bh(void *opaque)
2328 NvmeDSMAIOCB *iocb = opaque;
2330 iocb->common.cb(iocb->common.opaque, iocb->ret);
2332 qemu_bh_delete(iocb->bh);
2333 iocb->bh = NULL;
2334 qemu_aio_unref(iocb);
2337 static void nvme_dsm_cb(void *opaque, int ret);
2339 static void nvme_dsm_md_cb(void *opaque, int ret)
2341 NvmeDSMAIOCB *iocb = opaque;
2342 NvmeRequest *req = iocb->req;
2343 NvmeNamespace *ns = req->ns;
2344 NvmeDsmRange *range;
2345 uint64_t slba;
2346 uint32_t nlb;
2348 if (ret < 0) {
2349 iocb->ret = ret;
2350 goto done;
2353 if (!ns->lbaf.ms) {
2354 nvme_dsm_cb(iocb, 0);
2355 return;
2358 range = &iocb->range[iocb->idx - 1];
2359 slba = le64_to_cpu(range->slba);
2360 nlb = le32_to_cpu(range->nlb);
2363 * Check that all block were discarded (zeroed); otherwise we do not zero
2364 * the metadata.
2367 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2368 if (ret) {
2369 if (ret < 0) {
2370 iocb->ret = ret;
2371 goto done;
2374 nvme_dsm_cb(iocb, 0);
2377 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2378 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2379 nvme_dsm_cb, iocb);
2380 return;
2382 done:
2383 iocb->aiocb = NULL;
2384 qemu_bh_schedule(iocb->bh);
2387 static void nvme_dsm_cb(void *opaque, int ret)
2389 NvmeDSMAIOCB *iocb = opaque;
2390 NvmeRequest *req = iocb->req;
2391 NvmeCtrl *n = nvme_ctrl(req);
2392 NvmeNamespace *ns = req->ns;
2393 NvmeDsmRange *range;
2394 uint64_t slba;
2395 uint32_t nlb;
2397 if (ret < 0) {
2398 iocb->ret = ret;
2399 goto done;
2402 next:
2403 if (iocb->idx == iocb->nr) {
2404 goto done;
2407 range = &iocb->range[iocb->idx++];
2408 slba = le64_to_cpu(range->slba);
2409 nlb = le32_to_cpu(range->nlb);
2411 trace_pci_nvme_dsm_deallocate(slba, nlb);
2413 if (nlb > n->dmrsl) {
2414 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2415 goto next;
2418 if (nvme_check_bounds(ns, slba, nlb)) {
2419 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2420 ns->id_ns.nsze);
2421 goto next;
2424 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2425 nvme_l2b(ns, nlb),
2426 nvme_dsm_md_cb, iocb);
2427 return;
2429 done:
2430 iocb->aiocb = NULL;
2431 qemu_bh_schedule(iocb->bh);
2434 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2436 NvmeNamespace *ns = req->ns;
2437 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2438 uint32_t attr = le32_to_cpu(dsm->attributes);
2439 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2440 uint16_t status = NVME_SUCCESS;
2442 trace_pci_nvme_dsm(nr, attr);
2444 if (attr & NVME_DSMGMT_AD) {
2445 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2446 nvme_misc_cb, req);
2448 iocb->req = req;
2449 iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2450 iocb->ret = 0;
2451 iocb->range = g_new(NvmeDsmRange, nr);
2452 iocb->nr = nr;
2453 iocb->idx = 0;
2455 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2456 req);
2457 if (status) {
2458 return status;
2461 req->aiocb = &iocb->common;
2462 nvme_dsm_cb(iocb, 0);
2464 return NVME_NO_COMPLETE;
2467 return status;
2470 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2472 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2473 NvmeNamespace *ns = req->ns;
2474 BlockBackend *blk = ns->blkconf.blk;
2475 uint64_t slba = le64_to_cpu(rw->slba);
2476 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2477 size_t len = nvme_l2b(ns, nlb);
2478 int64_t offset = nvme_l2b(ns, slba);
2479 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2480 uint32_t reftag = le32_to_cpu(rw->reftag);
2481 NvmeBounceContext *ctx = NULL;
2482 uint16_t status;
2484 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2486 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2487 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2488 if (status) {
2489 return status;
2492 if (prinfo & NVME_PRINFO_PRACT) {
2493 return NVME_INVALID_PROT_INFO | NVME_DNR;
2497 if (len > n->page_size << n->params.vsl) {
2498 return NVME_INVALID_FIELD | NVME_DNR;
2501 status = nvme_check_bounds(ns, slba, nlb);
2502 if (status) {
2503 return status;
2506 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2507 status = nvme_check_dulbe(ns, slba, nlb);
2508 if (status) {
2509 return status;
2513 ctx = g_new0(NvmeBounceContext, 1);
2514 ctx->req = req;
2516 ctx->data.bounce = g_malloc(len);
2518 qemu_iovec_init(&ctx->data.iov, 1);
2519 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2521 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2522 BLOCK_ACCT_READ);
2524 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2525 nvme_verify_mdata_in_cb, ctx);
2526 return NVME_NO_COMPLETE;
2529 typedef struct NvmeCopyAIOCB {
2530 BlockAIOCB common;
2531 BlockAIOCB *aiocb;
2532 NvmeRequest *req;
2533 QEMUBH *bh;
2534 int ret;
2536 void *ranges;
2537 unsigned int format;
2538 int nr;
2539 int idx;
2541 uint8_t *bounce;
2542 QEMUIOVector iov;
2543 struct {
2544 BlockAcctCookie read;
2545 BlockAcctCookie write;
2546 } acct;
2548 uint64_t reftag;
2549 uint64_t slba;
2551 NvmeZone *zone;
2552 } NvmeCopyAIOCB;
2554 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2556 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2558 iocb->ret = -ECANCELED;
2560 if (iocb->aiocb) {
2561 blk_aio_cancel_async(iocb->aiocb);
2562 iocb->aiocb = NULL;
2566 static const AIOCBInfo nvme_copy_aiocb_info = {
2567 .aiocb_size = sizeof(NvmeCopyAIOCB),
2568 .cancel_async = nvme_copy_cancel,
2571 static void nvme_copy_bh(void *opaque)
2573 NvmeCopyAIOCB *iocb = opaque;
2574 NvmeRequest *req = iocb->req;
2575 NvmeNamespace *ns = req->ns;
2576 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2578 if (iocb->idx != iocb->nr) {
2579 req->cqe.result = cpu_to_le32(iocb->idx);
2582 qemu_iovec_destroy(&iocb->iov);
2583 g_free(iocb->bounce);
2585 qemu_bh_delete(iocb->bh);
2586 iocb->bh = NULL;
2588 if (iocb->ret < 0) {
2589 block_acct_failed(stats, &iocb->acct.read);
2590 block_acct_failed(stats, &iocb->acct.write);
2591 } else {
2592 block_acct_done(stats, &iocb->acct.read);
2593 block_acct_done(stats, &iocb->acct.write);
2596 iocb->common.cb(iocb->common.opaque, iocb->ret);
2597 qemu_aio_unref(iocb);
2600 static void nvme_copy_cb(void *opaque, int ret);
2602 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2603 uint64_t *slba, uint32_t *nlb,
2604 uint16_t *apptag,
2605 uint16_t *appmask,
2606 uint64_t *reftag)
2608 NvmeCopySourceRangeFormat0 *_ranges = ranges;
2610 if (slba) {
2611 *slba = le64_to_cpu(_ranges[idx].slba);
2614 if (nlb) {
2615 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2618 if (apptag) {
2619 *apptag = le16_to_cpu(_ranges[idx].apptag);
2622 if (appmask) {
2623 *appmask = le16_to_cpu(_ranges[idx].appmask);
2626 if (reftag) {
2627 *reftag = le32_to_cpu(_ranges[idx].reftag);
2631 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2632 uint64_t *slba, uint32_t *nlb,
2633 uint16_t *apptag,
2634 uint16_t *appmask,
2635 uint64_t *reftag)
2637 NvmeCopySourceRangeFormat1 *_ranges = ranges;
2639 if (slba) {
2640 *slba = le64_to_cpu(_ranges[idx].slba);
2643 if (nlb) {
2644 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2647 if (apptag) {
2648 *apptag = le16_to_cpu(_ranges[idx].apptag);
2651 if (appmask) {
2652 *appmask = le16_to_cpu(_ranges[idx].appmask);
2655 if (reftag) {
2656 *reftag = 0;
2658 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2659 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2660 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2661 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2662 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2663 *reftag |= (uint64_t)_ranges[idx].sr[9];
2667 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2668 uint64_t *slba, uint32_t *nlb,
2669 uint16_t *apptag, uint16_t *appmask,
2670 uint64_t *reftag)
2672 switch (format) {
2673 case NVME_COPY_FORMAT_0:
2674 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2675 appmask, reftag);
2676 break;
2678 case NVME_COPY_FORMAT_1:
2679 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2680 appmask, reftag);
2681 break;
2683 default:
2684 abort();
2688 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2690 NvmeCopyAIOCB *iocb = opaque;
2691 NvmeRequest *req = iocb->req;
2692 NvmeNamespace *ns = req->ns;
2693 uint32_t nlb;
2695 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2696 &nlb, NULL, NULL, NULL);
2698 if (ret < 0) {
2699 iocb->ret = ret;
2700 goto out;
2701 } else if (iocb->ret < 0) {
2702 goto out;
2705 if (ns->params.zoned) {
2706 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2709 iocb->idx++;
2710 iocb->slba += nlb;
2711 out:
2712 nvme_copy_cb(iocb, iocb->ret);
2715 static void nvme_copy_out_cb(void *opaque, int ret)
2717 NvmeCopyAIOCB *iocb = opaque;
2718 NvmeRequest *req = iocb->req;
2719 NvmeNamespace *ns = req->ns;
2720 uint32_t nlb;
2721 size_t mlen;
2722 uint8_t *mbounce;
2724 if (ret < 0) {
2725 iocb->ret = ret;
2726 goto out;
2727 } else if (iocb->ret < 0) {
2728 goto out;
2731 if (!ns->lbaf.ms) {
2732 nvme_copy_out_completed_cb(iocb, 0);
2733 return;
2736 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2737 &nlb, NULL, NULL, NULL);
2739 mlen = nvme_m2b(ns, nlb);
2740 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2742 qemu_iovec_reset(&iocb->iov);
2743 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2745 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2746 &iocb->iov, 0, nvme_copy_out_completed_cb,
2747 iocb);
2749 return;
2751 out:
2752 nvme_copy_cb(iocb, ret);
2755 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2757 NvmeCopyAIOCB *iocb = opaque;
2758 NvmeRequest *req = iocb->req;
2759 NvmeNamespace *ns = req->ns;
2760 uint32_t nlb;
2761 uint64_t slba;
2762 uint16_t apptag, appmask;
2763 uint64_t reftag;
2764 size_t len;
2765 uint16_t status;
2767 if (ret < 0) {
2768 iocb->ret = ret;
2769 goto out;
2770 } else if (iocb->ret < 0) {
2771 goto out;
2774 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2775 &nlb, &apptag, &appmask, &reftag);
2776 len = nvme_l2b(ns, nlb);
2778 trace_pci_nvme_copy_out(iocb->slba, nlb);
2780 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2781 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2783 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2784 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2786 size_t mlen = nvme_m2b(ns, nlb);
2787 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2789 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2790 slba, apptag, appmask, &reftag);
2791 if (status) {
2792 goto invalid;
2795 apptag = le16_to_cpu(copy->apptag);
2796 appmask = le16_to_cpu(copy->appmask);
2798 if (prinfow & NVME_PRINFO_PRACT) {
2799 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2800 if (status) {
2801 goto invalid;
2804 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2805 apptag, &iocb->reftag);
2806 } else {
2807 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2808 prinfow, iocb->slba, apptag, appmask,
2809 &iocb->reftag);
2810 if (status) {
2811 goto invalid;
2816 status = nvme_check_bounds(ns, iocb->slba, nlb);
2817 if (status) {
2818 goto invalid;
2821 if (ns->params.zoned) {
2822 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2823 if (status) {
2824 goto invalid;
2827 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2828 iocb->zone->w_ptr += nlb;
2832 qemu_iovec_reset(&iocb->iov);
2833 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2835 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2836 &iocb->iov, 0, nvme_copy_out_cb, iocb);
2838 return;
2840 invalid:
2841 req->status = status;
2842 iocb->aiocb = NULL;
2843 if (iocb->bh) {
2844 qemu_bh_schedule(iocb->bh);
2847 return;
2849 out:
2850 nvme_copy_cb(iocb, ret);
2853 static void nvme_copy_in_cb(void *opaque, int ret)
2855 NvmeCopyAIOCB *iocb = opaque;
2856 NvmeRequest *req = iocb->req;
2857 NvmeNamespace *ns = req->ns;
2858 uint64_t slba;
2859 uint32_t nlb;
2861 if (ret < 0) {
2862 iocb->ret = ret;
2863 goto out;
2864 } else if (iocb->ret < 0) {
2865 goto out;
2868 if (!ns->lbaf.ms) {
2869 nvme_copy_in_completed_cb(iocb, 0);
2870 return;
2873 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2874 &nlb, NULL, NULL, NULL);
2876 qemu_iovec_reset(&iocb->iov);
2877 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2878 nvme_m2b(ns, nlb));
2880 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2881 &iocb->iov, 0, nvme_copy_in_completed_cb,
2882 iocb);
2883 return;
2885 out:
2886 nvme_copy_cb(iocb, iocb->ret);
2889 static void nvme_copy_cb(void *opaque, int ret)
2891 NvmeCopyAIOCB *iocb = opaque;
2892 NvmeRequest *req = iocb->req;
2893 NvmeNamespace *ns = req->ns;
2894 uint64_t slba;
2895 uint32_t nlb;
2896 size_t len;
2897 uint16_t status;
2899 if (ret < 0) {
2900 iocb->ret = ret;
2901 goto done;
2902 } else if (iocb->ret < 0) {
2903 goto done;
2906 if (iocb->idx == iocb->nr) {
2907 goto done;
2910 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2911 &nlb, NULL, NULL, NULL);
2912 len = nvme_l2b(ns, nlb);
2914 trace_pci_nvme_copy_source_range(slba, nlb);
2916 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2917 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2918 goto invalid;
2921 status = nvme_check_bounds(ns, slba, nlb);
2922 if (status) {
2923 goto invalid;
2926 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2927 status = nvme_check_dulbe(ns, slba, nlb);
2928 if (status) {
2929 goto invalid;
2933 if (ns->params.zoned) {
2934 status = nvme_check_zone_read(ns, slba, nlb);
2935 if (status) {
2936 goto invalid;
2940 qemu_iovec_reset(&iocb->iov);
2941 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2943 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2944 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2945 return;
2947 invalid:
2948 req->status = status;
2949 done:
2950 iocb->aiocb = NULL;
2951 if (iocb->bh) {
2952 qemu_bh_schedule(iocb->bh);
2957 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2959 NvmeNamespace *ns = req->ns;
2960 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2961 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
2962 nvme_misc_cb, req);
2963 uint16_t nr = copy->nr + 1;
2964 uint8_t format = copy->control[0] & 0xf;
2965 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2966 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2967 size_t len = sizeof(NvmeCopySourceRangeFormat0);
2969 uint16_t status;
2971 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2973 iocb->ranges = NULL;
2974 iocb->zone = NULL;
2976 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2977 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
2978 status = NVME_INVALID_FIELD | NVME_DNR;
2979 goto invalid;
2982 if (!(n->id_ctrl.ocfs & (1 << format))) {
2983 trace_pci_nvme_err_copy_invalid_format(format);
2984 status = NVME_INVALID_FIELD | NVME_DNR;
2985 goto invalid;
2988 if (nr > ns->id_ns.msrc + 1) {
2989 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2990 goto invalid;
2993 if (ns->pif && format != 0x1) {
2994 status = NVME_INVALID_FORMAT | NVME_DNR;
2995 goto invalid;
2998 if (ns->pif) {
2999 len = sizeof(NvmeCopySourceRangeFormat1);
3002 iocb->format = format;
3003 iocb->ranges = g_malloc_n(nr, len);
3004 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3005 if (status) {
3006 goto invalid;
3009 iocb->slba = le64_to_cpu(copy->sdlba);
3011 if (ns->params.zoned) {
3012 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3013 if (!iocb->zone) {
3014 status = NVME_LBA_RANGE | NVME_DNR;
3015 goto invalid;
3018 status = nvme_zrm_auto(n, ns, iocb->zone);
3019 if (status) {
3020 goto invalid;
3024 iocb->req = req;
3025 iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
3026 iocb->ret = 0;
3027 iocb->nr = nr;
3028 iocb->idx = 0;
3029 iocb->reftag = le32_to_cpu(copy->reftag);
3030 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3031 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3032 ns->lbasz + ns->lbaf.ms);
3034 qemu_iovec_init(&iocb->iov, 1);
3036 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3037 BLOCK_ACCT_READ);
3038 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3039 BLOCK_ACCT_WRITE);
3041 req->aiocb = &iocb->common;
3042 nvme_copy_cb(iocb, 0);
3044 return NVME_NO_COMPLETE;
3046 invalid:
3047 g_free(iocb->ranges);
3048 qemu_aio_unref(iocb);
3049 return status;
3052 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3054 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3055 NvmeNamespace *ns = req->ns;
3056 BlockBackend *blk = ns->blkconf.blk;
3057 uint64_t slba = le64_to_cpu(rw->slba);
3058 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3059 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3060 size_t data_len = nvme_l2b(ns, nlb);
3061 size_t len = data_len;
3062 int64_t offset = nvme_l2b(ns, slba);
3063 struct nvme_compare_ctx *ctx = NULL;
3064 uint16_t status;
3066 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3068 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3069 return NVME_INVALID_PROT_INFO | NVME_DNR;
3072 if (nvme_ns_ext(ns)) {
3073 len += nvme_m2b(ns, nlb);
3076 status = nvme_check_mdts(n, len);
3077 if (status) {
3078 return status;
3081 status = nvme_check_bounds(ns, slba, nlb);
3082 if (status) {
3083 return status;
3086 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3087 status = nvme_check_dulbe(ns, slba, nlb);
3088 if (status) {
3089 return status;
3093 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3094 if (status) {
3095 return status;
3098 ctx = g_new(struct nvme_compare_ctx, 1);
3099 ctx->data.bounce = g_malloc(data_len);
3101 req->opaque = ctx;
3103 qemu_iovec_init(&ctx->data.iov, 1);
3104 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3106 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3107 BLOCK_ACCT_READ);
3108 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3109 nvme_compare_data_cb, req);
3111 return NVME_NO_COMPLETE;
3114 typedef struct NvmeFlushAIOCB {
3115 BlockAIOCB common;
3116 BlockAIOCB *aiocb;
3117 NvmeRequest *req;
3118 QEMUBH *bh;
3119 int ret;
3121 NvmeNamespace *ns;
3122 uint32_t nsid;
3123 bool broadcast;
3124 } NvmeFlushAIOCB;
3126 static void nvme_flush_cancel(BlockAIOCB *acb)
3128 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3130 iocb->ret = -ECANCELED;
3132 if (iocb->aiocb) {
3133 blk_aio_cancel_async(iocb->aiocb);
3137 static const AIOCBInfo nvme_flush_aiocb_info = {
3138 .aiocb_size = sizeof(NvmeFlushAIOCB),
3139 .cancel_async = nvme_flush_cancel,
3140 .get_aio_context = nvme_get_aio_context,
3143 static void nvme_flush_ns_cb(void *opaque, int ret)
3145 NvmeFlushAIOCB *iocb = opaque;
3146 NvmeNamespace *ns = iocb->ns;
3148 if (ret < 0) {
3149 iocb->ret = ret;
3150 goto out;
3151 } else if (iocb->ret < 0) {
3152 goto out;
3155 if (ns) {
3156 trace_pci_nvme_flush_ns(iocb->nsid);
3158 iocb->ns = NULL;
3159 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3160 return;
3163 out:
3164 iocb->aiocb = NULL;
3165 qemu_bh_schedule(iocb->bh);
3168 static void nvme_flush_bh(void *opaque)
3170 NvmeFlushAIOCB *iocb = opaque;
3171 NvmeRequest *req = iocb->req;
3172 NvmeCtrl *n = nvme_ctrl(req);
3173 int i;
3175 if (iocb->ret < 0) {
3176 goto done;
3179 if (iocb->broadcast) {
3180 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3181 iocb->ns = nvme_ns(n, i);
3182 if (iocb->ns) {
3183 iocb->nsid = i;
3184 break;
3189 if (!iocb->ns) {
3190 goto done;
3193 nvme_flush_ns_cb(iocb, 0);
3194 return;
3196 done:
3197 qemu_bh_delete(iocb->bh);
3198 iocb->bh = NULL;
3200 iocb->common.cb(iocb->common.opaque, iocb->ret);
3202 qemu_aio_unref(iocb);
3204 return;
3207 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3209 NvmeFlushAIOCB *iocb;
3210 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3211 uint16_t status;
3213 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3215 iocb->req = req;
3216 iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3217 iocb->ret = 0;
3218 iocb->ns = NULL;
3219 iocb->nsid = 0;
3220 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3222 if (!iocb->broadcast) {
3223 if (!nvme_nsid_valid(n, nsid)) {
3224 status = NVME_INVALID_NSID | NVME_DNR;
3225 goto out;
3228 iocb->ns = nvme_ns(n, nsid);
3229 if (!iocb->ns) {
3230 status = NVME_INVALID_FIELD | NVME_DNR;
3231 goto out;
3234 iocb->nsid = nsid;
3237 req->aiocb = &iocb->common;
3238 qemu_bh_schedule(iocb->bh);
3240 return NVME_NO_COMPLETE;
3242 out:
3243 qemu_bh_delete(iocb->bh);
3244 iocb->bh = NULL;
3245 qemu_aio_unref(iocb);
3247 return status;
3250 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3252 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3253 NvmeNamespace *ns = req->ns;
3254 uint64_t slba = le64_to_cpu(rw->slba);
3255 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3256 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3257 uint64_t data_size = nvme_l2b(ns, nlb);
3258 uint64_t mapped_size = data_size;
3259 uint64_t data_offset;
3260 BlockBackend *blk = ns->blkconf.blk;
3261 uint16_t status;
3263 if (nvme_ns_ext(ns)) {
3264 mapped_size += nvme_m2b(ns, nlb);
3266 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3267 bool pract = prinfo & NVME_PRINFO_PRACT;
3269 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3270 mapped_size = data_size;
3275 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3277 status = nvme_check_mdts(n, mapped_size);
3278 if (status) {
3279 goto invalid;
3282 status = nvme_check_bounds(ns, slba, nlb);
3283 if (status) {
3284 goto invalid;
3287 if (ns->params.zoned) {
3288 status = nvme_check_zone_read(ns, slba, nlb);
3289 if (status) {
3290 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3291 goto invalid;
3295 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3296 status = nvme_check_dulbe(ns, slba, nlb);
3297 if (status) {
3298 goto invalid;
3302 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3303 return nvme_dif_rw(n, req);
3306 status = nvme_map_data(n, nlb, req);
3307 if (status) {
3308 goto invalid;
3311 data_offset = nvme_l2b(ns, slba);
3313 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3314 BLOCK_ACCT_READ);
3315 nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3316 return NVME_NO_COMPLETE;
3318 invalid:
3319 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3320 return status | NVME_DNR;
3323 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3324 bool wrz)
3326 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3327 NvmeNamespace *ns = req->ns;
3328 uint64_t slba = le64_to_cpu(rw->slba);
3329 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3330 uint16_t ctrl = le16_to_cpu(rw->control);
3331 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3332 uint64_t data_size = nvme_l2b(ns, nlb);
3333 uint64_t mapped_size = data_size;
3334 uint64_t data_offset;
3335 NvmeZone *zone;
3336 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3337 BlockBackend *blk = ns->blkconf.blk;
3338 uint16_t status;
3340 if (nvme_ns_ext(ns)) {
3341 mapped_size += nvme_m2b(ns, nlb);
3343 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3344 bool pract = prinfo & NVME_PRINFO_PRACT;
3346 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3347 mapped_size -= nvme_m2b(ns, nlb);
3352 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3353 nvme_nsid(ns), nlb, mapped_size, slba);
3355 if (!wrz) {
3356 status = nvme_check_mdts(n, mapped_size);
3357 if (status) {
3358 goto invalid;
3362 status = nvme_check_bounds(ns, slba, nlb);
3363 if (status) {
3364 goto invalid;
3367 if (ns->params.zoned) {
3368 zone = nvme_get_zone_by_slba(ns, slba);
3369 assert(zone);
3371 if (append) {
3372 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3374 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3375 return NVME_INVALID_ZONE_OP | NVME_DNR;
3378 if (unlikely(slba != zone->d.zslba)) {
3379 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3380 status = NVME_INVALID_FIELD;
3381 goto invalid;
3384 if (n->params.zasl &&
3385 data_size > (uint64_t)n->page_size << n->params.zasl) {
3386 trace_pci_nvme_err_zasl(data_size);
3387 return NVME_INVALID_FIELD | NVME_DNR;
3390 slba = zone->w_ptr;
3391 rw->slba = cpu_to_le64(slba);
3392 res->slba = cpu_to_le64(slba);
3394 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3395 case NVME_ID_NS_DPS_TYPE_1:
3396 if (!piremap) {
3397 return NVME_INVALID_PROT_INFO | NVME_DNR;
3400 /* fallthrough */
3402 case NVME_ID_NS_DPS_TYPE_2:
3403 if (piremap) {
3404 uint32_t reftag = le32_to_cpu(rw->reftag);
3405 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3408 break;
3410 case NVME_ID_NS_DPS_TYPE_3:
3411 if (piremap) {
3412 return NVME_INVALID_PROT_INFO | NVME_DNR;
3415 break;
3419 status = nvme_check_zone_write(ns, zone, slba, nlb);
3420 if (status) {
3421 goto invalid;
3424 status = nvme_zrm_auto(n, ns, zone);
3425 if (status) {
3426 goto invalid;
3429 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3430 zone->w_ptr += nlb;
3434 data_offset = nvme_l2b(ns, slba);
3436 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3437 return nvme_dif_rw(n, req);
3440 if (!wrz) {
3441 status = nvme_map_data(n, nlb, req);
3442 if (status) {
3443 goto invalid;
3446 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3447 BLOCK_ACCT_WRITE);
3448 nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3449 } else {
3450 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3451 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3452 req);
3455 return NVME_NO_COMPLETE;
3457 invalid:
3458 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3459 return status | NVME_DNR;
3462 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3464 return nvme_do_write(n, req, false, false);
3467 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3469 return nvme_do_write(n, req, false, true);
3472 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3474 return nvme_do_write(n, req, true, false);
3477 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3478 uint64_t *slba, uint32_t *zone_idx)
3480 uint32_t dw10 = le32_to_cpu(c->cdw10);
3481 uint32_t dw11 = le32_to_cpu(c->cdw11);
3483 if (!ns->params.zoned) {
3484 trace_pci_nvme_err_invalid_opc(c->opcode);
3485 return NVME_INVALID_OPCODE | NVME_DNR;
3488 *slba = ((uint64_t)dw11) << 32 | dw10;
3489 if (unlikely(*slba >= ns->id_ns.nsze)) {
3490 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3491 *slba = 0;
3492 return NVME_LBA_RANGE | NVME_DNR;
3495 *zone_idx = nvme_zone_idx(ns, *slba);
3496 assert(*zone_idx < ns->num_zones);
3498 return NVME_SUCCESS;
3501 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3502 NvmeRequest *);
3504 enum NvmeZoneProcessingMask {
3505 NVME_PROC_CURRENT_ZONE = 0,
3506 NVME_PROC_OPENED_ZONES = 1 << 0,
3507 NVME_PROC_CLOSED_ZONES = 1 << 1,
3508 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3509 NVME_PROC_FULL_ZONES = 1 << 3,
3512 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3513 NvmeZoneState state, NvmeRequest *req)
3515 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3516 int flags = 0;
3518 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3519 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3521 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3522 return NVME_INVALID_ZONE_OP | NVME_DNR;
3525 if (zone->w_ptr % ns->zns.zrwafg) {
3526 return NVME_NOZRWA | NVME_DNR;
3529 flags = NVME_ZRM_ZRWA;
3532 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3535 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3536 NvmeZoneState state, NvmeRequest *req)
3538 return nvme_zrm_close(ns, zone);
3541 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3542 NvmeZoneState state, NvmeRequest *req)
3544 return nvme_zrm_finish(ns, zone);
3547 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3548 NvmeZoneState state, NvmeRequest *req)
3550 switch (state) {
3551 case NVME_ZONE_STATE_READ_ONLY:
3552 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3553 /* fall through */
3554 case NVME_ZONE_STATE_OFFLINE:
3555 return NVME_SUCCESS;
3556 default:
3557 return NVME_ZONE_INVAL_TRANSITION;
3561 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3563 uint16_t status;
3564 uint8_t state = nvme_get_zone_state(zone);
3566 if (state == NVME_ZONE_STATE_EMPTY) {
3567 status = nvme_aor_check(ns, 1, 0);
3568 if (status) {
3569 return status;
3571 nvme_aor_inc_active(ns);
3572 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3573 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3574 return NVME_SUCCESS;
3577 return NVME_ZONE_INVAL_TRANSITION;
3580 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3581 enum NvmeZoneProcessingMask proc_mask,
3582 op_handler_t op_hndlr, NvmeRequest *req)
3584 uint16_t status = NVME_SUCCESS;
3585 NvmeZoneState zs = nvme_get_zone_state(zone);
3586 bool proc_zone;
3588 switch (zs) {
3589 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3590 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3591 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3592 break;
3593 case NVME_ZONE_STATE_CLOSED:
3594 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3595 break;
3596 case NVME_ZONE_STATE_READ_ONLY:
3597 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3598 break;
3599 case NVME_ZONE_STATE_FULL:
3600 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3601 break;
3602 default:
3603 proc_zone = false;
3606 if (proc_zone) {
3607 status = op_hndlr(ns, zone, zs, req);
3610 return status;
3613 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3614 enum NvmeZoneProcessingMask proc_mask,
3615 op_handler_t op_hndlr, NvmeRequest *req)
3617 NvmeZone *next;
3618 uint16_t status = NVME_SUCCESS;
3619 int i;
3621 if (!proc_mask) {
3622 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3623 } else {
3624 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3625 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3626 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3627 req);
3628 if (status && status != NVME_NO_COMPLETE) {
3629 goto out;
3633 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3634 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3635 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3636 req);
3637 if (status && status != NVME_NO_COMPLETE) {
3638 goto out;
3642 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3643 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3644 req);
3645 if (status && status != NVME_NO_COMPLETE) {
3646 goto out;
3650 if (proc_mask & NVME_PROC_FULL_ZONES) {
3651 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3652 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3653 req);
3654 if (status && status != NVME_NO_COMPLETE) {
3655 goto out;
3660 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3661 for (i = 0; i < ns->num_zones; i++, zone++) {
3662 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3663 req);
3664 if (status && status != NVME_NO_COMPLETE) {
3665 goto out;
3671 out:
3672 return status;
3675 typedef struct NvmeZoneResetAIOCB {
3676 BlockAIOCB common;
3677 BlockAIOCB *aiocb;
3678 NvmeRequest *req;
3679 QEMUBH *bh;
3680 int ret;
3682 bool all;
3683 int idx;
3684 NvmeZone *zone;
3685 } NvmeZoneResetAIOCB;
3687 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3689 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3690 NvmeRequest *req = iocb->req;
3691 NvmeNamespace *ns = req->ns;
3693 iocb->idx = ns->num_zones;
3695 iocb->ret = -ECANCELED;
3697 if (iocb->aiocb) {
3698 blk_aio_cancel_async(iocb->aiocb);
3699 iocb->aiocb = NULL;
3703 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3704 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3705 .cancel_async = nvme_zone_reset_cancel,
3708 static void nvme_zone_reset_bh(void *opaque)
3710 NvmeZoneResetAIOCB *iocb = opaque;
3712 iocb->common.cb(iocb->common.opaque, iocb->ret);
3714 qemu_bh_delete(iocb->bh);
3715 iocb->bh = NULL;
3716 qemu_aio_unref(iocb);
3719 static void nvme_zone_reset_cb(void *opaque, int ret);
3721 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3723 NvmeZoneResetAIOCB *iocb = opaque;
3724 NvmeRequest *req = iocb->req;
3725 NvmeNamespace *ns = req->ns;
3726 int64_t moff;
3727 int count;
3729 if (ret < 0) {
3730 nvme_zone_reset_cb(iocb, ret);
3731 return;
3734 if (!ns->lbaf.ms) {
3735 nvme_zone_reset_cb(iocb, 0);
3736 return;
3739 moff = nvme_moff(ns, iocb->zone->d.zslba);
3740 count = nvme_m2b(ns, ns->zone_size);
3742 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3743 BDRV_REQ_MAY_UNMAP,
3744 nvme_zone_reset_cb, iocb);
3745 return;
3748 static void nvme_zone_reset_cb(void *opaque, int ret)
3750 NvmeZoneResetAIOCB *iocb = opaque;
3751 NvmeRequest *req = iocb->req;
3752 NvmeNamespace *ns = req->ns;
3754 if (ret < 0) {
3755 iocb->ret = ret;
3756 goto done;
3759 if (iocb->zone) {
3760 nvme_zrm_reset(ns, iocb->zone);
3762 if (!iocb->all) {
3763 goto done;
3767 while (iocb->idx < ns->num_zones) {
3768 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3770 switch (nvme_get_zone_state(zone)) {
3771 case NVME_ZONE_STATE_EMPTY:
3772 if (!iocb->all) {
3773 goto done;
3776 continue;
3778 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3779 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3780 case NVME_ZONE_STATE_CLOSED:
3781 case NVME_ZONE_STATE_FULL:
3782 iocb->zone = zone;
3783 break;
3785 default:
3786 continue;
3789 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3791 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3792 nvme_l2b(ns, zone->d.zslba),
3793 nvme_l2b(ns, ns->zone_size),
3794 BDRV_REQ_MAY_UNMAP,
3795 nvme_zone_reset_epilogue_cb,
3796 iocb);
3797 return;
3800 done:
3801 iocb->aiocb = NULL;
3802 if (iocb->bh) {
3803 qemu_bh_schedule(iocb->bh);
3807 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3808 uint64_t elba, NvmeRequest *req)
3810 NvmeNamespace *ns = req->ns;
3811 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3812 uint64_t wp = zone->d.wp;
3813 uint32_t nlb = elba - wp + 1;
3814 uint16_t status;
3817 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3818 return NVME_INVALID_ZONE_OP | NVME_DNR;
3821 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3822 return NVME_INVALID_FIELD | NVME_DNR;
3825 if (elba < wp || elba > wp + ns->zns.zrwas) {
3826 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3829 if (nlb % ns->zns.zrwafg) {
3830 return NVME_INVALID_FIELD | NVME_DNR;
3833 status = nvme_zrm_auto(n, ns, zone);
3834 if (status) {
3835 return status;
3838 zone->w_ptr += nlb;
3840 nvme_advance_zone_wp(ns, zone, nlb);
3842 return NVME_SUCCESS;
3845 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3847 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3848 NvmeNamespace *ns = req->ns;
3849 NvmeZone *zone;
3850 NvmeZoneResetAIOCB *iocb;
3851 uint8_t *zd_ext;
3852 uint64_t slba = 0;
3853 uint32_t zone_idx = 0;
3854 uint16_t status;
3855 uint8_t action = cmd->zsa;
3856 bool all;
3857 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3859 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3861 req->status = NVME_SUCCESS;
3863 if (!all) {
3864 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3865 if (status) {
3866 return status;
3870 zone = &ns->zone_array[zone_idx];
3871 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3872 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3873 return NVME_INVALID_FIELD | NVME_DNR;
3876 switch (action) {
3878 case NVME_ZONE_ACTION_OPEN:
3879 if (all) {
3880 proc_mask = NVME_PROC_CLOSED_ZONES;
3882 trace_pci_nvme_open_zone(slba, zone_idx, all);
3883 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3884 break;
3886 case NVME_ZONE_ACTION_CLOSE:
3887 if (all) {
3888 proc_mask = NVME_PROC_OPENED_ZONES;
3890 trace_pci_nvme_close_zone(slba, zone_idx, all);
3891 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3892 break;
3894 case NVME_ZONE_ACTION_FINISH:
3895 if (all) {
3896 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3898 trace_pci_nvme_finish_zone(slba, zone_idx, all);
3899 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3900 break;
3902 case NVME_ZONE_ACTION_RESET:
3903 trace_pci_nvme_reset_zone(slba, zone_idx, all);
3905 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3906 nvme_misc_cb, req);
3908 iocb->req = req;
3909 iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3910 iocb->ret = 0;
3911 iocb->all = all;
3912 iocb->idx = zone_idx;
3913 iocb->zone = NULL;
3915 req->aiocb = &iocb->common;
3916 nvme_zone_reset_cb(iocb, 0);
3918 return NVME_NO_COMPLETE;
3920 case NVME_ZONE_ACTION_OFFLINE:
3921 if (all) {
3922 proc_mask = NVME_PROC_READ_ONLY_ZONES;
3924 trace_pci_nvme_offline_zone(slba, zone_idx, all);
3925 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3926 break;
3928 case NVME_ZONE_ACTION_SET_ZD_EXT:
3929 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3930 if (all || !ns->params.zd_extension_size) {
3931 return NVME_INVALID_FIELD | NVME_DNR;
3933 zd_ext = nvme_get_zd_extension(ns, zone_idx);
3934 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3935 if (status) {
3936 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3937 return status;
3940 status = nvme_set_zd_ext(ns, zone);
3941 if (status == NVME_SUCCESS) {
3942 trace_pci_nvme_zd_extension_set(zone_idx);
3943 return status;
3945 break;
3947 case NVME_ZONE_ACTION_ZRWA_FLUSH:
3948 if (all) {
3949 return NVME_INVALID_FIELD | NVME_DNR;
3952 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
3954 default:
3955 trace_pci_nvme_err_invalid_mgmt_action(action);
3956 status = NVME_INVALID_FIELD;
3959 if (status == NVME_ZONE_INVAL_TRANSITION) {
3960 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3961 zone->d.za);
3963 if (status) {
3964 status |= NVME_DNR;
3967 return status;
3970 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3972 NvmeZoneState zs = nvme_get_zone_state(zl);
3974 switch (zafs) {
3975 case NVME_ZONE_REPORT_ALL:
3976 return true;
3977 case NVME_ZONE_REPORT_EMPTY:
3978 return zs == NVME_ZONE_STATE_EMPTY;
3979 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3980 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3981 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3982 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3983 case NVME_ZONE_REPORT_CLOSED:
3984 return zs == NVME_ZONE_STATE_CLOSED;
3985 case NVME_ZONE_REPORT_FULL:
3986 return zs == NVME_ZONE_STATE_FULL;
3987 case NVME_ZONE_REPORT_READ_ONLY:
3988 return zs == NVME_ZONE_STATE_READ_ONLY;
3989 case NVME_ZONE_REPORT_OFFLINE:
3990 return zs == NVME_ZONE_STATE_OFFLINE;
3991 default:
3992 return false;
3996 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3998 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3999 NvmeNamespace *ns = req->ns;
4000 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4001 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4002 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4003 uint32_t zone_idx, zra, zrasf, partial;
4004 uint64_t max_zones, nr_zones = 0;
4005 uint16_t status;
4006 uint64_t slba;
4007 NvmeZoneDescr *z;
4008 NvmeZone *zone;
4009 NvmeZoneReportHeader *header;
4010 void *buf, *buf_p;
4011 size_t zone_entry_sz;
4012 int i;
4014 req->status = NVME_SUCCESS;
4016 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4017 if (status) {
4018 return status;
4021 zra = dw13 & 0xff;
4022 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4023 return NVME_INVALID_FIELD | NVME_DNR;
4025 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4026 return NVME_INVALID_FIELD | NVME_DNR;
4029 zrasf = (dw13 >> 8) & 0xff;
4030 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4031 return NVME_INVALID_FIELD | NVME_DNR;
4034 if (data_size < sizeof(NvmeZoneReportHeader)) {
4035 return NVME_INVALID_FIELD | NVME_DNR;
4038 status = nvme_check_mdts(n, data_size);
4039 if (status) {
4040 return status;
4043 partial = (dw13 >> 16) & 0x01;
4045 zone_entry_sz = sizeof(NvmeZoneDescr);
4046 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4047 zone_entry_sz += ns->params.zd_extension_size;
4050 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4051 buf = g_malloc0(data_size);
4053 zone = &ns->zone_array[zone_idx];
4054 for (i = zone_idx; i < ns->num_zones; i++) {
4055 if (partial && nr_zones >= max_zones) {
4056 break;
4058 if (nvme_zone_matches_filter(zrasf, zone++)) {
4059 nr_zones++;
4062 header = (NvmeZoneReportHeader *)buf;
4063 header->nr_zones = cpu_to_le64(nr_zones);
4065 buf_p = buf + sizeof(NvmeZoneReportHeader);
4066 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4067 zone = &ns->zone_array[zone_idx];
4068 if (nvme_zone_matches_filter(zrasf, zone)) {
4069 z = (NvmeZoneDescr *)buf_p;
4070 buf_p += sizeof(NvmeZoneDescr);
4072 z->zt = zone->d.zt;
4073 z->zs = zone->d.zs;
4074 z->zcap = cpu_to_le64(zone->d.zcap);
4075 z->zslba = cpu_to_le64(zone->d.zslba);
4076 z->za = zone->d.za;
4078 if (nvme_wp_is_valid(zone)) {
4079 z->wp = cpu_to_le64(zone->d.wp);
4080 } else {
4081 z->wp = cpu_to_le64(~0ULL);
4084 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4085 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4086 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4087 ns->params.zd_extension_size);
4089 buf_p += ns->params.zd_extension_size;
4092 max_zones--;
4096 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4098 g_free(buf);
4100 return status;
4103 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4105 NvmeNamespace *ns;
4106 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4108 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4109 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4111 if (!nvme_nsid_valid(n, nsid)) {
4112 return NVME_INVALID_NSID | NVME_DNR;
4116 * In the base NVM command set, Flush may apply to all namespaces
4117 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4118 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4120 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4121 * opcode with a specific command since we cannot determine a unique I/O
4122 * command set. Opcode 0h could have any other meaning than something
4123 * equivalent to flushing and say it DOES have completely different
4124 * semantics in some other command set - does an NSID of FFFFFFFFh then
4125 * mean "for all namespaces, apply whatever command set specific command
4126 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4127 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4128 * to be FFFFFFFFh"?
4130 * Anyway (and luckily), for now, we do not care about this since the
4131 * device only supports namespace types that includes the NVM Flush command
4132 * (NVM and Zoned), so always do an NVM Flush.
4134 if (req->cmd.opcode == NVME_CMD_FLUSH) {
4135 return nvme_flush(n, req);
4138 ns = nvme_ns(n, nsid);
4139 if (unlikely(!ns)) {
4140 return NVME_INVALID_FIELD | NVME_DNR;
4143 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4144 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4145 return NVME_INVALID_OPCODE | NVME_DNR;
4148 if (ns->status) {
4149 return ns->status;
4152 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4153 return NVME_INVALID_FIELD;
4156 req->ns = ns;
4158 switch (req->cmd.opcode) {
4159 case NVME_CMD_WRITE_ZEROES:
4160 return nvme_write_zeroes(n, req);
4161 case NVME_CMD_ZONE_APPEND:
4162 return nvme_zone_append(n, req);
4163 case NVME_CMD_WRITE:
4164 return nvme_write(n, req);
4165 case NVME_CMD_READ:
4166 return nvme_read(n, req);
4167 case NVME_CMD_COMPARE:
4168 return nvme_compare(n, req);
4169 case NVME_CMD_DSM:
4170 return nvme_dsm(n, req);
4171 case NVME_CMD_VERIFY:
4172 return nvme_verify(n, req);
4173 case NVME_CMD_COPY:
4174 return nvme_copy(n, req);
4175 case NVME_CMD_ZONE_MGMT_SEND:
4176 return nvme_zone_mgmt_send(n, req);
4177 case NVME_CMD_ZONE_MGMT_RECV:
4178 return nvme_zone_mgmt_recv(n, req);
4179 default:
4180 assert(false);
4183 return NVME_INVALID_OPCODE | NVME_DNR;
4186 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4188 n->sq[sq->sqid] = NULL;
4189 timer_free(sq->timer);
4190 g_free(sq->io_req);
4191 if (sq->sqid) {
4192 g_free(sq);
4196 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4198 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4199 NvmeRequest *r, *next;
4200 NvmeSQueue *sq;
4201 NvmeCQueue *cq;
4202 uint16_t qid = le16_to_cpu(c->qid);
4204 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4205 trace_pci_nvme_err_invalid_del_sq(qid);
4206 return NVME_INVALID_QID | NVME_DNR;
4209 trace_pci_nvme_del_sq(qid);
4211 sq = n->sq[qid];
4212 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4213 r = QTAILQ_FIRST(&sq->out_req_list);
4214 assert(r->aiocb);
4215 blk_aio_cancel(r->aiocb);
4218 assert(QTAILQ_EMPTY(&sq->out_req_list));
4220 if (!nvme_check_cqid(n, sq->cqid)) {
4221 cq = n->cq[sq->cqid];
4222 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4224 nvme_post_cqes(cq);
4225 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4226 if (r->sq == sq) {
4227 QTAILQ_REMOVE(&cq->req_list, r, entry);
4228 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4233 nvme_free_sq(sq, n);
4234 return NVME_SUCCESS;
4237 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4238 uint16_t sqid, uint16_t cqid, uint16_t size)
4240 int i;
4241 NvmeCQueue *cq;
4243 sq->ctrl = n;
4244 sq->dma_addr = dma_addr;
4245 sq->sqid = sqid;
4246 sq->size = size;
4247 sq->cqid = cqid;
4248 sq->head = sq->tail = 0;
4249 sq->io_req = g_new0(NvmeRequest, sq->size);
4251 QTAILQ_INIT(&sq->req_list);
4252 QTAILQ_INIT(&sq->out_req_list);
4253 for (i = 0; i < sq->size; i++) {
4254 sq->io_req[i].sq = sq;
4255 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4257 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
4259 assert(n->cq[cqid]);
4260 cq = n->cq[cqid];
4261 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4262 n->sq[sqid] = sq;
4265 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4267 NvmeSQueue *sq;
4268 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4270 uint16_t cqid = le16_to_cpu(c->cqid);
4271 uint16_t sqid = le16_to_cpu(c->sqid);
4272 uint16_t qsize = le16_to_cpu(c->qsize);
4273 uint16_t qflags = le16_to_cpu(c->sq_flags);
4274 uint64_t prp1 = le64_to_cpu(c->prp1);
4276 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4278 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4279 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4280 return NVME_INVALID_CQID | NVME_DNR;
4282 if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
4283 n->sq[sqid] != NULL)) {
4284 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4285 return NVME_INVALID_QID | NVME_DNR;
4287 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4288 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4289 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4291 if (unlikely(prp1 & (n->page_size - 1))) {
4292 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4293 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4295 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4296 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4297 return NVME_INVALID_FIELD | NVME_DNR;
4299 sq = g_malloc0(sizeof(*sq));
4300 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4301 return NVME_SUCCESS;
4304 struct nvme_stats {
4305 uint64_t units_read;
4306 uint64_t units_written;
4307 uint64_t read_commands;
4308 uint64_t write_commands;
4311 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4313 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4315 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4316 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4317 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4318 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4321 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4322 uint64_t off, NvmeRequest *req)
4324 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4325 struct nvme_stats stats = { 0 };
4326 NvmeSmartLog smart = { 0 };
4327 uint32_t trans_len;
4328 NvmeNamespace *ns;
4329 time_t current_ms;
4331 if (off >= sizeof(smart)) {
4332 return NVME_INVALID_FIELD | NVME_DNR;
4335 if (nsid != 0xffffffff) {
4336 ns = nvme_ns(n, nsid);
4337 if (!ns) {
4338 return NVME_INVALID_NSID | NVME_DNR;
4340 nvme_set_blk_stats(ns, &stats);
4341 } else {
4342 int i;
4344 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4345 ns = nvme_ns(n, i);
4346 if (!ns) {
4347 continue;
4349 nvme_set_blk_stats(ns, &stats);
4353 trans_len = MIN(sizeof(smart) - off, buf_len);
4354 smart.critical_warning = n->smart_critical_warning;
4356 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4357 1000));
4358 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4359 1000));
4360 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4361 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4363 smart.temperature = cpu_to_le16(n->temperature);
4365 if ((n->temperature >= n->features.temp_thresh_hi) ||
4366 (n->temperature <= n->features.temp_thresh_low)) {
4367 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4370 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4371 smart.power_on_hours[0] =
4372 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4374 if (!rae) {
4375 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4378 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4381 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4382 NvmeRequest *req)
4384 uint32_t trans_len;
4385 NvmeFwSlotInfoLog fw_log = {
4386 .afi = 0x1,
4389 if (off >= sizeof(fw_log)) {
4390 return NVME_INVALID_FIELD | NVME_DNR;
4393 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4394 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4396 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4399 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4400 uint64_t off, NvmeRequest *req)
4402 uint32_t trans_len;
4403 NvmeErrorLog errlog;
4405 if (off >= sizeof(errlog)) {
4406 return NVME_INVALID_FIELD | NVME_DNR;
4409 if (!rae) {
4410 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4413 memset(&errlog, 0x0, sizeof(errlog));
4414 trans_len = MIN(sizeof(errlog) - off, buf_len);
4416 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4419 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4420 uint64_t off, NvmeRequest *req)
4422 uint32_t nslist[1024];
4423 uint32_t trans_len;
4424 int i = 0;
4425 uint32_t nsid;
4427 if (off >= sizeof(nslist)) {
4428 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4429 return NVME_INVALID_FIELD | NVME_DNR;
4432 memset(nslist, 0x0, sizeof(nslist));
4433 trans_len = MIN(sizeof(nslist) - off, buf_len);
4435 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4436 NVME_CHANGED_NSID_SIZE) {
4438 * If more than 1024 namespaces, the first entry in the log page should
4439 * be set to FFFFFFFFh and the others to 0 as spec.
4441 if (i == ARRAY_SIZE(nslist)) {
4442 memset(nslist, 0x0, sizeof(nslist));
4443 nslist[0] = 0xffffffff;
4444 break;
4447 nslist[i++] = nsid;
4448 clear_bit(nsid, n->changed_nsids);
4452 * Remove all the remaining list entries in case returns directly due to
4453 * more than 1024 namespaces.
4455 if (nslist[0] == 0xffffffff) {
4456 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4459 if (!rae) {
4460 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4463 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4466 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4467 uint64_t off, NvmeRequest *req)
4469 NvmeEffectsLog log = {};
4470 const uint32_t *src_iocs = NULL;
4471 uint32_t trans_len;
4473 if (off >= sizeof(log)) {
4474 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4475 return NVME_INVALID_FIELD | NVME_DNR;
4478 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4479 case NVME_CC_CSS_NVM:
4480 src_iocs = nvme_cse_iocs_nvm;
4481 /* fall through */
4482 case NVME_CC_CSS_ADMIN_ONLY:
4483 break;
4484 case NVME_CC_CSS_CSI:
4485 switch (csi) {
4486 case NVME_CSI_NVM:
4487 src_iocs = nvme_cse_iocs_nvm;
4488 break;
4489 case NVME_CSI_ZONED:
4490 src_iocs = nvme_cse_iocs_zoned;
4491 break;
4495 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4497 if (src_iocs) {
4498 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4501 trans_len = MIN(sizeof(log) - off, buf_len);
4503 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4506 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4508 NvmeCmd *cmd = &req->cmd;
4510 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4511 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4512 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4513 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4514 uint8_t lid = dw10 & 0xff;
4515 uint8_t lsp = (dw10 >> 8) & 0xf;
4516 uint8_t rae = (dw10 >> 15) & 0x1;
4517 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
4518 uint32_t numdl, numdu;
4519 uint64_t off, lpol, lpou;
4520 size_t len;
4521 uint16_t status;
4523 numdl = (dw10 >> 16);
4524 numdu = (dw11 & 0xffff);
4525 lpol = dw12;
4526 lpou = dw13;
4528 len = (((numdu << 16) | numdl) + 1) << 2;
4529 off = (lpou << 32ULL) | lpol;
4531 if (off & 0x3) {
4532 return NVME_INVALID_FIELD | NVME_DNR;
4535 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4537 status = nvme_check_mdts(n, len);
4538 if (status) {
4539 return status;
4542 switch (lid) {
4543 case NVME_LOG_ERROR_INFO:
4544 return nvme_error_info(n, rae, len, off, req);
4545 case NVME_LOG_SMART_INFO:
4546 return nvme_smart_info(n, rae, len, off, req);
4547 case NVME_LOG_FW_SLOT_INFO:
4548 return nvme_fw_log_info(n, len, off, req);
4549 case NVME_LOG_CHANGED_NSLIST:
4550 return nvme_changed_nslist(n, rae, len, off, req);
4551 case NVME_LOG_CMD_EFFECTS:
4552 return nvme_cmd_effects(n, csi, len, off, req);
4553 default:
4554 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4555 return NVME_INVALID_FIELD | NVME_DNR;
4559 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4561 n->cq[cq->cqid] = NULL;
4562 timer_free(cq->timer);
4563 if (msix_enabled(&n->parent_obj)) {
4564 msix_vector_unuse(&n->parent_obj, cq->vector);
4566 if (cq->cqid) {
4567 g_free(cq);
4571 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4573 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4574 NvmeCQueue *cq;
4575 uint16_t qid = le16_to_cpu(c->qid);
4577 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4578 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4579 return NVME_INVALID_CQID | NVME_DNR;
4582 cq = n->cq[qid];
4583 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4584 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4585 return NVME_INVALID_QUEUE_DEL;
4588 if (cq->irq_enabled && cq->tail != cq->head) {
4589 n->cq_pending--;
4592 nvme_irq_deassert(n, cq);
4593 trace_pci_nvme_del_cq(qid);
4594 nvme_free_cq(cq, n);
4595 return NVME_SUCCESS;
4598 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4599 uint16_t cqid, uint16_t vector, uint16_t size,
4600 uint16_t irq_enabled)
4602 int ret;
4604 if (msix_enabled(&n->parent_obj)) {
4605 ret = msix_vector_use(&n->parent_obj, vector);
4606 assert(ret == 0);
4608 cq->ctrl = n;
4609 cq->cqid = cqid;
4610 cq->size = size;
4611 cq->dma_addr = dma_addr;
4612 cq->phase = 1;
4613 cq->irq_enabled = irq_enabled;
4614 cq->vector = vector;
4615 cq->head = cq->tail = 0;
4616 QTAILQ_INIT(&cq->req_list);
4617 QTAILQ_INIT(&cq->sq_list);
4618 n->cq[cqid] = cq;
4619 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4622 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4624 NvmeCQueue *cq;
4625 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4626 uint16_t cqid = le16_to_cpu(c->cqid);
4627 uint16_t vector = le16_to_cpu(c->irq_vector);
4628 uint16_t qsize = le16_to_cpu(c->qsize);
4629 uint16_t qflags = le16_to_cpu(c->cq_flags);
4630 uint64_t prp1 = le64_to_cpu(c->prp1);
4632 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4633 NVME_CQ_FLAGS_IEN(qflags) != 0);
4635 if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
4636 n->cq[cqid] != NULL)) {
4637 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4638 return NVME_INVALID_QID | NVME_DNR;
4640 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4641 trace_pci_nvme_err_invalid_create_cq_size(qsize);
4642 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4644 if (unlikely(prp1 & (n->page_size - 1))) {
4645 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4646 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4648 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4649 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4650 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4652 if (unlikely(vector >= n->params.msix_qsize)) {
4653 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4654 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4656 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4657 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4658 return NVME_INVALID_FIELD | NVME_DNR;
4661 cq = g_malloc0(sizeof(*cq));
4662 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4663 NVME_CQ_FLAGS_IEN(qflags));
4666 * It is only required to set qs_created when creating a completion queue;
4667 * creating a submission queue without a matching completion queue will
4668 * fail.
4670 n->qs_created = true;
4671 return NVME_SUCCESS;
4674 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4676 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4678 return nvme_c2h(n, id, sizeof(id), req);
4681 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4683 trace_pci_nvme_identify_ctrl();
4685 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4688 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4690 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4691 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4692 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4694 trace_pci_nvme_identify_ctrl_csi(c->csi);
4696 switch (c->csi) {
4697 case NVME_CSI_NVM:
4698 id_nvm->vsl = n->params.vsl;
4699 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4700 break;
4702 case NVME_CSI_ZONED:
4703 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4704 break;
4706 default:
4707 return NVME_INVALID_FIELD | NVME_DNR;
4710 return nvme_c2h(n, id, sizeof(id), req);
4713 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4715 NvmeNamespace *ns;
4716 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4717 uint32_t nsid = le32_to_cpu(c->nsid);
4719 trace_pci_nvme_identify_ns(nsid);
4721 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4722 return NVME_INVALID_NSID | NVME_DNR;
4725 ns = nvme_ns(n, nsid);
4726 if (unlikely(!ns)) {
4727 if (!active) {
4728 ns = nvme_subsys_ns(n->subsys, nsid);
4729 if (!ns) {
4730 return nvme_rpt_empty_id_struct(n, req);
4732 } else {
4733 return nvme_rpt_empty_id_struct(n, req);
4737 if (active || ns->csi == NVME_CSI_NVM) {
4738 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4741 return NVME_INVALID_CMD_SET | NVME_DNR;
4744 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4745 bool attached)
4747 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4748 uint32_t nsid = le32_to_cpu(c->nsid);
4749 uint16_t min_id = le16_to_cpu(c->ctrlid);
4750 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4751 uint16_t *ids = &list[1];
4752 NvmeNamespace *ns;
4753 NvmeCtrl *ctrl;
4754 int cntlid, nr_ids = 0;
4756 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4758 if (!n->subsys) {
4759 return NVME_INVALID_FIELD | NVME_DNR;
4762 if (attached) {
4763 if (nsid == NVME_NSID_BROADCAST) {
4764 return NVME_INVALID_FIELD | NVME_DNR;
4767 ns = nvme_subsys_ns(n->subsys, nsid);
4768 if (!ns) {
4769 return NVME_INVALID_FIELD | NVME_DNR;
4773 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4774 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4775 if (!ctrl) {
4776 continue;
4779 if (attached && !nvme_ns(ctrl, nsid)) {
4780 continue;
4783 ids[nr_ids++] = cntlid;
4786 list[0] = nr_ids;
4788 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4791 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4792 bool active)
4794 NvmeNamespace *ns;
4795 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4796 uint32_t nsid = le32_to_cpu(c->nsid);
4798 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4800 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4801 return NVME_INVALID_NSID | NVME_DNR;
4804 ns = nvme_ns(n, nsid);
4805 if (unlikely(!ns)) {
4806 if (!active) {
4807 ns = nvme_subsys_ns(n->subsys, nsid);
4808 if (!ns) {
4809 return nvme_rpt_empty_id_struct(n, req);
4811 } else {
4812 return nvme_rpt_empty_id_struct(n, req);
4816 if (c->csi == NVME_CSI_NVM) {
4817 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4818 req);
4819 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4820 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4821 req);
4824 return NVME_INVALID_FIELD | NVME_DNR;
4827 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4828 bool active)
4830 NvmeNamespace *ns;
4831 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4832 uint32_t min_nsid = le32_to_cpu(c->nsid);
4833 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4834 static const int data_len = sizeof(list);
4835 uint32_t *list_ptr = (uint32_t *)list;
4836 int i, j = 0;
4838 trace_pci_nvme_identify_nslist(min_nsid);
4841 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4842 * since the Active Namespace ID List should return namespaces with ids
4843 * *higher* than the NSID specified in the command. This is also specified
4844 * in the spec (NVM Express v1.3d, Section 5.15.4).
4846 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4847 return NVME_INVALID_NSID | NVME_DNR;
4850 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4851 ns = nvme_ns(n, i);
4852 if (!ns) {
4853 if (!active) {
4854 ns = nvme_subsys_ns(n->subsys, i);
4855 if (!ns) {
4856 continue;
4858 } else {
4859 continue;
4862 if (ns->params.nsid <= min_nsid) {
4863 continue;
4865 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4866 if (j == data_len / sizeof(uint32_t)) {
4867 break;
4871 return nvme_c2h(n, list, data_len, req);
4874 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4875 bool active)
4877 NvmeNamespace *ns;
4878 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4879 uint32_t min_nsid = le32_to_cpu(c->nsid);
4880 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4881 static const int data_len = sizeof(list);
4882 uint32_t *list_ptr = (uint32_t *)list;
4883 int i, j = 0;
4885 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4888 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4890 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4891 return NVME_INVALID_NSID | NVME_DNR;
4894 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4895 return NVME_INVALID_FIELD | NVME_DNR;
4898 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4899 ns = nvme_ns(n, i);
4900 if (!ns) {
4901 if (!active) {
4902 ns = nvme_subsys_ns(n->subsys, i);
4903 if (!ns) {
4904 continue;
4906 } else {
4907 continue;
4910 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
4911 continue;
4913 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4914 if (j == data_len / sizeof(uint32_t)) {
4915 break;
4919 return nvme_c2h(n, list, data_len, req);
4922 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
4924 NvmeNamespace *ns;
4925 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4926 uint32_t nsid = le32_to_cpu(c->nsid);
4927 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4928 uint8_t *pos = list;
4929 struct {
4930 NvmeIdNsDescr hdr;
4931 uint8_t v[NVME_NIDL_UUID];
4932 } QEMU_PACKED uuid = {};
4933 struct {
4934 NvmeIdNsDescr hdr;
4935 uint64_t v;
4936 } QEMU_PACKED eui64 = {};
4937 struct {
4938 NvmeIdNsDescr hdr;
4939 uint8_t v;
4940 } QEMU_PACKED csi = {};
4942 trace_pci_nvme_identify_ns_descr_list(nsid);
4944 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4945 return NVME_INVALID_NSID | NVME_DNR;
4948 ns = nvme_ns(n, nsid);
4949 if (unlikely(!ns)) {
4950 return NVME_INVALID_FIELD | NVME_DNR;
4954 * If the EUI-64 field is 0 and the NGUID field is 0, the namespace must
4955 * provide a valid Namespace UUID in the Namespace Identification Descriptor
4956 * data structure. QEMU does not yet support setting NGUID.
4958 uuid.hdr.nidt = NVME_NIDT_UUID;
4959 uuid.hdr.nidl = NVME_NIDL_UUID;
4960 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
4961 memcpy(pos, &uuid, sizeof(uuid));
4962 pos += sizeof(uuid);
4964 if (ns->params.eui64) {
4965 eui64.hdr.nidt = NVME_NIDT_EUI64;
4966 eui64.hdr.nidl = NVME_NIDL_EUI64;
4967 eui64.v = cpu_to_be64(ns->params.eui64);
4968 memcpy(pos, &eui64, sizeof(eui64));
4969 pos += sizeof(eui64);
4972 csi.hdr.nidt = NVME_NIDT_CSI;
4973 csi.hdr.nidl = NVME_NIDL_CSI;
4974 csi.v = ns->csi;
4975 memcpy(pos, &csi, sizeof(csi));
4976 pos += sizeof(csi);
4978 return nvme_c2h(n, list, sizeof(list), req);
4981 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
4983 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4984 static const int data_len = sizeof(list);
4986 trace_pci_nvme_identify_cmd_set();
4988 NVME_SET_CSI(*list, NVME_CSI_NVM);
4989 NVME_SET_CSI(*list, NVME_CSI_ZONED);
4991 return nvme_c2h(n, list, data_len, req);
4994 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
4996 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4998 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
4999 c->csi);
5001 switch (c->cns) {
5002 case NVME_ID_CNS_NS:
5003 return nvme_identify_ns(n, req, true);
5004 case NVME_ID_CNS_NS_PRESENT:
5005 return nvme_identify_ns(n, req, false);
5006 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5007 return nvme_identify_ctrl_list(n, req, true);
5008 case NVME_ID_CNS_CTRL_LIST:
5009 return nvme_identify_ctrl_list(n, req, false);
5010 case NVME_ID_CNS_CS_NS:
5011 return nvme_identify_ns_csi(n, req, true);
5012 case NVME_ID_CNS_CS_NS_PRESENT:
5013 return nvme_identify_ns_csi(n, req, false);
5014 case NVME_ID_CNS_CTRL:
5015 return nvme_identify_ctrl(n, req);
5016 case NVME_ID_CNS_CS_CTRL:
5017 return nvme_identify_ctrl_csi(n, req);
5018 case NVME_ID_CNS_NS_ACTIVE_LIST:
5019 return nvme_identify_nslist(n, req, true);
5020 case NVME_ID_CNS_NS_PRESENT_LIST:
5021 return nvme_identify_nslist(n, req, false);
5022 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5023 return nvme_identify_nslist_csi(n, req, true);
5024 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5025 return nvme_identify_nslist_csi(n, req, false);
5026 case NVME_ID_CNS_NS_DESCR_LIST:
5027 return nvme_identify_ns_descr_list(n, req);
5028 case NVME_ID_CNS_IO_COMMAND_SET:
5029 return nvme_identify_cmd_set(n, req);
5030 default:
5031 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5032 return NVME_INVALID_FIELD | NVME_DNR;
5036 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5038 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5040 req->cqe.result = 1;
5041 if (nvme_check_sqid(n, sqid)) {
5042 return NVME_INVALID_FIELD | NVME_DNR;
5045 return NVME_SUCCESS;
5048 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5050 trace_pci_nvme_setfeat_timestamp(ts);
5052 n->host_timestamp = le64_to_cpu(ts);
5053 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5056 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5058 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5059 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5061 union nvme_timestamp {
5062 struct {
5063 uint64_t timestamp:48;
5064 uint64_t sync:1;
5065 uint64_t origin:3;
5066 uint64_t rsvd1:12;
5068 uint64_t all;
5071 union nvme_timestamp ts;
5072 ts.all = 0;
5073 ts.timestamp = n->host_timestamp + elapsed_time;
5075 /* If the host timestamp is non-zero, set the timestamp origin */
5076 ts.origin = n->host_timestamp ? 0x01 : 0x00;
5078 trace_pci_nvme_getfeat_timestamp(ts.all);
5080 return cpu_to_le64(ts.all);
5083 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5085 uint64_t timestamp = nvme_get_timestamp(n);
5087 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5090 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5092 NvmeCmd *cmd = &req->cmd;
5093 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5094 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5095 uint32_t nsid = le32_to_cpu(cmd->nsid);
5096 uint32_t result;
5097 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5098 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5099 uint16_t iv;
5100 NvmeNamespace *ns;
5101 int i;
5103 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5104 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5107 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5109 if (!nvme_feature_support[fid]) {
5110 return NVME_INVALID_FIELD | NVME_DNR;
5113 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5114 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5116 * The Reservation Notification Mask and Reservation Persistence
5117 * features require a status code of Invalid Field in Command when
5118 * NSID is FFFFFFFFh. Since the device does not support those
5119 * features we can always return Invalid Namespace or Format as we
5120 * should do for all other features.
5122 return NVME_INVALID_NSID | NVME_DNR;
5125 if (!nvme_ns(n, nsid)) {
5126 return NVME_INVALID_FIELD | NVME_DNR;
5130 switch (sel) {
5131 case NVME_GETFEAT_SELECT_CURRENT:
5132 break;
5133 case NVME_GETFEAT_SELECT_SAVED:
5134 /* no features are saveable by the controller; fallthrough */
5135 case NVME_GETFEAT_SELECT_DEFAULT:
5136 goto defaults;
5137 case NVME_GETFEAT_SELECT_CAP:
5138 result = nvme_feature_cap[fid];
5139 goto out;
5142 switch (fid) {
5143 case NVME_TEMPERATURE_THRESHOLD:
5144 result = 0;
5147 * The controller only implements the Composite Temperature sensor, so
5148 * return 0 for all other sensors.
5150 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5151 goto out;
5154 switch (NVME_TEMP_THSEL(dw11)) {
5155 case NVME_TEMP_THSEL_OVER:
5156 result = n->features.temp_thresh_hi;
5157 goto out;
5158 case NVME_TEMP_THSEL_UNDER:
5159 result = n->features.temp_thresh_low;
5160 goto out;
5163 return NVME_INVALID_FIELD | NVME_DNR;
5164 case NVME_ERROR_RECOVERY:
5165 if (!nvme_nsid_valid(n, nsid)) {
5166 return NVME_INVALID_NSID | NVME_DNR;
5169 ns = nvme_ns(n, nsid);
5170 if (unlikely(!ns)) {
5171 return NVME_INVALID_FIELD | NVME_DNR;
5174 result = ns->features.err_rec;
5175 goto out;
5176 case NVME_VOLATILE_WRITE_CACHE:
5177 result = 0;
5178 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5179 ns = nvme_ns(n, i);
5180 if (!ns) {
5181 continue;
5184 result = blk_enable_write_cache(ns->blkconf.blk);
5185 if (result) {
5186 break;
5189 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5190 goto out;
5191 case NVME_ASYNCHRONOUS_EVENT_CONF:
5192 result = n->features.async_config;
5193 goto out;
5194 case NVME_TIMESTAMP:
5195 return nvme_get_feature_timestamp(n, req);
5196 case NVME_HOST_BEHAVIOR_SUPPORT:
5197 return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5198 sizeof(n->features.hbs), req);
5199 default:
5200 break;
5203 defaults:
5204 switch (fid) {
5205 case NVME_TEMPERATURE_THRESHOLD:
5206 result = 0;
5208 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5209 break;
5212 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5213 result = NVME_TEMPERATURE_WARNING;
5216 break;
5217 case NVME_NUMBER_OF_QUEUES:
5218 result = (n->params.max_ioqpairs - 1) |
5219 ((n->params.max_ioqpairs - 1) << 16);
5220 trace_pci_nvme_getfeat_numq(result);
5221 break;
5222 case NVME_INTERRUPT_VECTOR_CONF:
5223 iv = dw11 & 0xffff;
5224 if (iv >= n->params.max_ioqpairs + 1) {
5225 return NVME_INVALID_FIELD | NVME_DNR;
5228 result = iv;
5229 if (iv == n->admin_cq.vector) {
5230 result |= NVME_INTVC_NOCOALESCING;
5232 break;
5233 default:
5234 result = nvme_feature_default[fid];
5235 break;
5238 out:
5239 req->cqe.result = cpu_to_le32(result);
5240 return NVME_SUCCESS;
5243 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5245 uint16_t ret;
5246 uint64_t timestamp;
5248 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5249 if (ret) {
5250 return ret;
5253 nvme_set_timestamp(n, timestamp);
5255 return NVME_SUCCESS;
5258 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5260 NvmeNamespace *ns = NULL;
5262 NvmeCmd *cmd = &req->cmd;
5263 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5264 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5265 uint32_t nsid = le32_to_cpu(cmd->nsid);
5266 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5267 uint8_t save = NVME_SETFEAT_SAVE(dw10);
5268 uint16_t status;
5269 int i;
5271 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5273 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5274 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5277 if (!nvme_feature_support[fid]) {
5278 return NVME_INVALID_FIELD | NVME_DNR;
5281 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5282 if (nsid != NVME_NSID_BROADCAST) {
5283 if (!nvme_nsid_valid(n, nsid)) {
5284 return NVME_INVALID_NSID | NVME_DNR;
5287 ns = nvme_ns(n, nsid);
5288 if (unlikely(!ns)) {
5289 return NVME_INVALID_FIELD | NVME_DNR;
5292 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5293 if (!nvme_nsid_valid(n, nsid)) {
5294 return NVME_INVALID_NSID | NVME_DNR;
5297 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5300 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5301 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5304 switch (fid) {
5305 case NVME_TEMPERATURE_THRESHOLD:
5306 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5307 break;
5310 switch (NVME_TEMP_THSEL(dw11)) {
5311 case NVME_TEMP_THSEL_OVER:
5312 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5313 break;
5314 case NVME_TEMP_THSEL_UNDER:
5315 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5316 break;
5317 default:
5318 return NVME_INVALID_FIELD | NVME_DNR;
5321 if ((n->temperature >= n->features.temp_thresh_hi) ||
5322 (n->temperature <= n->features.temp_thresh_low)) {
5323 nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
5326 break;
5327 case NVME_ERROR_RECOVERY:
5328 if (nsid == NVME_NSID_BROADCAST) {
5329 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5330 ns = nvme_ns(n, i);
5332 if (!ns) {
5333 continue;
5336 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5337 ns->features.err_rec = dw11;
5341 break;
5344 assert(ns);
5345 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5346 ns->features.err_rec = dw11;
5348 break;
5349 case NVME_VOLATILE_WRITE_CACHE:
5350 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5351 ns = nvme_ns(n, i);
5352 if (!ns) {
5353 continue;
5356 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5357 blk_flush(ns->blkconf.blk);
5360 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5363 break;
5365 case NVME_NUMBER_OF_QUEUES:
5366 if (n->qs_created) {
5367 return NVME_CMD_SEQ_ERROR | NVME_DNR;
5371 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5372 * and NSQR.
5374 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5375 return NVME_INVALID_FIELD | NVME_DNR;
5378 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5379 ((dw11 >> 16) & 0xffff) + 1,
5380 n->params.max_ioqpairs,
5381 n->params.max_ioqpairs);
5382 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
5383 ((n->params.max_ioqpairs - 1) << 16));
5384 break;
5385 case NVME_ASYNCHRONOUS_EVENT_CONF:
5386 n->features.async_config = dw11;
5387 break;
5388 case NVME_TIMESTAMP:
5389 return nvme_set_feature_timestamp(n, req);
5390 case NVME_HOST_BEHAVIOR_SUPPORT:
5391 status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5392 sizeof(n->features.hbs), req);
5393 if (status) {
5394 return status;
5397 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5398 ns = nvme_ns(n, i);
5400 if (!ns) {
5401 continue;
5404 ns->id_ns.nlbaf = ns->nlbaf - 1;
5405 if (!n->features.hbs.lbafee) {
5406 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5410 return status;
5411 case NVME_COMMAND_SET_PROFILE:
5412 if (dw11 & 0x1ff) {
5413 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5414 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5416 break;
5417 default:
5418 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5420 return NVME_SUCCESS;
5423 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5425 trace_pci_nvme_aer(nvme_cid(req));
5427 if (n->outstanding_aers > n->params.aerl) {
5428 trace_pci_nvme_aer_aerl_exceeded();
5429 return NVME_AER_LIMIT_EXCEEDED;
5432 n->aer_reqs[n->outstanding_aers] = req;
5433 n->outstanding_aers++;
5435 if (!QTAILQ_EMPTY(&n->aer_queue)) {
5436 nvme_process_aers(n);
5439 return NVME_NO_COMPLETE;
5442 static void nvme_update_dmrsl(NvmeCtrl *n)
5444 int nsid;
5446 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5447 NvmeNamespace *ns = nvme_ns(n, nsid);
5448 if (!ns) {
5449 continue;
5452 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5453 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5457 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5459 uint32_t cc = ldl_le_p(&n->bar.cc);
5461 ns->iocs = nvme_cse_iocs_none;
5462 switch (ns->csi) {
5463 case NVME_CSI_NVM:
5464 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5465 ns->iocs = nvme_cse_iocs_nvm;
5467 break;
5468 case NVME_CSI_ZONED:
5469 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5470 ns->iocs = nvme_cse_iocs_zoned;
5471 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5472 ns->iocs = nvme_cse_iocs_nvm;
5474 break;
5478 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5480 NvmeNamespace *ns;
5481 NvmeCtrl *ctrl;
5482 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5483 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5484 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5485 uint8_t sel = dw10 & 0xf;
5486 uint16_t *nr_ids = &list[0];
5487 uint16_t *ids = &list[1];
5488 uint16_t ret;
5489 int i;
5491 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5493 if (!nvme_nsid_valid(n, nsid)) {
5494 return NVME_INVALID_NSID | NVME_DNR;
5497 ns = nvme_subsys_ns(n->subsys, nsid);
5498 if (!ns) {
5499 return NVME_INVALID_FIELD | NVME_DNR;
5502 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5503 if (ret) {
5504 return ret;
5507 if (!*nr_ids) {
5508 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5511 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5512 for (i = 0; i < *nr_ids; i++) {
5513 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5514 if (!ctrl) {
5515 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5518 switch (sel) {
5519 case NVME_NS_ATTACHMENT_ATTACH:
5520 if (nvme_ns(ctrl, nsid)) {
5521 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5524 if (ns->attached && !ns->params.shared) {
5525 return NVME_NS_PRIVATE | NVME_DNR;
5528 nvme_attach_ns(ctrl, ns);
5529 nvme_select_iocs_ns(ctrl, ns);
5531 break;
5533 case NVME_NS_ATTACHMENT_DETACH:
5534 if (!nvme_ns(ctrl, nsid)) {
5535 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5538 ctrl->namespaces[nsid] = NULL;
5539 ns->attached--;
5541 nvme_update_dmrsl(ctrl);
5543 break;
5545 default:
5546 return NVME_INVALID_FIELD | NVME_DNR;
5550 * Add namespace id to the changed namespace id list for event clearing
5551 * via Get Log Page command.
5553 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5554 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5555 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5556 NVME_LOG_CHANGED_NSLIST);
5560 return NVME_SUCCESS;
5563 typedef struct NvmeFormatAIOCB {
5564 BlockAIOCB common;
5565 BlockAIOCB *aiocb;
5566 QEMUBH *bh;
5567 NvmeRequest *req;
5568 int ret;
5570 NvmeNamespace *ns;
5571 uint32_t nsid;
5572 bool broadcast;
5573 int64_t offset;
5575 uint8_t lbaf;
5576 uint8_t mset;
5577 uint8_t pi;
5578 uint8_t pil;
5579 } NvmeFormatAIOCB;
5581 static void nvme_format_bh(void *opaque);
5583 static void nvme_format_cancel(BlockAIOCB *aiocb)
5585 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5587 if (iocb->aiocb) {
5588 blk_aio_cancel_async(iocb->aiocb);
5592 static const AIOCBInfo nvme_format_aiocb_info = {
5593 .aiocb_size = sizeof(NvmeFormatAIOCB),
5594 .cancel_async = nvme_format_cancel,
5595 .get_aio_context = nvme_get_aio_context,
5598 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5599 uint8_t pi, uint8_t pil)
5601 uint8_t lbafl = lbaf & 0xf;
5602 uint8_t lbafu = lbaf >> 4;
5604 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5606 ns->id_ns.dps = (pil << 3) | pi;
5607 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5609 nvme_ns_init_format(ns);
5612 static void nvme_format_ns_cb(void *opaque, int ret)
5614 NvmeFormatAIOCB *iocb = opaque;
5615 NvmeNamespace *ns = iocb->ns;
5616 int bytes;
5618 if (ret < 0) {
5619 iocb->ret = ret;
5620 goto done;
5623 assert(ns);
5625 if (iocb->offset < ns->size) {
5626 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5628 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5629 bytes, BDRV_REQ_MAY_UNMAP,
5630 nvme_format_ns_cb, iocb);
5632 iocb->offset += bytes;
5633 return;
5636 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5637 ns->status = 0x0;
5638 iocb->ns = NULL;
5639 iocb->offset = 0;
5641 done:
5642 iocb->aiocb = NULL;
5643 qemu_bh_schedule(iocb->bh);
5646 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5648 if (ns->params.zoned) {
5649 return NVME_INVALID_FORMAT | NVME_DNR;
5652 if (lbaf > ns->id_ns.nlbaf) {
5653 return NVME_INVALID_FORMAT | NVME_DNR;
5656 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5657 return NVME_INVALID_FORMAT | NVME_DNR;
5660 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5661 return NVME_INVALID_FIELD | NVME_DNR;
5664 return NVME_SUCCESS;
5667 static void nvme_format_bh(void *opaque)
5669 NvmeFormatAIOCB *iocb = opaque;
5670 NvmeRequest *req = iocb->req;
5671 NvmeCtrl *n = nvme_ctrl(req);
5672 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5673 uint8_t lbaf = dw10 & 0xf;
5674 uint8_t pi = (dw10 >> 5) & 0x7;
5675 uint16_t status;
5676 int i;
5678 if (iocb->ret < 0) {
5679 goto done;
5682 if (iocb->broadcast) {
5683 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5684 iocb->ns = nvme_ns(n, i);
5685 if (iocb->ns) {
5686 iocb->nsid = i;
5687 break;
5692 if (!iocb->ns) {
5693 goto done;
5696 status = nvme_format_check(iocb->ns, lbaf, pi);
5697 if (status) {
5698 req->status = status;
5699 goto done;
5702 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5703 nvme_format_ns_cb(iocb, 0);
5704 return;
5706 done:
5707 qemu_bh_delete(iocb->bh);
5708 iocb->bh = NULL;
5710 iocb->common.cb(iocb->common.opaque, iocb->ret);
5712 qemu_aio_unref(iocb);
5715 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5717 NvmeFormatAIOCB *iocb;
5718 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5719 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5720 uint8_t lbaf = dw10 & 0xf;
5721 uint8_t mset = (dw10 >> 4) & 0x1;
5722 uint8_t pi = (dw10 >> 5) & 0x7;
5723 uint8_t pil = (dw10 >> 8) & 0x1;
5724 uint8_t lbafu = (dw10 >> 12) & 0x3;
5725 uint16_t status;
5727 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5729 iocb->req = req;
5730 iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5731 iocb->ret = 0;
5732 iocb->ns = NULL;
5733 iocb->nsid = 0;
5734 iocb->lbaf = lbaf;
5735 iocb->mset = mset;
5736 iocb->pi = pi;
5737 iocb->pil = pil;
5738 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5739 iocb->offset = 0;
5741 if (n->features.hbs.lbafee) {
5742 iocb->lbaf |= lbafu << 4;
5745 if (!iocb->broadcast) {
5746 if (!nvme_nsid_valid(n, nsid)) {
5747 status = NVME_INVALID_NSID | NVME_DNR;
5748 goto out;
5751 iocb->ns = nvme_ns(n, nsid);
5752 if (!iocb->ns) {
5753 status = NVME_INVALID_FIELD | NVME_DNR;
5754 goto out;
5758 req->aiocb = &iocb->common;
5759 qemu_bh_schedule(iocb->bh);
5761 return NVME_NO_COMPLETE;
5763 out:
5764 qemu_bh_delete(iocb->bh);
5765 iocb->bh = NULL;
5766 qemu_aio_unref(iocb);
5767 return status;
5770 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
5772 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
5773 nvme_adm_opc_str(req->cmd.opcode));
5775 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
5776 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
5777 return NVME_INVALID_OPCODE | NVME_DNR;
5780 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
5781 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
5782 return NVME_INVALID_FIELD | NVME_DNR;
5785 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
5786 return NVME_INVALID_FIELD;
5789 switch (req->cmd.opcode) {
5790 case NVME_ADM_CMD_DELETE_SQ:
5791 return nvme_del_sq(n, req);
5792 case NVME_ADM_CMD_CREATE_SQ:
5793 return nvme_create_sq(n, req);
5794 case NVME_ADM_CMD_GET_LOG_PAGE:
5795 return nvme_get_log(n, req);
5796 case NVME_ADM_CMD_DELETE_CQ:
5797 return nvme_del_cq(n, req);
5798 case NVME_ADM_CMD_CREATE_CQ:
5799 return nvme_create_cq(n, req);
5800 case NVME_ADM_CMD_IDENTIFY:
5801 return nvme_identify(n, req);
5802 case NVME_ADM_CMD_ABORT:
5803 return nvme_abort(n, req);
5804 case NVME_ADM_CMD_SET_FEATURES:
5805 return nvme_set_feature(n, req);
5806 case NVME_ADM_CMD_GET_FEATURES:
5807 return nvme_get_feature(n, req);
5808 case NVME_ADM_CMD_ASYNC_EV_REQ:
5809 return nvme_aer(n, req);
5810 case NVME_ADM_CMD_NS_ATTACHMENT:
5811 return nvme_ns_attachment(n, req);
5812 case NVME_ADM_CMD_FORMAT_NVM:
5813 return nvme_format(n, req);
5814 default:
5815 assert(false);
5818 return NVME_INVALID_OPCODE | NVME_DNR;
5821 static void nvme_process_sq(void *opaque)
5823 NvmeSQueue *sq = opaque;
5824 NvmeCtrl *n = sq->ctrl;
5825 NvmeCQueue *cq = n->cq[sq->cqid];
5827 uint16_t status;
5828 hwaddr addr;
5829 NvmeCmd cmd;
5830 NvmeRequest *req;
5832 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
5833 addr = sq->dma_addr + sq->head * n->sqe_size;
5834 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
5835 trace_pci_nvme_err_addr_read(addr);
5836 trace_pci_nvme_err_cfs();
5837 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
5838 break;
5840 nvme_inc_sq_head(sq);
5842 req = QTAILQ_FIRST(&sq->req_list);
5843 QTAILQ_REMOVE(&sq->req_list, req, entry);
5844 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
5845 nvme_req_clear(req);
5846 req->cqe.cid = cmd.cid;
5847 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
5849 status = sq->sqid ? nvme_io_cmd(n, req) :
5850 nvme_admin_cmd(n, req);
5851 if (status != NVME_NO_COMPLETE) {
5852 req->status = status;
5853 nvme_enqueue_req_completion(cq, req);
5858 static void nvme_ctrl_reset(NvmeCtrl *n)
5860 NvmeNamespace *ns;
5861 int i;
5863 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5864 ns = nvme_ns(n, i);
5865 if (!ns) {
5866 continue;
5869 nvme_ns_drain(ns);
5872 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5873 if (n->sq[i] != NULL) {
5874 nvme_free_sq(n->sq[i], n);
5877 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5878 if (n->cq[i] != NULL) {
5879 nvme_free_cq(n->cq[i], n);
5883 while (!QTAILQ_EMPTY(&n->aer_queue)) {
5884 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
5885 QTAILQ_REMOVE(&n->aer_queue, event, entry);
5886 g_free(event);
5889 n->aer_queued = 0;
5890 n->outstanding_aers = 0;
5891 n->qs_created = false;
5894 static void nvme_ctrl_shutdown(NvmeCtrl *n)
5896 NvmeNamespace *ns;
5897 int i;
5899 if (n->pmr.dev) {
5900 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
5903 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5904 ns = nvme_ns(n, i);
5905 if (!ns) {
5906 continue;
5909 nvme_ns_shutdown(ns);
5913 static void nvme_select_iocs(NvmeCtrl *n)
5915 NvmeNamespace *ns;
5916 int i;
5918 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5919 ns = nvme_ns(n, i);
5920 if (!ns) {
5921 continue;
5924 nvme_select_iocs_ns(n, ns);
5928 static int nvme_start_ctrl(NvmeCtrl *n)
5930 uint64_t cap = ldq_le_p(&n->bar.cap);
5931 uint32_t cc = ldl_le_p(&n->bar.cc);
5932 uint32_t aqa = ldl_le_p(&n->bar.aqa);
5933 uint64_t asq = ldq_le_p(&n->bar.asq);
5934 uint64_t acq = ldq_le_p(&n->bar.acq);
5935 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
5936 uint32_t page_size = 1 << page_bits;
5938 if (unlikely(n->cq[0])) {
5939 trace_pci_nvme_err_startfail_cq();
5940 return -1;
5942 if (unlikely(n->sq[0])) {
5943 trace_pci_nvme_err_startfail_sq();
5944 return -1;
5946 if (unlikely(asq & (page_size - 1))) {
5947 trace_pci_nvme_err_startfail_asq_misaligned(asq);
5948 return -1;
5950 if (unlikely(acq & (page_size - 1))) {
5951 trace_pci_nvme_err_startfail_acq_misaligned(acq);
5952 return -1;
5954 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
5955 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
5956 return -1;
5958 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
5959 trace_pci_nvme_err_startfail_page_too_small(
5960 NVME_CC_MPS(cc),
5961 NVME_CAP_MPSMIN(cap));
5962 return -1;
5964 if (unlikely(NVME_CC_MPS(cc) >
5965 NVME_CAP_MPSMAX(cap))) {
5966 trace_pci_nvme_err_startfail_page_too_large(
5967 NVME_CC_MPS(cc),
5968 NVME_CAP_MPSMAX(cap));
5969 return -1;
5971 if (unlikely(NVME_CC_IOCQES(cc) <
5972 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
5973 trace_pci_nvme_err_startfail_cqent_too_small(
5974 NVME_CC_IOCQES(cc),
5975 NVME_CTRL_CQES_MIN(cap));
5976 return -1;
5978 if (unlikely(NVME_CC_IOCQES(cc) >
5979 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
5980 trace_pci_nvme_err_startfail_cqent_too_large(
5981 NVME_CC_IOCQES(cc),
5982 NVME_CTRL_CQES_MAX(cap));
5983 return -1;
5985 if (unlikely(NVME_CC_IOSQES(cc) <
5986 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
5987 trace_pci_nvme_err_startfail_sqent_too_small(
5988 NVME_CC_IOSQES(cc),
5989 NVME_CTRL_SQES_MIN(cap));
5990 return -1;
5992 if (unlikely(NVME_CC_IOSQES(cc) >
5993 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
5994 trace_pci_nvme_err_startfail_sqent_too_large(
5995 NVME_CC_IOSQES(cc),
5996 NVME_CTRL_SQES_MAX(cap));
5997 return -1;
5999 if (unlikely(!NVME_AQA_ASQS(aqa))) {
6000 trace_pci_nvme_err_startfail_asqent_sz_zero();
6001 return -1;
6003 if (unlikely(!NVME_AQA_ACQS(aqa))) {
6004 trace_pci_nvme_err_startfail_acqent_sz_zero();
6005 return -1;
6008 n->page_bits = page_bits;
6009 n->page_size = page_size;
6010 n->max_prp_ents = n->page_size / sizeof(uint64_t);
6011 n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6012 n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6013 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6014 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6016 nvme_set_timestamp(n, 0ULL);
6018 QTAILQ_INIT(&n->aer_queue);
6020 nvme_select_iocs(n);
6022 return 0;
6025 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6027 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6028 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6030 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6031 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6032 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6033 stl_le_p(&n->bar.cmbloc, cmbloc);
6035 NVME_CMBSZ_SET_SQS(cmbsz, 1);
6036 NVME_CMBSZ_SET_CQS(cmbsz, 0);
6037 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6038 NVME_CMBSZ_SET_RDS(cmbsz, 1);
6039 NVME_CMBSZ_SET_WDS(cmbsz, 1);
6040 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6041 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6042 stl_le_p(&n->bar.cmbsz, cmbsz);
6045 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6046 unsigned size)
6048 uint64_t cap = ldq_le_p(&n->bar.cap);
6049 uint32_t cc = ldl_le_p(&n->bar.cc);
6050 uint32_t intms = ldl_le_p(&n->bar.intms);
6051 uint32_t csts = ldl_le_p(&n->bar.csts);
6052 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6054 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6055 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6056 "MMIO write not 32-bit aligned,"
6057 " offset=0x%"PRIx64"", offset);
6058 /* should be ignored, fall through for now */
6061 if (unlikely(size < sizeof(uint32_t))) {
6062 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6063 "MMIO write smaller than 32-bits,"
6064 " offset=0x%"PRIx64", size=%u",
6065 offset, size);
6066 /* should be ignored, fall through for now */
6069 switch (offset) {
6070 case NVME_REG_INTMS:
6071 if (unlikely(msix_enabled(&(n->parent_obj)))) {
6072 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6073 "undefined access to interrupt mask set"
6074 " when MSI-X is enabled");
6075 /* should be ignored, fall through for now */
6077 intms |= data;
6078 stl_le_p(&n->bar.intms, intms);
6079 n->bar.intmc = n->bar.intms;
6080 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6081 nvme_irq_check(n);
6082 break;
6083 case NVME_REG_INTMC:
6084 if (unlikely(msix_enabled(&(n->parent_obj)))) {
6085 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6086 "undefined access to interrupt mask clr"
6087 " when MSI-X is enabled");
6088 /* should be ignored, fall through for now */
6090 intms &= ~data;
6091 stl_le_p(&n->bar.intms, intms);
6092 n->bar.intmc = n->bar.intms;
6093 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6094 nvme_irq_check(n);
6095 break;
6096 case NVME_REG_CC:
6097 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6099 /* Windows first sends data, then sends enable bit */
6100 if (!NVME_CC_EN(data) && !NVME_CC_EN(cc) &&
6101 !NVME_CC_SHN(data) && !NVME_CC_SHN(cc))
6103 cc = data;
6106 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6107 cc = data;
6109 /* flush CC since nvme_start_ctrl() needs the value */
6110 stl_le_p(&n->bar.cc, cc);
6111 if (unlikely(nvme_start_ctrl(n))) {
6112 trace_pci_nvme_err_startfail();
6113 csts = NVME_CSTS_FAILED;
6114 } else {
6115 trace_pci_nvme_mmio_start_success();
6116 csts = NVME_CSTS_READY;
6118 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6119 trace_pci_nvme_mmio_stopped();
6120 nvme_ctrl_reset(n);
6121 cc = 0;
6122 csts &= ~NVME_CSTS_READY;
6125 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6126 trace_pci_nvme_mmio_shutdown_set();
6127 nvme_ctrl_shutdown(n);
6128 cc = data;
6129 csts |= NVME_CSTS_SHST_COMPLETE;
6130 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6131 trace_pci_nvme_mmio_shutdown_cleared();
6132 csts &= ~NVME_CSTS_SHST_COMPLETE;
6133 cc = data;
6136 stl_le_p(&n->bar.cc, cc);
6137 stl_le_p(&n->bar.csts, csts);
6139 break;
6140 case NVME_REG_CSTS:
6141 if (data & (1 << 4)) {
6142 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6143 "attempted to W1C CSTS.NSSRO"
6144 " but CAP.NSSRS is zero (not supported)");
6145 } else if (data != 0) {
6146 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6147 "attempted to set a read only bit"
6148 " of controller status");
6150 break;
6151 case NVME_REG_NSSR:
6152 if (data == 0x4e564d65) {
6153 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6154 } else {
6155 /* The spec says that writes of other values have no effect */
6156 return;
6158 break;
6159 case NVME_REG_AQA:
6160 stl_le_p(&n->bar.aqa, data);
6161 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6162 break;
6163 case NVME_REG_ASQ:
6164 stn_le_p(&n->bar.asq, size, data);
6165 trace_pci_nvme_mmio_asqaddr(data);
6166 break;
6167 case NVME_REG_ASQ + 4:
6168 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6169 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6170 break;
6171 case NVME_REG_ACQ:
6172 trace_pci_nvme_mmio_acqaddr(data);
6173 stn_le_p(&n->bar.acq, size, data);
6174 break;
6175 case NVME_REG_ACQ + 4:
6176 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6177 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6178 break;
6179 case NVME_REG_CMBLOC:
6180 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6181 "invalid write to reserved CMBLOC"
6182 " when CMBSZ is zero, ignored");
6183 return;
6184 case NVME_REG_CMBSZ:
6185 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6186 "invalid write to read only CMBSZ, ignored");
6187 return;
6188 case NVME_REG_CMBMSC:
6189 if (!NVME_CAP_CMBS(cap)) {
6190 return;
6193 stn_le_p(&n->bar.cmbmsc, size, data);
6194 n->cmb.cmse = false;
6196 if (NVME_CMBMSC_CRE(data)) {
6197 nvme_cmb_enable_regs(n);
6199 if (NVME_CMBMSC_CMSE(data)) {
6200 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6201 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6202 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6203 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6204 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6205 stl_le_p(&n->bar.cmbsts, cmbsts);
6206 return;
6209 n->cmb.cba = cba;
6210 n->cmb.cmse = true;
6212 } else {
6213 n->bar.cmbsz = 0;
6214 n->bar.cmbloc = 0;
6217 return;
6218 case NVME_REG_CMBMSC + 4:
6219 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6220 return;
6222 case NVME_REG_PMRCAP:
6223 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6224 "invalid write to PMRCAP register, ignored");
6225 return;
6226 case NVME_REG_PMRCTL:
6227 if (!NVME_CAP_PMRS(cap)) {
6228 return;
6231 stl_le_p(&n->bar.pmrctl, data);
6232 if (NVME_PMRCTL_EN(data)) {
6233 memory_region_set_enabled(&n->pmr.dev->mr, true);
6234 pmrsts = 0;
6235 } else {
6236 memory_region_set_enabled(&n->pmr.dev->mr, false);
6237 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6238 n->pmr.cmse = false;
6240 stl_le_p(&n->bar.pmrsts, pmrsts);
6241 return;
6242 case NVME_REG_PMRSTS:
6243 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6244 "invalid write to PMRSTS register, ignored");
6245 return;
6246 case NVME_REG_PMREBS:
6247 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6248 "invalid write to PMREBS register, ignored");
6249 return;
6250 case NVME_REG_PMRSWTP:
6251 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6252 "invalid write to PMRSWTP register, ignored");
6253 return;
6254 case NVME_REG_PMRMSCL:
6255 if (!NVME_CAP_PMRS(cap)) {
6256 return;
6259 stl_le_p(&n->bar.pmrmscl, data);
6260 n->pmr.cmse = false;
6262 if (NVME_PMRMSCL_CMSE(data)) {
6263 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6264 hwaddr cba = pmrmscu << 32 |
6265 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6266 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6267 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6268 stl_le_p(&n->bar.pmrsts, pmrsts);
6269 return;
6272 n->pmr.cmse = true;
6273 n->pmr.cba = cba;
6276 return;
6277 case NVME_REG_PMRMSCU:
6278 if (!NVME_CAP_PMRS(cap)) {
6279 return;
6282 stl_le_p(&n->bar.pmrmscu, data);
6283 return;
6284 default:
6285 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6286 "invalid MMIO write,"
6287 " offset=0x%"PRIx64", data=%"PRIx64"",
6288 offset, data);
6289 break;
6293 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6295 NvmeCtrl *n = (NvmeCtrl *)opaque;
6296 uint8_t *ptr = (uint8_t *)&n->bar;
6298 trace_pci_nvme_mmio_read(addr, size);
6300 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6301 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6302 "MMIO read not 32-bit aligned,"
6303 " offset=0x%"PRIx64"", addr);
6304 /* should RAZ, fall through for now */
6305 } else if (unlikely(size < sizeof(uint32_t))) {
6306 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6307 "MMIO read smaller than 32-bits,"
6308 " offset=0x%"PRIx64"", addr);
6309 /* should RAZ, fall through for now */
6312 if (addr > sizeof(n->bar) - size) {
6313 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6314 "MMIO read beyond last register,"
6315 " offset=0x%"PRIx64", returning 0", addr);
6317 return 0;
6321 * When PMRWBM bit 1 is set then read from
6322 * from PMRSTS should ensure prior writes
6323 * made it to persistent media
6325 if (addr == NVME_REG_PMRSTS &&
6326 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6327 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6330 return ldn_le_p(ptr + addr, size);
6333 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6335 uint32_t qid;
6337 if (unlikely(addr & ((1 << 2) - 1))) {
6338 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6339 "doorbell write not 32-bit aligned,"
6340 " offset=0x%"PRIx64", ignoring", addr);
6341 return;
6344 if (((addr - 0x1000) >> 2) & 1) {
6345 /* Completion queue doorbell write */
6347 uint16_t new_head = val & 0xffff;
6348 int start_sqs;
6349 NvmeCQueue *cq;
6351 qid = (addr - (0x1000 + (1 << 2))) >> 3;
6352 if (unlikely(nvme_check_cqid(n, qid))) {
6353 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6354 "completion queue doorbell write"
6355 " for nonexistent queue,"
6356 " sqid=%"PRIu32", ignoring", qid);
6359 * NVM Express v1.3d, Section 4.1 state: "If host software writes
6360 * an invalid value to the Submission Queue Tail Doorbell or
6361 * Completion Queue Head Doorbell regiter and an Asynchronous Event
6362 * Request command is outstanding, then an asynchronous event is
6363 * posted to the Admin Completion Queue with a status code of
6364 * Invalid Doorbell Write Value."
6366 * Also note that the spec includes the "Invalid Doorbell Register"
6367 * status code, but nowhere does it specify when to use it.
6368 * However, it seems reasonable to use it here in a similar
6369 * fashion.
6371 if (n->outstanding_aers) {
6372 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6373 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6374 NVME_LOG_ERROR_INFO);
6377 return;
6380 cq = n->cq[qid];
6381 if (unlikely(new_head >= cq->size)) {
6382 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6383 "completion queue doorbell write value"
6384 " beyond queue size, sqid=%"PRIu32","
6385 " new_head=%"PRIu16", ignoring",
6386 qid, new_head);
6388 if (n->outstanding_aers) {
6389 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6390 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6391 NVME_LOG_ERROR_INFO);
6394 return;
6397 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6399 start_sqs = nvme_cq_full(cq) ? 1 : 0;
6400 cq->head = new_head;
6401 if (start_sqs) {
6402 NvmeSQueue *sq;
6403 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6404 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6406 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6409 if (cq->tail == cq->head) {
6410 if (cq->irq_enabled) {
6411 n->cq_pending--;
6414 nvme_irq_deassert(n, cq);
6416 } else {
6417 /* Submission queue doorbell write */
6419 uint16_t new_tail = val & 0xffff;
6420 NvmeSQueue *sq;
6422 qid = (addr - 0x1000) >> 3;
6423 if (unlikely(nvme_check_sqid(n, qid))) {
6424 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6425 "submission queue doorbell write"
6426 " for nonexistent queue,"
6427 " sqid=%"PRIu32", ignoring", qid);
6429 if (n->outstanding_aers) {
6430 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6431 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6432 NVME_LOG_ERROR_INFO);
6435 return;
6438 sq = n->sq[qid];
6439 if (unlikely(new_tail >= sq->size)) {
6440 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6441 "submission queue doorbell write value"
6442 " beyond queue size, sqid=%"PRIu32","
6443 " new_tail=%"PRIu16", ignoring",
6444 qid, new_tail);
6446 if (n->outstanding_aers) {
6447 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6448 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6449 NVME_LOG_ERROR_INFO);
6452 return;
6455 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6457 sq->tail = new_tail;
6458 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6462 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6463 unsigned size)
6465 NvmeCtrl *n = (NvmeCtrl *)opaque;
6467 trace_pci_nvme_mmio_write(addr, data, size);
6469 if (addr < sizeof(n->bar)) {
6470 nvme_write_bar(n, addr, data, size);
6471 } else {
6472 nvme_process_db(n, addr, data);
6476 static const MemoryRegionOps nvme_mmio_ops = {
6477 .read = nvme_mmio_read,
6478 .write = nvme_mmio_write,
6479 .endianness = DEVICE_LITTLE_ENDIAN,
6480 .impl = {
6481 .min_access_size = 2,
6482 .max_access_size = 8,
6486 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
6487 unsigned size)
6489 NvmeCtrl *n = (NvmeCtrl *)opaque;
6490 stn_le_p(&n->cmb.buf[addr], size, data);
6493 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
6495 NvmeCtrl *n = (NvmeCtrl *)opaque;
6496 return ldn_le_p(&n->cmb.buf[addr], size);
6499 static const MemoryRegionOps nvme_cmb_ops = {
6500 .read = nvme_cmb_read,
6501 .write = nvme_cmb_write,
6502 .endianness = DEVICE_LITTLE_ENDIAN,
6503 .impl = {
6504 .min_access_size = 1,
6505 .max_access_size = 8,
6509 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
6511 NvmeParams *params = &n->params;
6513 if (params->num_queues) {
6514 warn_report("num_queues is deprecated; please use max_ioqpairs "
6515 "instead");
6517 params->max_ioqpairs = params->num_queues - 1;
6520 if (n->namespace.blkconf.blk && n->subsys) {
6521 error_setg(errp, "subsystem support is unavailable with legacy "
6522 "namespace ('drive' property)");
6523 return;
6526 if (params->max_ioqpairs < 1 ||
6527 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
6528 error_setg(errp, "max_ioqpairs must be between 1 and %d",
6529 NVME_MAX_IOQPAIRS);
6530 return;
6533 if (params->msix_qsize < 1 ||
6534 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
6535 error_setg(errp, "msix_qsize must be between 1 and %d",
6536 PCI_MSIX_FLAGS_QSIZE + 1);
6537 return;
6540 if (!params->serial) {
6541 error_setg(errp, "serial property not set");
6542 return;
6545 if (n->pmr.dev) {
6546 if (host_memory_backend_is_mapped(n->pmr.dev)) {
6547 error_setg(errp, "can't use already busy memdev: %s",
6548 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
6549 return;
6552 if (!is_power_of_2(n->pmr.dev->size)) {
6553 error_setg(errp, "pmr backend size needs to be power of 2 in size");
6554 return;
6557 host_memory_backend_set_mapped(n->pmr.dev, true);
6560 if (n->params.zasl > n->params.mdts) {
6561 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
6562 "than or equal to mdts (Maximum Data Transfer Size)");
6563 return;
6566 if (!n->params.vsl) {
6567 error_setg(errp, "vsl must be non-zero");
6568 return;
6572 static void nvme_init_state(NvmeCtrl *n)
6574 /* add one to max_ioqpairs to account for the admin queue pair */
6575 n->reg_size = pow2ceil(sizeof(NvmeBar) +
6576 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
6577 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
6578 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
6579 n->temperature = NVME_TEMPERATURE;
6580 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
6581 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
6582 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
6585 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
6587 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
6588 uint64_t cap = ldq_le_p(&n->bar.cap);
6590 n->cmb.buf = g_malloc0(cmb_size);
6591 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
6592 "nvme-cmb", cmb_size);
6593 pci_register_bar(pci_dev, NVME_CMB_BIR,
6594 PCI_BASE_ADDRESS_SPACE_MEMORY |
6595 PCI_BASE_ADDRESS_MEM_TYPE_64 |
6596 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
6598 NVME_CAP_SET_CMBS(cap, 1);
6599 stq_le_p(&n->bar.cap, cap);
6601 if (n->params.legacy_cmb) {
6602 nvme_cmb_enable_regs(n);
6603 n->cmb.cmse = true;
6607 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
6609 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
6611 NVME_PMRCAP_SET_RDS(pmrcap, 1);
6612 NVME_PMRCAP_SET_WDS(pmrcap, 1);
6613 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
6614 /* Turn on bit 1 support */
6615 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
6616 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
6617 stl_le_p(&n->bar.pmrcap, pmrcap);
6619 pci_register_bar(pci_dev, NVME_PMR_BIR,
6620 PCI_BASE_ADDRESS_SPACE_MEMORY |
6621 PCI_BASE_ADDRESS_MEM_TYPE_64 |
6622 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
6624 memory_region_set_enabled(&n->pmr.dev->mr, false);
6627 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
6629 uint8_t *pci_conf = pci_dev->config;
6630 uint64_t bar_size, msix_table_size, msix_pba_size;
6631 unsigned msix_table_offset, msix_pba_offset;
6632 int ret;
6634 Error *err = NULL;
6636 pci_conf[PCI_INTERRUPT_PIN] = 1;
6637 pci_config_set_prog_interface(pci_conf, 0x2);
6639 if (n->params.use_intel_id) {
6640 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
6641 pci_config_set_device_id(pci_conf, 0x5845);
6642 } else {
6643 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
6644 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
6647 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
6648 pcie_endpoint_cap_init(pci_dev, 0x80);
6650 bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
6651 msix_table_offset = bar_size;
6652 msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
6654 bar_size += msix_table_size;
6655 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
6656 msix_pba_offset = bar_size;
6657 msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
6659 bar_size += msix_pba_size;
6660 bar_size = pow2ceil(bar_size);
6662 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
6663 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
6664 n->reg_size);
6665 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
6667 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
6668 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
6669 ret = msix_init(pci_dev, n->params.msix_qsize,
6670 &n->bar0, 0, msix_table_offset,
6671 &n->bar0, 0, msix_pba_offset, 0, &err);
6672 if (ret < 0) {
6673 if (ret == -ENOTSUP) {
6674 warn_report_err(err);
6675 } else {
6676 error_propagate(errp, err);
6677 return ret;
6681 if (n->params.cmb_size_mb) {
6682 nvme_init_cmb(n, pci_dev);
6685 if (n->pmr.dev) {
6686 nvme_init_pmr(n, pci_dev);
6689 return 0;
6692 static void nvme_init_subnqn(NvmeCtrl *n)
6694 NvmeSubsystem *subsys = n->subsys;
6695 NvmeIdCtrl *id = &n->id_ctrl;
6697 if (!subsys) {
6698 snprintf((char *)id->subnqn, sizeof(id->subnqn),
6699 "nqn.2019-08.org.qemu:%s", n->params.serial);
6700 } else {
6701 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
6705 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
6707 NvmeIdCtrl *id = &n->id_ctrl;
6708 uint8_t *pci_conf = pci_dev->config;
6709 uint64_t cap = ldq_le_p(&n->bar.cap);
6711 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
6712 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
6713 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
6714 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
6715 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
6717 id->cntlid = cpu_to_le16(n->cntlid);
6719 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
6720 id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
6722 id->rab = 6;
6724 if (n->params.use_intel_id) {
6725 id->ieee[0] = 0xb3;
6726 id->ieee[1] = 0x02;
6727 id->ieee[2] = 0x00;
6728 } else {
6729 id->ieee[0] = 0x00;
6730 id->ieee[1] = 0x54;
6731 id->ieee[2] = 0x52;
6734 id->mdts = n->params.mdts;
6735 id->ver = cpu_to_le32(NVME_SPEC_VER);
6736 id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
6737 id->cntrltype = 0x1;
6740 * Because the controller always completes the Abort command immediately,
6741 * there can never be more than one concurrently executing Abort command,
6742 * so this value is never used for anything. Note that there can easily be
6743 * many Abort commands in the queues, but they are not considered
6744 * "executing" until processed by nvme_abort.
6746 * The specification recommends a value of 3 for Abort Command Limit (four
6747 * concurrently outstanding Abort commands), so lets use that though it is
6748 * inconsequential.
6750 id->acl = 3;
6751 id->aerl = n->params.aerl;
6752 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
6753 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
6755 /* recommended default value (~70 C) */
6756 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
6757 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
6759 id->sqes = (0x6 << 4) | 0x6;
6760 id->cqes = (0x4 << 4) | 0x4;
6761 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
6762 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
6763 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
6764 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
6767 * NOTE: If this device ever supports a command set that does NOT use 0x0
6768 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
6769 * should probably be removed.
6771 * See comment in nvme_io_cmd.
6773 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
6775 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
6776 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
6777 NVME_CTRL_SGLS_BITBUCKET);
6779 nvme_init_subnqn(n);
6781 id->psd[0].mp = cpu_to_le16(0x9c4);
6782 id->psd[0].enlat = cpu_to_le32(0x10);
6783 id->psd[0].exlat = cpu_to_le32(0x4);
6785 if (n->subsys) {
6786 id->cmic |= NVME_CMIC_MULTI_CTRL;
6789 NVME_CAP_SET_MQES(cap, 0x7ff);
6790 NVME_CAP_SET_CQR(cap, 1);
6791 NVME_CAP_SET_TO(cap, 0xf);
6792 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
6793 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
6794 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
6795 NVME_CAP_SET_MPSMAX(cap, 4);
6796 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
6797 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
6798 stq_le_p(&n->bar.cap, cap);
6800 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
6801 n->bar.intmc = n->bar.intms = 0;
6804 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
6806 int cntlid;
6808 if (!n->subsys) {
6809 return 0;
6812 cntlid = nvme_subsys_register_ctrl(n, errp);
6813 if (cntlid < 0) {
6814 return -1;
6817 n->cntlid = cntlid;
6819 return 0;
6822 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
6824 uint32_t nsid = ns->params.nsid;
6825 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
6827 n->namespaces[nsid] = ns;
6828 ns->attached++;
6830 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6831 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6834 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
6836 NvmeCtrl *n = NVME(pci_dev);
6837 NvmeNamespace *ns;
6838 Error *local_err = NULL;
6840 nvme_check_constraints(n, &local_err);
6841 if (local_err) {
6842 error_propagate(errp, local_err);
6843 return;
6846 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
6847 &pci_dev->qdev, n->parent_obj.qdev.id);
6849 nvme_init_state(n);
6850 if (nvme_init_pci(n, pci_dev, errp)) {
6851 return;
6854 if (nvme_init_subsys(n, errp)) {
6855 error_propagate(errp, local_err);
6856 return;
6858 nvme_init_ctrl(n, pci_dev);
6860 /* setup a namespace if the controller drive property was given */
6861 if (n->namespace.blkconf.blk) {
6862 ns = &n->namespace;
6863 ns->params.nsid = 1;
6865 if (nvme_ns_setup(ns, errp)) {
6866 return;
6869 nvme_attach_ns(n, ns);
6873 static void nvme_exit(PCIDevice *pci_dev)
6875 NvmeCtrl *n = NVME(pci_dev);
6876 NvmeNamespace *ns;
6877 int i;
6879 nvme_ctrl_reset(n);
6881 if (n->subsys) {
6882 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6883 ns = nvme_ns(n, i);
6884 if (ns) {
6885 ns->attached--;
6889 nvme_subsys_unregister_ctrl(n->subsys, n);
6892 g_free(n->cq);
6893 g_free(n->sq);
6894 g_free(n->aer_reqs);
6896 if (n->params.cmb_size_mb) {
6897 g_free(n->cmb.buf);
6900 if (n->pmr.dev) {
6901 host_memory_backend_set_mapped(n->pmr.dev, false);
6903 msix_uninit(pci_dev, &n->bar0, &n->bar0);
6904 memory_region_del_subregion(&n->bar0, &n->iomem);
6907 static Property nvme_props[] = {
6908 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
6909 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
6910 HostMemoryBackend *),
6911 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
6912 NvmeSubsystem *),
6913 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
6914 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
6915 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
6916 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
6917 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
6918 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
6919 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
6920 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
6921 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
6922 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
6923 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
6924 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
6925 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
6926 params.auto_transition_zones, true),
6927 DEFINE_PROP_END_OF_LIST(),
6930 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
6931 void *opaque, Error **errp)
6933 NvmeCtrl *n = NVME(obj);
6934 uint8_t value = n->smart_critical_warning;
6936 visit_type_uint8(v, name, &value, errp);
6939 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
6940 void *opaque, Error **errp)
6942 NvmeCtrl *n = NVME(obj);
6943 uint8_t value, old_value, cap = 0, index, event;
6945 if (!visit_type_uint8(v, name, &value, errp)) {
6946 return;
6949 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
6950 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
6951 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
6952 cap |= NVME_SMART_PMR_UNRELIABLE;
6955 if ((value & cap) != value) {
6956 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
6957 value & ~cap);
6958 return;
6961 old_value = n->smart_critical_warning;
6962 n->smart_critical_warning = value;
6964 /* only inject new bits of smart critical warning */
6965 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
6966 event = 1 << index;
6967 if (value & ~old_value & event)
6968 nvme_smart_event(n, event);
6972 static const VMStateDescription nvme_vmstate = {
6973 .name = "nvme",
6974 .unmigratable = 1,
6977 static void nvme_class_init(ObjectClass *oc, void *data)
6979 DeviceClass *dc = DEVICE_CLASS(oc);
6980 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
6982 pc->realize = nvme_realize;
6983 pc->exit = nvme_exit;
6984 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
6985 pc->revision = 2;
6987 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
6988 dc->desc = "Non-Volatile Memory Express";
6989 device_class_set_props(dc, nvme_props);
6990 dc->vmsd = &nvme_vmstate;
6993 static void nvme_instance_init(Object *obj)
6995 NvmeCtrl *n = NVME(obj);
6997 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
6998 "bootindex", "/namespace@1,0",
6999 DEVICE(obj));
7001 object_property_add(obj, "smart_critical_warning", "uint8",
7002 nvme_get_smart_warning,
7003 nvme_set_smart_warning, NULL, NULL);
7006 static const TypeInfo nvme_info = {
7007 .name = TYPE_NVME,
7008 .parent = TYPE_PCI_DEVICE,
7009 .instance_size = sizeof(NvmeCtrl),
7010 .instance_init = nvme_instance_init,
7011 .class_init = nvme_class_init,
7012 .interfaces = (InterfaceInfo[]) {
7013 { INTERFACE_PCIE_DEVICE },
7018 static const TypeInfo nvme_bus_info = {
7019 .name = TYPE_NVME_BUS,
7020 .parent = TYPE_BUS,
7021 .instance_size = sizeof(NvmeBus),
7024 static void nvme_register_types(void)
7026 type_register_static(&nvme_info);
7027 type_register_static(&nvme_bus_info);
7030 type_init(nvme_register_types)