2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
24 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
25 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
27 /*****************************************************************************/
28 /* Floating point operations helpers */
29 uint64_t helper_float32_to_float64(CPUPPCState
*env
, uint32_t arg
)
35 d
.d
= float32_to_float64(f
.f
, &env
->fp_status
);
39 uint32_t helper_float64_to_float32(CPUPPCState
*env
, uint64_t arg
)
45 f
.f
= float64_to_float32(d
.d
, &env
->fp_status
);
49 static inline int isden(float64 d
)
55 return ((u
.ll
>> 52) & 0x7FF) == 0;
58 static inline int ppc_float32_get_unbiased_exp(float32 f
)
60 return ((f
>> 23) & 0xFF) - 127;
63 static inline int ppc_float64_get_unbiased_exp(float64 f
)
65 return ((f
>> 52) & 0x7FF) - 1023;
68 void helper_compute_fprf(CPUPPCState
*env
, uint64_t arg
)
75 isneg
= float64_is_neg(farg
.d
);
76 if (unlikely(float64_is_any_nan(farg
.d
))) {
77 if (float64_is_signaling_nan(farg
.d
, &env
->fp_status
)) {
78 /* Signaling NaN: flags are undefined */
84 } else if (unlikely(float64_is_infinity(farg
.d
))) {
92 if (float64_is_zero(farg
.d
)) {
101 /* Denormalized numbers */
104 /* Normalized numbers */
114 /* We update FPSCR_FPRF */
115 env
->fpscr
&= ~(0x1F << FPSCR_FPRF
);
116 env
->fpscr
|= fprf
<< FPSCR_FPRF
;
119 /* Floating-point invalid operations exception */
120 static inline __attribute__((__always_inline__
))
121 uint64_t float_invalid_op_excp(CPUPPCState
*env
, int op
, int set_fpcc
)
123 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
129 case POWERPC_EXCP_FP_VXSNAN
:
130 env
->fpscr
|= 1 << FPSCR_VXSNAN
;
132 case POWERPC_EXCP_FP_VXSOFT
:
133 env
->fpscr
|= 1 << FPSCR_VXSOFT
;
135 case POWERPC_EXCP_FP_VXISI
:
136 /* Magnitude subtraction of infinities */
137 env
->fpscr
|= 1 << FPSCR_VXISI
;
139 case POWERPC_EXCP_FP_VXIDI
:
140 /* Division of infinity by infinity */
141 env
->fpscr
|= 1 << FPSCR_VXIDI
;
143 case POWERPC_EXCP_FP_VXZDZ
:
144 /* Division of zero by zero */
145 env
->fpscr
|= 1 << FPSCR_VXZDZ
;
147 case POWERPC_EXCP_FP_VXIMZ
:
148 /* Multiplication of zero by infinity */
149 env
->fpscr
|= 1 << FPSCR_VXIMZ
;
151 case POWERPC_EXCP_FP_VXVC
:
152 /* Ordered comparison of NaN */
153 env
->fpscr
|= 1 << FPSCR_VXVC
;
155 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
156 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
158 /* We must update the target FPR before raising the exception */
160 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
161 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_VXVC
;
162 /* Update the floating-point enabled exception summary */
163 env
->fpscr
|= 1 << FPSCR_FEX
;
164 /* Exception is differed */
168 case POWERPC_EXCP_FP_VXSQRT
:
169 /* Square root of a negative number */
170 env
->fpscr
|= 1 << FPSCR_VXSQRT
;
172 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
174 /* Set the result to quiet NaN */
175 ret
= 0x7FF8000000000000ULL
;
177 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
178 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
182 case POWERPC_EXCP_FP_VXCVI
:
183 /* Invalid conversion */
184 env
->fpscr
|= 1 << FPSCR_VXCVI
;
185 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
187 /* Set the result to quiet NaN */
188 ret
= 0x7FF8000000000000ULL
;
190 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
191 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
196 /* Update the floating-point invalid operation summary */
197 env
->fpscr
|= 1 << FPSCR_VX
;
198 /* Update the floating-point exception summary */
201 /* Update the floating-point enabled exception summary */
202 env
->fpscr
|= 1 << FPSCR_FEX
;
203 if (msr_fe0
!= 0 || msr_fe1
!= 0) {
204 /* GETPC() works here because this is inline */
205 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
206 POWERPC_EXCP_FP
| op
, GETPC());
212 static inline void float_zero_divide_excp(CPUPPCState
*env
, uintptr_t raddr
)
214 env
->fpscr
|= 1 << FPSCR_ZX
;
215 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
216 /* Update the floating-point exception summary */
219 /* Update the floating-point enabled exception summary */
220 env
->fpscr
|= 1 << FPSCR_FEX
;
221 if (msr_fe0
!= 0 || msr_fe1
!= 0) {
222 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
223 POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
,
229 static inline void float_overflow_excp(CPUPPCState
*env
)
231 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
233 env
->fpscr
|= 1 << FPSCR_OX
;
234 /* Update the floating-point exception summary */
237 /* XXX: should adjust the result */
238 /* Update the floating-point enabled exception summary */
239 env
->fpscr
|= 1 << FPSCR_FEX
;
240 /* We must update the target FPR before raising the exception */
241 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
242 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
244 env
->fpscr
|= 1 << FPSCR_XX
;
245 env
->fpscr
|= 1 << FPSCR_FI
;
249 static inline void float_underflow_excp(CPUPPCState
*env
)
251 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
253 env
->fpscr
|= 1 << FPSCR_UX
;
254 /* Update the floating-point exception summary */
257 /* XXX: should adjust the result */
258 /* Update the floating-point enabled exception summary */
259 env
->fpscr
|= 1 << FPSCR_FEX
;
260 /* We must update the target FPR before raising the exception */
261 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
262 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
266 static inline void float_inexact_excp(CPUPPCState
*env
)
268 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
270 env
->fpscr
|= 1 << FPSCR_XX
;
271 /* Update the floating-point exception summary */
274 /* Update the floating-point enabled exception summary */
275 env
->fpscr
|= 1 << FPSCR_FEX
;
276 /* We must update the target FPR before raising the exception */
277 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
278 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
282 static inline void fpscr_set_rounding_mode(CPUPPCState
*env
)
286 /* Set rounding mode */
289 /* Best approximation (round to nearest) */
290 rnd_type
= float_round_nearest_even
;
293 /* Smaller magnitude (round toward zero) */
294 rnd_type
= float_round_to_zero
;
297 /* Round toward +infinite */
298 rnd_type
= float_round_up
;
302 /* Round toward -infinite */
303 rnd_type
= float_round_down
;
306 set_float_rounding_mode(rnd_type
, &env
->fp_status
);
309 void helper_fpscr_clrbit(CPUPPCState
*env
, uint32_t bit
)
313 prev
= (env
->fpscr
>> bit
) & 1;
314 env
->fpscr
&= ~(1 << bit
);
319 fpscr_set_rounding_mode(env
);
327 void helper_fpscr_setbit(CPUPPCState
*env
, uint32_t bit
)
329 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
332 prev
= (env
->fpscr
>> bit
) & 1;
333 env
->fpscr
|= 1 << bit
;
375 env
->fpscr
|= 1 << FPSCR_VX
;
384 env
->error_code
= POWERPC_EXCP_FP
;
386 env
->error_code
|= POWERPC_EXCP_FP_VXSNAN
;
389 env
->error_code
|= POWERPC_EXCP_FP_VXISI
;
392 env
->error_code
|= POWERPC_EXCP_FP_VXIDI
;
395 env
->error_code
|= POWERPC_EXCP_FP_VXZDZ
;
398 env
->error_code
|= POWERPC_EXCP_FP_VXIMZ
;
401 env
->error_code
|= POWERPC_EXCP_FP_VXVC
;
404 env
->error_code
|= POWERPC_EXCP_FP_VXSOFT
;
407 env
->error_code
|= POWERPC_EXCP_FP_VXSQRT
;
410 env
->error_code
|= POWERPC_EXCP_FP_VXCVI
;
418 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
425 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
432 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
;
439 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
445 fpscr_set_rounding_mode(env
);
450 /* Update the floating-point enabled exception summary */
451 env
->fpscr
|= 1 << FPSCR_FEX
;
452 /* We have to update Rc1 before raising the exception */
453 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
459 void helper_store_fpscr(CPUPPCState
*env
, uint64_t arg
, uint32_t mask
)
461 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
462 target_ulong prev
, new;
466 new = (target_ulong
)arg
;
467 new &= ~0x60000000LL
;
468 new |= prev
& 0x60000000LL
;
469 for (i
= 0; i
< sizeof(target_ulong
) * 2; i
++) {
470 if (mask
& (1 << i
)) {
471 env
->fpscr
&= ~(0xFLL
<< (4 * i
));
472 env
->fpscr
|= new & (0xFLL
<< (4 * i
));
475 /* Update VX and FEX */
477 env
->fpscr
|= 1 << FPSCR_VX
;
479 env
->fpscr
&= ~(1 << FPSCR_VX
);
481 if ((fpscr_ex
& fpscr_eex
) != 0) {
482 env
->fpscr
|= 1 << FPSCR_FEX
;
483 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
484 /* XXX: we should compute it properly */
485 env
->error_code
= POWERPC_EXCP_FP
;
487 env
->fpscr
&= ~(1 << FPSCR_FEX
);
489 fpscr_set_rounding_mode(env
);
492 void store_fpscr(CPUPPCState
*env
, uint64_t arg
, uint32_t mask
)
494 helper_store_fpscr(env
, arg
, mask
);
497 static void do_float_check_status(CPUPPCState
*env
, uintptr_t raddr
)
499 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
500 int status
= get_float_exception_flags(&env
->fp_status
);
502 if (status
& float_flag_divbyzero
) {
503 float_zero_divide_excp(env
, raddr
);
504 } else if (status
& float_flag_overflow
) {
505 float_overflow_excp(env
);
506 } else if (status
& float_flag_underflow
) {
507 float_underflow_excp(env
);
508 } else if (status
& float_flag_inexact
) {
509 float_inexact_excp(env
);
512 if (cs
->exception_index
== POWERPC_EXCP_PROGRAM
&&
513 (env
->error_code
& POWERPC_EXCP_FP
)) {
514 /* Differred floating-point exception after target FPR update */
515 if (msr_fe0
!= 0 || msr_fe1
!= 0) {
516 raise_exception_err_ra(env
, cs
->exception_index
,
517 env
->error_code
, raddr
);
522 static inline __attribute__((__always_inline__
))
523 void float_check_status(CPUPPCState
*env
)
525 /* GETPC() works here because this is inline */
526 do_float_check_status(env
, GETPC());
529 void helper_float_check_status(CPUPPCState
*env
)
531 do_float_check_status(env
, GETPC());
534 void helper_reset_fpstatus(CPUPPCState
*env
)
536 set_float_exception_flags(0, &env
->fp_status
);
540 uint64_t helper_fadd(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
)
542 CPU_DoubleU farg1
, farg2
;
547 if (unlikely(float64_is_infinity(farg1
.d
) && float64_is_infinity(farg2
.d
) &&
548 float64_is_neg(farg1
.d
) != float64_is_neg(farg2
.d
))) {
549 /* Magnitude subtraction of infinities */
550 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXISI
, 1);
552 if (unlikely(float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
553 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
))) {
555 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
557 farg1
.d
= float64_add(farg1
.d
, farg2
.d
, &env
->fp_status
);
564 uint64_t helper_fsub(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
)
566 CPU_DoubleU farg1
, farg2
;
571 if (unlikely(float64_is_infinity(farg1
.d
) && float64_is_infinity(farg2
.d
) &&
572 float64_is_neg(farg1
.d
) == float64_is_neg(farg2
.d
))) {
573 /* Magnitude subtraction of infinities */
574 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXISI
, 1);
576 if (unlikely(float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
577 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
))) {
578 /* sNaN subtraction */
579 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
581 farg1
.d
= float64_sub(farg1
.d
, farg2
.d
, &env
->fp_status
);
588 uint64_t helper_fmul(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
)
590 CPU_DoubleU farg1
, farg2
;
595 if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
596 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
597 /* Multiplication of zero by infinity */
598 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXIMZ
, 1);
600 if (unlikely(float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
601 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
))) {
602 /* sNaN multiplication */
603 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
605 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
612 uint64_t helper_fdiv(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
)
614 CPU_DoubleU farg1
, farg2
;
619 if (unlikely(float64_is_infinity(farg1
.d
) &&
620 float64_is_infinity(farg2
.d
))) {
621 /* Division of infinity by infinity */
622 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXIDI
, 1);
623 } else if (unlikely(float64_is_zero(farg1
.d
) && float64_is_zero(farg2
.d
))) {
624 /* Division of zero by zero */
625 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXZDZ
, 1);
627 if (unlikely(float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
628 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
))) {
630 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
632 farg1
.d
= float64_div(farg1
.d
, farg2
.d
, &env
->fp_status
);
639 #define FPU_FCTI(op, cvt, nanval) \
640 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
645 farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \
647 if (unlikely(env->fp_status.float_exception_flags)) { \
648 if (float64_is_any_nan(arg)) { \
649 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
650 if (float64_is_signaling_nan(arg, &env->fp_status)) { \
651 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
654 } else if (env->fp_status.float_exception_flags & \
655 float_flag_invalid) { \
656 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
658 float_check_status(env); \
663 FPU_FCTI(fctiw
, int32
, 0x80000000U
)
664 FPU_FCTI(fctiwz
, int32_round_to_zero
, 0x80000000U
)
665 FPU_FCTI(fctiwu
, uint32
, 0x00000000U
)
666 FPU_FCTI(fctiwuz
, uint32_round_to_zero
, 0x00000000U
)
667 FPU_FCTI(fctid
, int64
, 0x8000000000000000ULL
)
668 FPU_FCTI(fctidz
, int64_round_to_zero
, 0x8000000000000000ULL
)
669 FPU_FCTI(fctidu
, uint64
, 0x0000000000000000ULL
)
670 FPU_FCTI(fctiduz
, uint64_round_to_zero
, 0x0000000000000000ULL
)
672 #define FPU_FCFI(op, cvtr, is_single) \
673 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
678 float32 tmp = cvtr(arg, &env->fp_status); \
679 farg.d = float32_to_float64(tmp, &env->fp_status); \
681 farg.d = cvtr(arg, &env->fp_status); \
683 float_check_status(env); \
687 FPU_FCFI(fcfid
, int64_to_float64
, 0)
688 FPU_FCFI(fcfids
, int64_to_float32
, 1)
689 FPU_FCFI(fcfidu
, uint64_to_float64
, 0)
690 FPU_FCFI(fcfidus
, uint64_to_float32
, 1)
692 static inline uint64_t do_fri(CPUPPCState
*env
, uint64_t arg
,
699 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
701 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
702 farg
.ll
= arg
| 0x0008000000000000ULL
;
704 int inexact
= get_float_exception_flags(&env
->fp_status
) &
706 set_float_rounding_mode(rounding_mode
, &env
->fp_status
);
707 farg
.ll
= float64_round_to_int(farg
.d
, &env
->fp_status
);
708 /* Restore rounding mode from FPSCR */
709 fpscr_set_rounding_mode(env
);
711 /* fri* does not set FPSCR[XX] */
713 env
->fp_status
.float_exception_flags
&= ~float_flag_inexact
;
716 float_check_status(env
);
720 uint64_t helper_frin(CPUPPCState
*env
, uint64_t arg
)
722 return do_fri(env
, arg
, float_round_ties_away
);
725 uint64_t helper_friz(CPUPPCState
*env
, uint64_t arg
)
727 return do_fri(env
, arg
, float_round_to_zero
);
730 uint64_t helper_frip(CPUPPCState
*env
, uint64_t arg
)
732 return do_fri(env
, arg
, float_round_up
);
735 uint64_t helper_frim(CPUPPCState
*env
, uint64_t arg
)
737 return do_fri(env
, arg
, float_round_down
);
741 uint64_t helper_fmadd(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
744 CPU_DoubleU farg1
, farg2
, farg3
;
750 if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
751 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
752 /* Multiplication of zero by infinity */
753 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXIMZ
, 1);
755 if (unlikely(float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
756 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
) ||
757 float64_is_signaling_nan(farg3
.d
, &env
->fp_status
))) {
759 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
761 /* This is the way the PowerPC specification defines it */
762 float128 ft0_128
, ft1_128
;
764 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
765 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
766 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
767 if (unlikely(float128_is_infinity(ft0_128
) &&
768 float64_is_infinity(farg3
.d
) &&
769 float128_is_neg(ft0_128
) != float64_is_neg(farg3
.d
))) {
770 /* Magnitude subtraction of infinities */
771 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXISI
, 1);
773 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
774 ft0_128
= float128_add(ft0_128
, ft1_128
, &env
->fp_status
);
775 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
783 uint64_t helper_fmsub(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
786 CPU_DoubleU farg1
, farg2
, farg3
;
792 if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
793 (float64_is_zero(farg1
.d
) &&
794 float64_is_infinity(farg2
.d
)))) {
795 /* Multiplication of zero by infinity */
796 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXIMZ
, 1);
798 if (unlikely(float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
799 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
) ||
800 float64_is_signaling_nan(farg3
.d
, &env
->fp_status
))) {
802 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
804 /* This is the way the PowerPC specification defines it */
805 float128 ft0_128
, ft1_128
;
807 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
808 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
809 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
810 if (unlikely(float128_is_infinity(ft0_128
) &&
811 float64_is_infinity(farg3
.d
) &&
812 float128_is_neg(ft0_128
) == float64_is_neg(farg3
.d
))) {
813 /* Magnitude subtraction of infinities */
814 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXISI
, 1);
816 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
817 ft0_128
= float128_sub(ft0_128
, ft1_128
, &env
->fp_status
);
818 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
824 /* fnmadd - fnmadd. */
825 uint64_t helper_fnmadd(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
828 CPU_DoubleU farg1
, farg2
, farg3
;
834 if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
835 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
836 /* Multiplication of zero by infinity */
837 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXIMZ
, 1);
839 if (unlikely(float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
840 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
) ||
841 float64_is_signaling_nan(farg3
.d
, &env
->fp_status
))) {
843 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
845 /* This is the way the PowerPC specification defines it */
846 float128 ft0_128
, ft1_128
;
848 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
849 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
850 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
851 if (unlikely(float128_is_infinity(ft0_128
) &&
852 float64_is_infinity(farg3
.d
) &&
853 float128_is_neg(ft0_128
) != float64_is_neg(farg3
.d
))) {
854 /* Magnitude subtraction of infinities */
855 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXISI
, 1);
857 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
858 ft0_128
= float128_add(ft0_128
, ft1_128
, &env
->fp_status
);
859 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
861 if (likely(!float64_is_any_nan(farg1
.d
))) {
862 farg1
.d
= float64_chs(farg1
.d
);
868 /* fnmsub - fnmsub. */
869 uint64_t helper_fnmsub(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
872 CPU_DoubleU farg1
, farg2
, farg3
;
878 if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
879 (float64_is_zero(farg1
.d
) &&
880 float64_is_infinity(farg2
.d
)))) {
881 /* Multiplication of zero by infinity */
882 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXIMZ
, 1);
884 if (unlikely(float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
885 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
) ||
886 float64_is_signaling_nan(farg3
.d
, &env
->fp_status
))) {
888 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
890 /* This is the way the PowerPC specification defines it */
891 float128 ft0_128
, ft1_128
;
893 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
894 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
895 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
896 if (unlikely(float128_is_infinity(ft0_128
) &&
897 float64_is_infinity(farg3
.d
) &&
898 float128_is_neg(ft0_128
) == float64_is_neg(farg3
.d
))) {
899 /* Magnitude subtraction of infinities */
900 farg1
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXISI
, 1);
902 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
903 ft0_128
= float128_sub(ft0_128
, ft1_128
, &env
->fp_status
);
904 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
906 if (likely(!float64_is_any_nan(farg1
.d
))) {
907 farg1
.d
= float64_chs(farg1
.d
);
914 uint64_t helper_frsp(CPUPPCState
*env
, uint64_t arg
)
921 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
922 /* sNaN square root */
923 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
925 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
926 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
932 uint64_t helper_fsqrt(CPUPPCState
*env
, uint64_t arg
)
938 if (unlikely(float64_is_any_nan(farg
.d
))) {
939 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
940 /* sNaN reciprocal square root */
941 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
942 farg
.ll
= float64_snan_to_qnan(farg
.ll
);
944 } else if (unlikely(float64_is_neg(farg
.d
) && !float64_is_zero(farg
.d
))) {
945 /* Square root of a negative nonzero number */
946 farg
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSQRT
, 1);
948 farg
.d
= float64_sqrt(farg
.d
, &env
->fp_status
);
954 uint64_t helper_fre(CPUPPCState
*env
, uint64_t arg
)
960 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
961 /* sNaN reciprocal */
962 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
964 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
969 uint64_t helper_fres(CPUPPCState
*env
, uint64_t arg
)
976 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
977 /* sNaN reciprocal */
978 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
980 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
981 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
982 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
987 /* frsqrte - frsqrte. */
988 uint64_t helper_frsqrte(CPUPPCState
*env
, uint64_t arg
)
994 if (unlikely(float64_is_any_nan(farg
.d
))) {
995 if (unlikely(float64_is_signaling_nan(farg
.d
, &env
->fp_status
))) {
996 /* sNaN reciprocal square root */
997 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
998 farg
.ll
= float64_snan_to_qnan(farg
.ll
);
1000 } else if (unlikely(float64_is_neg(farg
.d
) && !float64_is_zero(farg
.d
))) {
1001 /* Reciprocal square root of a negative nonzero number */
1002 farg
.ll
= float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSQRT
, 1);
1004 farg
.d
= float64_sqrt(farg
.d
, &env
->fp_status
);
1005 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
1012 uint64_t helper_fsel(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
1019 if ((!float64_is_neg(farg1
.d
) || float64_is_zero(farg1
.d
)) &&
1020 !float64_is_any_nan(farg1
.d
)) {
1027 uint32_t helper_ftdiv(uint64_t fra
, uint64_t frb
)
1032 if (unlikely(float64_is_infinity(fra
) ||
1033 float64_is_infinity(frb
) ||
1034 float64_is_zero(frb
))) {
1038 int e_a
= ppc_float64_get_unbiased_exp(fra
);
1039 int e_b
= ppc_float64_get_unbiased_exp(frb
);
1041 if (unlikely(float64_is_any_nan(fra
) ||
1042 float64_is_any_nan(frb
))) {
1044 } else if ((e_b
<= -1022) || (e_b
>= 1021)) {
1046 } else if (!float64_is_zero(fra
) &&
1047 (((e_a
- e_b
) >= 1023) ||
1048 ((e_a
- e_b
) <= -1021) ||
1053 if (unlikely(float64_is_zero_or_denormal(frb
))) {
1054 /* XB is not zero because of the above check and */
1055 /* so must be denormalized. */
1060 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
1063 uint32_t helper_ftsqrt(uint64_t frb
)
1068 if (unlikely(float64_is_infinity(frb
) || float64_is_zero(frb
))) {
1072 int e_b
= ppc_float64_get_unbiased_exp(frb
);
1074 if (unlikely(float64_is_any_nan(frb
))) {
1076 } else if (unlikely(float64_is_zero(frb
))) {
1078 } else if (unlikely(float64_is_neg(frb
))) {
1080 } else if (!float64_is_zero(frb
) && (e_b
<= (-1022+52))) {
1084 if (unlikely(float64_is_zero_or_denormal(frb
))) {
1085 /* XB is not zero because of the above check and */
1086 /* therefore must be denormalized. */
1091 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
1094 void helper_fcmpu(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
1097 CPU_DoubleU farg1
, farg2
;
1103 if (unlikely(float64_is_any_nan(farg1
.d
) ||
1104 float64_is_any_nan(farg2
.d
))) {
1106 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1108 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1114 env
->fpscr
&= ~(0x0F << FPSCR_FPRF
);
1115 env
->fpscr
|= ret
<< FPSCR_FPRF
;
1116 env
->crf
[crfD
] = ret
;
1117 if (unlikely(ret
== 0x01UL
1118 && (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
1119 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)))) {
1120 /* sNaN comparison */
1121 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, 1);
1125 void helper_fcmpo(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
1128 CPU_DoubleU farg1
, farg2
;
1134 if (unlikely(float64_is_any_nan(farg1
.d
) ||
1135 float64_is_any_nan(farg2
.d
))) {
1137 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1139 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1145 env
->fpscr
&= ~(0x0F << FPSCR_FPRF
);
1146 env
->fpscr
|= ret
<< FPSCR_FPRF
;
1147 env
->crf
[crfD
] = ret
;
1148 if (unlikely(ret
== 0x01UL
)) {
1149 if (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
1150 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)) {
1151 /* sNaN comparison */
1152 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
|
1153 POWERPC_EXCP_FP_VXVC
, 1);
1155 /* qNaN comparison */
1156 float_invalid_op_excp(env
, POWERPC_EXCP_FP_VXVC
, 1);
1161 /* Single-precision floating-point conversions */
1162 static inline uint32_t efscfsi(CPUPPCState
*env
, uint32_t val
)
1166 u
.f
= int32_to_float32(val
, &env
->vec_status
);
1171 static inline uint32_t efscfui(CPUPPCState
*env
, uint32_t val
)
1175 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
1180 static inline int32_t efsctsi(CPUPPCState
*env
, uint32_t val
)
1185 /* NaN are not treated the same way IEEE 754 does */
1186 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1190 return float32_to_int32(u
.f
, &env
->vec_status
);
1193 static inline uint32_t efsctui(CPUPPCState
*env
, uint32_t val
)
1198 /* NaN are not treated the same way IEEE 754 does */
1199 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1203 return float32_to_uint32(u
.f
, &env
->vec_status
);
1206 static inline uint32_t efsctsiz(CPUPPCState
*env
, uint32_t val
)
1211 /* NaN are not treated the same way IEEE 754 does */
1212 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1216 return float32_to_int32_round_to_zero(u
.f
, &env
->vec_status
);
1219 static inline uint32_t efsctuiz(CPUPPCState
*env
, uint32_t val
)
1224 /* NaN are not treated the same way IEEE 754 does */
1225 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1229 return float32_to_uint32_round_to_zero(u
.f
, &env
->vec_status
);
1232 static inline uint32_t efscfsf(CPUPPCState
*env
, uint32_t val
)
1237 u
.f
= int32_to_float32(val
, &env
->vec_status
);
1238 tmp
= int64_to_float32(1ULL << 32, &env
->vec_status
);
1239 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1244 static inline uint32_t efscfuf(CPUPPCState
*env
, uint32_t val
)
1249 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
1250 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1251 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1256 static inline uint32_t efsctsf(CPUPPCState
*env
, uint32_t val
)
1262 /* NaN are not treated the same way IEEE 754 does */
1263 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1266 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1267 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1269 return float32_to_int32(u
.f
, &env
->vec_status
);
1272 static inline uint32_t efsctuf(CPUPPCState
*env
, uint32_t val
)
1278 /* NaN are not treated the same way IEEE 754 does */
1279 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1282 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1283 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1285 return float32_to_uint32(u
.f
, &env
->vec_status
);
1288 #define HELPER_SPE_SINGLE_CONV(name) \
1289 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1291 return e##name(env, val); \
1294 HELPER_SPE_SINGLE_CONV(fscfsi
);
1296 HELPER_SPE_SINGLE_CONV(fscfui
);
1298 HELPER_SPE_SINGLE_CONV(fscfuf
);
1300 HELPER_SPE_SINGLE_CONV(fscfsf
);
1302 HELPER_SPE_SINGLE_CONV(fsctsi
);
1304 HELPER_SPE_SINGLE_CONV(fsctui
);
1306 HELPER_SPE_SINGLE_CONV(fsctsiz
);
1308 HELPER_SPE_SINGLE_CONV(fsctuiz
);
1310 HELPER_SPE_SINGLE_CONV(fsctsf
);
1312 HELPER_SPE_SINGLE_CONV(fsctuf
);
1314 #define HELPER_SPE_VECTOR_CONV(name) \
1315 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1317 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1318 (uint64_t)e##name(env, val); \
1321 HELPER_SPE_VECTOR_CONV(fscfsi
);
1323 HELPER_SPE_VECTOR_CONV(fscfui
);
1325 HELPER_SPE_VECTOR_CONV(fscfuf
);
1327 HELPER_SPE_VECTOR_CONV(fscfsf
);
1329 HELPER_SPE_VECTOR_CONV(fsctsi
);
1331 HELPER_SPE_VECTOR_CONV(fsctui
);
1333 HELPER_SPE_VECTOR_CONV(fsctsiz
);
1335 HELPER_SPE_VECTOR_CONV(fsctuiz
);
1337 HELPER_SPE_VECTOR_CONV(fsctsf
);
1339 HELPER_SPE_VECTOR_CONV(fsctuf
);
1341 /* Single-precision floating-point arithmetic */
1342 static inline uint32_t efsadd(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1348 u1
.f
= float32_add(u1
.f
, u2
.f
, &env
->vec_status
);
1352 static inline uint32_t efssub(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1358 u1
.f
= float32_sub(u1
.f
, u2
.f
, &env
->vec_status
);
1362 static inline uint32_t efsmul(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1368 u1
.f
= float32_mul(u1
.f
, u2
.f
, &env
->vec_status
);
1372 static inline uint32_t efsdiv(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1378 u1
.f
= float32_div(u1
.f
, u2
.f
, &env
->vec_status
);
1382 #define HELPER_SPE_SINGLE_ARITH(name) \
1383 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1385 return e##name(env, op1, op2); \
1388 HELPER_SPE_SINGLE_ARITH(fsadd
);
1390 HELPER_SPE_SINGLE_ARITH(fssub
);
1392 HELPER_SPE_SINGLE_ARITH(fsmul
);
1394 HELPER_SPE_SINGLE_ARITH(fsdiv
);
1396 #define HELPER_SPE_VECTOR_ARITH(name) \
1397 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1399 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1400 (uint64_t)e##name(env, op1, op2); \
1403 HELPER_SPE_VECTOR_ARITH(fsadd
);
1405 HELPER_SPE_VECTOR_ARITH(fssub
);
1407 HELPER_SPE_VECTOR_ARITH(fsmul
);
1409 HELPER_SPE_VECTOR_ARITH(fsdiv
);
1411 /* Single-precision floating-point comparisons */
1412 static inline uint32_t efscmplt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1418 return float32_lt(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1421 static inline uint32_t efscmpgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1427 return float32_le(u1
.f
, u2
.f
, &env
->vec_status
) ? 0 : 4;
1430 static inline uint32_t efscmpeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1436 return float32_eq(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1439 static inline uint32_t efststlt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1441 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1442 return efscmplt(env
, op1
, op2
);
1445 static inline uint32_t efststgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1447 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1448 return efscmpgt(env
, op1
, op2
);
1451 static inline uint32_t efststeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1453 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1454 return efscmpeq(env
, op1
, op2
);
1457 #define HELPER_SINGLE_SPE_CMP(name) \
1458 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1460 return e##name(env, op1, op2); \
1463 HELPER_SINGLE_SPE_CMP(fststlt
);
1465 HELPER_SINGLE_SPE_CMP(fststgt
);
1467 HELPER_SINGLE_SPE_CMP(fststeq
);
1469 HELPER_SINGLE_SPE_CMP(fscmplt
);
1471 HELPER_SINGLE_SPE_CMP(fscmpgt
);
1473 HELPER_SINGLE_SPE_CMP(fscmpeq
);
1475 static inline uint32_t evcmp_merge(int t0
, int t1
)
1477 return (t0
<< 3) | (t1
<< 2) | ((t0
| t1
) << 1) | (t0
& t1
);
1480 #define HELPER_VECTOR_SPE_CMP(name) \
1481 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1483 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1484 e##name(env, op1, op2)); \
1487 HELPER_VECTOR_SPE_CMP(fststlt
);
1489 HELPER_VECTOR_SPE_CMP(fststgt
);
1491 HELPER_VECTOR_SPE_CMP(fststeq
);
1493 HELPER_VECTOR_SPE_CMP(fscmplt
);
1495 HELPER_VECTOR_SPE_CMP(fscmpgt
);
1497 HELPER_VECTOR_SPE_CMP(fscmpeq
);
1499 /* Double-precision floating-point conversion */
1500 uint64_t helper_efdcfsi(CPUPPCState
*env
, uint32_t val
)
1504 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1509 uint64_t helper_efdcfsid(CPUPPCState
*env
, uint64_t val
)
1513 u
.d
= int64_to_float64(val
, &env
->vec_status
);
1518 uint64_t helper_efdcfui(CPUPPCState
*env
, uint32_t val
)
1522 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1527 uint64_t helper_efdcfuid(CPUPPCState
*env
, uint64_t val
)
1531 u
.d
= uint64_to_float64(val
, &env
->vec_status
);
1536 uint32_t helper_efdctsi(CPUPPCState
*env
, uint64_t val
)
1541 /* NaN are not treated the same way IEEE 754 does */
1542 if (unlikely(float64_is_any_nan(u
.d
))) {
1546 return float64_to_int32(u
.d
, &env
->vec_status
);
1549 uint32_t helper_efdctui(CPUPPCState
*env
, uint64_t val
)
1554 /* NaN are not treated the same way IEEE 754 does */
1555 if (unlikely(float64_is_any_nan(u
.d
))) {
1559 return float64_to_uint32(u
.d
, &env
->vec_status
);
1562 uint32_t helper_efdctsiz(CPUPPCState
*env
, uint64_t val
)
1567 /* NaN are not treated the same way IEEE 754 does */
1568 if (unlikely(float64_is_any_nan(u
.d
))) {
1572 return float64_to_int32_round_to_zero(u
.d
, &env
->vec_status
);
1575 uint64_t helper_efdctsidz(CPUPPCState
*env
, uint64_t val
)
1580 /* NaN are not treated the same way IEEE 754 does */
1581 if (unlikely(float64_is_any_nan(u
.d
))) {
1585 return float64_to_int64_round_to_zero(u
.d
, &env
->vec_status
);
1588 uint32_t helper_efdctuiz(CPUPPCState
*env
, uint64_t val
)
1593 /* NaN are not treated the same way IEEE 754 does */
1594 if (unlikely(float64_is_any_nan(u
.d
))) {
1598 return float64_to_uint32_round_to_zero(u
.d
, &env
->vec_status
);
1601 uint64_t helper_efdctuidz(CPUPPCState
*env
, uint64_t val
)
1606 /* NaN are not treated the same way IEEE 754 does */
1607 if (unlikely(float64_is_any_nan(u
.d
))) {
1611 return float64_to_uint64_round_to_zero(u
.d
, &env
->vec_status
);
1614 uint64_t helper_efdcfsf(CPUPPCState
*env
, uint32_t val
)
1619 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1620 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1621 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1626 uint64_t helper_efdcfuf(CPUPPCState
*env
, uint32_t val
)
1631 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1632 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1633 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1638 uint32_t helper_efdctsf(CPUPPCState
*env
, uint64_t val
)
1644 /* NaN are not treated the same way IEEE 754 does */
1645 if (unlikely(float64_is_any_nan(u
.d
))) {
1648 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1649 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1651 return float64_to_int32(u
.d
, &env
->vec_status
);
1654 uint32_t helper_efdctuf(CPUPPCState
*env
, uint64_t val
)
1660 /* NaN are not treated the same way IEEE 754 does */
1661 if (unlikely(float64_is_any_nan(u
.d
))) {
1664 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1665 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1667 return float64_to_uint32(u
.d
, &env
->vec_status
);
1670 uint32_t helper_efscfd(CPUPPCState
*env
, uint64_t val
)
1676 u2
.f
= float64_to_float32(u1
.d
, &env
->vec_status
);
1681 uint64_t helper_efdcfs(CPUPPCState
*env
, uint32_t val
)
1687 u2
.d
= float32_to_float64(u1
.f
, &env
->vec_status
);
1692 /* Double precision fixed-point arithmetic */
1693 uint64_t helper_efdadd(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1699 u1
.d
= float64_add(u1
.d
, u2
.d
, &env
->vec_status
);
1703 uint64_t helper_efdsub(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1709 u1
.d
= float64_sub(u1
.d
, u2
.d
, &env
->vec_status
);
1713 uint64_t helper_efdmul(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1719 u1
.d
= float64_mul(u1
.d
, u2
.d
, &env
->vec_status
);
1723 uint64_t helper_efddiv(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1729 u1
.d
= float64_div(u1
.d
, u2
.d
, &env
->vec_status
);
1733 /* Double precision floating point helpers */
1734 uint32_t helper_efdtstlt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1740 return float64_lt(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1743 uint32_t helper_efdtstgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1749 return float64_le(u1
.d
, u2
.d
, &env
->vec_status
) ? 0 : 4;
1752 uint32_t helper_efdtsteq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1758 return float64_eq_quiet(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1761 uint32_t helper_efdcmplt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1763 /* XXX: TODO: test special values (NaN, infinites, ...) */
1764 return helper_efdtstlt(env
, op1
, op2
);
1767 uint32_t helper_efdcmpgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1769 /* XXX: TODO: test special values (NaN, infinites, ...) */
1770 return helper_efdtstgt(env
, op1
, op2
);
1773 uint32_t helper_efdcmpeq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1775 /* XXX: TODO: test special values (NaN, infinites, ...) */
1776 return helper_efdtsteq(env
, op1
, op2
);
1779 #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1780 (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) | \
1781 (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1783 #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1784 #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1785 #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1786 #define xC(opcode) DECODE_SPLIT(opcode, 3, 1, 6, 5)
1787 #define BF(opcode) (((opcode) >> (31-8)) & 7)
1789 typedef union _ppc_vsr_t
{
1796 #if defined(HOST_WORDS_BIGENDIAN)
1797 #define VsrW(i) u32[i]
1798 #define VsrD(i) u64[i]
1800 #define VsrW(i) u32[3-(i)]
1801 #define VsrD(i) u64[1-(i)]
1804 static void getVSR(int n
, ppc_vsr_t
*vsr
, CPUPPCState
*env
)
1807 vsr
->VsrD(0) = env
->fpr
[n
];
1808 vsr
->VsrD(1) = env
->vsr
[n
];
1810 vsr
->u64
[0] = env
->avr
[n
-32].u64
[0];
1811 vsr
->u64
[1] = env
->avr
[n
-32].u64
[1];
1815 static void putVSR(int n
, ppc_vsr_t
*vsr
, CPUPPCState
*env
)
1818 env
->fpr
[n
] = vsr
->VsrD(0);
1819 env
->vsr
[n
] = vsr
->VsrD(1);
1821 env
->avr
[n
-32].u64
[0] = vsr
->u64
[0];
1822 env
->avr
[n
-32].u64
[1] = vsr
->u64
[1];
1826 #define float64_to_float64(x, env) x
1829 /* VSX_ADD_SUB - VSX floating point add/subract
1830 * name - instruction mnemonic
1831 * op - operation (add or sub)
1832 * nels - number of elements (1, 2 or 4)
1833 * tp - type (float32 or float64)
1834 * fld - vsr_t field (VsrD(*) or VsrW(*))
1837 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1838 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1840 ppc_vsr_t xt, xa, xb; \
1843 getVSR(xA(opcode), &xa, env); \
1844 getVSR(xB(opcode), &xb, env); \
1845 getVSR(xT(opcode), &xt, env); \
1846 helper_reset_fpstatus(env); \
1848 for (i = 0; i < nels; i++) { \
1849 float_status tstat = env->fp_status; \
1850 set_float_exception_flags(0, &tstat); \
1851 xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \
1852 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1854 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1855 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1856 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
1857 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1858 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1859 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1864 xt.fld = helper_frsp(env, xt.fld); \
1868 helper_compute_fprf(env, xt.fld); \
1871 putVSR(xT(opcode), &xt, env); \
1872 float_check_status(env); \
1875 VSX_ADD_SUB(xsadddp
, add
, 1, float64
, VsrD(0), 1, 0)
1876 VSX_ADD_SUB(xsaddsp
, add
, 1, float64
, VsrD(0), 1, 1)
1877 VSX_ADD_SUB(xvadddp
, add
, 2, float64
, VsrD(i
), 0, 0)
1878 VSX_ADD_SUB(xvaddsp
, add
, 4, float32
, VsrW(i
), 0, 0)
1879 VSX_ADD_SUB(xssubdp
, sub
, 1, float64
, VsrD(0), 1, 0)
1880 VSX_ADD_SUB(xssubsp
, sub
, 1, float64
, VsrD(0), 1, 1)
1881 VSX_ADD_SUB(xvsubdp
, sub
, 2, float64
, VsrD(i
), 0, 0)
1882 VSX_ADD_SUB(xvsubsp
, sub
, 4, float32
, VsrW(i
), 0, 0)
1884 /* VSX_MUL - VSX floating point multiply
1885 * op - instruction mnemonic
1886 * nels - number of elements (1, 2 or 4)
1887 * tp - type (float32 or float64)
1888 * fld - vsr_t field (VsrD(*) or VsrW(*))
1891 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1892 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1894 ppc_vsr_t xt, xa, xb; \
1897 getVSR(xA(opcode), &xa, env); \
1898 getVSR(xB(opcode), &xb, env); \
1899 getVSR(xT(opcode), &xt, env); \
1900 helper_reset_fpstatus(env); \
1902 for (i = 0; i < nels; i++) { \
1903 float_status tstat = env->fp_status; \
1904 set_float_exception_flags(0, &tstat); \
1905 xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \
1906 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1908 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1909 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) || \
1910 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) { \
1911 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \
1912 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1913 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1914 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1919 xt.fld = helper_frsp(env, xt.fld); \
1923 helper_compute_fprf(env, xt.fld); \
1927 putVSR(xT(opcode), &xt, env); \
1928 float_check_status(env); \
1931 VSX_MUL(xsmuldp
, 1, float64
, VsrD(0), 1, 0)
1932 VSX_MUL(xsmulsp
, 1, float64
, VsrD(0), 1, 1)
1933 VSX_MUL(xvmuldp
, 2, float64
, VsrD(i
), 0, 0)
1934 VSX_MUL(xvmulsp
, 4, float32
, VsrW(i
), 0, 0)
1936 /* VSX_DIV - VSX floating point divide
1937 * op - instruction mnemonic
1938 * nels - number of elements (1, 2 or 4)
1939 * tp - type (float32 or float64)
1940 * fld - vsr_t field (VsrD(*) or VsrW(*))
1943 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1944 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1946 ppc_vsr_t xt, xa, xb; \
1949 getVSR(xA(opcode), &xa, env); \
1950 getVSR(xB(opcode), &xb, env); \
1951 getVSR(xT(opcode), &xt, env); \
1952 helper_reset_fpstatus(env); \
1954 for (i = 0; i < nels; i++) { \
1955 float_status tstat = env->fp_status; \
1956 set_float_exception_flags(0, &tstat); \
1957 xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \
1958 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1960 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1961 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1962 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \
1963 } else if (tp##_is_zero(xa.fld) && \
1964 tp##_is_zero(xb.fld)) { \
1965 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \
1966 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1967 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1968 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1973 xt.fld = helper_frsp(env, xt.fld); \
1977 helper_compute_fprf(env, xt.fld); \
1981 putVSR(xT(opcode), &xt, env); \
1982 float_check_status(env); \
1985 VSX_DIV(xsdivdp
, 1, float64
, VsrD(0), 1, 0)
1986 VSX_DIV(xsdivsp
, 1, float64
, VsrD(0), 1, 1)
1987 VSX_DIV(xvdivdp
, 2, float64
, VsrD(i
), 0, 0)
1988 VSX_DIV(xvdivsp
, 4, float32
, VsrW(i
), 0, 0)
1990 /* VSX_RE - VSX floating point reciprocal estimate
1991 * op - instruction mnemonic
1992 * nels - number of elements (1, 2 or 4)
1993 * tp - type (float32 or float64)
1994 * fld - vsr_t field (VsrD(*) or VsrW(*))
1997 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
1998 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2003 getVSR(xB(opcode), &xb, env); \
2004 getVSR(xT(opcode), &xt, env); \
2005 helper_reset_fpstatus(env); \
2007 for (i = 0; i < nels; i++) { \
2008 if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2009 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2011 xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \
2014 xt.fld = helper_frsp(env, xt.fld); \
2018 helper_compute_fprf(env, xt.fld); \
2022 putVSR(xT(opcode), &xt, env); \
2023 float_check_status(env); \
2026 VSX_RE(xsredp
, 1, float64
, VsrD(0), 1, 0)
2027 VSX_RE(xsresp
, 1, float64
, VsrD(0), 1, 1)
2028 VSX_RE(xvredp
, 2, float64
, VsrD(i
), 0, 0)
2029 VSX_RE(xvresp
, 4, float32
, VsrW(i
), 0, 0)
2031 /* VSX_SQRT - VSX floating point square root
2032 * op - instruction mnemonic
2033 * nels - number of elements (1, 2 or 4)
2034 * tp - type (float32 or float64)
2035 * fld - vsr_t field (VsrD(*) or VsrW(*))
2038 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2039 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2044 getVSR(xB(opcode), &xb, env); \
2045 getVSR(xT(opcode), &xt, env); \
2046 helper_reset_fpstatus(env); \
2048 for (i = 0; i < nels; i++) { \
2049 float_status tstat = env->fp_status; \
2050 set_float_exception_flags(0, &tstat); \
2051 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2052 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2054 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2055 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2056 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2057 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2058 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2063 xt.fld = helper_frsp(env, xt.fld); \
2067 helper_compute_fprf(env, xt.fld); \
2071 putVSR(xT(opcode), &xt, env); \
2072 float_check_status(env); \
2075 VSX_SQRT(xssqrtdp
, 1, float64
, VsrD(0), 1, 0)
2076 VSX_SQRT(xssqrtsp
, 1, float64
, VsrD(0), 1, 1)
2077 VSX_SQRT(xvsqrtdp
, 2, float64
, VsrD(i
), 0, 0)
2078 VSX_SQRT(xvsqrtsp
, 4, float32
, VsrW(i
), 0, 0)
2080 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2081 * op - instruction mnemonic
2082 * nels - number of elements (1, 2 or 4)
2083 * tp - type (float32 or float64)
2084 * fld - vsr_t field (VsrD(*) or VsrW(*))
2087 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2088 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2093 getVSR(xB(opcode), &xb, env); \
2094 getVSR(xT(opcode), &xt, env); \
2095 helper_reset_fpstatus(env); \
2097 for (i = 0; i < nels; i++) { \
2098 float_status tstat = env->fp_status; \
2099 set_float_exception_flags(0, &tstat); \
2100 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2101 xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \
2102 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2104 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2105 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2106 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2107 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2108 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2113 xt.fld = helper_frsp(env, xt.fld); \
2117 helper_compute_fprf(env, xt.fld); \
2121 putVSR(xT(opcode), &xt, env); \
2122 float_check_status(env); \
2125 VSX_RSQRTE(xsrsqrtedp
, 1, float64
, VsrD(0), 1, 0)
2126 VSX_RSQRTE(xsrsqrtesp
, 1, float64
, VsrD(0), 1, 1)
2127 VSX_RSQRTE(xvrsqrtedp
, 2, float64
, VsrD(i
), 0, 0)
2128 VSX_RSQRTE(xvrsqrtesp
, 4, float32
, VsrW(i
), 0, 0)
2130 /* VSX_TDIV - VSX floating point test for divide
2131 * op - instruction mnemonic
2132 * nels - number of elements (1, 2 or 4)
2133 * tp - type (float32 or float64)
2134 * fld - vsr_t field (VsrD(*) or VsrW(*))
2135 * emin - minimum unbiased exponent
2136 * emax - maximum unbiased exponent
2137 * nbits - number of fraction bits
2139 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2140 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2147 getVSR(xA(opcode), &xa, env); \
2148 getVSR(xB(opcode), &xb, env); \
2150 for (i = 0; i < nels; i++) { \
2151 if (unlikely(tp##_is_infinity(xa.fld) || \
2152 tp##_is_infinity(xb.fld) || \
2153 tp##_is_zero(xb.fld))) { \
2157 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \
2158 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2160 if (unlikely(tp##_is_any_nan(xa.fld) || \
2161 tp##_is_any_nan(xb.fld))) { \
2163 } else if ((e_b <= emin) || (e_b >= (emax-2))) { \
2165 } else if (!tp##_is_zero(xa.fld) && \
2166 (((e_a - e_b) >= emax) || \
2167 ((e_a - e_b) <= (emin+1)) || \
2168 (e_a <= (emin+nbits)))) { \
2172 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2173 /* XB is not zero because of the above check and */ \
2174 /* so must be denormalized. */ \
2180 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2183 VSX_TDIV(xstdivdp
, 1, float64
, VsrD(0), -1022, 1023, 52)
2184 VSX_TDIV(xvtdivdp
, 2, float64
, VsrD(i
), -1022, 1023, 52)
2185 VSX_TDIV(xvtdivsp
, 4, float32
, VsrW(i
), -126, 127, 23)
2187 /* VSX_TSQRT - VSX floating point test for square root
2188 * op - instruction mnemonic
2189 * nels - number of elements (1, 2 or 4)
2190 * tp - type (float32 or float64)
2191 * fld - vsr_t field (VsrD(*) or VsrW(*))
2192 * emin - minimum unbiased exponent
2193 * emax - maximum unbiased exponent
2194 * nbits - number of fraction bits
2196 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2197 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2204 getVSR(xA(opcode), &xa, env); \
2205 getVSR(xB(opcode), &xb, env); \
2207 for (i = 0; i < nels; i++) { \
2208 if (unlikely(tp##_is_infinity(xb.fld) || \
2209 tp##_is_zero(xb.fld))) { \
2213 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2215 if (unlikely(tp##_is_any_nan(xb.fld))) { \
2217 } else if (unlikely(tp##_is_zero(xb.fld))) { \
2219 } else if (unlikely(tp##_is_neg(xb.fld))) { \
2221 } else if (!tp##_is_zero(xb.fld) && \
2222 (e_b <= (emin+nbits))) { \
2226 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2227 /* XB is not zero because of the above check and */ \
2228 /* therefore must be denormalized. */ \
2234 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2237 VSX_TSQRT(xstsqrtdp
, 1, float64
, VsrD(0), -1022, 52)
2238 VSX_TSQRT(xvtsqrtdp
, 2, float64
, VsrD(i
), -1022, 52)
2239 VSX_TSQRT(xvtsqrtsp
, 4, float32
, VsrW(i
), -126, 23)
2241 /* VSX_MADD - VSX floating point muliply/add variations
2242 * op - instruction mnemonic
2243 * nels - number of elements (1, 2 or 4)
2244 * tp - type (float32 or float64)
2245 * fld - vsr_t field (VsrD(*) or VsrW(*))
2246 * maddflgs - flags for the float*muladd routine that control the
2247 * various forms (madd, msub, nmadd, nmsub)
2248 * afrm - A form (1=A, 0=M)
2251 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2252 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2254 ppc_vsr_t xt_in, xa, xb, xt_out; \
2258 if (afrm) { /* AxB + T */ \
2261 } else { /* AxT + B */ \
2266 getVSR(xA(opcode), &xa, env); \
2267 getVSR(xB(opcode), &xb, env); \
2268 getVSR(xT(opcode), &xt_in, env); \
2272 helper_reset_fpstatus(env); \
2274 for (i = 0; i < nels; i++) { \
2275 float_status tstat = env->fp_status; \
2276 set_float_exception_flags(0, &tstat); \
2277 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2278 /* Avoid double rounding errors by rounding the intermediate */ \
2279 /* result to odd. */ \
2280 set_float_rounding_mode(float_round_to_zero, &tstat); \
2281 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2282 maddflgs, &tstat); \
2283 xt_out.fld |= (get_float_exception_flags(&tstat) & \
2284 float_flag_inexact) != 0; \
2286 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2287 maddflgs, &tstat); \
2289 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2291 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2292 if (tp##_is_signaling_nan(xa.fld, &tstat) || \
2293 tp##_is_signaling_nan(b->fld, &tstat) || \
2294 tp##_is_signaling_nan(c->fld, &tstat)) { \
2295 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2296 tstat.float_exception_flags &= ~float_flag_invalid; \
2298 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) || \
2299 (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) { \
2300 xt_out.fld = float64_to_##tp(float_invalid_op_excp(env, \
2301 POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status); \
2302 tstat.float_exception_flags &= ~float_flag_invalid; \
2304 if ((tstat.float_exception_flags & float_flag_invalid) && \
2305 ((tp##_is_infinity(xa.fld) || \
2306 tp##_is_infinity(b->fld)) && \
2307 tp##_is_infinity(c->fld))) { \
2308 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
2313 xt_out.fld = helper_frsp(env, xt_out.fld); \
2317 helper_compute_fprf(env, xt_out.fld); \
2320 putVSR(xT(opcode), &xt_out, env); \
2321 float_check_status(env); \
2325 #define MSUB_FLGS float_muladd_negate_c
2326 #define NMADD_FLGS float_muladd_negate_result
2327 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2329 VSX_MADD(xsmaddadp
, 1, float64
, VsrD(0), MADD_FLGS
, 1, 1, 0)
2330 VSX_MADD(xsmaddmdp
, 1, float64
, VsrD(0), MADD_FLGS
, 0, 1, 0)
2331 VSX_MADD(xsmsubadp
, 1, float64
, VsrD(0), MSUB_FLGS
, 1, 1, 0)
2332 VSX_MADD(xsmsubmdp
, 1, float64
, VsrD(0), MSUB_FLGS
, 0, 1, 0)
2333 VSX_MADD(xsnmaddadp
, 1, float64
, VsrD(0), NMADD_FLGS
, 1, 1, 0)
2334 VSX_MADD(xsnmaddmdp
, 1, float64
, VsrD(0), NMADD_FLGS
, 0, 1, 0)
2335 VSX_MADD(xsnmsubadp
, 1, float64
, VsrD(0), NMSUB_FLGS
, 1, 1, 0)
2336 VSX_MADD(xsnmsubmdp
, 1, float64
, VsrD(0), NMSUB_FLGS
, 0, 1, 0)
2338 VSX_MADD(xsmaddasp
, 1, float64
, VsrD(0), MADD_FLGS
, 1, 1, 1)
2339 VSX_MADD(xsmaddmsp
, 1, float64
, VsrD(0), MADD_FLGS
, 0, 1, 1)
2340 VSX_MADD(xsmsubasp
, 1, float64
, VsrD(0), MSUB_FLGS
, 1, 1, 1)
2341 VSX_MADD(xsmsubmsp
, 1, float64
, VsrD(0), MSUB_FLGS
, 0, 1, 1)
2342 VSX_MADD(xsnmaddasp
, 1, float64
, VsrD(0), NMADD_FLGS
, 1, 1, 1)
2343 VSX_MADD(xsnmaddmsp
, 1, float64
, VsrD(0), NMADD_FLGS
, 0, 1, 1)
2344 VSX_MADD(xsnmsubasp
, 1, float64
, VsrD(0), NMSUB_FLGS
, 1, 1, 1)
2345 VSX_MADD(xsnmsubmsp
, 1, float64
, VsrD(0), NMSUB_FLGS
, 0, 1, 1)
2347 VSX_MADD(xvmaddadp
, 2, float64
, VsrD(i
), MADD_FLGS
, 1, 0, 0)
2348 VSX_MADD(xvmaddmdp
, 2, float64
, VsrD(i
), MADD_FLGS
, 0, 0, 0)
2349 VSX_MADD(xvmsubadp
, 2, float64
, VsrD(i
), MSUB_FLGS
, 1, 0, 0)
2350 VSX_MADD(xvmsubmdp
, 2, float64
, VsrD(i
), MSUB_FLGS
, 0, 0, 0)
2351 VSX_MADD(xvnmaddadp
, 2, float64
, VsrD(i
), NMADD_FLGS
, 1, 0, 0)
2352 VSX_MADD(xvnmaddmdp
, 2, float64
, VsrD(i
), NMADD_FLGS
, 0, 0, 0)
2353 VSX_MADD(xvnmsubadp
, 2, float64
, VsrD(i
), NMSUB_FLGS
, 1, 0, 0)
2354 VSX_MADD(xvnmsubmdp
, 2, float64
, VsrD(i
), NMSUB_FLGS
, 0, 0, 0)
2356 VSX_MADD(xvmaddasp
, 4, float32
, VsrW(i
), MADD_FLGS
, 1, 0, 0)
2357 VSX_MADD(xvmaddmsp
, 4, float32
, VsrW(i
), MADD_FLGS
, 0, 0, 0)
2358 VSX_MADD(xvmsubasp
, 4, float32
, VsrW(i
), MSUB_FLGS
, 1, 0, 0)
2359 VSX_MADD(xvmsubmsp
, 4, float32
, VsrW(i
), MSUB_FLGS
, 0, 0, 0)
2360 VSX_MADD(xvnmaddasp
, 4, float32
, VsrW(i
), NMADD_FLGS
, 1, 0, 0)
2361 VSX_MADD(xvnmaddmsp
, 4, float32
, VsrW(i
), NMADD_FLGS
, 0, 0, 0)
2362 VSX_MADD(xvnmsubasp
, 4, float32
, VsrW(i
), NMSUB_FLGS
, 1, 0, 0)
2363 VSX_MADD(xvnmsubmsp
, 4, float32
, VsrW(i
), NMSUB_FLGS
, 0, 0, 0)
2365 /* VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2366 * op - instruction mnemonic
2367 * cmp - comparison operation
2368 * exp - expected result of comparison
2369 * svxvc - set VXVC bit
2371 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2372 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2374 ppc_vsr_t xt, xa, xb; \
2375 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2377 getVSR(xA(opcode), &xa, env); \
2378 getVSR(xB(opcode), &xb, env); \
2379 getVSR(xT(opcode), &xt, env); \
2381 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2382 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2383 vxsnan_flag = true; \
2384 if (fpscr_ve == 0 && svxvc) { \
2387 } else if (svxvc) { \
2388 vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2389 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status); \
2391 if (vxsnan_flag) { \
2392 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2395 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2397 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2400 if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) { \
2408 putVSR(xT(opcode), &xt, env); \
2409 helper_float_check_status(env); \
2412 VSX_SCALAR_CMP_DP(xscmpeqdp
, eq
, 1, 0)
2413 VSX_SCALAR_CMP_DP(xscmpgedp
, le
, 1, 1)
2414 VSX_SCALAR_CMP_DP(xscmpgtdp
, lt
, 1, 1)
2415 VSX_SCALAR_CMP_DP(xscmpnedp
, eq
, 0, 0)
2417 #define VSX_SCALAR_CMP(op, ordered) \
2418 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2423 getVSR(xA(opcode), &xa, env); \
2424 getVSR(xB(opcode), &xb, env); \
2426 if (unlikely(float64_is_any_nan(xa.VsrD(0)) || \
2427 float64_is_any_nan(xb.VsrD(0)))) { \
2428 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2429 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2430 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2433 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2437 if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2439 } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), \
2440 &env->fp_status)) { \
2447 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2448 env->fpscr |= cc << FPSCR_FPRF; \
2449 env->crf[BF(opcode)] = cc; \
2451 float_check_status(env); \
2454 VSX_SCALAR_CMP(xscmpodp
, 1)
2455 VSX_SCALAR_CMP(xscmpudp
, 0)
2457 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2458 * name - instruction mnemonic
2459 * op - operation (max or min)
2460 * nels - number of elements (1, 2 or 4)
2461 * tp - type (float32 or float64)
2462 * fld - vsr_t field (VsrD(*) or VsrW(*))
2464 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2465 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2467 ppc_vsr_t xt, xa, xb; \
2470 getVSR(xA(opcode), &xa, env); \
2471 getVSR(xB(opcode), &xb, env); \
2472 getVSR(xT(opcode), &xt, env); \
2474 for (i = 0; i < nels; i++) { \
2475 xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \
2476 if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2477 tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2478 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2482 putVSR(xT(opcode), &xt, env); \
2483 float_check_status(env); \
2486 VSX_MAX_MIN(xsmaxdp
, maxnum
, 1, float64
, VsrD(0))
2487 VSX_MAX_MIN(xvmaxdp
, maxnum
, 2, float64
, VsrD(i
))
2488 VSX_MAX_MIN(xvmaxsp
, maxnum
, 4, float32
, VsrW(i
))
2489 VSX_MAX_MIN(xsmindp
, minnum
, 1, float64
, VsrD(0))
2490 VSX_MAX_MIN(xvmindp
, minnum
, 2, float64
, VsrD(i
))
2491 VSX_MAX_MIN(xvminsp
, minnum
, 4, float32
, VsrW(i
))
2493 /* VSX_CMP - VSX floating point compare
2494 * op - instruction mnemonic
2495 * nels - number of elements (1, 2 or 4)
2496 * tp - type (float32 or float64)
2497 * fld - vsr_t field (VsrD(*) or VsrW(*))
2498 * cmp - comparison operation
2499 * svxvc - set VXVC bit
2500 * exp - expected result of comparison
2502 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2503 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2505 ppc_vsr_t xt, xa, xb; \
2508 int all_false = 1; \
2510 getVSR(xA(opcode), &xa, env); \
2511 getVSR(xB(opcode), &xb, env); \
2512 getVSR(xT(opcode), &xt, env); \
2514 for (i = 0; i < nels; i++) { \
2515 if (unlikely(tp##_is_any_nan(xa.fld) || \
2516 tp##_is_any_nan(xb.fld))) { \
2517 if (tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2518 tp##_is_signaling_nan(xb.fld, &env->fp_status)) { \
2519 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2522 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2527 if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) { \
2537 putVSR(xT(opcode), &xt, env); \
2538 if ((opcode >> (31-21)) & 1) { \
2539 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2541 float_check_status(env); \
2544 VSX_CMP(xvcmpeqdp
, 2, float64
, VsrD(i
), eq
, 0, 1)
2545 VSX_CMP(xvcmpgedp
, 2, float64
, VsrD(i
), le
, 1, 1)
2546 VSX_CMP(xvcmpgtdp
, 2, float64
, VsrD(i
), lt
, 1, 1)
2547 VSX_CMP(xvcmpnedp
, 2, float64
, VsrD(i
), eq
, 0, 0)
2548 VSX_CMP(xvcmpeqsp
, 4, float32
, VsrW(i
), eq
, 0, 1)
2549 VSX_CMP(xvcmpgesp
, 4, float32
, VsrW(i
), le
, 1, 1)
2550 VSX_CMP(xvcmpgtsp
, 4, float32
, VsrW(i
), lt
, 1, 1)
2551 VSX_CMP(xvcmpnesp
, 4, float32
, VsrW(i
), eq
, 0, 0)
2553 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2554 * op - instruction mnemonic
2555 * nels - number of elements (1, 2 or 4)
2556 * stp - source type (float32 or float64)
2557 * ttp - target type (float32 or float64)
2558 * sfld - source vsr_t field
2559 * tfld - target vsr_t field (f32 or f64)
2562 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2563 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2568 getVSR(xB(opcode), &xb, env); \
2569 getVSR(xT(opcode), &xt, env); \
2571 for (i = 0; i < nels; i++) { \
2572 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2573 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2574 &env->fp_status))) { \
2575 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2576 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2579 helper_compute_fprf(env, ttp##_to_float64(xt.tfld, \
2580 &env->fp_status)); \
2584 putVSR(xT(opcode), &xt, env); \
2585 float_check_status(env); \
2588 VSX_CVT_FP_TO_FP(xscvdpsp
, 1, float64
, float32
, VsrD(0), VsrW(0), 1)
2589 VSX_CVT_FP_TO_FP(xscvspdp
, 1, float32
, float64
, VsrW(0), VsrD(0), 1)
2590 VSX_CVT_FP_TO_FP(xvcvdpsp
, 2, float64
, float32
, VsrD(i
), VsrW(2*i
), 0)
2591 VSX_CVT_FP_TO_FP(xvcvspdp
, 2, float32
, float64
, VsrW(2*i
), VsrD(i
), 0)
2593 uint64_t helper_xscvdpspn(CPUPPCState
*env
, uint64_t xb
)
2595 float_status tstat
= env
->fp_status
;
2596 set_float_exception_flags(0, &tstat
);
2598 return (uint64_t)float64_to_float32(xb
, &tstat
) << 32;
2601 uint64_t helper_xscvspdpn(CPUPPCState
*env
, uint64_t xb
)
2603 float_status tstat
= env
->fp_status
;
2604 set_float_exception_flags(0, &tstat
);
2606 return float32_to_float64(xb
>> 32, &tstat
);
2609 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2610 * op - instruction mnemonic
2611 * nels - number of elements (1, 2 or 4)
2612 * stp - source type (float32 or float64)
2613 * ttp - target type (int32, uint32, int64 or uint64)
2614 * sfld - source vsr_t field
2615 * tfld - target vsr_t field
2616 * rnan - resulting NaN
2618 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2619 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2624 getVSR(xB(opcode), &xb, env); \
2625 getVSR(xT(opcode), &xt, env); \
2627 for (i = 0; i < nels; i++) { \
2628 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2629 if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) { \
2630 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2632 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2635 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2637 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2638 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2643 putVSR(xT(opcode), &xt, env); \
2644 float_check_status(env); \
2647 VSX_CVT_FP_TO_INT(xscvdpsxds
, 1, float64
, int64
, VsrD(0), VsrD(0), \
2648 0x8000000000000000ULL
)
2649 VSX_CVT_FP_TO_INT(xscvdpsxws
, 1, float64
, int32
, VsrD(0), VsrW(1), \
2651 VSX_CVT_FP_TO_INT(xscvdpuxds
, 1, float64
, uint64
, VsrD(0), VsrD(0), 0ULL)
2652 VSX_CVT_FP_TO_INT(xscvdpuxws
, 1, float64
, uint32
, VsrD(0), VsrW(1), 0U)
2653 VSX_CVT_FP_TO_INT(xvcvdpsxds
, 2, float64
, int64
, VsrD(i
), VsrD(i
), \
2654 0x8000000000000000ULL
)
2655 VSX_CVT_FP_TO_INT(xvcvdpsxws
, 2, float64
, int32
, VsrD(i
), VsrW(2*i
), \
2657 VSX_CVT_FP_TO_INT(xvcvdpuxds
, 2, float64
, uint64
, VsrD(i
), VsrD(i
), 0ULL)
2658 VSX_CVT_FP_TO_INT(xvcvdpuxws
, 2, float64
, uint32
, VsrD(i
), VsrW(2*i
), 0U)
2659 VSX_CVT_FP_TO_INT(xvcvspsxds
, 2, float32
, int64
, VsrW(2*i
), VsrD(i
), \
2660 0x8000000000000000ULL
)
2661 VSX_CVT_FP_TO_INT(xvcvspsxws
, 4, float32
, int32
, VsrW(i
), VsrW(i
), 0x80000000U
)
2662 VSX_CVT_FP_TO_INT(xvcvspuxds
, 2, float32
, uint64
, VsrW(2*i
), VsrD(i
), 0ULL)
2663 VSX_CVT_FP_TO_INT(xvcvspuxws
, 4, float32
, uint32
, VsrW(i
), VsrW(i
), 0U)
2665 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2666 * op - instruction mnemonic
2667 * nels - number of elements (1, 2 or 4)
2668 * stp - source type (int32, uint32, int64 or uint64)
2669 * ttp - target type (float32 or float64)
2670 * sfld - source vsr_t field
2671 * tfld - target vsr_t field
2672 * jdef - definition of the j index (i or 2*i)
2675 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
2676 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2681 getVSR(xB(opcode), &xb, env); \
2682 getVSR(xT(opcode), &xt, env); \
2684 for (i = 0; i < nels; i++) { \
2685 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2687 xt.tfld = helper_frsp(env, xt.tfld); \
2690 helper_compute_fprf(env, xt.tfld); \
2694 putVSR(xT(opcode), &xt, env); \
2695 float_check_status(env); \
2698 VSX_CVT_INT_TO_FP(xscvsxddp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 0)
2699 VSX_CVT_INT_TO_FP(xscvuxddp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 0)
2700 VSX_CVT_INT_TO_FP(xscvsxdsp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 1)
2701 VSX_CVT_INT_TO_FP(xscvuxdsp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 1)
2702 VSX_CVT_INT_TO_FP(xvcvsxddp
, 2, int64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
2703 VSX_CVT_INT_TO_FP(xvcvuxddp
, 2, uint64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
2704 VSX_CVT_INT_TO_FP(xvcvsxwdp
, 2, int32
, float64
, VsrW(2*i
), VsrD(i
), 0, 0)
2705 VSX_CVT_INT_TO_FP(xvcvuxwdp
, 2, uint64
, float64
, VsrW(2*i
), VsrD(i
), 0, 0)
2706 VSX_CVT_INT_TO_FP(xvcvsxdsp
, 2, int64
, float32
, VsrD(i
), VsrW(2*i
), 0, 0)
2707 VSX_CVT_INT_TO_FP(xvcvuxdsp
, 2, uint64
, float32
, VsrD(i
), VsrW(2*i
), 0, 0)
2708 VSX_CVT_INT_TO_FP(xvcvsxwsp
, 4, int32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
2709 VSX_CVT_INT_TO_FP(xvcvuxwsp
, 4, uint32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
2711 /* For "use current rounding mode", define a value that will not be one of
2712 * the existing rounding model enums.
2714 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2715 float_round_up + float_round_to_zero)
2717 /* VSX_ROUND - VSX floating point round
2718 * op - instruction mnemonic
2719 * nels - number of elements (1, 2 or 4)
2720 * tp - type (float32 or float64)
2721 * fld - vsr_t field (VsrD(*) or VsrW(*))
2722 * rmode - rounding mode
2725 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
2726 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2730 getVSR(xB(opcode), &xb, env); \
2731 getVSR(xT(opcode), &xt, env); \
2733 if (rmode != FLOAT_ROUND_CURRENT) { \
2734 set_float_rounding_mode(rmode, &env->fp_status); \
2737 for (i = 0; i < nels; i++) { \
2738 if (unlikely(tp##_is_signaling_nan(xb.fld, \
2739 &env->fp_status))) { \
2740 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2741 xt.fld = tp##_snan_to_qnan(xb.fld); \
2743 xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \
2746 helper_compute_fprf(env, xt.fld); \
2750 /* If this is not a "use current rounding mode" instruction, \
2751 * then inhibit setting of the XX bit and restore rounding \
2752 * mode from FPSCR */ \
2753 if (rmode != FLOAT_ROUND_CURRENT) { \
2754 fpscr_set_rounding_mode(env); \
2755 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
2758 putVSR(xT(opcode), &xt, env); \
2759 float_check_status(env); \
2762 VSX_ROUND(xsrdpi
, 1, float64
, VsrD(0), float_round_ties_away
, 1)
2763 VSX_ROUND(xsrdpic
, 1, float64
, VsrD(0), FLOAT_ROUND_CURRENT
, 1)
2764 VSX_ROUND(xsrdpim
, 1, float64
, VsrD(0), float_round_down
, 1)
2765 VSX_ROUND(xsrdpip
, 1, float64
, VsrD(0), float_round_up
, 1)
2766 VSX_ROUND(xsrdpiz
, 1, float64
, VsrD(0), float_round_to_zero
, 1)
2768 VSX_ROUND(xvrdpi
, 2, float64
, VsrD(i
), float_round_ties_away
, 0)
2769 VSX_ROUND(xvrdpic
, 2, float64
, VsrD(i
), FLOAT_ROUND_CURRENT
, 0)
2770 VSX_ROUND(xvrdpim
, 2, float64
, VsrD(i
), float_round_down
, 0)
2771 VSX_ROUND(xvrdpip
, 2, float64
, VsrD(i
), float_round_up
, 0)
2772 VSX_ROUND(xvrdpiz
, 2, float64
, VsrD(i
), float_round_to_zero
, 0)
2774 VSX_ROUND(xvrspi
, 4, float32
, VsrW(i
), float_round_ties_away
, 0)
2775 VSX_ROUND(xvrspic
, 4, float32
, VsrW(i
), FLOAT_ROUND_CURRENT
, 0)
2776 VSX_ROUND(xvrspim
, 4, float32
, VsrW(i
), float_round_down
, 0)
2777 VSX_ROUND(xvrspip
, 4, float32
, VsrW(i
), float_round_up
, 0)
2778 VSX_ROUND(xvrspiz
, 4, float32
, VsrW(i
), float_round_to_zero
, 0)
2780 uint64_t helper_xsrsp(CPUPPCState
*env
, uint64_t xb
)
2782 helper_reset_fpstatus(env
);
2784 uint64_t xt
= helper_frsp(env
, xb
);
2786 helper_compute_fprf(env
, xt
);
2787 float_check_status(env
);