virtio: combine the read of a descriptor
[qemu.git] / hw / net / allwinner_emac.c
blob16d4b63ba074efb36315071f30b508e99f6de113
1 /*
2 * Emulation of Allwinner EMAC Fast Ethernet controller and
3 * Realtek RTL8201CP PHY
5 * Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com>
7 * This model is based on reverse-engineering of Linux kernel driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "net/net.h"
22 #include "qemu/fifo8.h"
23 #include "hw/net/allwinner_emac.h"
24 #include <zlib.h>
26 static uint8_t padding[60];
28 static void mii_set_link(RTL8201CPState *mii, bool link_ok)
30 if (link_ok) {
31 mii->bmsr |= MII_BMSR_LINK_ST | MII_BMSR_AN_COMP;
32 mii->anlpar |= MII_ANAR_TXFD | MII_ANAR_10FD | MII_ANAR_10 |
33 MII_ANAR_CSMACD;
34 } else {
35 mii->bmsr &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
36 mii->anlpar = MII_ANAR_TX;
40 static void mii_reset(RTL8201CPState *mii, bool link_ok)
42 mii->bmcr = MII_BMCR_FD | MII_BMCR_AUTOEN | MII_BMCR_SPEED;
43 mii->bmsr = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
44 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AUTONEG;
45 mii->anar = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
46 MII_ANAR_CSMACD;
47 mii->anlpar = MII_ANAR_TX;
49 mii_set_link(mii, link_ok);
52 static uint16_t RTL8201CP_mdio_read(AwEmacState *s, uint8_t addr, uint8_t reg)
54 RTL8201CPState *mii = &s->mii;
55 uint16_t ret = 0xffff;
57 if (addr == s->phy_addr) {
58 switch (reg) {
59 case MII_BMCR:
60 return mii->bmcr;
61 case MII_BMSR:
62 return mii->bmsr;
63 case MII_PHYID1:
64 return RTL8201CP_PHYID1;
65 case MII_PHYID2:
66 return RTL8201CP_PHYID2;
67 case MII_ANAR:
68 return mii->anar;
69 case MII_ANLPAR:
70 return mii->anlpar;
71 case MII_ANER:
72 case MII_NSR:
73 case MII_LBREMR:
74 case MII_REC:
75 case MII_SNRDR:
76 case MII_TEST:
77 qemu_log_mask(LOG_UNIMP,
78 "allwinner_emac: read from unimpl. mii reg 0x%x\n",
79 reg);
80 return 0;
81 default:
82 qemu_log_mask(LOG_GUEST_ERROR,
83 "allwinner_emac: read from invalid mii reg 0x%x\n",
84 reg);
85 return 0;
88 return ret;
91 static void RTL8201CP_mdio_write(AwEmacState *s, uint8_t addr, uint8_t reg,
92 uint16_t value)
94 RTL8201CPState *mii = &s->mii;
95 NetClientState *nc;
97 if (addr == s->phy_addr) {
98 switch (reg) {
99 case MII_BMCR:
100 if (value & MII_BMCR_RESET) {
101 nc = qemu_get_queue(s->nic);
102 mii_reset(mii, !nc->link_down);
103 } else {
104 mii->bmcr = value;
106 break;
107 case MII_ANAR:
108 mii->anar = value;
109 break;
110 case MII_BMSR:
111 case MII_PHYID1:
112 case MII_PHYID2:
113 case MII_ANLPAR:
114 case MII_ANER:
115 qemu_log_mask(LOG_GUEST_ERROR,
116 "allwinner_emac: write to read-only mii reg 0x%x\n",
117 reg);
118 break;
119 case MII_NSR:
120 case MII_LBREMR:
121 case MII_REC:
122 case MII_SNRDR:
123 case MII_TEST:
124 qemu_log_mask(LOG_UNIMP,
125 "allwinner_emac: write to unimpl. mii reg 0x%x\n",
126 reg);
127 break;
128 default:
129 qemu_log_mask(LOG_GUEST_ERROR,
130 "allwinner_emac: write to invalid mii reg 0x%x\n",
131 reg);
136 static void aw_emac_update_irq(AwEmacState *s)
138 qemu_set_irq(s->irq, (s->int_sta & s->int_ctl) != 0);
141 static void aw_emac_tx_reset(AwEmacState *s, int chan)
143 fifo8_reset(&s->tx_fifo[chan]);
144 s->tx_length[chan] = 0;
147 static void aw_emac_rx_reset(AwEmacState *s)
149 fifo8_reset(&s->rx_fifo);
150 s->rx_num_packets = 0;
151 s->rx_packet_size = 0;
152 s->rx_packet_pos = 0;
155 static void fifo8_push_word(Fifo8 *fifo, uint32_t val)
157 fifo8_push(fifo, val);
158 fifo8_push(fifo, val >> 8);
159 fifo8_push(fifo, val >> 16);
160 fifo8_push(fifo, val >> 24);
163 static uint32_t fifo8_pop_word(Fifo8 *fifo)
165 uint32_t ret;
167 ret = fifo8_pop(fifo);
168 ret |= fifo8_pop(fifo) << 8;
169 ret |= fifo8_pop(fifo) << 16;
170 ret |= fifo8_pop(fifo) << 24;
172 return ret;
175 static int aw_emac_can_receive(NetClientState *nc)
177 AwEmacState *s = qemu_get_nic_opaque(nc);
180 * To avoid packet drops, allow reception only when there is space
181 * for a full frame: 1522 + 8 (rx headers) + 2 (padding).
183 return (s->ctl & EMAC_CTL_RX_EN) && (fifo8_num_free(&s->rx_fifo) >= 1532);
186 static ssize_t aw_emac_receive(NetClientState *nc, const uint8_t *buf,
187 size_t size)
189 AwEmacState *s = qemu_get_nic_opaque(nc);
190 Fifo8 *fifo = &s->rx_fifo;
191 size_t padded_size, total_size;
192 uint32_t crc;
194 padded_size = size > 60 ? size : 60;
195 total_size = QEMU_ALIGN_UP(RX_HDR_SIZE + padded_size + CRC_SIZE, 4);
197 if (!(s->ctl & EMAC_CTL_RX_EN) || (fifo8_num_free(fifo) < total_size)) {
198 return -1;
201 fifo8_push_word(fifo, EMAC_UNDOCUMENTED_MAGIC);
202 fifo8_push_word(fifo, EMAC_RX_HEADER(padded_size + CRC_SIZE,
203 EMAC_RX_IO_DATA_STATUS_OK));
204 fifo8_push_all(fifo, buf, size);
205 crc = crc32(~0, buf, size);
207 if (padded_size != size) {
208 fifo8_push_all(fifo, padding, padded_size - size);
209 crc = crc32(crc, padding, padded_size - size);
212 fifo8_push_word(fifo, crc);
213 fifo8_push_all(fifo, padding, QEMU_ALIGN_UP(padded_size, 4) - padded_size);
214 s->rx_num_packets++;
216 s->int_sta |= EMAC_INT_RX;
217 aw_emac_update_irq(s);
219 return size;
222 static void aw_emac_reset(DeviceState *dev)
224 AwEmacState *s = AW_EMAC(dev);
225 NetClientState *nc = qemu_get_queue(s->nic);
227 s->ctl = 0;
228 s->tx_mode = 0;
229 s->int_ctl = 0;
230 s->int_sta = 0;
231 s->tx_channel = 0;
232 s->phy_target = 0;
234 aw_emac_tx_reset(s, 0);
235 aw_emac_tx_reset(s, 1);
236 aw_emac_rx_reset(s);
238 mii_reset(&s->mii, !nc->link_down);
241 static uint64_t aw_emac_read(void *opaque, hwaddr offset, unsigned size)
243 AwEmacState *s = opaque;
244 Fifo8 *fifo = &s->rx_fifo;
245 NetClientState *nc;
246 uint64_t ret;
248 switch (offset) {
249 case EMAC_CTL_REG:
250 return s->ctl;
251 case EMAC_TX_MODE_REG:
252 return s->tx_mode;
253 case EMAC_TX_INS_REG:
254 return s->tx_channel;
255 case EMAC_RX_CTL_REG:
256 return s->rx_ctl;
257 case EMAC_RX_IO_DATA_REG:
258 if (!s->rx_num_packets) {
259 qemu_log_mask(LOG_GUEST_ERROR,
260 "Read IO data register when no packet available");
261 return 0;
264 ret = fifo8_pop_word(fifo);
266 switch (s->rx_packet_pos) {
267 case 0: /* Word is magic header */
268 s->rx_packet_pos += 4;
269 break;
270 case 4: /* Word is rx info header */
271 s->rx_packet_pos += 4;
272 s->rx_packet_size = QEMU_ALIGN_UP(extract32(ret, 0, 16), 4);
273 break;
274 default: /* Word is packet data */
275 s->rx_packet_pos += 4;
276 s->rx_packet_size -= 4;
278 if (!s->rx_packet_size) {
279 s->rx_packet_pos = 0;
280 s->rx_num_packets--;
281 nc = qemu_get_queue(s->nic);
282 if (aw_emac_can_receive(nc)) {
283 qemu_flush_queued_packets(nc);
287 return ret;
288 case EMAC_RX_FBC_REG:
289 return s->rx_num_packets;
290 case EMAC_INT_CTL_REG:
291 return s->int_ctl;
292 case EMAC_INT_STA_REG:
293 return s->int_sta;
294 case EMAC_MAC_MRDD_REG:
295 return RTL8201CP_mdio_read(s,
296 extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
297 extract32(s->phy_target, PHY_REG_SHIFT, 8));
298 default:
299 qemu_log_mask(LOG_UNIMP,
300 "allwinner_emac: read access to unknown register 0x"
301 TARGET_FMT_plx "\n", offset);
302 ret = 0;
305 return ret;
308 static void aw_emac_write(void *opaque, hwaddr offset, uint64_t value,
309 unsigned size)
311 AwEmacState *s = opaque;
312 Fifo8 *fifo;
313 NetClientState *nc = qemu_get_queue(s->nic);
314 int chan;
316 switch (offset) {
317 case EMAC_CTL_REG:
318 if (value & EMAC_CTL_RESET) {
319 aw_emac_reset(DEVICE(s));
320 value &= ~EMAC_CTL_RESET;
322 s->ctl = value;
323 if (aw_emac_can_receive(nc)) {
324 qemu_flush_queued_packets(nc);
326 break;
327 case EMAC_TX_MODE_REG:
328 s->tx_mode = value;
329 break;
330 case EMAC_TX_CTL0_REG:
331 case EMAC_TX_CTL1_REG:
332 chan = (offset == EMAC_TX_CTL0_REG ? 0 : 1);
333 if ((value & 1) && (s->ctl & EMAC_CTL_TX_EN)) {
334 uint32_t len, ret;
335 const uint8_t *data;
337 fifo = &s->tx_fifo[chan];
338 len = s->tx_length[chan];
340 if (len > fifo8_num_used(fifo)) {
341 len = fifo8_num_used(fifo);
342 qemu_log_mask(LOG_GUEST_ERROR,
343 "allwinner_emac: TX length > fifo data length\n");
345 if (len > 0) {
346 data = fifo8_pop_buf(fifo, len, &ret);
347 qemu_send_packet(nc, data, ret);
348 aw_emac_tx_reset(s, chan);
349 /* Raise TX interrupt */
350 s->int_sta |= EMAC_INT_TX_CHAN(chan);
351 aw_emac_update_irq(s);
354 break;
355 case EMAC_TX_INS_REG:
356 s->tx_channel = value < NUM_TX_FIFOS ? value : 0;
357 break;
358 case EMAC_TX_PL0_REG:
359 case EMAC_TX_PL1_REG:
360 chan = (offset == EMAC_TX_PL0_REG ? 0 : 1);
361 if (value > TX_FIFO_SIZE) {
362 qemu_log_mask(LOG_GUEST_ERROR,
363 "allwinner_emac: invalid TX frame length %d\n",
364 (int)value);
365 value = TX_FIFO_SIZE;
367 s->tx_length[chan] = value;
368 break;
369 case EMAC_TX_IO_DATA_REG:
370 fifo = &s->tx_fifo[s->tx_channel];
371 if (fifo8_num_free(fifo) < 4) {
372 qemu_log_mask(LOG_GUEST_ERROR,
373 "allwinner_emac: TX data overruns fifo\n");
374 break;
376 fifo8_push_word(fifo, value);
377 break;
378 case EMAC_RX_CTL_REG:
379 s->rx_ctl = value;
380 break;
381 case EMAC_RX_FBC_REG:
382 if (value == 0) {
383 aw_emac_rx_reset(s);
385 break;
386 case EMAC_INT_CTL_REG:
387 s->int_ctl = value;
388 aw_emac_update_irq(s);
389 break;
390 case EMAC_INT_STA_REG:
391 s->int_sta &= ~value;
392 aw_emac_update_irq(s);
393 break;
394 case EMAC_MAC_MADR_REG:
395 s->phy_target = value;
396 break;
397 case EMAC_MAC_MWTD_REG:
398 RTL8201CP_mdio_write(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
399 extract32(s->phy_target, PHY_REG_SHIFT, 8), value);
400 break;
401 default:
402 qemu_log_mask(LOG_UNIMP,
403 "allwinner_emac: write access to unknown register 0x"
404 TARGET_FMT_plx "\n", offset);
408 static void aw_emac_set_link(NetClientState *nc)
410 AwEmacState *s = qemu_get_nic_opaque(nc);
412 mii_set_link(&s->mii, !nc->link_down);
415 static const MemoryRegionOps aw_emac_mem_ops = {
416 .read = aw_emac_read,
417 .write = aw_emac_write,
418 .endianness = DEVICE_NATIVE_ENDIAN,
419 .valid = {
420 .min_access_size = 4,
421 .max_access_size = 4,
425 static NetClientInfo net_aw_emac_info = {
426 .type = NET_CLIENT_OPTIONS_KIND_NIC,
427 .size = sizeof(NICState),
428 .can_receive = aw_emac_can_receive,
429 .receive = aw_emac_receive,
430 .link_status_changed = aw_emac_set_link,
433 static void aw_emac_init(Object *obj)
435 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
436 AwEmacState *s = AW_EMAC(obj);
438 memory_region_init_io(&s->iomem, OBJECT(s), &aw_emac_mem_ops, s,
439 "aw_emac", 0x1000);
440 sysbus_init_mmio(sbd, &s->iomem);
441 sysbus_init_irq(sbd, &s->irq);
444 static void aw_emac_realize(DeviceState *dev, Error **errp)
446 AwEmacState *s = AW_EMAC(dev);
448 qemu_macaddr_default_if_unset(&s->conf.macaddr);
449 s->nic = qemu_new_nic(&net_aw_emac_info, &s->conf,
450 object_get_typename(OBJECT(dev)), dev->id, s);
451 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
453 fifo8_create(&s->rx_fifo, RX_FIFO_SIZE);
454 fifo8_create(&s->tx_fifo[0], TX_FIFO_SIZE);
455 fifo8_create(&s->tx_fifo[1], TX_FIFO_SIZE);
458 static Property aw_emac_properties[] = {
459 DEFINE_NIC_PROPERTIES(AwEmacState, conf),
460 DEFINE_PROP_UINT8("phy-addr", AwEmacState, phy_addr, 0),
461 DEFINE_PROP_END_OF_LIST(),
464 static const VMStateDescription vmstate_mii = {
465 .name = "rtl8201cp",
466 .version_id = 1,
467 .minimum_version_id = 1,
468 .fields = (VMStateField[]) {
469 VMSTATE_UINT16(bmcr, RTL8201CPState),
470 VMSTATE_UINT16(bmsr, RTL8201CPState),
471 VMSTATE_UINT16(anar, RTL8201CPState),
472 VMSTATE_UINT16(anlpar, RTL8201CPState),
473 VMSTATE_END_OF_LIST()
477 static int aw_emac_post_load(void *opaque, int version_id)
479 AwEmacState *s = opaque;
481 aw_emac_set_link(qemu_get_queue(s->nic));
483 return 0;
486 static const VMStateDescription vmstate_aw_emac = {
487 .name = "allwinner_emac",
488 .version_id = 1,
489 .minimum_version_id = 1,
490 .post_load = aw_emac_post_load,
491 .fields = (VMStateField[]) {
492 VMSTATE_STRUCT(mii, AwEmacState, 1, vmstate_mii, RTL8201CPState),
493 VMSTATE_UINT32(ctl, AwEmacState),
494 VMSTATE_UINT32(tx_mode, AwEmacState),
495 VMSTATE_UINT32(rx_ctl, AwEmacState),
496 VMSTATE_UINT32(int_ctl, AwEmacState),
497 VMSTATE_UINT32(int_sta, AwEmacState),
498 VMSTATE_UINT32(phy_target, AwEmacState),
499 VMSTATE_FIFO8(rx_fifo, AwEmacState),
500 VMSTATE_UINT32(rx_num_packets, AwEmacState),
501 VMSTATE_UINT32(rx_packet_size, AwEmacState),
502 VMSTATE_UINT32(rx_packet_pos, AwEmacState),
503 VMSTATE_STRUCT_ARRAY(tx_fifo, AwEmacState, NUM_TX_FIFOS, 1,
504 vmstate_fifo8, Fifo8),
505 VMSTATE_UINT32_ARRAY(tx_length, AwEmacState, NUM_TX_FIFOS),
506 VMSTATE_UINT32(tx_channel, AwEmacState),
507 VMSTATE_END_OF_LIST()
511 static void aw_emac_class_init(ObjectClass *klass, void *data)
513 DeviceClass *dc = DEVICE_CLASS(klass);
515 dc->realize = aw_emac_realize;
516 dc->props = aw_emac_properties;
517 dc->reset = aw_emac_reset;
518 dc->vmsd = &vmstate_aw_emac;
521 static const TypeInfo aw_emac_info = {
522 .name = TYPE_AW_EMAC,
523 .parent = TYPE_SYS_BUS_DEVICE,
524 .instance_size = sizeof(AwEmacState),
525 .instance_init = aw_emac_init,
526 .class_init = aw_emac_class_init,
529 static void aw_emac_register_types(void)
531 type_register_static(&aw_emac_info);
534 type_init(aw_emac_register_types)