4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
30 #include "qemu/osdep.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/xen/xen.h"
34 #include "qemu/timer.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
52 #include "exec/ram_addr.h"
53 #include "qemu/cache-utils.h"
55 #include "qemu/range.h"
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 static bool in_migration
;
62 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
64 static MemoryRegion
*system_memory
;
65 static MemoryRegion
*system_io
;
67 AddressSpace address_space_io
;
68 AddressSpace address_space_memory
;
70 MemoryRegion io_mem_rom
, io_mem_notdirty
;
71 static MemoryRegion io_mem_unassigned
;
73 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
74 #define RAM_PREALLOC (1 << 0)
78 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
79 /* current CPU in the current thread. It is only valid inside
81 DEFINE_TLS(CPUState
*, current_cpu
);
82 /* 0 = Do not count executed instructions.
83 1 = Precise instruction counting.
84 2 = Adaptive rate instruction counting. */
87 #if !defined(CONFIG_USER_ONLY)
89 typedef struct PhysPageEntry PhysPageEntry
;
91 struct PhysPageEntry
{
92 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
94 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
98 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
100 /* Size of the L2 (and L3, etc) page tables. */
101 #define ADDR_SPACE_BITS 64
104 #define P_L2_SIZE (1 << P_L2_BITS)
106 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
108 typedef PhysPageEntry Node
[P_L2_SIZE
];
110 typedef struct PhysPageMap
{
111 unsigned sections_nb
;
112 unsigned sections_nb_alloc
;
114 unsigned nodes_nb_alloc
;
116 MemoryRegionSection
*sections
;
119 struct AddressSpaceDispatch
{
120 /* This is a multi-level map on the physical address space.
121 * The bottom level has pointers to MemoryRegionSections.
123 PhysPageEntry phys_map
;
128 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
129 typedef struct subpage_t
{
133 uint16_t sub_section
[TARGET_PAGE_SIZE
];
136 #define PHYS_SECTION_UNASSIGNED 0
137 #define PHYS_SECTION_NOTDIRTY 1
138 #define PHYS_SECTION_ROM 2
139 #define PHYS_SECTION_WATCH 3
141 static void io_mem_init(void);
142 static void memory_map_init(void);
143 static void tcg_commit(MemoryListener
*listener
);
145 static MemoryRegion io_mem_watch
;
148 #if !defined(CONFIG_USER_ONLY)
150 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
152 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
153 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
154 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
155 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
159 static uint32_t phys_map_node_alloc(PhysPageMap
*map
)
164 ret
= map
->nodes_nb
++;
165 assert(ret
!= PHYS_MAP_NODE_NIL
);
166 assert(ret
!= map
->nodes_nb_alloc
);
167 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
168 map
->nodes
[ret
][i
].skip
= 1;
169 map
->nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
174 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
175 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
180 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
182 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
183 lp
->ptr
= phys_map_node_alloc(map
);
184 p
= map
->nodes
[lp
->ptr
];
186 for (i
= 0; i
< P_L2_SIZE
; i
++) {
188 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
192 p
= map
->nodes
[lp
->ptr
];
194 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
196 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
197 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
203 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
209 static void phys_page_set(AddressSpaceDispatch
*d
,
210 hwaddr index
, hwaddr nb
,
213 /* Wildly overreserve - it doesn't matter much. */
214 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
216 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
219 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
220 * and update our entry so we can skip it and go directly to the destination.
222 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
224 unsigned valid_ptr
= P_L2_SIZE
;
229 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
234 for (i
= 0; i
< P_L2_SIZE
; i
++) {
235 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
242 phys_page_compact(&p
[i
], nodes
, compacted
);
246 /* We can only compress if there's only one child. */
251 assert(valid_ptr
< P_L2_SIZE
);
253 /* Don't compress if it won't fit in the # of bits we have. */
254 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
258 lp
->ptr
= p
[valid_ptr
].ptr
;
259 if (!p
[valid_ptr
].skip
) {
260 /* If our only child is a leaf, make this a leaf. */
261 /* By design, we should have made this node a leaf to begin with so we
262 * should never reach here.
263 * But since it's so simple to handle this, let's do it just in case we
268 lp
->skip
+= p
[valid_ptr
].skip
;
272 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
274 DECLARE_BITMAP(compacted
, nodes_nb
);
276 if (d
->phys_map
.skip
) {
277 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
281 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
282 Node
*nodes
, MemoryRegionSection
*sections
)
285 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
288 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
289 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
290 return §ions
[PHYS_SECTION_UNASSIGNED
];
293 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
296 if (sections
[lp
.ptr
].size
.hi
||
297 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
298 sections
[lp
.ptr
].size
.lo
, addr
)) {
299 return §ions
[lp
.ptr
];
301 return §ions
[PHYS_SECTION_UNASSIGNED
];
305 bool memory_region_is_unassigned(MemoryRegion
*mr
)
307 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
308 && mr
!= &io_mem_watch
;
311 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
313 bool resolve_subpage
)
315 MemoryRegionSection
*section
;
318 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
319 if (resolve_subpage
&& section
->mr
->subpage
) {
320 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
321 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
326 static MemoryRegionSection
*
327 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
328 hwaddr
*plen
, bool resolve_subpage
)
330 MemoryRegionSection
*section
;
333 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
334 /* Compute offset within MemoryRegionSection */
335 addr
-= section
->offset_within_address_space
;
337 /* Compute offset within MemoryRegion */
338 *xlat
= addr
+ section
->offset_within_region
;
340 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
341 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
345 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
347 if (memory_region_is_ram(mr
)) {
348 return !(is_write
&& mr
->readonly
);
350 if (memory_region_is_romd(mr
)) {
357 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
358 hwaddr
*xlat
, hwaddr
*plen
,
362 MemoryRegionSection
*section
;
367 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
370 if (!mr
->iommu_ops
) {
374 iotlb
= mr
->iommu_ops
->translate(mr
, addr
);
375 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
376 | (addr
& iotlb
.addr_mask
));
377 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
378 if (!(iotlb
.perm
& (1 << is_write
))) {
379 mr
= &io_mem_unassigned
;
383 as
= iotlb
.target_as
;
386 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
387 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
388 len
= MIN(page
, len
);
396 MemoryRegionSection
*
397 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
400 MemoryRegionSection
*section
;
401 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
403 assert(!section
->mr
->iommu_ops
);
408 void cpu_exec_init_all(void)
410 #if !defined(CONFIG_USER_ONLY)
411 qemu_mutex_init(&ram_list
.mutex
);
417 #if !defined(CONFIG_USER_ONLY)
419 static int cpu_common_post_load(void *opaque
, int version_id
)
421 CPUState
*cpu
= opaque
;
423 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
424 version_id is increased. */
425 cpu
->interrupt_request
&= ~0x01;
431 const VMStateDescription vmstate_cpu_common
= {
432 .name
= "cpu_common",
434 .minimum_version_id
= 1,
435 .post_load
= cpu_common_post_load
,
436 .fields
= (VMStateField
[]) {
437 VMSTATE_UINT32(halted
, CPUState
),
438 VMSTATE_UINT32(interrupt_request
, CPUState
),
439 VMSTATE_END_OF_LIST()
445 CPUState
*qemu_get_cpu(int index
)
450 if (cpu
->cpu_index
== index
) {
458 #if !defined(CONFIG_USER_ONLY)
459 void tcg_cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
)
461 /* We only support one address space per cpu at the moment. */
462 assert(cpu
->as
== as
);
464 if (cpu
->tcg_as_listener
) {
465 memory_listener_unregister(cpu
->tcg_as_listener
);
467 cpu
->tcg_as_listener
= g_new0(MemoryListener
, 1);
469 cpu
->tcg_as_listener
->commit
= tcg_commit
;
470 memory_listener_register(cpu
->tcg_as_listener
, as
);
474 void cpu_exec_init(CPUArchState
*env
)
476 CPUState
*cpu
= ENV_GET_CPU(env
);
477 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
481 #if defined(CONFIG_USER_ONLY)
485 CPU_FOREACH(some_cpu
) {
488 cpu
->cpu_index
= cpu_index
;
490 QTAILQ_INIT(&cpu
->breakpoints
);
491 QTAILQ_INIT(&cpu
->watchpoints
);
492 #ifndef CONFIG_USER_ONLY
493 cpu
->as
= &address_space_memory
;
494 cpu
->thread_id
= qemu_get_thread_id();
496 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
497 #if defined(CONFIG_USER_ONLY)
500 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
501 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
503 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
504 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
505 cpu_save
, cpu_load
, env
);
506 assert(cc
->vmsd
== NULL
);
507 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
509 if (cc
->vmsd
!= NULL
) {
510 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
514 #if defined(TARGET_HAS_ICE)
515 #if defined(CONFIG_USER_ONLY)
516 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
518 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
521 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
523 hwaddr phys
= cpu_get_phys_page_debug(cpu
, pc
);
525 tb_invalidate_phys_addr(cpu
->as
,
526 phys
| (pc
& ~TARGET_PAGE_MASK
));
530 #endif /* TARGET_HAS_ICE */
532 #if defined(CONFIG_USER_ONLY)
533 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
538 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
539 int flags
, CPUWatchpoint
**watchpoint
)
544 /* Add a watchpoint. */
545 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
546 int flags
, CPUWatchpoint
**watchpoint
)
548 vaddr len_mask
= ~(len
- 1);
551 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
552 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
553 len
== 0 || len
> TARGET_PAGE_SIZE
) {
554 error_report("tried to set invalid watchpoint at %"
555 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
558 wp
= g_malloc(sizeof(*wp
));
561 wp
->len_mask
= len_mask
;
564 /* keep all GDB-injected watchpoints in front */
565 if (flags
& BP_GDB
) {
566 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
568 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
571 tlb_flush_page(cpu
, addr
);
578 /* Remove a specific watchpoint. */
579 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
582 vaddr len_mask
= ~(len
- 1);
585 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
586 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
587 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
588 cpu_watchpoint_remove_by_ref(cpu
, wp
);
595 /* Remove a specific watchpoint by reference. */
596 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
598 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
600 tlb_flush_page(cpu
, watchpoint
->vaddr
);
605 /* Remove all matching watchpoints. */
606 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
608 CPUWatchpoint
*wp
, *next
;
610 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
611 if (wp
->flags
& mask
) {
612 cpu_watchpoint_remove_by_ref(cpu
, wp
);
618 /* Add a breakpoint. */
619 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
620 CPUBreakpoint
**breakpoint
)
622 #if defined(TARGET_HAS_ICE)
625 bp
= g_malloc(sizeof(*bp
));
630 /* keep all GDB-injected breakpoints in front */
631 if (flags
& BP_GDB
) {
632 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
634 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
637 breakpoint_invalidate(cpu
, pc
);
648 /* Remove a specific breakpoint. */
649 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
651 #if defined(TARGET_HAS_ICE)
654 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
655 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
656 cpu_breakpoint_remove_by_ref(cpu
, bp
);
666 /* Remove a specific breakpoint by reference. */
667 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
669 #if defined(TARGET_HAS_ICE)
670 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
672 breakpoint_invalidate(cpu
, breakpoint
->pc
);
678 /* Remove all matching breakpoints. */
679 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
681 #if defined(TARGET_HAS_ICE)
682 CPUBreakpoint
*bp
, *next
;
684 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
685 if (bp
->flags
& mask
) {
686 cpu_breakpoint_remove_by_ref(cpu
, bp
);
692 /* enable or disable single step mode. EXCP_DEBUG is returned by the
693 CPU loop after each instruction */
694 void cpu_single_step(CPUState
*cpu
, int enabled
)
696 #if defined(TARGET_HAS_ICE)
697 if (cpu
->singlestep_enabled
!= enabled
) {
698 cpu
->singlestep_enabled
= enabled
;
700 kvm_update_guest_debug(cpu
, 0);
702 /* must flush all the translated code to avoid inconsistencies */
703 /* XXX: only flush what is necessary */
704 CPUArchState
*env
= cpu
->env_ptr
;
711 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
718 fprintf(stderr
, "qemu: fatal: ");
719 vfprintf(stderr
, fmt
, ap
);
720 fprintf(stderr
, "\n");
721 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
722 if (qemu_log_enabled()) {
723 qemu_log("qemu: fatal: ");
724 qemu_log_vprintf(fmt
, ap2
);
726 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
732 #if defined(CONFIG_USER_ONLY)
734 struct sigaction act
;
735 sigfillset(&act
.sa_mask
);
736 act
.sa_handler
= SIG_DFL
;
737 sigaction(SIGABRT
, &act
, NULL
);
743 #if !defined(CONFIG_USER_ONLY)
744 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
748 /* The list is protected by the iothread lock here. */
749 block
= ram_list
.mru_block
;
750 if (block
&& addr
- block
->offset
< block
->length
) {
753 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
754 if (addr
- block
->offset
< block
->length
) {
759 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
763 ram_list
.mru_block
= block
;
767 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
773 end
= TARGET_PAGE_ALIGN(start
+ length
);
774 start
&= TARGET_PAGE_MASK
;
776 block
= qemu_get_ram_block(start
);
777 assert(block
== qemu_get_ram_block(end
- 1));
778 start1
= (uintptr_t)block
->host
+ (start
- block
->offset
);
779 cpu_tlb_reset_dirty_all(start1
, length
);
782 /* Note: start and end must be within the same ram block. */
783 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t length
,
788 cpu_physical_memory_clear_dirty_range(start
, length
, client
);
791 tlb_reset_dirty_range_all(start
, length
);
795 static void cpu_physical_memory_set_dirty_tracking(bool enable
)
797 in_migration
= enable
;
800 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
801 MemoryRegionSection
*section
,
803 hwaddr paddr
, hwaddr xlat
,
805 target_ulong
*address
)
810 if (memory_region_is_ram(section
->mr
)) {
812 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
814 if (!section
->readonly
) {
815 iotlb
|= PHYS_SECTION_NOTDIRTY
;
817 iotlb
|= PHYS_SECTION_ROM
;
820 iotlb
= section
- section
->address_space
->dispatch
->map
.sections
;
824 /* Make accesses to pages with watchpoints go via the
825 watchpoint trap routines. */
826 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
827 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
828 /* Avoid trapping reads of pages with a write breakpoint. */
829 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
830 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
831 *address
|= TLB_MMIO
;
839 #endif /* defined(CONFIG_USER_ONLY) */
841 #if !defined(CONFIG_USER_ONLY)
843 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
845 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
847 static void *(*phys_mem_alloc
)(size_t size
) = qemu_anon_ram_alloc
;
850 * Set a custom physical guest memory alloator.
851 * Accelerators with unusual needs may need this. Hopefully, we can
852 * get rid of it eventually.
854 void phys_mem_set_alloc(void *(*alloc
)(size_t))
856 phys_mem_alloc
= alloc
;
859 static uint16_t phys_section_add(PhysPageMap
*map
,
860 MemoryRegionSection
*section
)
862 /* The physical section number is ORed with a page-aligned
863 * pointer to produce the iotlb entries. Thus it should
864 * never overflow into the page-aligned value.
866 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
868 if (map
->sections_nb
== map
->sections_nb_alloc
) {
869 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
870 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
871 map
->sections_nb_alloc
);
873 map
->sections
[map
->sections_nb
] = *section
;
874 memory_region_ref(section
->mr
);
875 return map
->sections_nb
++;
878 static void phys_section_destroy(MemoryRegion
*mr
)
880 memory_region_unref(mr
);
883 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
884 memory_region_destroy(&subpage
->iomem
);
889 static void phys_sections_free(PhysPageMap
*map
)
891 while (map
->sections_nb
> 0) {
892 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
893 phys_section_destroy(section
->mr
);
895 g_free(map
->sections
);
899 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
902 hwaddr base
= section
->offset_within_address_space
904 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
905 d
->map
.nodes
, d
->map
.sections
);
906 MemoryRegionSection subsection
= {
907 .offset_within_address_space
= base
,
908 .size
= int128_make64(TARGET_PAGE_SIZE
),
912 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
914 if (!(existing
->mr
->subpage
)) {
915 subpage
= subpage_init(d
->as
, base
);
916 subsection
.address_space
= d
->as
;
917 subsection
.mr
= &subpage
->iomem
;
918 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
919 phys_section_add(&d
->map
, &subsection
));
921 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
923 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
924 end
= start
+ int128_get64(section
->size
) - 1;
925 subpage_register(subpage
, start
, end
,
926 phys_section_add(&d
->map
, section
));
930 static void register_multipage(AddressSpaceDispatch
*d
,
931 MemoryRegionSection
*section
)
933 hwaddr start_addr
= section
->offset_within_address_space
;
934 uint16_t section_index
= phys_section_add(&d
->map
, section
);
935 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
939 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
942 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
944 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
945 AddressSpaceDispatch
*d
= as
->next_dispatch
;
946 MemoryRegionSection now
= *section
, remain
= *section
;
947 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
949 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
950 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
951 - now
.offset_within_address_space
;
953 now
.size
= int128_min(int128_make64(left
), now
.size
);
954 register_subpage(d
, &now
);
956 now
.size
= int128_zero();
958 while (int128_ne(remain
.size
, now
.size
)) {
959 remain
.size
= int128_sub(remain
.size
, now
.size
);
960 remain
.offset_within_address_space
+= int128_get64(now
.size
);
961 remain
.offset_within_region
+= int128_get64(now
.size
);
963 if (int128_lt(remain
.size
, page_size
)) {
964 register_subpage(d
, &now
);
965 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
966 now
.size
= page_size
;
967 register_subpage(d
, &now
);
969 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
970 register_multipage(d
, &now
);
975 void qemu_flush_coalesced_mmio_buffer(void)
978 kvm_flush_coalesced_mmio_buffer();
981 void qemu_mutex_lock_ramlist(void)
983 qemu_mutex_lock(&ram_list
.mutex
);
986 void qemu_mutex_unlock_ramlist(void)
988 qemu_mutex_unlock(&ram_list
.mutex
);
995 #define HUGETLBFS_MAGIC 0x958458f6
997 static long gethugepagesize(const char *path
)
1003 ret
= statfs(path
, &fs
);
1004 } while (ret
!= 0 && errno
== EINTR
);
1011 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
1012 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
1017 static void *file_ram_alloc(RAMBlock
*block
,
1022 char *sanitized_name
;
1026 unsigned long hpagesize
;
1028 hpagesize
= gethugepagesize(path
);
1033 if (memory
< hpagesize
) {
1037 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1038 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1042 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1043 sanitized_name
= g_strdup(block
->mr
->name
);
1044 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1049 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1051 g_free(sanitized_name
);
1053 fd
= mkstemp(filename
);
1055 perror("unable to create backing store for hugepages");
1062 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
1065 * ftruncate is not supported by hugetlbfs in older
1066 * hosts, so don't bother bailing out on errors.
1067 * If anything goes wrong with it under other filesystems,
1070 if (ftruncate(fd
, memory
))
1071 perror("ftruncate");
1073 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
1074 if (area
== MAP_FAILED
) {
1075 perror("file_ram_alloc: can't mmap RAM pages");
1081 os_mem_prealloc(fd
, area
, memory
);
1094 static void *file_ram_alloc(RAMBlock
*block
,
1098 fprintf(stderr
, "-mem-path not supported on this host\n");
1103 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1105 RAMBlock
*block
, *next_block
;
1106 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1108 assert(size
!= 0); /* it would hand out same offset multiple times */
1110 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1113 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1114 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1116 end
= block
->offset
+ block
->length
;
1118 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1119 if (next_block
->offset
>= end
) {
1120 next
= MIN(next
, next_block
->offset
);
1123 if (next
- end
>= size
&& next
- end
< mingap
) {
1125 mingap
= next
- end
;
1129 if (offset
== RAM_ADDR_MAX
) {
1130 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1138 ram_addr_t
last_ram_offset(void)
1141 ram_addr_t last
= 0;
1143 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1144 last
= MAX(last
, block
->offset
+ block
->length
);
1149 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1153 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1154 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1155 "dump-guest-core", true)) {
1156 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1158 perror("qemu_madvise");
1159 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1160 "but dump_guest_core=off specified\n");
1165 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1169 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1170 if (block
->offset
== addr
) {
1178 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1180 RAMBlock
*new_block
= find_ram_block(addr
);
1184 assert(!new_block
->idstr
[0]);
1187 char *id
= qdev_get_dev_path(dev
);
1189 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1193 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1195 /* This assumes the iothread lock is taken here too. */
1196 qemu_mutex_lock_ramlist();
1197 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1198 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1199 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1204 qemu_mutex_unlock_ramlist();
1207 void qemu_ram_unset_idstr(ram_addr_t addr
)
1209 RAMBlock
*block
= find_ram_block(addr
);
1212 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1216 static int memory_try_enable_merging(void *addr
, size_t len
)
1218 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1219 /* disabled by the user */
1223 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1226 static ram_addr_t
ram_block_add(RAMBlock
*new_block
)
1229 ram_addr_t old_ram_size
, new_ram_size
;
1231 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1233 /* This assumes the iothread lock is taken here too. */
1234 qemu_mutex_lock_ramlist();
1235 new_block
->offset
= find_ram_offset(new_block
->length
);
1237 if (!new_block
->host
) {
1238 if (xen_enabled()) {
1239 xen_ram_alloc(new_block
->offset
, new_block
->length
, new_block
->mr
);
1241 new_block
->host
= phys_mem_alloc(new_block
->length
);
1242 if (!new_block
->host
) {
1243 fprintf(stderr
, "Cannot set up guest memory '%s': %s\n",
1244 new_block
->mr
->name
, strerror(errno
));
1247 memory_try_enable_merging(new_block
->host
, new_block
->length
);
1251 /* Keep the list sorted from biggest to smallest block. */
1252 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1253 if (block
->length
< new_block
->length
) {
1258 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1260 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1262 ram_list
.mru_block
= NULL
;
1265 qemu_mutex_unlock_ramlist();
1267 new_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1269 if (new_ram_size
> old_ram_size
) {
1271 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1272 ram_list
.dirty_memory
[i
] =
1273 bitmap_zero_extend(ram_list
.dirty_memory
[i
],
1274 old_ram_size
, new_ram_size
);
1277 cpu_physical_memory_set_dirty_range(new_block
->offset
, new_block
->length
);
1279 qemu_ram_setup_dump(new_block
->host
, new_block
->length
);
1280 qemu_madvise(new_block
->host
, new_block
->length
, QEMU_MADV_HUGEPAGE
);
1281 qemu_madvise(new_block
->host
, new_block
->length
, QEMU_MADV_DONTFORK
);
1283 if (kvm_enabled()) {
1284 kvm_setup_guest_memory(new_block
->host
, new_block
->length
);
1287 return new_block
->offset
;
1290 ram_addr_t
qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1291 const char *mem_path
)
1293 RAMBlock
*new_block
;
1295 if (xen_enabled()) {
1296 fprintf(stderr
, "-mem-path not supported with Xen\n");
1300 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1302 * file_ram_alloc() needs to allocate just like
1303 * phys_mem_alloc, but we haven't bothered to provide
1307 "-mem-path not supported with this accelerator\n");
1311 size
= TARGET_PAGE_ALIGN(size
);
1312 new_block
= g_malloc0(sizeof(*new_block
));
1314 new_block
->length
= size
;
1315 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1316 return ram_block_add(new_block
);
1319 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1322 RAMBlock
*new_block
;
1324 size
= TARGET_PAGE_ALIGN(size
);
1325 new_block
= g_malloc0(sizeof(*new_block
));
1327 new_block
->length
= size
;
1329 new_block
->host
= host
;
1331 new_block
->flags
|= RAM_PREALLOC
;
1333 return ram_block_add(new_block
);
1336 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1338 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1341 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1345 /* This assumes the iothread lock is taken here too. */
1346 qemu_mutex_lock_ramlist();
1347 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1348 if (addr
== block
->offset
) {
1349 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1350 ram_list
.mru_block
= NULL
;
1356 qemu_mutex_unlock_ramlist();
1359 void qemu_ram_free(ram_addr_t addr
)
1363 /* This assumes the iothread lock is taken here too. */
1364 qemu_mutex_lock_ramlist();
1365 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1366 if (addr
== block
->offset
) {
1367 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1368 ram_list
.mru_block
= NULL
;
1370 if (block
->flags
& RAM_PREALLOC
) {
1372 } else if (xen_enabled()) {
1373 xen_invalidate_map_cache_entry(block
->host
);
1375 } else if (block
->fd
>= 0) {
1376 munmap(block
->host
, block
->length
);
1380 qemu_anon_ram_free(block
->host
, block
->length
);
1386 qemu_mutex_unlock_ramlist();
1391 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1398 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1399 offset
= addr
- block
->offset
;
1400 if (offset
< block
->length
) {
1401 vaddr
= block
->host
+ offset
;
1402 if (block
->flags
& RAM_PREALLOC
) {
1404 } else if (xen_enabled()) {
1408 munmap(vaddr
, length
);
1409 if (block
->fd
>= 0) {
1411 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1414 flags
|= MAP_PRIVATE
;
1416 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1417 flags
, block
->fd
, offset
);
1420 * Remap needs to match alloc. Accelerators that
1421 * set phys_mem_alloc never remap. If they did,
1422 * we'd need a remap hook here.
1424 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1426 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1427 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1430 if (area
!= vaddr
) {
1431 fprintf(stderr
, "Could not remap addr: "
1432 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1436 memory_try_enable_merging(vaddr
, length
);
1437 qemu_ram_setup_dump(vaddr
, length
);
1443 #endif /* !_WIN32 */
1445 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1446 With the exception of the softmmu code in this file, this should
1447 only be used for local memory (e.g. video ram) that the device owns,
1448 and knows it isn't going to access beyond the end of the block.
1450 It should not be used for general purpose DMA.
1451 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1453 void *qemu_get_ram_ptr(ram_addr_t addr
)
1455 RAMBlock
*block
= qemu_get_ram_block(addr
);
1457 if (xen_enabled()) {
1458 /* We need to check if the requested address is in the RAM
1459 * because we don't want to map the entire memory in QEMU.
1460 * In that case just map until the end of the page.
1462 if (block
->offset
== 0) {
1463 return xen_map_cache(addr
, 0, 0);
1464 } else if (block
->host
== NULL
) {
1466 xen_map_cache(block
->offset
, block
->length
, 1);
1469 return block
->host
+ (addr
- block
->offset
);
1472 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1473 * but takes a size argument */
1474 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1479 if (xen_enabled()) {
1480 return xen_map_cache(addr
, *size
, 1);
1484 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1485 if (addr
- block
->offset
< block
->length
) {
1486 if (addr
- block
->offset
+ *size
> block
->length
)
1487 *size
= block
->length
- addr
+ block
->offset
;
1488 return block
->host
+ (addr
- block
->offset
);
1492 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1497 /* Some of the softmmu routines need to translate from a host pointer
1498 (typically a TLB entry) back to a ram offset. */
1499 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1502 uint8_t *host
= ptr
;
1504 if (xen_enabled()) {
1505 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1506 return qemu_get_ram_block(*ram_addr
)->mr
;
1509 block
= ram_list
.mru_block
;
1510 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1514 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1515 /* This case append when the block is not mapped. */
1516 if (block
->host
== NULL
) {
1519 if (host
- block
->host
< block
->length
) {
1527 *ram_addr
= block
->offset
+ (host
- block
->host
);
1531 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1532 uint64_t val
, unsigned size
)
1534 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1535 tb_invalidate_phys_page_fast(ram_addr
, size
);
1539 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1542 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1545 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1550 cpu_physical_memory_set_dirty_flag(ram_addr
, DIRTY_MEMORY_MIGRATION
);
1551 cpu_physical_memory_set_dirty_flag(ram_addr
, DIRTY_MEMORY_VGA
);
1552 /* we remove the notdirty callback only if the code has been
1554 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1555 CPUArchState
*env
= current_cpu
->env_ptr
;
1556 tlb_set_dirty(env
, current_cpu
->mem_io_vaddr
);
1560 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1561 unsigned size
, bool is_write
)
1566 static const MemoryRegionOps notdirty_mem_ops
= {
1567 .write
= notdirty_mem_write
,
1568 .valid
.accepts
= notdirty_mem_accepts
,
1569 .endianness
= DEVICE_NATIVE_ENDIAN
,
1572 /* Generate a debug exception if a watchpoint has been hit. */
1573 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1575 CPUState
*cpu
= current_cpu
;
1576 CPUArchState
*env
= cpu
->env_ptr
;
1577 target_ulong pc
, cs_base
;
1582 if (cpu
->watchpoint_hit
) {
1583 /* We re-entered the check after replacing the TB. Now raise
1584 * the debug interrupt so that is will trigger after the
1585 * current instruction. */
1586 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
1589 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1590 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1591 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1592 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1593 wp
->flags
|= BP_WATCHPOINT_HIT
;
1594 if (!cpu
->watchpoint_hit
) {
1595 cpu
->watchpoint_hit
= wp
;
1596 tb_check_watchpoint(cpu
);
1597 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1598 cpu
->exception_index
= EXCP_DEBUG
;
1601 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1602 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
1603 cpu_resume_from_signal(cpu
, NULL
);
1607 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1612 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1613 so these check for a hit then pass through to the normal out-of-line
1615 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1618 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1620 case 1: return ldub_phys(&address_space_memory
, addr
);
1621 case 2: return lduw_phys(&address_space_memory
, addr
);
1622 case 4: return ldl_phys(&address_space_memory
, addr
);
1627 static void watch_mem_write(void *opaque
, hwaddr addr
,
1628 uint64_t val
, unsigned size
)
1630 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1633 stb_phys(&address_space_memory
, addr
, val
);
1636 stw_phys(&address_space_memory
, addr
, val
);
1639 stl_phys(&address_space_memory
, addr
, val
);
1645 static const MemoryRegionOps watch_mem_ops
= {
1646 .read
= watch_mem_read
,
1647 .write
= watch_mem_write
,
1648 .endianness
= DEVICE_NATIVE_ENDIAN
,
1651 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1654 subpage_t
*subpage
= opaque
;
1657 #if defined(DEBUG_SUBPAGE)
1658 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
1659 subpage
, len
, addr
);
1661 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1674 static void subpage_write(void *opaque
, hwaddr addr
,
1675 uint64_t value
, unsigned len
)
1677 subpage_t
*subpage
= opaque
;
1680 #if defined(DEBUG_SUBPAGE)
1681 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1682 " value %"PRIx64
"\n",
1683 __func__
, subpage
, len
, addr
, value
);
1698 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1701 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1702 unsigned len
, bool is_write
)
1704 subpage_t
*subpage
= opaque
;
1705 #if defined(DEBUG_SUBPAGE)
1706 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
1707 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1710 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1714 static const MemoryRegionOps subpage_ops
= {
1715 .read
= subpage_read
,
1716 .write
= subpage_write
,
1717 .valid
.accepts
= subpage_accepts
,
1718 .endianness
= DEVICE_NATIVE_ENDIAN
,
1721 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1726 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1728 idx
= SUBPAGE_IDX(start
);
1729 eidx
= SUBPAGE_IDX(end
);
1730 #if defined(DEBUG_SUBPAGE)
1731 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1732 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
1734 for (; idx
<= eidx
; idx
++) {
1735 mmio
->sub_section
[idx
] = section
;
1741 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1745 mmio
= g_malloc0(sizeof(subpage_t
));
1749 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1750 "subpage", TARGET_PAGE_SIZE
);
1751 mmio
->iomem
.subpage
= true;
1752 #if defined(DEBUG_SUBPAGE)
1753 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
1754 mmio
, base
, TARGET_PAGE_SIZE
);
1756 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1761 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
1765 MemoryRegionSection section
= {
1766 .address_space
= as
,
1768 .offset_within_address_space
= 0,
1769 .offset_within_region
= 0,
1770 .size
= int128_2_64(),
1773 return phys_section_add(map
, §ion
);
1776 MemoryRegion
*iotlb_to_region(AddressSpace
*as
, hwaddr index
)
1778 return as
->dispatch
->map
.sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1781 static void io_mem_init(void)
1783 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, "rom", UINT64_MAX
);
1784 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1785 "unassigned", UINT64_MAX
);
1786 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1787 "notdirty", UINT64_MAX
);
1788 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1789 "watch", UINT64_MAX
);
1792 static void mem_begin(MemoryListener
*listener
)
1794 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1795 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
1798 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
1799 assert(n
== PHYS_SECTION_UNASSIGNED
);
1800 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
1801 assert(n
== PHYS_SECTION_NOTDIRTY
);
1802 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
1803 assert(n
== PHYS_SECTION_ROM
);
1804 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
1805 assert(n
== PHYS_SECTION_WATCH
);
1807 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
1809 as
->next_dispatch
= d
;
1812 static void mem_commit(MemoryListener
*listener
)
1814 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1815 AddressSpaceDispatch
*cur
= as
->dispatch
;
1816 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1818 phys_page_compact_all(next
, next
->map
.nodes_nb
);
1820 as
->dispatch
= next
;
1823 phys_sections_free(&cur
->map
);
1828 static void tcg_commit(MemoryListener
*listener
)
1832 /* since each CPU stores ram addresses in its TLB cache, we must
1833 reset the modified entries */
1836 /* FIXME: Disentangle the cpu.h circular files deps so we can
1837 directly get the right CPU from listener. */
1838 if (cpu
->tcg_as_listener
!= listener
) {
1845 static void core_log_global_start(MemoryListener
*listener
)
1847 cpu_physical_memory_set_dirty_tracking(true);
1850 static void core_log_global_stop(MemoryListener
*listener
)
1852 cpu_physical_memory_set_dirty_tracking(false);
1855 static MemoryListener core_memory_listener
= {
1856 .log_global_start
= core_log_global_start
,
1857 .log_global_stop
= core_log_global_stop
,
1861 void address_space_init_dispatch(AddressSpace
*as
)
1863 as
->dispatch
= NULL
;
1864 as
->dispatch_listener
= (MemoryListener
) {
1866 .commit
= mem_commit
,
1867 .region_add
= mem_add
,
1868 .region_nop
= mem_add
,
1871 memory_listener_register(&as
->dispatch_listener
, as
);
1874 void address_space_destroy_dispatch(AddressSpace
*as
)
1876 AddressSpaceDispatch
*d
= as
->dispatch
;
1878 memory_listener_unregister(&as
->dispatch_listener
);
1880 as
->dispatch
= NULL
;
1883 static void memory_map_init(void)
1885 system_memory
= g_malloc(sizeof(*system_memory
));
1887 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
1888 address_space_init(&address_space_memory
, system_memory
, "memory");
1890 system_io
= g_malloc(sizeof(*system_io
));
1891 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
1893 address_space_init(&address_space_io
, system_io
, "I/O");
1895 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1898 MemoryRegion
*get_system_memory(void)
1900 return system_memory
;
1903 MemoryRegion
*get_system_io(void)
1908 #endif /* !defined(CONFIG_USER_ONLY) */
1910 /* physical memory access (slow version, mainly for debug) */
1911 #if defined(CONFIG_USER_ONLY)
1912 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
1913 uint8_t *buf
, int len
, int is_write
)
1920 page
= addr
& TARGET_PAGE_MASK
;
1921 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1924 flags
= page_get_flags(page
);
1925 if (!(flags
& PAGE_VALID
))
1928 if (!(flags
& PAGE_WRITE
))
1930 /* XXX: this code should not depend on lock_user */
1931 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1934 unlock_user(p
, addr
, l
);
1936 if (!(flags
& PAGE_READ
))
1938 /* XXX: this code should not depend on lock_user */
1939 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1942 unlock_user(p
, addr
, 0);
1953 static void invalidate_and_set_dirty(hwaddr addr
,
1956 if (cpu_physical_memory_is_clean(addr
)) {
1957 /* invalidate code */
1958 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1960 cpu_physical_memory_set_dirty_flag(addr
, DIRTY_MEMORY_VGA
);
1961 cpu_physical_memory_set_dirty_flag(addr
, DIRTY_MEMORY_MIGRATION
);
1963 xen_modified_memory(addr
, length
);
1966 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
1968 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
1970 /* Regions are assumed to support 1-4 byte accesses unless
1971 otherwise specified. */
1972 if (access_size_max
== 0) {
1973 access_size_max
= 4;
1976 /* Bound the maximum access by the alignment of the address. */
1977 if (!mr
->ops
->impl
.unaligned
) {
1978 unsigned align_size_max
= addr
& -addr
;
1979 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
1980 access_size_max
= align_size_max
;
1984 /* Don't attempt accesses larger than the maximum. */
1985 if (l
> access_size_max
) {
1986 l
= access_size_max
;
1989 l
= 1 << (qemu_fls(l
) - 1);
1995 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1996 int len
, bool is_write
)
2007 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
2010 if (!memory_access_is_direct(mr
, is_write
)) {
2011 l
= memory_access_size(mr
, l
, addr1
);
2012 /* XXX: could force current_cpu to NULL to avoid
2016 /* 64 bit write access */
2018 error
|= io_mem_write(mr
, addr1
, val
, 8);
2021 /* 32 bit write access */
2023 error
|= io_mem_write(mr
, addr1
, val
, 4);
2026 /* 16 bit write access */
2028 error
|= io_mem_write(mr
, addr1
, val
, 2);
2031 /* 8 bit write access */
2033 error
|= io_mem_write(mr
, addr1
, val
, 1);
2039 addr1
+= memory_region_get_ram_addr(mr
);
2041 ptr
= qemu_get_ram_ptr(addr1
);
2042 memcpy(ptr
, buf
, l
);
2043 invalidate_and_set_dirty(addr1
, l
);
2046 if (!memory_access_is_direct(mr
, is_write
)) {
2048 l
= memory_access_size(mr
, l
, addr1
);
2051 /* 64 bit read access */
2052 error
|= io_mem_read(mr
, addr1
, &val
, 8);
2056 /* 32 bit read access */
2057 error
|= io_mem_read(mr
, addr1
, &val
, 4);
2061 /* 16 bit read access */
2062 error
|= io_mem_read(mr
, addr1
, &val
, 2);
2066 /* 8 bit read access */
2067 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2075 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2076 memcpy(buf
, ptr
, l
);
2087 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2088 const uint8_t *buf
, int len
)
2090 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2093 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2095 return address_space_rw(as
, addr
, buf
, len
, false);
2099 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2100 int len
, int is_write
)
2102 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2105 enum write_rom_type
{
2110 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2111 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2120 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2122 if (!(memory_region_is_ram(mr
) ||
2123 memory_region_is_romd(mr
))) {
2126 addr1
+= memory_region_get_ram_addr(mr
);
2128 ptr
= qemu_get_ram_ptr(addr1
);
2131 memcpy(ptr
, buf
, l
);
2132 invalidate_and_set_dirty(addr1
, l
);
2135 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2145 /* used for ROM loading : can write in RAM and ROM */
2146 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2147 const uint8_t *buf
, int len
)
2149 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2152 void cpu_flush_icache_range(hwaddr start
, int len
)
2155 * This function should do the same thing as an icache flush that was
2156 * triggered from within the guest. For TCG we are always cache coherent,
2157 * so there is no need to flush anything. For KVM / Xen we need to flush
2158 * the host's instruction cache at least.
2160 if (tcg_enabled()) {
2164 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2165 start
, NULL
, len
, FLUSH_CACHE
);
2175 static BounceBuffer bounce
;
2177 typedef struct MapClient
{
2179 void (*callback
)(void *opaque
);
2180 QLIST_ENTRY(MapClient
) link
;
2183 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2184 = QLIST_HEAD_INITIALIZER(map_client_list
);
2186 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2188 MapClient
*client
= g_malloc(sizeof(*client
));
2190 client
->opaque
= opaque
;
2191 client
->callback
= callback
;
2192 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2196 static void cpu_unregister_map_client(void *_client
)
2198 MapClient
*client
= (MapClient
*)_client
;
2200 QLIST_REMOVE(client
, link
);
2204 static void cpu_notify_map_clients(void)
2208 while (!QLIST_EMPTY(&map_client_list
)) {
2209 client
= QLIST_FIRST(&map_client_list
);
2210 client
->callback(client
->opaque
);
2211 cpu_unregister_map_client(client
);
2215 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2222 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2223 if (!memory_access_is_direct(mr
, is_write
)) {
2224 l
= memory_access_size(mr
, l
, addr
);
2225 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2236 /* Map a physical memory region into a host virtual address.
2237 * May map a subset of the requested range, given by and returned in *plen.
2238 * May return NULL if resources needed to perform the mapping are exhausted.
2239 * Use only for reads OR writes - not for read-modify-write operations.
2240 * Use cpu_register_map_client() to know when retrying the map operation is
2241 * likely to succeed.
2243 void *address_space_map(AddressSpace
*as
,
2250 hwaddr l
, xlat
, base
;
2251 MemoryRegion
*mr
, *this_mr
;
2259 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2260 if (!memory_access_is_direct(mr
, is_write
)) {
2261 if (bounce
.buffer
) {
2264 /* Avoid unbounded allocations */
2265 l
= MIN(l
, TARGET_PAGE_SIZE
);
2266 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2270 memory_region_ref(mr
);
2273 address_space_read(as
, addr
, bounce
.buffer
, l
);
2277 return bounce
.buffer
;
2281 raddr
= memory_region_get_ram_addr(mr
);
2292 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2293 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2298 memory_region_ref(mr
);
2300 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2303 /* Unmaps a memory region previously mapped by address_space_map().
2304 * Will also mark the memory as dirty if is_write == 1. access_len gives
2305 * the amount of memory that was actually read or written by the caller.
2307 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2308 int is_write
, hwaddr access_len
)
2310 if (buffer
!= bounce
.buffer
) {
2314 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2317 while (access_len
) {
2319 l
= TARGET_PAGE_SIZE
;
2322 invalidate_and_set_dirty(addr1
, l
);
2327 if (xen_enabled()) {
2328 xen_invalidate_map_cache_entry(buffer
);
2330 memory_region_unref(mr
);
2334 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2336 qemu_vfree(bounce
.buffer
);
2337 bounce
.buffer
= NULL
;
2338 memory_region_unref(bounce
.mr
);
2339 cpu_notify_map_clients();
2342 void *cpu_physical_memory_map(hwaddr addr
,
2346 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2349 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2350 int is_write
, hwaddr access_len
)
2352 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2355 /* warning: addr must be aligned */
2356 static inline uint32_t ldl_phys_internal(AddressSpace
*as
, hwaddr addr
,
2357 enum device_endian endian
)
2365 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2366 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2368 io_mem_read(mr
, addr1
, &val
, 4);
2369 #if defined(TARGET_WORDS_BIGENDIAN)
2370 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2374 if (endian
== DEVICE_BIG_ENDIAN
) {
2380 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2384 case DEVICE_LITTLE_ENDIAN
:
2385 val
= ldl_le_p(ptr
);
2387 case DEVICE_BIG_ENDIAN
:
2388 val
= ldl_be_p(ptr
);
2398 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
2400 return ldl_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2403 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
2405 return ldl_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2408 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
2410 return ldl_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2413 /* warning: addr must be aligned */
2414 static inline uint64_t ldq_phys_internal(AddressSpace
*as
, hwaddr addr
,
2415 enum device_endian endian
)
2423 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2425 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2427 io_mem_read(mr
, addr1
, &val
, 8);
2428 #if defined(TARGET_WORDS_BIGENDIAN)
2429 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2433 if (endian
== DEVICE_BIG_ENDIAN
) {
2439 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2443 case DEVICE_LITTLE_ENDIAN
:
2444 val
= ldq_le_p(ptr
);
2446 case DEVICE_BIG_ENDIAN
:
2447 val
= ldq_be_p(ptr
);
2457 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
2459 return ldq_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2462 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
2464 return ldq_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2467 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
2469 return ldq_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2473 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
2476 address_space_rw(as
, addr
, &val
, 1, 0);
2480 /* warning: addr must be aligned */
2481 static inline uint32_t lduw_phys_internal(AddressSpace
*as
, hwaddr addr
,
2482 enum device_endian endian
)
2490 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2492 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2494 io_mem_read(mr
, addr1
, &val
, 2);
2495 #if defined(TARGET_WORDS_BIGENDIAN)
2496 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2500 if (endian
== DEVICE_BIG_ENDIAN
) {
2506 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2510 case DEVICE_LITTLE_ENDIAN
:
2511 val
= lduw_le_p(ptr
);
2513 case DEVICE_BIG_ENDIAN
:
2514 val
= lduw_be_p(ptr
);
2524 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
2526 return lduw_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2529 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
2531 return lduw_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2534 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
2536 return lduw_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2539 /* warning: addr must be aligned. The ram page is not masked as dirty
2540 and the code inside is not invalidated. It is useful if the dirty
2541 bits are used to track modified PTEs */
2542 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2549 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2551 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2552 io_mem_write(mr
, addr1
, val
, 4);
2554 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2555 ptr
= qemu_get_ram_ptr(addr1
);
2558 if (unlikely(in_migration
)) {
2559 if (cpu_physical_memory_is_clean(addr1
)) {
2560 /* invalidate code */
2561 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2563 cpu_physical_memory_set_dirty_flag(addr1
,
2564 DIRTY_MEMORY_MIGRATION
);
2565 cpu_physical_memory_set_dirty_flag(addr1
, DIRTY_MEMORY_VGA
);
2571 /* warning: addr must be aligned */
2572 static inline void stl_phys_internal(AddressSpace
*as
,
2573 hwaddr addr
, uint32_t val
,
2574 enum device_endian endian
)
2581 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2583 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2584 #if defined(TARGET_WORDS_BIGENDIAN)
2585 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2589 if (endian
== DEVICE_BIG_ENDIAN
) {
2593 io_mem_write(mr
, addr1
, val
, 4);
2596 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2597 ptr
= qemu_get_ram_ptr(addr1
);
2599 case DEVICE_LITTLE_ENDIAN
:
2602 case DEVICE_BIG_ENDIAN
:
2609 invalidate_and_set_dirty(addr1
, 4);
2613 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2615 stl_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2618 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2620 stl_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2623 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2625 stl_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2629 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2632 address_space_rw(as
, addr
, &v
, 1, 1);
2635 /* warning: addr must be aligned */
2636 static inline void stw_phys_internal(AddressSpace
*as
,
2637 hwaddr addr
, uint32_t val
,
2638 enum device_endian endian
)
2645 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2646 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2647 #if defined(TARGET_WORDS_BIGENDIAN)
2648 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2652 if (endian
== DEVICE_BIG_ENDIAN
) {
2656 io_mem_write(mr
, addr1
, val
, 2);
2659 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2660 ptr
= qemu_get_ram_ptr(addr1
);
2662 case DEVICE_LITTLE_ENDIAN
:
2665 case DEVICE_BIG_ENDIAN
:
2672 invalidate_and_set_dirty(addr1
, 2);
2676 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2678 stw_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2681 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2683 stw_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2686 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2688 stw_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2692 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2695 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2698 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2700 val
= cpu_to_le64(val
);
2701 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2704 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2706 val
= cpu_to_be64(val
);
2707 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2710 /* virtual memory access for debug (includes writing to ROM) */
2711 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2712 uint8_t *buf
, int len
, int is_write
)
2719 page
= addr
& TARGET_PAGE_MASK
;
2720 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2721 /* if no physical page mapped, return an error */
2722 if (phys_addr
== -1)
2724 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2727 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2729 cpu_physical_memory_write_rom(cpu
->as
, phys_addr
, buf
, l
);
2731 address_space_rw(cpu
->as
, phys_addr
, buf
, l
, 0);
2741 #if !defined(CONFIG_USER_ONLY)
2744 * A helper function for the _utterly broken_ virtio device model to find out if
2745 * it's running on a big endian machine. Don't do this at home kids!
2747 bool virtio_is_big_endian(void);
2748 bool virtio_is_big_endian(void)
2750 #if defined(TARGET_WORDS_BIGENDIAN)
2759 #ifndef CONFIG_USER_ONLY
2760 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2765 mr
= address_space_translate(&address_space_memory
,
2766 phys_addr
, &phys_addr
, &l
, false);
2768 return !(memory_region_is_ram(mr
) ||
2769 memory_region_is_romd(mr
));
2772 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2776 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2777 func(block
->host
, block
->offset
, block
->length
, opaque
);