ppc/xive2: Add support for notification injection on ESB pages
[qemu.git] / hw / intc / xive.c
blob0d98b9539cd9cbf41089cda6e8b9c154f2527bfd
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "trace.h"
27 * XIVE Thread Interrupt Management context
31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
32 * Interrupt Priority Register (PIPR), which contains the priority of
33 * the most favored pending notification.
35 static uint8_t ipb_to_pipr(uint8_t ibp)
37 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
40 static uint8_t exception_mask(uint8_t ring)
42 switch (ring) {
43 case TM_QW1_OS:
44 return TM_QW1_NSR_EO;
45 case TM_QW3_HV_PHYS:
46 return TM_QW3_NSR_HE;
47 default:
48 g_assert_not_reached();
52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
54 switch (ring) {
55 case TM_QW0_USER:
56 return 0; /* Not supported */
57 case TM_QW1_OS:
58 return tctx->os_output;
59 case TM_QW2_HV_POOL:
60 case TM_QW3_HV_PHYS:
61 return tctx->hv_output;
62 default:
63 return 0;
67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
69 uint8_t *regs = &tctx->regs[ring];
70 uint8_t nsr = regs[TM_NSR];
71 uint8_t mask = exception_mask(ring);
73 qemu_irq_lower(xive_tctx_output(tctx, ring));
75 if (regs[TM_NSR] & mask) {
76 uint8_t cppr = regs[TM_PIPR];
78 regs[TM_CPPR] = cppr;
80 /* Reset the pending buffer bit */
81 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
82 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
84 /* Drop Exception bit */
85 regs[TM_NSR] &= ~mask;
87 trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
88 regs[TM_IPB], regs[TM_PIPR],
89 regs[TM_CPPR], regs[TM_NSR]);
92 return (nsr << 8) | regs[TM_CPPR];
95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
97 uint8_t *regs = &tctx->regs[ring];
99 if (regs[TM_PIPR] < regs[TM_CPPR]) {
100 switch (ring) {
101 case TM_QW1_OS:
102 regs[TM_NSR] |= TM_QW1_NSR_EO;
103 break;
104 case TM_QW3_HV_PHYS:
105 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
106 break;
107 default:
108 g_assert_not_reached();
110 trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
111 regs[TM_IPB], regs[TM_PIPR],
112 regs[TM_CPPR], regs[TM_NSR]);
113 qemu_irq_raise(xive_tctx_output(tctx, ring));
117 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
119 uint8_t *regs = &tctx->regs[ring];
121 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
122 regs[TM_IPB], regs[TM_PIPR],
123 cppr, regs[TM_NSR]);
125 if (cppr > XIVE_PRIORITY_MAX) {
126 cppr = 0xff;
129 tctx->regs[ring + TM_CPPR] = cppr;
131 /* CPPR has changed, check if we need to raise a pending exception */
132 xive_tctx_notify(tctx, ring);
135 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
137 uint8_t *regs = &tctx->regs[ring];
139 regs[TM_IPB] |= ipb;
140 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
141 xive_tctx_notify(tctx, ring);
145 * XIVE Thread Interrupt Management Area (TIMA)
148 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
149 hwaddr offset, uint64_t value, unsigned size)
151 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
154 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
155 hwaddr offset, unsigned size)
157 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
160 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
161 hwaddr offset, unsigned size)
163 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
164 uint32_t qw2w2;
166 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
167 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
168 return qw2w2;
171 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
172 uint64_t value, unsigned size)
174 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
177 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
178 hwaddr offset, unsigned size)
180 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
184 * Define an access map for each page of the TIMA that we will use in
185 * the memory region ops to filter values when doing loads and stores
186 * of raw registers values
188 * Registers accessibility bits :
190 * 0x0 - no access
191 * 0x1 - write only
192 * 0x2 - read only
193 * 0x3 - read/write
196 static const uint8_t xive_tm_hw_view[] = {
197 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
198 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
199 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
200 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
203 static const uint8_t xive_tm_hv_view[] = {
204 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
205 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
206 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
207 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
210 static const uint8_t xive_tm_os_view[] = {
211 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
212 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
213 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
214 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
217 static const uint8_t xive_tm_user_view[] = {
218 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
219 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
220 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
225 * Overall TIMA access map for the thread interrupt management context
226 * registers
228 static const uint8_t *xive_tm_views[] = {
229 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
230 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
231 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
232 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
236 * Computes a register access mask for a given offset in the TIMA
238 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
240 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
241 uint8_t reg_offset = offset & 0x3F;
242 uint8_t reg_mask = write ? 0x1 : 0x2;
243 uint64_t mask = 0x0;
244 int i;
246 for (i = 0; i < size; i++) {
247 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
248 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
252 return mask;
255 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
256 unsigned size)
258 uint8_t ring_offset = offset & 0x30;
259 uint8_t reg_offset = offset & 0x3F;
260 uint64_t mask = xive_tm_mask(offset, size, true);
261 int i;
264 * Only 4 or 8 bytes stores are allowed and the User ring is
265 * excluded
267 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
268 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
269 HWADDR_PRIx"\n", offset);
270 return;
274 * Use the register offset for the raw values and filter out
275 * reserved values
277 for (i = 0; i < size; i++) {
278 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
279 if (byte_mask) {
280 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
281 byte_mask;
286 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
288 uint8_t ring_offset = offset & 0x30;
289 uint8_t reg_offset = offset & 0x3F;
290 uint64_t mask = xive_tm_mask(offset, size, false);
291 uint64_t ret;
292 int i;
295 * Only 4 or 8 bytes loads are allowed and the User ring is
296 * excluded
298 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
299 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
300 HWADDR_PRIx"\n", offset);
301 return -1;
304 /* Use the register offset for the raw values */
305 ret = 0;
306 for (i = 0; i < size; i++) {
307 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
310 /* filter out reserved values */
311 return ret & mask;
315 * The TM context is mapped twice within each page. Stores and loads
316 * to the first mapping below 2K write and read the specified values
317 * without modification. The second mapping above 2K performs specific
318 * state changes (side effects) in addition to setting/returning the
319 * interrupt management area context of the processor thread.
321 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
322 hwaddr offset, unsigned size)
324 return xive_tctx_accept(tctx, TM_QW1_OS);
327 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
328 hwaddr offset, uint64_t value, unsigned size)
330 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
334 * Adjust the IPB to allow a CPU to process event queues of other
335 * priorities during one physical interrupt cycle.
337 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
338 hwaddr offset, uint64_t value, unsigned size)
340 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
343 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
344 uint32_t *nvt_idx, bool *vo)
346 if (nvt_blk) {
347 *nvt_blk = xive_nvt_blk(cam);
349 if (nvt_idx) {
350 *nvt_idx = xive_nvt_idx(cam);
352 if (vo) {
353 *vo = !!(cam & TM_QW1W2_VO);
357 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
358 uint32_t *nvt_idx, bool *vo)
360 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
361 uint32_t cam = be32_to_cpu(qw1w2);
363 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
364 return qw1w2;
367 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
369 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
372 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
373 hwaddr offset, unsigned size)
375 uint32_t qw1w2;
376 uint32_t qw1w2_new;
377 uint8_t nvt_blk;
378 uint32_t nvt_idx;
379 bool vo;
381 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
383 if (!vo) {
384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
385 nvt_blk, nvt_idx);
388 /* Invalidate CAM line */
389 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
390 xive_tctx_set_os_cam(tctx, qw1w2_new);
391 return qw1w2;
394 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
395 uint8_t nvt_blk, uint32_t nvt_idx)
397 XiveNVT nvt;
398 uint8_t ipb;
401 * Grab the associated NVT to pull the pending bits, and merge
402 * them with the IPB of the thread interrupt context registers
404 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
406 nvt_blk, nvt_idx);
407 return;
410 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
412 if (ipb) {
413 /* Reset the NVT value */
414 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
415 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
417 /* Merge in current context */
418 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
423 * Updating the OS CAM line can trigger a resend of interrupt
425 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
426 hwaddr offset, uint64_t value, unsigned size)
428 uint32_t cam = value;
429 uint32_t qw1w2 = cpu_to_be32(cam);
430 uint8_t nvt_blk;
431 uint32_t nvt_idx;
432 bool vo;
434 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
436 /* First update the registers */
437 xive_tctx_set_os_cam(tctx, qw1w2);
439 /* Check the interrupt pending bits */
440 if (vo) {
441 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
446 * Define a mapping of "special" operations depending on the TIMA page
447 * offset and the size of the operation.
449 typedef struct XiveTmOp {
450 uint8_t page_offset;
451 uint32_t op_offset;
452 unsigned size;
453 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
454 hwaddr offset,
455 uint64_t value, unsigned size);
456 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
457 unsigned size);
458 } XiveTmOp;
460 static const XiveTmOp xive_tm_operations[] = {
462 * MMIOs below 2K : raw values and special operations without side
463 * effects
465 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
466 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
467 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
468 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
469 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
471 /* MMIOs above 2K : special operations with side effects */
472 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
473 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
474 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
475 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
476 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
477 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
478 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
481 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
483 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
484 uint32_t op_offset = offset & 0xFFF;
485 int i;
487 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
488 const XiveTmOp *xto = &xive_tm_operations[i];
490 /* Accesses done from a more privileged TIMA page is allowed */
491 if (xto->page_offset >= page_offset &&
492 xto->op_offset == op_offset &&
493 xto->size == size &&
494 ((write && xto->write_handler) || (!write && xto->read_handler))) {
495 return xto;
498 return NULL;
502 * TIMA MMIO handlers
504 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
505 uint64_t value, unsigned size)
507 const XiveTmOp *xto;
509 trace_xive_tctx_tm_write(offset, size, value);
512 * TODO: check V bit in Q[0-3]W2
516 * First, check for special operations in the 2K region
518 if (offset & 0x800) {
519 xto = xive_tm_find_op(offset, size, true);
520 if (!xto) {
521 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
522 "@%"HWADDR_PRIx"\n", offset);
523 } else {
524 xto->write_handler(xptr, tctx, offset, value, size);
526 return;
530 * Then, for special operations in the region below 2K.
532 xto = xive_tm_find_op(offset, size, true);
533 if (xto) {
534 xto->write_handler(xptr, tctx, offset, value, size);
535 return;
539 * Finish with raw access to the register values
541 xive_tm_raw_write(tctx, offset, value, size);
544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
545 unsigned size)
547 const XiveTmOp *xto;
548 uint64_t ret;
551 * TODO: check V bit in Q[0-3]W2
555 * First, check for special operations in the 2K region
557 if (offset & 0x800) {
558 xto = xive_tm_find_op(offset, size, false);
559 if (!xto) {
560 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
561 "@%"HWADDR_PRIx"\n", offset);
562 return -1;
564 ret = xto->read_handler(xptr, tctx, offset, size);
565 goto out;
569 * Then, for special operations in the region below 2K.
571 xto = xive_tm_find_op(offset, size, false);
572 if (xto) {
573 ret = xto->read_handler(xptr, tctx, offset, size);
574 goto out;
578 * Finish with raw access to the register values
580 ret = xive_tm_raw_read(tctx, offset, size);
581 out:
582 trace_xive_tctx_tm_read(offset, size, ret);
583 return ret;
586 static char *xive_tctx_ring_print(uint8_t *ring)
588 uint32_t w2 = xive_tctx_word2(ring);
590 return g_strdup_printf("%02x %02x %02x %02x %02x "
591 "%02x %02x %02x %08x",
592 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
593 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
594 be32_to_cpu(w2));
597 static const char * const xive_tctx_ring_names[] = {
598 "USER", "OS", "POOL", "PHYS",
602 * kvm_irqchip_in_kernel() will cause the compiler to turn this
603 * info a nop if CONFIG_KVM isn't defined.
605 #define xive_in_kernel(xptr) \
606 (kvm_irqchip_in_kernel() && \
607 ({ \
608 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \
609 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \
612 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
614 int cpu_index;
615 int i;
617 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
618 * are hot plugged or unplugged.
620 if (!tctx) {
621 return;
624 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
626 if (xive_in_kernel(tctx->xptr)) {
627 Error *local_err = NULL;
629 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
630 if (local_err) {
631 error_report_err(local_err);
632 return;
636 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
637 " W2\n", cpu_index);
639 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
640 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
641 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
642 xive_tctx_ring_names[i], s);
643 g_free(s);
647 void xive_tctx_reset(XiveTCTX *tctx)
649 memset(tctx->regs, 0, sizeof(tctx->regs));
651 /* Set some defaults */
652 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
653 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
654 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
657 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
658 * CPPR is first set.
660 tctx->regs[TM_QW1_OS + TM_PIPR] =
661 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
662 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
663 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
666 static void xive_tctx_realize(DeviceState *dev, Error **errp)
668 XiveTCTX *tctx = XIVE_TCTX(dev);
669 PowerPCCPU *cpu;
670 CPUPPCState *env;
672 assert(tctx->cs);
673 assert(tctx->xptr);
675 cpu = POWERPC_CPU(tctx->cs);
676 env = &cpu->env;
677 switch (PPC_INPUT(env)) {
678 case PPC_FLAGS_INPUT_POWER9:
679 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
680 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
681 break;
683 default:
684 error_setg(errp, "XIVE interrupt controller does not support "
685 "this CPU bus model");
686 return;
689 /* Connect the presenter to the VCPU (required for CPU hotplug) */
690 if (xive_in_kernel(tctx->xptr)) {
691 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
692 return;
697 static int vmstate_xive_tctx_pre_save(void *opaque)
699 XiveTCTX *tctx = XIVE_TCTX(opaque);
700 Error *local_err = NULL;
701 int ret;
703 if (xive_in_kernel(tctx->xptr)) {
704 ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
705 if (ret < 0) {
706 error_report_err(local_err);
707 return ret;
711 return 0;
714 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
716 XiveTCTX *tctx = XIVE_TCTX(opaque);
717 Error *local_err = NULL;
718 int ret;
720 if (xive_in_kernel(tctx->xptr)) {
722 * Required for hotplugged CPU, for which the state comes
723 * after all states of the machine.
725 ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
726 if (ret < 0) {
727 error_report_err(local_err);
728 return ret;
732 return 0;
735 static const VMStateDescription vmstate_xive_tctx = {
736 .name = TYPE_XIVE_TCTX,
737 .version_id = 1,
738 .minimum_version_id = 1,
739 .pre_save = vmstate_xive_tctx_pre_save,
740 .post_load = vmstate_xive_tctx_post_load,
741 .fields = (VMStateField[]) {
742 VMSTATE_BUFFER(regs, XiveTCTX),
743 VMSTATE_END_OF_LIST()
747 static Property xive_tctx_properties[] = {
748 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
749 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
750 XivePresenter *),
751 DEFINE_PROP_END_OF_LIST(),
754 static void xive_tctx_class_init(ObjectClass *klass, void *data)
756 DeviceClass *dc = DEVICE_CLASS(klass);
758 dc->desc = "XIVE Interrupt Thread Context";
759 dc->realize = xive_tctx_realize;
760 dc->vmsd = &vmstate_xive_tctx;
761 device_class_set_props(dc, xive_tctx_properties);
763 * Reason: part of XIVE interrupt controller, needs to be wired up
764 * by xive_tctx_create().
766 dc->user_creatable = false;
769 static const TypeInfo xive_tctx_info = {
770 .name = TYPE_XIVE_TCTX,
771 .parent = TYPE_DEVICE,
772 .instance_size = sizeof(XiveTCTX),
773 .class_init = xive_tctx_class_init,
776 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
778 Object *obj;
780 obj = object_new(TYPE_XIVE_TCTX);
781 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
782 object_unref(obj);
783 object_property_set_link(obj, "cpu", cpu, &error_abort);
784 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
785 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
786 object_unparent(obj);
787 return NULL;
789 return obj;
792 void xive_tctx_destroy(XiveTCTX *tctx)
794 Object *obj = OBJECT(tctx);
796 object_unparent(obj);
800 * XIVE ESB helpers
803 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
805 uint8_t old_pq = *pq & 0x3;
807 *pq &= ~0x3;
808 *pq |= value & 0x3;
810 return old_pq;
813 bool xive_esb_trigger(uint8_t *pq)
815 uint8_t old_pq = *pq & 0x3;
817 switch (old_pq) {
818 case XIVE_ESB_RESET:
819 xive_esb_set(pq, XIVE_ESB_PENDING);
820 return true;
821 case XIVE_ESB_PENDING:
822 case XIVE_ESB_QUEUED:
823 xive_esb_set(pq, XIVE_ESB_QUEUED);
824 return false;
825 case XIVE_ESB_OFF:
826 xive_esb_set(pq, XIVE_ESB_OFF);
827 return false;
828 default:
829 g_assert_not_reached();
833 bool xive_esb_eoi(uint8_t *pq)
835 uint8_t old_pq = *pq & 0x3;
837 switch (old_pq) {
838 case XIVE_ESB_RESET:
839 case XIVE_ESB_PENDING:
840 xive_esb_set(pq, XIVE_ESB_RESET);
841 return false;
842 case XIVE_ESB_QUEUED:
843 xive_esb_set(pq, XIVE_ESB_PENDING);
844 return true;
845 case XIVE_ESB_OFF:
846 xive_esb_set(pq, XIVE_ESB_OFF);
847 return false;
848 default:
849 g_assert_not_reached();
854 * XIVE Interrupt Source (or IVSE)
857 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
859 assert(srcno < xsrc->nr_irqs);
861 return xsrc->status[srcno] & 0x3;
864 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
866 assert(srcno < xsrc->nr_irqs);
868 return xive_esb_set(&xsrc->status[srcno], pq);
872 * Returns whether the event notification should be forwarded.
874 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
876 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
878 xive_source_set_asserted(xsrc, srcno, true);
880 switch (old_pq) {
881 case XIVE_ESB_RESET:
882 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
883 return true;
884 default:
885 return false;
890 * Returns whether the event notification should be forwarded.
892 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
894 bool ret;
896 assert(srcno < xsrc->nr_irqs);
898 ret = xive_esb_trigger(&xsrc->status[srcno]);
900 if (xive_source_irq_is_lsi(xsrc, srcno) &&
901 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
902 qemu_log_mask(LOG_GUEST_ERROR,
903 "XIVE: queued an event on LSI IRQ %d\n", srcno);
906 return ret;
910 * Returns whether the event notification should be forwarded.
912 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
914 bool ret;
916 assert(srcno < xsrc->nr_irqs);
918 ret = xive_esb_eoi(&xsrc->status[srcno]);
921 * LSI sources do not set the Q bit but they can still be
922 * asserted, in which case we should forward a new event
923 * notification
925 if (xive_source_irq_is_lsi(xsrc, srcno) &&
926 xive_source_is_asserted(xsrc, srcno)) {
927 ret = xive_source_lsi_trigger(xsrc, srcno);
930 return ret;
934 * Forward the source event notification to the Router
936 static void xive_source_notify(XiveSource *xsrc, int srcno)
938 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
940 if (xnc->notify) {
941 xnc->notify(xsrc->xive, srcno);
946 * In a two pages ESB MMIO setting, even page is the trigger page, odd
947 * page is for management
949 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
951 return !((addr >> shift) & 1);
954 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
956 return xive_source_esb_has_2page(xsrc) &&
957 addr_is_even(addr, xsrc->esb_shift - 1);
961 * ESB MMIO loads
962 * Trigger page Management/EOI page
964 * ESB MMIO setting 2 pages 1 or 2 pages
966 * 0x000 .. 0x3FF -1 EOI and return 0|1
967 * 0x400 .. 0x7FF -1 EOI and return 0|1
968 * 0x800 .. 0xBFF -1 return PQ
969 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
970 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
971 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
972 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
974 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
976 XiveSource *xsrc = XIVE_SOURCE(opaque);
977 uint32_t offset = addr & 0xFFF;
978 uint32_t srcno = addr >> xsrc->esb_shift;
979 uint64_t ret = -1;
981 /* In a two pages ESB MMIO setting, trigger page should not be read */
982 if (xive_source_is_trigger_page(xsrc, addr)) {
983 qemu_log_mask(LOG_GUEST_ERROR,
984 "XIVE: invalid load on IRQ %d trigger page at "
985 "0x%"HWADDR_PRIx"\n", srcno, addr);
986 return -1;
989 switch (offset) {
990 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
991 ret = xive_source_esb_eoi(xsrc, srcno);
993 /* Forward the source event notification for routing */
994 if (ret) {
995 xive_source_notify(xsrc, srcno);
997 break;
999 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1000 ret = xive_source_esb_get(xsrc, srcno);
1001 break;
1003 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1004 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1005 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1006 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1007 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1008 break;
1009 default:
1010 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1011 offset);
1014 trace_xive_source_esb_read(addr, srcno, ret);
1016 return ret;
1020 * ESB MMIO stores
1021 * Trigger page Management/EOI page
1023 * ESB MMIO setting 2 pages 1 or 2 pages
1025 * 0x000 .. 0x3FF Trigger Trigger
1026 * 0x400 .. 0x7FF Trigger EOI
1027 * 0x800 .. 0xBFF Trigger undefined
1028 * 0xC00 .. 0xCFF Trigger PQ=00
1029 * 0xD00 .. 0xDFF Trigger PQ=01
1030 * 0xE00 .. 0xDFF Trigger PQ=10
1031 * 0xF00 .. 0xDFF Trigger PQ=11
1033 static void xive_source_esb_write(void *opaque, hwaddr addr,
1034 uint64_t value, unsigned size)
1036 XiveSource *xsrc = XIVE_SOURCE(opaque);
1037 uint32_t offset = addr & 0xFFF;
1038 uint32_t srcno = addr >> xsrc->esb_shift;
1039 bool notify = false;
1041 trace_xive_source_esb_write(addr, srcno, value);
1043 /* In a two pages ESB MMIO setting, trigger page only triggers */
1044 if (xive_source_is_trigger_page(xsrc, addr)) {
1045 notify = xive_source_esb_trigger(xsrc, srcno);
1046 goto out;
1049 switch (offset) {
1050 case 0 ... 0x3FF:
1051 notify = xive_source_esb_trigger(xsrc, srcno);
1052 break;
1054 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1055 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1056 qemu_log_mask(LOG_GUEST_ERROR,
1057 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1058 return;
1061 notify = xive_source_esb_eoi(xsrc, srcno);
1062 break;
1065 * This is an internal offset used to inject triggers when the PQ
1066 * state bits are not controlled locally. Such as for LSIs when
1067 * under ABT mode.
1069 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1070 notify = true;
1071 break;
1073 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1074 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1075 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1076 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1077 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1078 break;
1080 default:
1081 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1082 offset);
1083 return;
1086 out:
1087 /* Forward the source event notification for routing */
1088 if (notify) {
1089 xive_source_notify(xsrc, srcno);
1093 static const MemoryRegionOps xive_source_esb_ops = {
1094 .read = xive_source_esb_read,
1095 .write = xive_source_esb_write,
1096 .endianness = DEVICE_BIG_ENDIAN,
1097 .valid = {
1098 .min_access_size = 8,
1099 .max_access_size = 8,
1101 .impl = {
1102 .min_access_size = 8,
1103 .max_access_size = 8,
1107 void xive_source_set_irq(void *opaque, int srcno, int val)
1109 XiveSource *xsrc = XIVE_SOURCE(opaque);
1110 bool notify = false;
1112 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1113 if (val) {
1114 notify = xive_source_lsi_trigger(xsrc, srcno);
1115 } else {
1116 xive_source_set_asserted(xsrc, srcno, false);
1118 } else {
1119 if (val) {
1120 notify = xive_source_esb_trigger(xsrc, srcno);
1124 /* Forward the source event notification for routing */
1125 if (notify) {
1126 xive_source_notify(xsrc, srcno);
1130 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1132 int i;
1134 for (i = 0; i < xsrc->nr_irqs; i++) {
1135 uint8_t pq = xive_source_esb_get(xsrc, i);
1137 if (pq == XIVE_ESB_OFF) {
1138 continue;
1141 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1142 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1143 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1144 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1145 xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1149 static void xive_source_reset(void *dev)
1151 XiveSource *xsrc = XIVE_SOURCE(dev);
1153 /* Do not clear the LSI bitmap */
1155 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1156 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1159 static void xive_source_realize(DeviceState *dev, Error **errp)
1161 XiveSource *xsrc = XIVE_SOURCE(dev);
1162 size_t esb_len = xive_source_esb_len(xsrc);
1164 assert(xsrc->xive);
1166 if (!xsrc->nr_irqs) {
1167 error_setg(errp, "Number of interrupt needs to be greater than 0");
1168 return;
1171 if (xsrc->esb_shift != XIVE_ESB_4K &&
1172 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1173 xsrc->esb_shift != XIVE_ESB_64K &&
1174 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1175 error_setg(errp, "Invalid ESB shift setting");
1176 return;
1179 xsrc->status = g_malloc0(xsrc->nr_irqs);
1180 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1182 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1183 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1184 &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1185 esb_len);
1186 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1188 qemu_register_reset(xive_source_reset, dev);
1191 static const VMStateDescription vmstate_xive_source = {
1192 .name = TYPE_XIVE_SOURCE,
1193 .version_id = 1,
1194 .minimum_version_id = 1,
1195 .fields = (VMStateField[]) {
1196 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1197 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1198 VMSTATE_END_OF_LIST()
1203 * The default XIVE interrupt source setting for the ESB MMIOs is two
1204 * 64k pages without Store EOI, to be in sync with KVM.
1206 static Property xive_source_properties[] = {
1207 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1208 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1209 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1210 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1211 XiveNotifier *),
1212 DEFINE_PROP_END_OF_LIST(),
1215 static void xive_source_class_init(ObjectClass *klass, void *data)
1217 DeviceClass *dc = DEVICE_CLASS(klass);
1219 dc->desc = "XIVE Interrupt Source";
1220 device_class_set_props(dc, xive_source_properties);
1221 dc->realize = xive_source_realize;
1222 dc->vmsd = &vmstate_xive_source;
1224 * Reason: part of XIVE interrupt controller, needs to be wired up,
1225 * e.g. by spapr_xive_instance_init().
1227 dc->user_creatable = false;
1230 static const TypeInfo xive_source_info = {
1231 .name = TYPE_XIVE_SOURCE,
1232 .parent = TYPE_DEVICE,
1233 .instance_size = sizeof(XiveSource),
1234 .class_init = xive_source_class_init,
1238 * XiveEND helpers
1241 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1243 uint64_t qaddr_base = xive_end_qaddr(end);
1244 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1245 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1246 uint32_t qentries = 1 << (qsize + 10);
1247 int i;
1250 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1252 monitor_printf(mon, " [ ");
1253 qindex = (qindex - (width - 1)) & (qentries - 1);
1254 for (i = 0; i < width; i++) {
1255 uint64_t qaddr = qaddr_base + (qindex << 2);
1256 uint32_t qdata = -1;
1258 if (dma_memory_read(&address_space_memory, qaddr,
1259 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1260 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1261 HWADDR_PRIx "\n", qaddr);
1262 return;
1264 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1265 be32_to_cpu(qdata));
1266 qindex = (qindex + 1) & (qentries - 1);
1268 monitor_printf(mon, "]");
1271 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1273 uint64_t qaddr_base = xive_end_qaddr(end);
1274 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1275 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1276 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1277 uint32_t qentries = 1 << (qsize + 10);
1279 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1280 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1281 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1282 uint8_t pq;
1284 if (!xive_end_is_valid(end)) {
1285 return;
1288 pq = xive_get_field32(END_W1_ESn, end->w1);
1290 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1291 end_idx,
1292 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1293 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1294 xive_end_is_valid(end) ? 'v' : '-',
1295 xive_end_is_enqueue(end) ? 'q' : '-',
1296 xive_end_is_notify(end) ? 'n' : '-',
1297 xive_end_is_backlog(end) ? 'b' : '-',
1298 xive_end_is_escalate(end) ? 'e' : '-',
1299 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1300 xive_end_is_silent_escalation(end) ? 's' : '-',
1301 xive_end_is_firmware(end) ? 'f' : '-',
1302 priority, nvt_blk, nvt_idx);
1304 if (qaddr_base) {
1305 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1306 qaddr_base, qindex, qentries, qgen);
1307 xive_end_queue_pic_print_info(end, 6, mon);
1309 monitor_printf(mon, "\n");
1312 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1314 uint64_t qaddr_base = xive_end_qaddr(end);
1315 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1316 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1317 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1319 uint64_t qaddr = qaddr_base + (qindex << 2);
1320 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1321 uint32_t qentries = 1 << (qsize + 10);
1323 if (dma_memory_write(&address_space_memory, qaddr,
1324 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1325 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1326 HWADDR_PRIx "\n", qaddr);
1327 return;
1330 qindex = (qindex + 1) & (qentries - 1);
1331 if (qindex == 0) {
1332 qgen ^= 1;
1333 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1335 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1338 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1339 Monitor *mon)
1341 XiveEAS *eas = (XiveEAS *) &end->w4;
1342 uint8_t pq;
1344 if (!xive_end_is_escalate(end)) {
1345 return;
1348 pq = xive_get_field32(END_W1_ESe, end->w1);
1350 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1351 end_idx,
1352 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1353 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1354 xive_eas_is_valid(eas) ? 'V' : ' ',
1355 xive_eas_is_masked(eas) ? 'M' : ' ',
1356 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1357 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1358 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1362 * XIVE Router (aka. Virtualization Controller or IVRE)
1365 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1366 XiveEAS *eas)
1368 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1370 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1373 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1374 XiveEND *end)
1376 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1378 return xrc->get_end(xrtr, end_blk, end_idx, end);
1381 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1382 XiveEND *end, uint8_t word_number)
1384 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1386 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1389 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1390 XiveNVT *nvt)
1392 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1394 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1397 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1398 XiveNVT *nvt, uint8_t word_number)
1400 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1402 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1405 static int xive_router_get_block_id(XiveRouter *xrtr)
1407 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1409 return xrc->get_block_id(xrtr);
1412 static void xive_router_realize(DeviceState *dev, Error **errp)
1414 XiveRouter *xrtr = XIVE_ROUTER(dev);
1416 assert(xrtr->xfb);
1420 * Encode the HW CAM line in the block group mode format :
1422 * chip << 19 | 0000000 0 0001 thread (7Bit)
1424 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1426 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1427 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1428 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1430 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1434 * The thread context register words are in big-endian format.
1436 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1437 uint8_t format,
1438 uint8_t nvt_blk, uint32_t nvt_idx,
1439 bool cam_ignore, uint32_t logic_serv)
1441 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1442 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1443 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1444 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1445 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1448 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1449 * identifier are ignored in the "CAM" match.
1452 if (format == 0) {
1453 if (cam_ignore == true) {
1455 * F=0 & i=1: Logical server notification (bits ignored at
1456 * the end of the NVT identifier)
1458 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1459 nvt_blk, nvt_idx);
1460 return -1;
1463 /* F=0 & i=0: Specific NVT notification */
1465 /* PHYS ring */
1466 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1467 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1468 return TM_QW3_HV_PHYS;
1471 /* HV POOL ring */
1472 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1473 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1474 return TM_QW2_HV_POOL;
1477 /* OS ring */
1478 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1479 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1480 return TM_QW1_OS;
1482 } else {
1483 /* F=1 : User level Event-Based Branch (EBB) notification */
1485 /* USER ring */
1486 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1487 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1488 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1489 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1490 return TM_QW0_USER;
1493 return -1;
1497 * This is our simple Xive Presenter Engine model. It is merged in the
1498 * Router as it does not require an extra object.
1500 * It receives notification requests sent by the IVRE to find one
1501 * matching NVT (or more) dispatched on the processor threads. In case
1502 * of a single NVT notification, the process is abreviated and the
1503 * thread is signaled if a match is found. In case of a logical server
1504 * notification (bits ignored at the end of the NVT identifier), the
1505 * IVPE and IVRE select a winning thread using different filters. This
1506 * involves 2 or 3 exchanges on the PowerBus that the model does not
1507 * support.
1509 * The parameters represent what is sent on the PowerBus
1511 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1512 uint8_t nvt_blk, uint32_t nvt_idx,
1513 bool cam_ignore, uint8_t priority,
1514 uint32_t logic_serv)
1516 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1517 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1518 int count;
1521 * Ask the machine to scan the interrupt controllers for a match
1523 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1524 priority, logic_serv, &match);
1525 if (count < 0) {
1526 return false;
1529 /* handle CPU exception delivery */
1530 if (count) {
1531 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1532 xive_tctx_ipb_update(match.tctx, match.ring,
1533 xive_priority_to_ipb(priority));
1536 return !!count;
1540 * Notification using the END ESe/ESn bit (Event State Buffer for
1541 * escalation and notification). Provide further coalescing in the
1542 * Router.
1544 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1545 uint32_t end_idx, XiveEND *end,
1546 uint32_t end_esmask)
1548 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1549 bool notify = xive_esb_trigger(&pq);
1551 if (pq != xive_get_field32(end_esmask, end->w1)) {
1552 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1553 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1556 /* ESe/n[Q]=1 : end of notification */
1557 return notify;
1561 * An END trigger can come from an event trigger (IPI or HW) or from
1562 * another chip. We don't model the PowerBus but the END trigger
1563 * message has the same parameters than in the function below.
1565 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1566 uint32_t end_idx, uint32_t end_data)
1568 XiveEND end;
1569 uint8_t priority;
1570 uint8_t format;
1571 uint8_t nvt_blk;
1572 uint32_t nvt_idx;
1573 XiveNVT nvt;
1574 bool found;
1576 /* END cache lookup */
1577 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1578 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1579 end_idx);
1580 return;
1583 if (!xive_end_is_valid(&end)) {
1584 trace_xive_router_end_notify(end_blk, end_idx, end_data);
1585 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1586 end_blk, end_idx);
1587 return;
1590 if (xive_end_is_enqueue(&end)) {
1591 xive_end_enqueue(&end, end_data);
1592 /* Enqueuing event data modifies the EQ toggle and index */
1593 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1597 * When the END is silent, we skip the notification part.
1599 if (xive_end_is_silent_escalation(&end)) {
1600 goto do_escalation;
1604 * The W7 format depends on the F bit in W6. It defines the type
1605 * of the notification :
1607 * F=0 : single or multiple NVT notification
1608 * F=1 : User level Event-Based Branch (EBB) notification, no
1609 * priority
1611 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1612 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1614 /* The END is masked */
1615 if (format == 0 && priority == 0xff) {
1616 return;
1620 * Check the END ESn (Event State Buffer for notification) for
1621 * even further coalescing in the Router
1623 if (!xive_end_is_notify(&end)) {
1624 /* ESn[Q]=1 : end of notification */
1625 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1626 &end, END_W1_ESn)) {
1627 return;
1632 * Follows IVPE notification
1634 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1635 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1637 /* NVT cache lookup */
1638 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1639 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1640 nvt_blk, nvt_idx);
1641 return;
1644 if (!xive_nvt_is_valid(&nvt)) {
1645 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1646 nvt_blk, nvt_idx);
1647 return;
1650 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1651 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1652 priority,
1653 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1655 /* TODO: Auto EOI. */
1657 if (found) {
1658 return;
1662 * If no matching NVT is dispatched on a HW thread :
1663 * - specific VP: update the NVT structure if backlog is activated
1664 * - logical server : forward request to IVPE (not supported)
1666 if (xive_end_is_backlog(&end)) {
1667 uint8_t ipb;
1669 if (format == 1) {
1670 qemu_log_mask(LOG_GUEST_ERROR,
1671 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1672 end_blk, end_idx);
1673 return;
1676 * Record the IPB in the associated NVT structure for later
1677 * use. The presenter will resend the interrupt when the vCPU
1678 * is dispatched again on a HW thread.
1680 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1681 xive_priority_to_ipb(priority);
1682 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1683 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1686 * On HW, follows a "Broadcast Backlog" to IVPEs
1690 do_escalation:
1692 * If activated, escalate notification using the ESe PQ bits and
1693 * the EAS in w4-5
1695 if (!xive_end_is_escalate(&end)) {
1696 return;
1700 * Check the END ESe (Event State Buffer for escalation) for even
1701 * further coalescing in the Router
1703 if (!xive_end_is_uncond_escalation(&end)) {
1704 /* ESe[Q]=1 : end of notification */
1705 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1706 &end, END_W1_ESe)) {
1707 return;
1711 trace_xive_router_end_escalate(end_blk, end_idx,
1712 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1713 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1714 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1716 * The END trigger becomes an Escalation trigger
1718 xive_router_end_notify(xrtr,
1719 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1720 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1721 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1724 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1726 XiveRouter *xrtr = XIVE_ROUTER(xn);
1727 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1728 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1729 XiveEAS eas;
1731 /* EAS cache lookup */
1732 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1733 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1734 return;
1738 * The IVRE checks the State Bit Cache at this point. We skip the
1739 * SBC lookup because the state bits of the sources are modeled
1740 * internally in QEMU.
1743 if (!xive_eas_is_valid(&eas)) {
1744 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1745 return;
1748 if (xive_eas_is_masked(&eas)) {
1749 /* Notification completed */
1750 return;
1754 * The event trigger becomes an END trigger
1756 xive_router_end_notify(xrtr,
1757 xive_get_field64(EAS_END_BLOCK, eas.w),
1758 xive_get_field64(EAS_END_INDEX, eas.w),
1759 xive_get_field64(EAS_END_DATA, eas.w));
1762 static Property xive_router_properties[] = {
1763 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1764 TYPE_XIVE_FABRIC, XiveFabric *),
1765 DEFINE_PROP_END_OF_LIST(),
1768 static void xive_router_class_init(ObjectClass *klass, void *data)
1770 DeviceClass *dc = DEVICE_CLASS(klass);
1771 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1773 dc->desc = "XIVE Router Engine";
1774 device_class_set_props(dc, xive_router_properties);
1775 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1776 dc->realize = xive_router_realize;
1777 xnc->notify = xive_router_notify;
1780 static const TypeInfo xive_router_info = {
1781 .name = TYPE_XIVE_ROUTER,
1782 .parent = TYPE_SYS_BUS_DEVICE,
1783 .abstract = true,
1784 .instance_size = sizeof(XiveRouter),
1785 .class_size = sizeof(XiveRouterClass),
1786 .class_init = xive_router_class_init,
1787 .interfaces = (InterfaceInfo[]) {
1788 { TYPE_XIVE_NOTIFIER },
1789 { TYPE_XIVE_PRESENTER },
1794 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1796 if (!xive_eas_is_valid(eas)) {
1797 return;
1800 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1801 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1802 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1803 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1804 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1808 * END ESB MMIO loads
1810 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1812 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1813 uint32_t offset = addr & 0xFFF;
1814 uint8_t end_blk;
1815 uint32_t end_idx;
1816 XiveEND end;
1817 uint32_t end_esmask;
1818 uint8_t pq;
1819 uint64_t ret = -1;
1822 * The block id should be deduced from the load address on the END
1823 * ESB MMIO but our model only supports a single block per XIVE chip.
1825 end_blk = xive_router_get_block_id(xsrc->xrtr);
1826 end_idx = addr >> (xsrc->esb_shift + 1);
1828 trace_xive_end_source_read(end_blk, end_idx, addr);
1830 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1831 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1832 end_idx);
1833 return -1;
1836 if (!xive_end_is_valid(&end)) {
1837 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1838 end_blk, end_idx);
1839 return -1;
1842 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1843 pq = xive_get_field32(end_esmask, end.w1);
1845 switch (offset) {
1846 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1847 ret = xive_esb_eoi(&pq);
1849 /* Forward the source event notification for routing ?? */
1850 break;
1852 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1853 ret = pq;
1854 break;
1856 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1857 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1858 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1859 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1860 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1861 break;
1862 default:
1863 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1864 offset);
1865 return -1;
1868 if (pq != xive_get_field32(end_esmask, end.w1)) {
1869 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1870 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1873 return ret;
1877 * END ESB MMIO stores are invalid
1879 static void xive_end_source_write(void *opaque, hwaddr addr,
1880 uint64_t value, unsigned size)
1882 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1883 HWADDR_PRIx"\n", addr);
1886 static const MemoryRegionOps xive_end_source_ops = {
1887 .read = xive_end_source_read,
1888 .write = xive_end_source_write,
1889 .endianness = DEVICE_BIG_ENDIAN,
1890 .valid = {
1891 .min_access_size = 8,
1892 .max_access_size = 8,
1894 .impl = {
1895 .min_access_size = 8,
1896 .max_access_size = 8,
1900 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1902 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1904 assert(xsrc->xrtr);
1906 if (!xsrc->nr_ends) {
1907 error_setg(errp, "Number of interrupt needs to be greater than 0");
1908 return;
1911 if (xsrc->esb_shift != XIVE_ESB_4K &&
1912 xsrc->esb_shift != XIVE_ESB_64K) {
1913 error_setg(errp, "Invalid ESB shift setting");
1914 return;
1918 * Each END is assigned an even/odd pair of MMIO pages, the even page
1919 * manages the ESn field while the odd page manages the ESe field.
1921 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1922 &xive_end_source_ops, xsrc, "xive.end",
1923 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1926 static Property xive_end_source_properties[] = {
1927 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1928 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1929 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1930 XiveRouter *),
1931 DEFINE_PROP_END_OF_LIST(),
1934 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1936 DeviceClass *dc = DEVICE_CLASS(klass);
1938 dc->desc = "XIVE END Source";
1939 device_class_set_props(dc, xive_end_source_properties);
1940 dc->realize = xive_end_source_realize;
1942 * Reason: part of XIVE interrupt controller, needs to be wired up,
1943 * e.g. by spapr_xive_instance_init().
1945 dc->user_creatable = false;
1948 static const TypeInfo xive_end_source_info = {
1949 .name = TYPE_XIVE_END_SOURCE,
1950 .parent = TYPE_DEVICE,
1951 .instance_size = sizeof(XiveENDSource),
1952 .class_init = xive_end_source_class_init,
1956 * XIVE Notifier
1958 static const TypeInfo xive_notifier_info = {
1959 .name = TYPE_XIVE_NOTIFIER,
1960 .parent = TYPE_INTERFACE,
1961 .class_size = sizeof(XiveNotifierClass),
1965 * XIVE Presenter
1967 static const TypeInfo xive_presenter_info = {
1968 .name = TYPE_XIVE_PRESENTER,
1969 .parent = TYPE_INTERFACE,
1970 .class_size = sizeof(XivePresenterClass),
1974 * XIVE Fabric
1976 static const TypeInfo xive_fabric_info = {
1977 .name = TYPE_XIVE_FABRIC,
1978 .parent = TYPE_INTERFACE,
1979 .class_size = sizeof(XiveFabricClass),
1982 static void xive_register_types(void)
1984 type_register_static(&xive_fabric_info);
1985 type_register_static(&xive_source_info);
1986 type_register_static(&xive_notifier_info);
1987 type_register_static(&xive_presenter_info);
1988 type_register_static(&xive_router_info);
1989 type_register_static(&xive_end_source_info);
1990 type_register_static(&xive_tctx_info);
1993 type_init(xive_register_types)