virtio: combine the read of a descriptor
[qemu.git] / hw / arm / virt.c
blob15658f49c4e06f6f1d368638aa9761d4e887b236
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "hw/sysbus.h"
33 #include "hw/arm/arm.h"
34 #include "hw/arm/primecell.h"
35 #include "hw/arm/virt.h"
36 #include "hw/devices.h"
37 #include "net/net.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/kvm.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/bitops.h"
46 #include "qemu/error-report.h"
47 #include "hw/pci-host/gpex.h"
48 #include "hw/arm/virt-acpi-build.h"
49 #include "hw/arm/sysbus-fdt.h"
50 #include "hw/platform-bus.h"
51 #include "hw/arm/fdt.h"
52 #include "hw/intc/arm_gic_common.h"
53 #include "kvm_arm.h"
54 #include "hw/smbios/smbios.h"
55 #include "qapi/visitor.h"
56 #include "standard-headers/linux/input.h"
58 /* Number of external interrupt lines to configure the GIC with */
59 #define NUM_IRQS 256
61 #define PLATFORM_BUS_NUM_IRQS 64
63 static ARMPlatformBusSystemParams platform_bus_params;
65 typedef struct VirtBoardInfo {
66 struct arm_boot_info bootinfo;
67 const char *cpu_model;
68 const MemMapEntry *memmap;
69 const int *irqmap;
70 int smp_cpus;
71 void *fdt;
72 int fdt_size;
73 uint32_t clock_phandle;
74 uint32_t gic_phandle;
75 uint32_t v2m_phandle;
76 } VirtBoardInfo;
78 typedef struct {
79 MachineClass parent;
80 VirtBoardInfo *daughterboard;
81 } VirtMachineClass;
83 typedef struct {
84 MachineState parent;
85 bool secure;
86 bool highmem;
87 int32_t gic_version;
88 } VirtMachineState;
90 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
91 #define VIRT_MACHINE(obj) \
92 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
93 #define VIRT_MACHINE_GET_CLASS(obj) \
94 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
95 #define VIRT_MACHINE_CLASS(klass) \
96 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
98 /* Addresses and sizes of our components.
99 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
100 * 128MB..256MB is used for miscellaneous device I/O.
101 * 256MB..1GB is reserved for possible future PCI support (ie where the
102 * PCI memory window will go if we add a PCI host controller).
103 * 1GB and up is RAM (which may happily spill over into the
104 * high memory region beyond 4GB).
105 * This represents a compromise between how much RAM can be given to
106 * a 32 bit VM and leaving space for expansion and in particular for PCI.
107 * Note that devices should generally be placed at multiples of 0x10000,
108 * to accommodate guests using 64K pages.
110 static const MemMapEntry a15memmap[] = {
111 /* Space up to 0x8000000 is reserved for a boot ROM */
112 [VIRT_FLASH] = { 0, 0x08000000 },
113 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
114 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
115 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
116 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
117 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
118 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
119 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
120 /* This redistributor space allows up to 2*64kB*123 CPUs */
121 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
122 [VIRT_UART] = { 0x09000000, 0x00001000 },
123 [VIRT_RTC] = { 0x09010000, 0x00001000 },
124 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
125 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
126 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
127 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
128 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
129 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
130 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
131 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
132 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
133 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
134 /* Second PCIe window, 512GB wide at the 512GB boundary */
135 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
138 static const int a15irqmap[] = {
139 [VIRT_UART] = 1,
140 [VIRT_RTC] = 2,
141 [VIRT_PCIE] = 3, /* ... to 6 */
142 [VIRT_GPIO] = 7,
143 [VIRT_SECURE_UART] = 8,
144 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
145 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
146 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
149 static VirtBoardInfo machines[] = {
151 .cpu_model = "cortex-a15",
152 .memmap = a15memmap,
153 .irqmap = a15irqmap,
156 .cpu_model = "cortex-a53",
157 .memmap = a15memmap,
158 .irqmap = a15irqmap,
161 .cpu_model = "cortex-a57",
162 .memmap = a15memmap,
163 .irqmap = a15irqmap,
166 .cpu_model = "host",
167 .memmap = a15memmap,
168 .irqmap = a15irqmap,
172 static VirtBoardInfo *find_machine_info(const char *cpu)
174 int i;
176 for (i = 0; i < ARRAY_SIZE(machines); i++) {
177 if (strcmp(cpu, machines[i].cpu_model) == 0) {
178 return &machines[i];
181 return NULL;
184 static void create_fdt(VirtBoardInfo *vbi)
186 void *fdt = create_device_tree(&vbi->fdt_size);
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
193 vbi->fdt = fdt;
195 /* Header */
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219 "clk24mhz");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
224 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
226 uint32_t cpu_suspend_fn;
227 uint32_t cpu_off_fn;
228 uint32_t cpu_on_fn;
229 uint32_t migrate_fn;
230 void *fdt = vbi->fdt;
231 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
233 qemu_fdt_add_subnode(fdt, "/psci");
234 if (armcpu->psci_version == 2) {
235 const char comp[] = "arm,psci-0.2\0arm,psci";
236 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
238 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
239 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
240 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
241 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
242 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
243 } else {
244 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
245 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
246 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
248 } else {
249 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
251 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
252 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
253 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
254 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
257 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
258 * to the instruction that should be used to invoke PSCI functions.
259 * However, the device tree binding uses 'method' instead, so that is
260 * what we should use here.
262 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
264 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
265 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
266 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
267 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
270 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
272 /* Note that on A15 h/w these interrupts are level-triggered,
273 * but for the GIC implementation provided by both QEMU and KVM
274 * they are edge-triggered.
276 ARMCPU *armcpu;
277 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
279 if (gictype == 2) {
280 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
281 GIC_FDT_IRQ_PPI_CPU_WIDTH,
282 (1 << vbi->smp_cpus) - 1);
285 qemu_fdt_add_subnode(vbi->fdt, "/timer");
287 armcpu = ARM_CPU(qemu_get_cpu(0));
288 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
289 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
290 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
291 compat, sizeof(compat));
292 } else {
293 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
294 "arm,armv7-timer");
296 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
297 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
300 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
301 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
304 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
306 int cpu;
307 int addr_cells = 1;
310 * From Documentation/devicetree/bindings/arm/cpus.txt
311 * On ARM v8 64-bit systems value should be set to 2,
312 * that corresponds to the MPIDR_EL1 register size.
313 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
314 * in the system, #address-cells can be set to 1, since
315 * MPIDR_EL1[63:32] bits are not used for CPUs
316 * identification.
318 * Here we actually don't know whether our system is 32- or 64-bit one.
319 * The simplest way to go is to examine affinity IDs of all our CPUs. If
320 * at least one of them has Aff3 populated, we set #address-cells to 2.
322 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
323 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
325 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
326 addr_cells = 2;
327 break;
331 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
332 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
333 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
335 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
336 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
337 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
339 qemu_fdt_add_subnode(vbi->fdt, nodename);
340 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
341 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
342 armcpu->dtb_compatible);
344 if (vbi->smp_cpus > 1) {
345 qemu_fdt_setprop_string(vbi->fdt, nodename,
346 "enable-method", "psci");
349 if (addr_cells == 2) {
350 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
351 armcpu->mp_affinity);
352 } else {
353 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
354 armcpu->mp_affinity);
357 g_free(nodename);
361 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
363 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
364 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
365 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
366 "arm,gic-v2m-frame");
367 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
368 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
369 2, vbi->memmap[VIRT_GIC_V2M].base,
370 2, vbi->memmap[VIRT_GIC_V2M].size);
371 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
374 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
376 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
377 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
379 qemu_fdt_add_subnode(vbi->fdt, "/intc");
380 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
381 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
382 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
383 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
384 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
385 if (type == 3) {
386 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
387 "arm,gic-v3");
388 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
389 2, vbi->memmap[VIRT_GIC_DIST].base,
390 2, vbi->memmap[VIRT_GIC_DIST].size,
391 2, vbi->memmap[VIRT_GIC_REDIST].base,
392 2, vbi->memmap[VIRT_GIC_REDIST].size);
393 } else {
394 /* 'cortex-a15-gic' means 'GIC v2' */
395 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
396 "arm,cortex-a15-gic");
397 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
398 2, vbi->memmap[VIRT_GIC_DIST].base,
399 2, vbi->memmap[VIRT_GIC_DIST].size,
400 2, vbi->memmap[VIRT_GIC_CPU].base,
401 2, vbi->memmap[VIRT_GIC_CPU].size);
404 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
407 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
409 int i;
410 int irq = vbi->irqmap[VIRT_GIC_V2M];
411 DeviceState *dev;
413 dev = qdev_create(NULL, "arm-gicv2m");
414 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
415 qdev_prop_set_uint32(dev, "base-spi", irq);
416 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
417 qdev_init_nofail(dev);
419 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
420 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
423 fdt_add_v2m_gic_node(vbi);
426 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
428 /* We create a standalone GIC */
429 DeviceState *gicdev;
430 SysBusDevice *gicbusdev;
431 const char *gictype;
432 int i;
434 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
436 gicdev = qdev_create(NULL, gictype);
437 qdev_prop_set_uint32(gicdev, "revision", type);
438 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
439 /* Note that the num-irq property counts both internal and external
440 * interrupts; there are always 32 of the former (mandated by GIC spec).
442 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
443 if (!kvm_irqchip_in_kernel()) {
444 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
446 qdev_init_nofail(gicdev);
447 gicbusdev = SYS_BUS_DEVICE(gicdev);
448 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
449 if (type == 3) {
450 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
451 } else {
452 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
455 /* Wire the outputs from each CPU's generic timer to the
456 * appropriate GIC PPI inputs, and the GIC's IRQ output to
457 * the CPU's IRQ input.
459 for (i = 0; i < smp_cpus; i++) {
460 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
461 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
462 int irq;
463 /* Mapping from the output timer irq lines from the CPU to the
464 * GIC PPI inputs we use for the virt board.
466 const int timer_irq[] = {
467 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
468 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
469 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
470 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
473 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
474 qdev_connect_gpio_out(cpudev, irq,
475 qdev_get_gpio_in(gicdev,
476 ppibase + timer_irq[irq]));
479 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
480 sysbus_connect_irq(gicbusdev, i + smp_cpus,
481 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
484 for (i = 0; i < NUM_IRQS; i++) {
485 pic[i] = qdev_get_gpio_in(gicdev, i);
488 fdt_add_gic_node(vbi, type);
490 if (type == 2) {
491 create_v2m(vbi, pic);
495 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
496 MemoryRegion *mem)
498 char *nodename;
499 hwaddr base = vbi->memmap[uart].base;
500 hwaddr size = vbi->memmap[uart].size;
501 int irq = vbi->irqmap[uart];
502 const char compat[] = "arm,pl011\0arm,primecell";
503 const char clocknames[] = "uartclk\0apb_pclk";
504 DeviceState *dev = qdev_create(NULL, "pl011");
505 SysBusDevice *s = SYS_BUS_DEVICE(dev);
507 qdev_init_nofail(dev);
508 memory_region_add_subregion(mem, base,
509 sysbus_mmio_get_region(s, 0));
510 sysbus_connect_irq(s, 0, pic[irq]);
512 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
513 qemu_fdt_add_subnode(vbi->fdt, nodename);
514 /* Note that we can't use setprop_string because of the embedded NUL */
515 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
516 compat, sizeof(compat));
517 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
518 2, base, 2, size);
519 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
520 GIC_FDT_IRQ_TYPE_SPI, irq,
521 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
522 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
523 vbi->clock_phandle, vbi->clock_phandle);
524 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
525 clocknames, sizeof(clocknames));
527 if (uart == VIRT_UART) {
528 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
529 } else {
530 /* Mark as not usable by the normal world */
531 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
532 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
535 g_free(nodename);
538 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
540 char *nodename;
541 hwaddr base = vbi->memmap[VIRT_RTC].base;
542 hwaddr size = vbi->memmap[VIRT_RTC].size;
543 int irq = vbi->irqmap[VIRT_RTC];
544 const char compat[] = "arm,pl031\0arm,primecell";
546 sysbus_create_simple("pl031", base, pic[irq]);
548 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
549 qemu_fdt_add_subnode(vbi->fdt, nodename);
550 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
551 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
552 2, base, 2, size);
553 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
554 GIC_FDT_IRQ_TYPE_SPI, irq,
555 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
556 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
557 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
558 g_free(nodename);
561 static DeviceState *pl061_dev;
562 static void virt_powerdown_req(Notifier *n, void *opaque)
564 /* use gpio Pin 3 for power button event */
565 qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1);
568 static Notifier virt_system_powerdown_notifier = {
569 .notify = virt_powerdown_req
572 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
574 char *nodename;
575 hwaddr base = vbi->memmap[VIRT_GPIO].base;
576 hwaddr size = vbi->memmap[VIRT_GPIO].size;
577 int irq = vbi->irqmap[VIRT_GPIO];
578 const char compat[] = "arm,pl061\0arm,primecell";
580 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
582 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
583 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
584 qemu_fdt_add_subnode(vbi->fdt, nodename);
585 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
586 2, base, 2, size);
587 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
588 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
589 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
590 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
591 GIC_FDT_IRQ_TYPE_SPI, irq,
592 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
593 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
594 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
595 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
597 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
598 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
599 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
600 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
602 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
603 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
604 "label", "GPIO Key Poweroff");
605 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
606 KEY_POWER);
607 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
608 "gpios", phandle, 3, 0);
610 /* connect powerdown request */
611 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
613 g_free(nodename);
616 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
618 int i;
619 hwaddr size = vbi->memmap[VIRT_MMIO].size;
621 /* We create the transports in forwards order. Since qbus_realize()
622 * prepends (not appends) new child buses, the incrementing loop below will
623 * create a list of virtio-mmio buses with decreasing base addresses.
625 * When a -device option is processed from the command line,
626 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
627 * order. The upshot is that -device options in increasing command line
628 * order are mapped to virtio-mmio buses with decreasing base addresses.
630 * When this code was originally written, that arrangement ensured that the
631 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
632 * the first -device on the command line. (The end-to-end order is a
633 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
634 * guest kernel's name-to-address assignment strategy.)
636 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
637 * the message, if not necessarily the code, of commit 70161ff336.
638 * Therefore the loop now establishes the inverse of the original intent.
640 * Unfortunately, we can't counteract the kernel change by reversing the
641 * loop; it would break existing command lines.
643 * In any case, the kernel makes no guarantee about the stability of
644 * enumeration order of virtio devices (as demonstrated by it changing
645 * between kernel versions). For reliable and stable identification
646 * of disks users must use UUIDs or similar mechanisms.
648 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
649 int irq = vbi->irqmap[VIRT_MMIO] + i;
650 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
652 sysbus_create_simple("virtio-mmio", base, pic[irq]);
655 /* We add dtb nodes in reverse order so that they appear in the finished
656 * device tree lowest address first.
658 * Note that this mapping is independent of the loop above. The previous
659 * loop influences virtio device to virtio transport assignment, whereas
660 * this loop controls how virtio transports are laid out in the dtb.
662 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
663 char *nodename;
664 int irq = vbi->irqmap[VIRT_MMIO] + i;
665 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
667 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
668 qemu_fdt_add_subnode(vbi->fdt, nodename);
669 qemu_fdt_setprop_string(vbi->fdt, nodename,
670 "compatible", "virtio,mmio");
671 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
672 2, base, 2, size);
673 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
674 GIC_FDT_IRQ_TYPE_SPI, irq,
675 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
676 g_free(nodename);
680 static void create_one_flash(const char *name, hwaddr flashbase,
681 hwaddr flashsize)
683 /* Create and map a single flash device. We use the same
684 * parameters as the flash devices on the Versatile Express board.
686 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
687 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
688 const uint64_t sectorlength = 256 * 1024;
690 if (dinfo) {
691 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
692 &error_abort);
695 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
696 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
697 qdev_prop_set_uint8(dev, "width", 4);
698 qdev_prop_set_uint8(dev, "device-width", 2);
699 qdev_prop_set_bit(dev, "big-endian", false);
700 qdev_prop_set_uint16(dev, "id0", 0x89);
701 qdev_prop_set_uint16(dev, "id1", 0x18);
702 qdev_prop_set_uint16(dev, "id2", 0x00);
703 qdev_prop_set_uint16(dev, "id3", 0x00);
704 qdev_prop_set_string(dev, "name", name);
705 qdev_init_nofail(dev);
707 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
710 static void create_flash(const VirtBoardInfo *vbi)
712 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
713 * Any file passed via -bios goes in the first of these.
715 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
716 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
717 char *nodename;
719 if (bios_name) {
720 char *fn;
721 int image_size;
723 if (drive_get(IF_PFLASH, 0, 0)) {
724 error_report("The contents of the first flash device may be "
725 "specified with -bios or with -drive if=pflash... "
726 "but you cannot use both options at once");
727 exit(1);
729 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
730 if (!fn) {
731 error_report("Could not find ROM image '%s'", bios_name);
732 exit(1);
734 image_size = load_image_targphys(fn, flashbase, flashsize);
735 g_free(fn);
736 if (image_size < 0) {
737 error_report("Could not load ROM image '%s'", bios_name);
738 exit(1);
742 create_one_flash("virt.flash0", flashbase, flashsize);
743 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
745 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
746 qemu_fdt_add_subnode(vbi->fdt, nodename);
747 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
748 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
749 2, flashbase, 2, flashsize,
750 2, flashbase + flashsize, 2, flashsize);
751 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
752 g_free(nodename);
755 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
757 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
758 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
759 char *nodename;
761 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
763 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
764 qemu_fdt_add_subnode(vbi->fdt, nodename);
765 qemu_fdt_setprop_string(vbi->fdt, nodename,
766 "compatible", "qemu,fw-cfg-mmio");
767 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
768 2, base, 2, size);
769 g_free(nodename);
772 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
773 int first_irq, const char *nodename)
775 int devfn, pin;
776 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
777 uint32_t *irq_map = full_irq_map;
779 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
780 for (pin = 0; pin < 4; pin++) {
781 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
782 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
783 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
784 int i;
786 uint32_t map[] = {
787 devfn << 8, 0, 0, /* devfn */
788 pin + 1, /* PCI pin */
789 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
791 /* Convert map to big endian */
792 for (i = 0; i < 10; i++) {
793 irq_map[i] = cpu_to_be32(map[i]);
795 irq_map += 10;
799 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
800 full_irq_map, sizeof(full_irq_map));
802 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
803 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
804 0x7 /* PCI irq */);
807 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
808 bool use_highmem)
810 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
811 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
812 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
813 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
814 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
815 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
816 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
817 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
818 hwaddr base = base_mmio;
819 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
820 int irq = vbi->irqmap[VIRT_PCIE];
821 MemoryRegion *mmio_alias;
822 MemoryRegion *mmio_reg;
823 MemoryRegion *ecam_alias;
824 MemoryRegion *ecam_reg;
825 DeviceState *dev;
826 char *nodename;
827 int i;
828 PCIHostState *pci;
830 dev = qdev_create(NULL, TYPE_GPEX_HOST);
831 qdev_init_nofail(dev);
833 /* Map only the first size_ecam bytes of ECAM space */
834 ecam_alias = g_new0(MemoryRegion, 1);
835 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
836 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
837 ecam_reg, 0, size_ecam);
838 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
840 /* Map the MMIO window into system address space so as to expose
841 * the section of PCI MMIO space which starts at the same base address
842 * (ie 1:1 mapping for that part of PCI MMIO space visible through
843 * the window).
845 mmio_alias = g_new0(MemoryRegion, 1);
846 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
847 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
848 mmio_reg, base_mmio, size_mmio);
849 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
851 if (use_highmem) {
852 /* Map high MMIO space */
853 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
855 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
856 mmio_reg, base_mmio_high, size_mmio_high);
857 memory_region_add_subregion(get_system_memory(), base_mmio_high,
858 high_mmio_alias);
861 /* Map IO port space */
862 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
864 for (i = 0; i < GPEX_NUM_IRQS; i++) {
865 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
868 pci = PCI_HOST_BRIDGE(dev);
869 if (pci->bus) {
870 for (i = 0; i < nb_nics; i++) {
871 NICInfo *nd = &nd_table[i];
873 if (!nd->model) {
874 nd->model = g_strdup("virtio");
877 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
881 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
882 qemu_fdt_add_subnode(vbi->fdt, nodename);
883 qemu_fdt_setprop_string(vbi->fdt, nodename,
884 "compatible", "pci-host-ecam-generic");
885 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
886 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
887 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
888 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
889 nr_pcie_buses - 1);
891 if (vbi->v2m_phandle) {
892 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
893 vbi->v2m_phandle);
896 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
897 2, base_ecam, 2, size_ecam);
899 if (use_highmem) {
900 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
901 1, FDT_PCI_RANGE_IOPORT, 2, 0,
902 2, base_pio, 2, size_pio,
903 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
904 2, base_mmio, 2, size_mmio,
905 1, FDT_PCI_RANGE_MMIO_64BIT,
906 2, base_mmio_high,
907 2, base_mmio_high, 2, size_mmio_high);
908 } else {
909 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
910 1, FDT_PCI_RANGE_IOPORT, 2, 0,
911 2, base_pio, 2, size_pio,
912 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
913 2, base_mmio, 2, size_mmio);
916 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
917 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
919 g_free(nodename);
922 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
924 DeviceState *dev;
925 SysBusDevice *s;
926 int i;
927 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
928 MemoryRegion *sysmem = get_system_memory();
930 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
931 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
932 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
933 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
935 fdt_params->system_params = &platform_bus_params;
936 fdt_params->binfo = &vbi->bootinfo;
937 fdt_params->intc = "/intc";
939 * register a machine init done notifier that creates the device tree
940 * nodes of the platform bus and its children dynamic sysbus devices
942 arm_register_platform_bus_fdt_creator(fdt_params);
944 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
945 dev->id = TYPE_PLATFORM_BUS_DEVICE;
946 qdev_prop_set_uint32(dev, "num_irqs",
947 platform_bus_params.platform_bus_num_irqs);
948 qdev_prop_set_uint32(dev, "mmio_size",
949 platform_bus_params.platform_bus_size);
950 qdev_init_nofail(dev);
951 s = SYS_BUS_DEVICE(dev);
953 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
954 int irqn = platform_bus_params.platform_bus_first_irq + i;
955 sysbus_connect_irq(s, i, pic[irqn]);
958 memory_region_add_subregion(sysmem,
959 platform_bus_params.platform_bus_base,
960 sysbus_mmio_get_region(s, 0));
963 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
965 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
967 *fdt_size = board->fdt_size;
968 return board->fdt;
971 static void virt_build_smbios(VirtGuestInfo *guest_info)
973 FWCfgState *fw_cfg = guest_info->fw_cfg;
974 uint8_t *smbios_tables, *smbios_anchor;
975 size_t smbios_tables_len, smbios_anchor_len;
976 const char *product = "QEMU Virtual Machine";
978 if (!fw_cfg) {
979 return;
982 if (kvm_enabled()) {
983 product = "KVM Virtual Machine";
986 smbios_set_defaults("QEMU", product,
987 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
989 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
990 &smbios_anchor, &smbios_anchor_len);
992 if (smbios_anchor) {
993 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
994 smbios_tables, smbios_tables_len);
995 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
996 smbios_anchor, smbios_anchor_len);
1000 static
1001 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1003 VirtGuestInfoState *guest_info_state = container_of(notifier,
1004 VirtGuestInfoState, machine_done);
1005 virt_acpi_setup(&guest_info_state->info);
1006 virt_build_smbios(&guest_info_state->info);
1009 static void machvirt_init(MachineState *machine)
1011 VirtMachineState *vms = VIRT_MACHINE(machine);
1012 qemu_irq pic[NUM_IRQS];
1013 MemoryRegion *sysmem = get_system_memory();
1014 MemoryRegion *secure_sysmem = NULL;
1015 int gic_version = vms->gic_version;
1016 int n, max_cpus;
1017 MemoryRegion *ram = g_new(MemoryRegion, 1);
1018 const char *cpu_model = machine->cpu_model;
1019 VirtBoardInfo *vbi;
1020 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1021 VirtGuestInfo *guest_info = &guest_info_state->info;
1022 char **cpustr;
1024 if (!cpu_model) {
1025 cpu_model = "cortex-a15";
1028 /* We can probe only here because during property set
1029 * KVM is not available yet
1031 if (!gic_version) {
1032 gic_version = kvm_arm_vgic_probe();
1033 if (!gic_version) {
1034 error_report("Unable to determine GIC version supported by host");
1035 error_printf("KVM acceleration is probably not supported\n");
1036 exit(1);
1040 /* Separate the actual CPU model name from any appended features */
1041 cpustr = g_strsplit(cpu_model, ",", 2);
1043 vbi = find_machine_info(cpustr[0]);
1045 if (!vbi) {
1046 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1047 exit(1);
1050 /* The maximum number of CPUs depends on the GIC version, or on how
1051 * many redistributors we can fit into the memory map.
1053 if (gic_version == 3) {
1054 max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1055 } else {
1056 max_cpus = GIC_NCPU;
1059 if (smp_cpus > max_cpus) {
1060 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1061 "supported by machine 'mach-virt' (%d)",
1062 smp_cpus, max_cpus);
1063 exit(1);
1066 vbi->smp_cpus = smp_cpus;
1068 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1069 error_report("mach-virt: cannot model more than 30GB RAM");
1070 exit(1);
1073 if (vms->secure) {
1074 if (kvm_enabled()) {
1075 error_report("mach-virt: KVM does not support Security extensions");
1076 exit(1);
1079 /* The Secure view of the world is the same as the NonSecure,
1080 * but with a few extra devices. Create it as a container region
1081 * containing the system memory at low priority; any secure-only
1082 * devices go in at higher priority and take precedence.
1084 secure_sysmem = g_new(MemoryRegion, 1);
1085 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1086 UINT64_MAX);
1087 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1090 create_fdt(vbi);
1092 for (n = 0; n < smp_cpus; n++) {
1093 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1094 CPUClass *cc = CPU_CLASS(oc);
1095 Object *cpuobj;
1096 Error *err = NULL;
1097 char *cpuopts = g_strdup(cpustr[1]);
1099 if (!oc) {
1100 error_report("Unable to find CPU definition");
1101 exit(1);
1103 cpuobj = object_new(object_class_get_name(oc));
1105 /* Handle any CPU options specified by the user */
1106 cc->parse_features(CPU(cpuobj), cpuopts, &err);
1107 g_free(cpuopts);
1108 if (err) {
1109 error_report_err(err);
1110 exit(1);
1113 if (!vms->secure) {
1114 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1117 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
1118 NULL);
1120 /* Secondary CPUs start in PSCI powered-down state */
1121 if (n > 0) {
1122 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
1125 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1126 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1127 "reset-cbar", &error_abort);
1130 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1131 &error_abort);
1132 if (vms->secure) {
1133 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1134 "secure-memory", &error_abort);
1137 object_property_set_bool(cpuobj, true, "realized", NULL);
1139 g_strfreev(cpustr);
1140 fdt_add_timer_nodes(vbi, gic_version);
1141 fdt_add_cpu_nodes(vbi);
1142 fdt_add_psci_node(vbi);
1144 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1145 machine->ram_size);
1146 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1148 create_flash(vbi);
1150 create_gic(vbi, pic, gic_version, vms->secure);
1152 create_uart(vbi, pic, VIRT_UART, sysmem);
1154 if (vms->secure) {
1155 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem);
1158 create_rtc(vbi, pic);
1160 create_pcie(vbi, pic, vms->highmem);
1162 create_gpio(vbi, pic);
1164 /* Create mmio transports, so the user can create virtio backends
1165 * (which will be automatically plugged in to the transports). If
1166 * no backend is created the transport will just sit harmlessly idle.
1168 create_virtio_devices(vbi, pic);
1170 create_fw_cfg(vbi, &address_space_memory);
1171 rom_set_fw(fw_cfg_find());
1173 guest_info->smp_cpus = smp_cpus;
1174 guest_info->fw_cfg = fw_cfg_find();
1175 guest_info->memmap = vbi->memmap;
1176 guest_info->irqmap = vbi->irqmap;
1177 guest_info->use_highmem = vms->highmem;
1178 guest_info->gic_version = gic_version;
1179 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1180 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1182 vbi->bootinfo.ram_size = machine->ram_size;
1183 vbi->bootinfo.kernel_filename = machine->kernel_filename;
1184 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1185 vbi->bootinfo.initrd_filename = machine->initrd_filename;
1186 vbi->bootinfo.nb_cpus = smp_cpus;
1187 vbi->bootinfo.board_id = -1;
1188 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1189 vbi->bootinfo.get_dtb = machvirt_dtb;
1190 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1191 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1194 * arm_load_kernel machine init done notifier registration must
1195 * happen before the platform_bus_create call. In this latter,
1196 * another notifier is registered which adds platform bus nodes.
1197 * Notifiers are executed in registration reverse order.
1199 create_platform_bus(vbi, pic);
1202 static bool virt_get_secure(Object *obj, Error **errp)
1204 VirtMachineState *vms = VIRT_MACHINE(obj);
1206 return vms->secure;
1209 static void virt_set_secure(Object *obj, bool value, Error **errp)
1211 VirtMachineState *vms = VIRT_MACHINE(obj);
1213 vms->secure = value;
1216 static bool virt_get_highmem(Object *obj, Error **errp)
1218 VirtMachineState *vms = VIRT_MACHINE(obj);
1220 return vms->highmem;
1223 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1225 VirtMachineState *vms = VIRT_MACHINE(obj);
1227 vms->highmem = value;
1230 static char *virt_get_gic_version(Object *obj, Error **errp)
1232 VirtMachineState *vms = VIRT_MACHINE(obj);
1233 const char *val = vms->gic_version == 3 ? "3" : "2";
1235 return g_strdup(val);
1238 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1240 VirtMachineState *vms = VIRT_MACHINE(obj);
1242 if (!strcmp(value, "3")) {
1243 vms->gic_version = 3;
1244 } else if (!strcmp(value, "2")) {
1245 vms->gic_version = 2;
1246 } else if (!strcmp(value, "host")) {
1247 vms->gic_version = 0; /* Will probe later */
1248 } else {
1249 error_setg(errp, "Invalid gic-version value");
1250 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1254 static void virt_instance_init(Object *obj)
1256 VirtMachineState *vms = VIRT_MACHINE(obj);
1258 /* EL3 is disabled by default on virt: this makes us consistent
1259 * between KVM and TCG for this board, and it also allows us to
1260 * boot UEFI blobs which assume no TrustZone support.
1262 vms->secure = false;
1263 object_property_add_bool(obj, "secure", virt_get_secure,
1264 virt_set_secure, NULL);
1265 object_property_set_description(obj, "secure",
1266 "Set on/off to enable/disable the ARM "
1267 "Security Extensions (TrustZone)",
1268 NULL);
1270 /* High memory is enabled by default */
1271 vms->highmem = true;
1272 object_property_add_bool(obj, "highmem", virt_get_highmem,
1273 virt_set_highmem, NULL);
1274 object_property_set_description(obj, "highmem",
1275 "Set on/off to enable/disable using "
1276 "physical address space above 32 bits",
1277 NULL);
1278 /* Default GIC type is v2 */
1279 vms->gic_version = 2;
1280 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1281 virt_set_gic_version, NULL);
1282 object_property_set_description(obj, "gic-version",
1283 "Set GIC version. "
1284 "Valid values are 2, 3 and host", NULL);
1287 static void virt_class_init(ObjectClass *oc, void *data)
1289 MachineClass *mc = MACHINE_CLASS(oc);
1291 mc->desc = "ARM Virtual Machine",
1292 mc->init = machvirt_init;
1293 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1294 * it later in machvirt_init, where we have more information about the
1295 * configuration of the particular instance.
1297 mc->max_cpus = MAX_CPUMASK_BITS;
1298 mc->has_dynamic_sysbus = true;
1299 mc->block_default_type = IF_VIRTIO;
1300 mc->no_cdrom = 1;
1301 mc->pci_allow_0_address = true;
1304 static const TypeInfo machvirt_info = {
1305 .name = TYPE_VIRT_MACHINE,
1306 .parent = TYPE_MACHINE,
1307 .instance_size = sizeof(VirtMachineState),
1308 .instance_init = virt_instance_init,
1309 .class_size = sizeof(VirtMachineClass),
1310 .class_init = virt_class_init,
1313 static void machvirt_machine_init(void)
1315 type_register_static(&machvirt_info);
1318 machine_init(machvirt_machine_init);