4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include <sys/syscall.h>
22 #include <sys/resource.h>
25 #include "qemu/path.h"
26 #include "qemu/cutils.h"
27 #include "qemu/help_option.h"
29 #include "exec/exec-all.h"
31 #include "qemu/timer.h"
32 #include "qemu/envlist.h"
39 static const char *filename
;
40 static const char *argv0
;
41 static int gdbstub_port
;
42 static envlist_t
*envlist
;
43 static const char *cpu_model
;
44 unsigned long mmap_min_addr
;
45 unsigned long guest_base
;
48 #define EXCP_DUMP(env, fmt, ...) \
50 CPUState *cs = ENV_GET_CPU(env); \
51 fprintf(stderr, fmt , ## __VA_ARGS__); \
52 cpu_dump_state(cs, stderr, fprintf, 0); \
53 if (qemu_log_separate()) { \
54 qemu_log(fmt, ## __VA_ARGS__); \
55 log_cpu_state(cs, 0); \
59 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
61 * When running 32-on-64 we should make sure we can fit all of the possible
62 * guest address space into a contiguous chunk of virtual host memory.
64 * This way we will never overlap with our own libraries or binaries or stack
65 * or anything else that QEMU maps.
68 /* MIPS only supports 31 bits of virtual address space for user space */
69 unsigned long reserved_va
= 0x77000000;
71 unsigned long reserved_va
= 0xf7000000;
74 unsigned long reserved_va
;
77 static void usage(int exitcode
);
79 static const char *interp_prefix
= CONFIG_QEMU_INTERP_PREFIX
;
80 const char *qemu_uname_release
;
82 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
83 we allocate a bigger stack. Need a better solution, for example
84 by remapping the process stack directly at the right place */
85 unsigned long guest_stack_size
= 8 * 1024 * 1024UL;
87 void gemu_log(const char *fmt
, ...)
92 vfprintf(stderr
, fmt
, ap
);
96 #if defined(TARGET_I386)
97 int cpu_get_pic_interrupt(CPUX86State
*env
)
103 /***********************************************************/
104 /* Helper routines for implementing atomic operations. */
106 /* To implement exclusive operations we force all cpus to syncronise.
107 We don't require a full sync, only that no cpus are executing guest code.
108 The alternative is to map target atomic ops onto host equivalents,
109 which requires quite a lot of per host/target work. */
110 static pthread_mutex_t cpu_list_mutex
= PTHREAD_MUTEX_INITIALIZER
;
111 static pthread_mutex_t exclusive_lock
= PTHREAD_MUTEX_INITIALIZER
;
112 static pthread_cond_t exclusive_cond
= PTHREAD_COND_INITIALIZER
;
113 static pthread_cond_t exclusive_resume
= PTHREAD_COND_INITIALIZER
;
114 static int pending_cpus
;
116 /* Make sure everything is in a consistent state for calling fork(). */
117 void fork_start(void)
119 qemu_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
120 pthread_mutex_lock(&exclusive_lock
);
124 void fork_end(int child
)
126 mmap_fork_end(child
);
128 CPUState
*cpu
, *next_cpu
;
129 /* Child processes created by fork() only have a single thread.
130 Discard information about the parent threads. */
131 CPU_FOREACH_SAFE(cpu
, next_cpu
) {
132 if (cpu
!= thread_cpu
) {
133 QTAILQ_REMOVE(&cpus
, thread_cpu
, node
);
137 pthread_mutex_init(&exclusive_lock
, NULL
);
138 pthread_mutex_init(&cpu_list_mutex
, NULL
);
139 pthread_cond_init(&exclusive_cond
, NULL
);
140 pthread_cond_init(&exclusive_resume
, NULL
);
141 qemu_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
);
142 gdbserver_fork(thread_cpu
);
144 pthread_mutex_unlock(&exclusive_lock
);
145 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
149 /* Wait for pending exclusive operations to complete. The exclusive lock
151 static inline void exclusive_idle(void)
153 while (pending_cpus
) {
154 pthread_cond_wait(&exclusive_resume
, &exclusive_lock
);
158 /* Start an exclusive operation.
159 Must only be called from outside cpu_arm_exec. */
160 static inline void start_exclusive(void)
164 pthread_mutex_lock(&exclusive_lock
);
168 /* Make all other cpus stop executing. */
169 CPU_FOREACH(other_cpu
) {
170 if (other_cpu
->running
) {
175 if (pending_cpus
> 1) {
176 pthread_cond_wait(&exclusive_cond
, &exclusive_lock
);
180 /* Finish an exclusive operation. */
181 static inline void __attribute__((unused
)) end_exclusive(void)
184 pthread_cond_broadcast(&exclusive_resume
);
185 pthread_mutex_unlock(&exclusive_lock
);
188 /* Wait for exclusive ops to finish, and begin cpu execution. */
189 static inline void cpu_exec_start(CPUState
*cpu
)
191 pthread_mutex_lock(&exclusive_lock
);
194 pthread_mutex_unlock(&exclusive_lock
);
197 /* Mark cpu as not executing, and release pending exclusive ops. */
198 static inline void cpu_exec_end(CPUState
*cpu
)
200 pthread_mutex_lock(&exclusive_lock
);
201 cpu
->running
= false;
202 if (pending_cpus
> 1) {
204 if (pending_cpus
== 1) {
205 pthread_cond_signal(&exclusive_cond
);
209 pthread_mutex_unlock(&exclusive_lock
);
212 void cpu_list_lock(void)
214 pthread_mutex_lock(&cpu_list_mutex
);
217 void cpu_list_unlock(void)
219 pthread_mutex_unlock(&cpu_list_mutex
);
224 /***********************************************************/
225 /* CPUX86 core interface */
227 uint64_t cpu_get_tsc(CPUX86State
*env
)
229 return cpu_get_host_ticks();
232 static void write_dt(void *ptr
, unsigned long addr
, unsigned long limit
,
237 e1
= (addr
<< 16) | (limit
& 0xffff);
238 e2
= ((addr
>> 16) & 0xff) | (addr
& 0xff000000) | (limit
& 0x000f0000);
245 static uint64_t *idt_table
;
247 static void set_gate64(void *ptr
, unsigned int type
, unsigned int dpl
,
248 uint64_t addr
, unsigned int sel
)
251 e1
= (addr
& 0xffff) | (sel
<< 16);
252 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
256 p
[2] = tswap32(addr
>> 32);
259 /* only dpl matters as we do only user space emulation */
260 static void set_idt(int n
, unsigned int dpl
)
262 set_gate64(idt_table
+ n
* 2, 0, dpl
, 0, 0);
265 static void set_gate(void *ptr
, unsigned int type
, unsigned int dpl
,
266 uint32_t addr
, unsigned int sel
)
269 e1
= (addr
& 0xffff) | (sel
<< 16);
270 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
276 /* only dpl matters as we do only user space emulation */
277 static void set_idt(int n
, unsigned int dpl
)
279 set_gate(idt_table
+ n
, 0, dpl
, 0, 0);
283 void cpu_loop(CPUX86State
*env
)
285 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
289 target_siginfo_t info
;
293 trapnr
= cpu_x86_exec(cs
);
297 /* linux syscall from int $0x80 */
298 ret
= do_syscall(env
,
307 if (ret
== -TARGET_ERESTARTSYS
) {
309 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
310 env
->regs
[R_EAX
] = ret
;
315 /* linux syscall from syscall instruction */
316 ret
= do_syscall(env
,
325 if (ret
== -TARGET_ERESTARTSYS
) {
327 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
328 env
->regs
[R_EAX
] = ret
;
334 info
.si_signo
= TARGET_SIGBUS
;
336 info
.si_code
= TARGET_SI_KERNEL
;
337 info
._sifields
._sigfault
._addr
= 0;
338 queue_signal(env
, info
.si_signo
, &info
);
341 /* XXX: potential problem if ABI32 */
342 #ifndef TARGET_X86_64
343 if (env
->eflags
& VM_MASK
) {
344 handle_vm86_fault(env
);
348 info
.si_signo
= TARGET_SIGSEGV
;
350 info
.si_code
= TARGET_SI_KERNEL
;
351 info
._sifields
._sigfault
._addr
= 0;
352 queue_signal(env
, info
.si_signo
, &info
);
356 info
.si_signo
= TARGET_SIGSEGV
;
358 if (!(env
->error_code
& 1))
359 info
.si_code
= TARGET_SEGV_MAPERR
;
361 info
.si_code
= TARGET_SEGV_ACCERR
;
362 info
._sifields
._sigfault
._addr
= env
->cr
[2];
363 queue_signal(env
, info
.si_signo
, &info
);
366 #ifndef TARGET_X86_64
367 if (env
->eflags
& VM_MASK
) {
368 handle_vm86_trap(env
, trapnr
);
372 /* division by zero */
373 info
.si_signo
= TARGET_SIGFPE
;
375 info
.si_code
= TARGET_FPE_INTDIV
;
376 info
._sifields
._sigfault
._addr
= env
->eip
;
377 queue_signal(env
, info
.si_signo
, &info
);
382 #ifndef TARGET_X86_64
383 if (env
->eflags
& VM_MASK
) {
384 handle_vm86_trap(env
, trapnr
);
388 info
.si_signo
= TARGET_SIGTRAP
;
390 if (trapnr
== EXCP01_DB
) {
391 info
.si_code
= TARGET_TRAP_BRKPT
;
392 info
._sifields
._sigfault
._addr
= env
->eip
;
394 info
.si_code
= TARGET_SI_KERNEL
;
395 info
._sifields
._sigfault
._addr
= 0;
397 queue_signal(env
, info
.si_signo
, &info
);
402 #ifndef TARGET_X86_64
403 if (env
->eflags
& VM_MASK
) {
404 handle_vm86_trap(env
, trapnr
);
408 info
.si_signo
= TARGET_SIGSEGV
;
410 info
.si_code
= TARGET_SI_KERNEL
;
411 info
._sifields
._sigfault
._addr
= 0;
412 queue_signal(env
, info
.si_signo
, &info
);
416 info
.si_signo
= TARGET_SIGILL
;
418 info
.si_code
= TARGET_ILL_ILLOPN
;
419 info
._sifields
._sigfault
._addr
= env
->eip
;
420 queue_signal(env
, info
.si_signo
, &info
);
423 /* just indicate that signals should be handled asap */
429 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
434 info
.si_code
= TARGET_TRAP_BRKPT
;
435 queue_signal(env
, info
.si_signo
, &info
);
440 pc
= env
->segs
[R_CS
].base
+ env
->eip
;
441 EXCP_DUMP(env
, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
445 process_pending_signals(env
);
452 #define get_user_code_u32(x, gaddr, env) \
453 ({ abi_long __r = get_user_u32((x), (gaddr)); \
454 if (!__r && bswap_code(arm_sctlr_b(env))) { \
460 #define get_user_code_u16(x, gaddr, env) \
461 ({ abi_long __r = get_user_u16((x), (gaddr)); \
462 if (!__r && bswap_code(arm_sctlr_b(env))) { \
468 #define get_user_data_u32(x, gaddr, env) \
469 ({ abi_long __r = get_user_u32((x), (gaddr)); \
470 if (!__r && arm_cpu_bswap_data(env)) { \
476 #define get_user_data_u16(x, gaddr, env) \
477 ({ abi_long __r = get_user_u16((x), (gaddr)); \
478 if (!__r && arm_cpu_bswap_data(env)) { \
484 #define put_user_data_u32(x, gaddr, env) \
485 ({ typeof(x) __x = (x); \
486 if (arm_cpu_bswap_data(env)) { \
487 __x = bswap32(__x); \
489 put_user_u32(__x, (gaddr)); \
492 #define put_user_data_u16(x, gaddr, env) \
493 ({ typeof(x) __x = (x); \
494 if (arm_cpu_bswap_data(env)) { \
495 __x = bswap16(__x); \
497 put_user_u16(__x, (gaddr)); \
501 /* Commpage handling -- there is no commpage for AArch64 */
504 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
506 * r0 = pointer to oldval
507 * r1 = pointer to newval
508 * r2 = pointer to target value
511 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
512 * C set if *ptr was changed, clear if no exchange happened
514 * Note segv's in kernel helpers are a bit tricky, we can set the
515 * data address sensibly but the PC address is just the entry point.
517 static void arm_kernel_cmpxchg64_helper(CPUARMState
*env
)
519 uint64_t oldval
, newval
, val
;
521 target_siginfo_t info
;
523 /* Based on the 32 bit code in do_kernel_trap */
525 /* XXX: This only works between threads, not between processes.
526 It's probably possible to implement this with native host
527 operations. However things like ldrex/strex are much harder so
528 there's not much point trying. */
530 cpsr
= cpsr_read(env
);
533 if (get_user_u64(oldval
, env
->regs
[0])) {
534 env
->exception
.vaddress
= env
->regs
[0];
538 if (get_user_u64(newval
, env
->regs
[1])) {
539 env
->exception
.vaddress
= env
->regs
[1];
543 if (get_user_u64(val
, addr
)) {
544 env
->exception
.vaddress
= addr
;
551 if (put_user_u64(val
, addr
)) {
552 env
->exception
.vaddress
= addr
;
562 cpsr_write(env
, cpsr
, CPSR_C
, CPSRWriteByInstr
);
568 /* We get the PC of the entry address - which is as good as anything,
569 on a real kernel what you get depends on which mode it uses. */
570 info
.si_signo
= TARGET_SIGSEGV
;
572 /* XXX: check env->error_code */
573 info
.si_code
= TARGET_SEGV_MAPERR
;
574 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
575 queue_signal(env
, info
.si_signo
, &info
);
578 /* Handle a jump to the kernel code page. */
580 do_kernel_trap(CPUARMState
*env
)
586 switch (env
->regs
[15]) {
587 case 0xffff0fa0: /* __kernel_memory_barrier */
588 /* ??? No-op. Will need to do better for SMP. */
590 case 0xffff0fc0: /* __kernel_cmpxchg */
591 /* XXX: This only works between threads, not between processes.
592 It's probably possible to implement this with native host
593 operations. However things like ldrex/strex are much harder so
594 there's not much point trying. */
596 cpsr
= cpsr_read(env
);
598 /* FIXME: This should SEGV if the access fails. */
599 if (get_user_u32(val
, addr
))
601 if (val
== env
->regs
[0]) {
603 /* FIXME: Check for segfaults. */
604 put_user_u32(val
, addr
);
611 cpsr_write(env
, cpsr
, CPSR_C
, CPSRWriteByInstr
);
614 case 0xffff0fe0: /* __kernel_get_tls */
615 env
->regs
[0] = cpu_get_tls(env
);
617 case 0xffff0f60: /* __kernel_cmpxchg64 */
618 arm_kernel_cmpxchg64_helper(env
);
624 /* Jump back to the caller. */
625 addr
= env
->regs
[14];
630 env
->regs
[15] = addr
;
635 /* Store exclusive handling for AArch32 */
636 static int do_strex(CPUARMState
*env
)
644 if (env
->exclusive_addr
!= env
->exclusive_test
) {
647 /* We know we're always AArch32 so the address is in uint32_t range
648 * unless it was the -1 exclusive-monitor-lost value (which won't
649 * match exclusive_test above).
651 assert(extract64(env
->exclusive_addr
, 32, 32) == 0);
652 addr
= env
->exclusive_addr
;
653 size
= env
->exclusive_info
& 0xf;
656 segv
= get_user_u8(val
, addr
);
659 segv
= get_user_data_u16(val
, addr
, env
);
663 segv
= get_user_data_u32(val
, addr
, env
);
669 env
->exception
.vaddress
= addr
;
674 segv
= get_user_data_u32(valhi
, addr
+ 4, env
);
676 env
->exception
.vaddress
= addr
+ 4;
679 if (arm_cpu_bswap_data(env
)) {
680 val
= deposit64((uint64_t)valhi
, 32, 32, val
);
682 val
= deposit64(val
, 32, 32, valhi
);
685 if (val
!= env
->exclusive_val
) {
689 val
= env
->regs
[(env
->exclusive_info
>> 8) & 0xf];
692 segv
= put_user_u8(val
, addr
);
695 segv
= put_user_data_u16(val
, addr
, env
);
699 segv
= put_user_data_u32(val
, addr
, env
);
703 env
->exception
.vaddress
= addr
;
707 val
= env
->regs
[(env
->exclusive_info
>> 12) & 0xf];
708 segv
= put_user_data_u32(val
, addr
+ 4, env
);
710 env
->exception
.vaddress
= addr
+ 4;
717 env
->regs
[(env
->exclusive_info
>> 4) & 0xf] = rc
;
723 void cpu_loop(CPUARMState
*env
)
725 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
727 unsigned int n
, insn
;
728 target_siginfo_t info
;
734 trapnr
= cpu_arm_exec(cs
);
739 TaskState
*ts
= cs
->opaque
;
743 /* we handle the FPU emulation here, as Linux */
744 /* we get the opcode */
745 /* FIXME - what to do if get_user() fails? */
746 get_user_code_u32(opcode
, env
->regs
[15], env
);
748 rc
= EmulateAll(opcode
, &ts
->fpa
, env
);
749 if (rc
== 0) { /* illegal instruction */
750 info
.si_signo
= TARGET_SIGILL
;
752 info
.si_code
= TARGET_ILL_ILLOPN
;
753 info
._sifields
._sigfault
._addr
= env
->regs
[15];
754 queue_signal(env
, info
.si_signo
, &info
);
755 } else if (rc
< 0) { /* FP exception */
758 /* translate softfloat flags to FPSR flags */
759 if (-rc
& float_flag_invalid
)
761 if (-rc
& float_flag_divbyzero
)
763 if (-rc
& float_flag_overflow
)
765 if (-rc
& float_flag_underflow
)
767 if (-rc
& float_flag_inexact
)
770 FPSR fpsr
= ts
->fpa
.fpsr
;
771 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
773 if (fpsr
& (arm_fpe
<< 16)) { /* exception enabled? */
774 info
.si_signo
= TARGET_SIGFPE
;
777 /* ordered by priority, least first */
778 if (arm_fpe
& BIT_IXC
) info
.si_code
= TARGET_FPE_FLTRES
;
779 if (arm_fpe
& BIT_UFC
) info
.si_code
= TARGET_FPE_FLTUND
;
780 if (arm_fpe
& BIT_OFC
) info
.si_code
= TARGET_FPE_FLTOVF
;
781 if (arm_fpe
& BIT_DZC
) info
.si_code
= TARGET_FPE_FLTDIV
;
782 if (arm_fpe
& BIT_IOC
) info
.si_code
= TARGET_FPE_FLTINV
;
784 info
._sifields
._sigfault
._addr
= env
->regs
[15];
785 queue_signal(env
, info
.si_signo
, &info
);
790 /* accumulate unenabled exceptions */
791 if ((!(fpsr
& BIT_IXE
)) && (arm_fpe
& BIT_IXC
))
793 if ((!(fpsr
& BIT_UFE
)) && (arm_fpe
& BIT_UFC
))
795 if ((!(fpsr
& BIT_OFE
)) && (arm_fpe
& BIT_OFC
))
797 if ((!(fpsr
& BIT_DZE
)) && (arm_fpe
& BIT_DZC
))
799 if ((!(fpsr
& BIT_IOE
)) && (arm_fpe
& BIT_IOC
))
802 } else { /* everything OK */
813 if (trapnr
== EXCP_BKPT
) {
815 /* FIXME - what to do if get_user() fails? */
816 get_user_code_u16(insn
, env
->regs
[15], env
);
820 /* FIXME - what to do if get_user() fails? */
821 get_user_code_u32(insn
, env
->regs
[15], env
);
822 n
= (insn
& 0xf) | ((insn
>> 4) & 0xff0);
827 /* FIXME - what to do if get_user() fails? */
828 get_user_code_u16(insn
, env
->regs
[15] - 2, env
);
831 /* FIXME - what to do if get_user() fails? */
832 get_user_code_u32(insn
, env
->regs
[15] - 4, env
);
837 if (n
== ARM_NR_cacheflush
) {
839 } else if (n
== ARM_NR_semihosting
840 || n
== ARM_NR_thumb_semihosting
) {
841 env
->regs
[0] = do_arm_semihosting (env
);
842 } else if (n
== 0 || n
>= ARM_SYSCALL_BASE
|| env
->thumb
) {
844 if (env
->thumb
|| n
== 0) {
847 n
-= ARM_SYSCALL_BASE
;
850 if ( n
> ARM_NR_BASE
) {
852 case ARM_NR_cacheflush
:
856 cpu_set_tls(env
, env
->regs
[0]);
859 case ARM_NR_breakpoint
:
860 env
->regs
[15] -= env
->thumb
? 2 : 4;
863 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
865 env
->regs
[0] = -TARGET_ENOSYS
;
869 ret
= do_syscall(env
,
878 if (ret
== -TARGET_ERESTARTSYS
) {
879 env
->regs
[15] -= env
->thumb
? 2 : 4;
880 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
890 /* just indicate that signals should be handled asap */
893 if (!do_strex(env
)) {
896 /* fall through for segv */
897 case EXCP_PREFETCH_ABORT
:
898 case EXCP_DATA_ABORT
:
899 addr
= env
->exception
.vaddress
;
901 info
.si_signo
= TARGET_SIGSEGV
;
903 /* XXX: check env->error_code */
904 info
.si_code
= TARGET_SEGV_MAPERR
;
905 info
._sifields
._sigfault
._addr
= addr
;
906 queue_signal(env
, info
.si_signo
, &info
);
914 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
919 info
.si_code
= TARGET_TRAP_BRKPT
;
920 queue_signal(env
, info
.si_signo
, &info
);
924 case EXCP_KERNEL_TRAP
:
925 if (do_kernel_trap(env
))
929 /* nothing to do here for user-mode, just resume guest code */
933 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
936 process_pending_signals(env
);
943 * Handle AArch64 store-release exclusive
945 * rs = gets the status result of store exclusive
946 * rt = is the register that is stored
947 * rt2 = is the second register store (in STP)
950 static int do_strex_a64(CPUARMState
*env
)
961 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
962 size
= extract32(env
->exclusive_info
, 0, 2);
963 is_pair
= extract32(env
->exclusive_info
, 2, 1);
964 rs
= extract32(env
->exclusive_info
, 4, 5);
965 rt
= extract32(env
->exclusive_info
, 9, 5);
966 rt2
= extract32(env
->exclusive_info
, 14, 5);
968 addr
= env
->exclusive_addr
;
970 if (addr
!= env
->exclusive_test
) {
976 segv
= get_user_u8(val
, addr
);
979 segv
= get_user_u16(val
, addr
);
982 segv
= get_user_u32(val
, addr
);
985 segv
= get_user_u64(val
, addr
);
991 env
->exception
.vaddress
= addr
;
994 if (val
!= env
->exclusive_val
) {
999 segv
= get_user_u32(val
, addr
+ 4);
1001 segv
= get_user_u64(val
, addr
+ 8);
1004 env
->exception
.vaddress
= addr
+ (size
== 2 ? 4 : 8);
1007 if (val
!= env
->exclusive_high
) {
1011 /* handle the zero register */
1012 val
= rt
== 31 ? 0 : env
->xregs
[rt
];
1015 segv
= put_user_u8(val
, addr
);
1018 segv
= put_user_u16(val
, addr
);
1021 segv
= put_user_u32(val
, addr
);
1024 segv
= put_user_u64(val
, addr
);
1031 /* handle the zero register */
1032 val
= rt2
== 31 ? 0 : env
->xregs
[rt2
];
1034 segv
= put_user_u32(val
, addr
+ 4);
1036 segv
= put_user_u64(val
, addr
+ 8);
1039 env
->exception
.vaddress
= addr
+ (size
== 2 ? 4 : 8);
1046 /* rs == 31 encodes a write to the ZR, thus throwing away
1047 * the status return. This is rather silly but valid.
1050 env
->xregs
[rs
] = rc
;
1053 /* instruction faulted, PC does not advance */
1054 /* either way a strex releases any exclusive lock we have */
1055 env
->exclusive_addr
= -1;
1060 /* AArch64 main loop */
1061 void cpu_loop(CPUARMState
*env
)
1063 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1066 target_siginfo_t info
;
1070 trapnr
= cpu_arm_exec(cs
);
1075 ret
= do_syscall(env
,
1084 if (ret
== -TARGET_ERESTARTSYS
) {
1086 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
1087 env
->xregs
[0] = ret
;
1090 case EXCP_INTERRUPT
:
1091 /* just indicate that signals should be handled asap */
1094 info
.si_signo
= TARGET_SIGILL
;
1096 info
.si_code
= TARGET_ILL_ILLOPN
;
1097 info
._sifields
._sigfault
._addr
= env
->pc
;
1098 queue_signal(env
, info
.si_signo
, &info
);
1101 if (!do_strex_a64(env
)) {
1104 /* fall through for segv */
1105 case EXCP_PREFETCH_ABORT
:
1106 case EXCP_DATA_ABORT
:
1107 info
.si_signo
= TARGET_SIGSEGV
;
1109 /* XXX: check env->error_code */
1110 info
.si_code
= TARGET_SEGV_MAPERR
;
1111 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
1112 queue_signal(env
, info
.si_signo
, &info
);
1116 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1118 info
.si_signo
= sig
;
1120 info
.si_code
= TARGET_TRAP_BRKPT
;
1121 queue_signal(env
, info
.si_signo
, &info
);
1125 env
->xregs
[0] = do_arm_semihosting(env
);
1128 /* nothing to do here for user-mode, just resume guest code */
1131 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
1134 process_pending_signals(env
);
1135 /* Exception return on AArch64 always clears the exclusive monitor,
1136 * so any return to running guest code implies this.
1137 * A strex (successful or otherwise) also clears the monitor, so
1138 * we don't need to specialcase EXCP_STREX.
1140 env
->exclusive_addr
= -1;
1143 #endif /* ndef TARGET_ABI32 */
1147 #ifdef TARGET_UNICORE32
1149 void cpu_loop(CPUUniCore32State
*env
)
1151 CPUState
*cs
= CPU(uc32_env_get_cpu(env
));
1153 unsigned int n
, insn
;
1154 target_siginfo_t info
;
1158 trapnr
= uc32_cpu_exec(cs
);
1161 case UC32_EXCP_PRIV
:
1164 get_user_u32(insn
, env
->regs
[31] - 4);
1165 n
= insn
& 0xffffff;
1167 if (n
>= UC32_SYSCALL_BASE
) {
1169 n
-= UC32_SYSCALL_BASE
;
1170 if (n
== UC32_SYSCALL_NR_set_tls
) {
1171 cpu_set_tls(env
, env
->regs
[0]);
1174 abi_long ret
= do_syscall(env
,
1183 if (ret
== -TARGET_ERESTARTSYS
) {
1185 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
1194 case UC32_EXCP_DTRAP
:
1195 case UC32_EXCP_ITRAP
:
1196 info
.si_signo
= TARGET_SIGSEGV
;
1198 /* XXX: check env->error_code */
1199 info
.si_code
= TARGET_SEGV_MAPERR
;
1200 info
._sifields
._sigfault
._addr
= env
->cp0
.c4_faultaddr
;
1201 queue_signal(env
, info
.si_signo
, &info
);
1203 case EXCP_INTERRUPT
:
1204 /* just indicate that signals should be handled asap */
1210 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1212 info
.si_signo
= sig
;
1214 info
.si_code
= TARGET_TRAP_BRKPT
;
1215 queue_signal(env
, info
.si_signo
, &info
);
1222 process_pending_signals(env
);
1226 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
1232 #define SPARC64_STACK_BIAS 2047
1236 /* WARNING: dealing with register windows _is_ complicated. More info
1237 can be found at http://www.sics.se/~psm/sparcstack.html */
1238 static inline int get_reg_index(CPUSPARCState
*env
, int cwp
, int index
)
1240 index
= (index
+ cwp
* 16) % (16 * env
->nwindows
);
1241 /* wrap handling : if cwp is on the last window, then we use the
1242 registers 'after' the end */
1243 if (index
< 8 && env
->cwp
== env
->nwindows
- 1)
1244 index
+= 16 * env
->nwindows
;
1248 /* save the register window 'cwp1' */
1249 static inline void save_window_offset(CPUSPARCState
*env
, int cwp1
)
1254 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1255 #ifdef TARGET_SPARC64
1257 sp_ptr
+= SPARC64_STACK_BIAS
;
1259 #if defined(DEBUG_WIN)
1260 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" save_cwp=%d\n",
1263 for(i
= 0; i
< 16; i
++) {
1264 /* FIXME - what to do if put_user() fails? */
1265 put_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1266 sp_ptr
+= sizeof(abi_ulong
);
1270 static void save_window(CPUSPARCState
*env
)
1272 #ifndef TARGET_SPARC64
1273 unsigned int new_wim
;
1274 new_wim
= ((env
->wim
>> 1) | (env
->wim
<< (env
->nwindows
- 1))) &
1275 ((1LL << env
->nwindows
) - 1);
1276 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1279 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1285 static void restore_window(CPUSPARCState
*env
)
1287 #ifndef TARGET_SPARC64
1288 unsigned int new_wim
;
1290 unsigned int i
, cwp1
;
1293 #ifndef TARGET_SPARC64
1294 new_wim
= ((env
->wim
<< 1) | (env
->wim
>> (env
->nwindows
- 1))) &
1295 ((1LL << env
->nwindows
) - 1);
1298 /* restore the invalid window */
1299 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1300 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1301 #ifdef TARGET_SPARC64
1303 sp_ptr
+= SPARC64_STACK_BIAS
;
1305 #if defined(DEBUG_WIN)
1306 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" load_cwp=%d\n",
1309 for(i
= 0; i
< 16; i
++) {
1310 /* FIXME - what to do if get_user() fails? */
1311 get_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1312 sp_ptr
+= sizeof(abi_ulong
);
1314 #ifdef TARGET_SPARC64
1316 if (env
->cleanwin
< env
->nwindows
- 1)
1324 static void flush_windows(CPUSPARCState
*env
)
1330 /* if restore would invoke restore_window(), then we can stop */
1331 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ offset
);
1332 #ifndef TARGET_SPARC64
1333 if (env
->wim
& (1 << cwp1
))
1336 if (env
->canrestore
== 0)
1341 save_window_offset(env
, cwp1
);
1344 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1345 #ifndef TARGET_SPARC64
1346 /* set wim so that restore will reload the registers */
1347 env
->wim
= 1 << cwp1
;
1349 #if defined(DEBUG_WIN)
1350 printf("flush_windows: nb=%d\n", offset
- 1);
1354 void cpu_loop (CPUSPARCState
*env
)
1356 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1359 target_siginfo_t info
;
1363 trapnr
= cpu_sparc_exec(cs
);
1366 /* Compute PSR before exposing state. */
1367 if (env
->cc_op
!= CC_OP_FLAGS
) {
1372 #ifndef TARGET_SPARC64
1379 ret
= do_syscall (env
, env
->gregs
[1],
1380 env
->regwptr
[0], env
->regwptr
[1],
1381 env
->regwptr
[2], env
->regwptr
[3],
1382 env
->regwptr
[4], env
->regwptr
[5],
1384 if (ret
== -TARGET_ERESTARTSYS
|| ret
== -TARGET_QEMU_ESIGRETURN
) {
1387 if ((abi_ulong
)ret
>= (abi_ulong
)(-515)) {
1388 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1389 env
->xcc
|= PSR_CARRY
;
1391 env
->psr
|= PSR_CARRY
;
1395 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1396 env
->xcc
&= ~PSR_CARRY
;
1398 env
->psr
&= ~PSR_CARRY
;
1401 env
->regwptr
[0] = ret
;
1402 /* next instruction */
1404 env
->npc
= env
->npc
+ 4;
1406 case 0x83: /* flush windows */
1411 /* next instruction */
1413 env
->npc
= env
->npc
+ 4;
1415 #ifndef TARGET_SPARC64
1416 case TT_WIN_OVF
: /* window overflow */
1419 case TT_WIN_UNF
: /* window underflow */
1420 restore_window(env
);
1425 info
.si_signo
= TARGET_SIGSEGV
;
1427 /* XXX: check env->error_code */
1428 info
.si_code
= TARGET_SEGV_MAPERR
;
1429 info
._sifields
._sigfault
._addr
= env
->mmuregs
[4];
1430 queue_signal(env
, info
.si_signo
, &info
);
1434 case TT_SPILL
: /* window overflow */
1437 case TT_FILL
: /* window underflow */
1438 restore_window(env
);
1443 info
.si_signo
= TARGET_SIGSEGV
;
1445 /* XXX: check env->error_code */
1446 info
.si_code
= TARGET_SEGV_MAPERR
;
1447 if (trapnr
== TT_DFAULT
)
1448 info
._sifields
._sigfault
._addr
= env
->dmmuregs
[4];
1450 info
._sifields
._sigfault
._addr
= cpu_tsptr(env
)->tpc
;
1451 queue_signal(env
, info
.si_signo
, &info
);
1454 #ifndef TARGET_ABI32
1457 sparc64_get_context(env
);
1461 sparc64_set_context(env
);
1465 case EXCP_INTERRUPT
:
1466 /* just indicate that signals should be handled asap */
1470 info
.si_signo
= TARGET_SIGILL
;
1472 info
.si_code
= TARGET_ILL_ILLOPC
;
1473 info
._sifields
._sigfault
._addr
= env
->pc
;
1474 queue_signal(env
, info
.si_signo
, &info
);
1481 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1484 info
.si_signo
= sig
;
1486 info
.si_code
= TARGET_TRAP_BRKPT
;
1487 queue_signal(env
, info
.si_signo
, &info
);
1492 printf ("Unhandled trap: 0x%x\n", trapnr
);
1493 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1496 process_pending_signals (env
);
1503 static inline uint64_t cpu_ppc_get_tb(CPUPPCState
*env
)
1505 return cpu_get_host_ticks();
1508 uint64_t cpu_ppc_load_tbl(CPUPPCState
*env
)
1510 return cpu_ppc_get_tb(env
);
1513 uint32_t cpu_ppc_load_tbu(CPUPPCState
*env
)
1515 return cpu_ppc_get_tb(env
) >> 32;
1518 uint64_t cpu_ppc_load_atbl(CPUPPCState
*env
)
1520 return cpu_ppc_get_tb(env
);
1523 uint32_t cpu_ppc_load_atbu(CPUPPCState
*env
)
1525 return cpu_ppc_get_tb(env
) >> 32;
1528 uint32_t cpu_ppc601_load_rtcu(CPUPPCState
*env
)
1529 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1531 uint32_t cpu_ppc601_load_rtcl(CPUPPCState
*env
)
1533 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1536 /* XXX: to be fixed */
1537 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1542 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1547 static int do_store_exclusive(CPUPPCState
*env
)
1550 target_ulong page_addr
;
1551 target_ulong val
, val2
__attribute__((unused
)) = 0;
1555 addr
= env
->reserve_ea
;
1556 page_addr
= addr
& TARGET_PAGE_MASK
;
1559 flags
= page_get_flags(page_addr
);
1560 if ((flags
& PAGE_READ
) == 0) {
1563 int reg
= env
->reserve_info
& 0x1f;
1564 int size
= env
->reserve_info
>> 5;
1567 if (addr
== env
->reserve_addr
) {
1569 case 1: segv
= get_user_u8(val
, addr
); break;
1570 case 2: segv
= get_user_u16(val
, addr
); break;
1571 case 4: segv
= get_user_u32(val
, addr
); break;
1572 #if defined(TARGET_PPC64)
1573 case 8: segv
= get_user_u64(val
, addr
); break;
1575 segv
= get_user_u64(val
, addr
);
1577 segv
= get_user_u64(val2
, addr
+ 8);
1584 if (!segv
&& val
== env
->reserve_val
) {
1585 val
= env
->gpr
[reg
];
1587 case 1: segv
= put_user_u8(val
, addr
); break;
1588 case 2: segv
= put_user_u16(val
, addr
); break;
1589 case 4: segv
= put_user_u32(val
, addr
); break;
1590 #if defined(TARGET_PPC64)
1591 case 8: segv
= put_user_u64(val
, addr
); break;
1593 if (val2
== env
->reserve_val2
) {
1596 val
= env
->gpr
[reg
+1];
1598 val2
= env
->gpr
[reg
+1];
1600 segv
= put_user_u64(val
, addr
);
1602 segv
= put_user_u64(val2
, addr
+ 8);
1615 env
->crf
[0] = (stored
<< 1) | xer_so
;
1616 env
->reserve_addr
= (target_ulong
)-1;
1626 void cpu_loop(CPUPPCState
*env
)
1628 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1629 target_siginfo_t info
;
1635 trapnr
= cpu_ppc_exec(cs
);
1638 case POWERPC_EXCP_NONE
:
1641 case POWERPC_EXCP_CRITICAL
: /* Critical input */
1642 cpu_abort(cs
, "Critical interrupt while in user mode. "
1645 case POWERPC_EXCP_MCHECK
: /* Machine check exception */
1646 cpu_abort(cs
, "Machine check exception while in user mode. "
1649 case POWERPC_EXCP_DSI
: /* Data storage exception */
1650 EXCP_DUMP(env
, "Invalid data memory access: 0x" TARGET_FMT_lx
"\n",
1652 /* XXX: check this. Seems bugged */
1653 switch (env
->error_code
& 0xFF000000) {
1655 info
.si_signo
= TARGET_SIGSEGV
;
1657 info
.si_code
= TARGET_SEGV_MAPERR
;
1660 info
.si_signo
= TARGET_SIGILL
;
1662 info
.si_code
= TARGET_ILL_ILLADR
;
1665 info
.si_signo
= TARGET_SIGSEGV
;
1667 info
.si_code
= TARGET_SEGV_ACCERR
;
1670 /* Let's send a regular segfault... */
1671 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1673 info
.si_signo
= TARGET_SIGSEGV
;
1675 info
.si_code
= TARGET_SEGV_MAPERR
;
1678 info
._sifields
._sigfault
._addr
= env
->nip
;
1679 queue_signal(env
, info
.si_signo
, &info
);
1681 case POWERPC_EXCP_ISI
: /* Instruction storage exception */
1682 EXCP_DUMP(env
, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1683 "\n", env
->spr
[SPR_SRR0
]);
1684 /* XXX: check this */
1685 switch (env
->error_code
& 0xFF000000) {
1687 info
.si_signo
= TARGET_SIGSEGV
;
1689 info
.si_code
= TARGET_SEGV_MAPERR
;
1693 info
.si_signo
= TARGET_SIGSEGV
;
1695 info
.si_code
= TARGET_SEGV_ACCERR
;
1698 /* Let's send a regular segfault... */
1699 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1701 info
.si_signo
= TARGET_SIGSEGV
;
1703 info
.si_code
= TARGET_SEGV_MAPERR
;
1706 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1707 queue_signal(env
, info
.si_signo
, &info
);
1709 case POWERPC_EXCP_EXTERNAL
: /* External input */
1710 cpu_abort(cs
, "External interrupt while in user mode. "
1713 case POWERPC_EXCP_ALIGN
: /* Alignment exception */
1714 EXCP_DUMP(env
, "Unaligned memory access\n");
1715 /* XXX: check this */
1716 info
.si_signo
= TARGET_SIGBUS
;
1718 info
.si_code
= TARGET_BUS_ADRALN
;
1719 info
._sifields
._sigfault
._addr
= env
->nip
;
1720 queue_signal(env
, info
.si_signo
, &info
);
1722 case POWERPC_EXCP_PROGRAM
: /* Program exception */
1723 /* XXX: check this */
1724 switch (env
->error_code
& ~0xF) {
1725 case POWERPC_EXCP_FP
:
1726 EXCP_DUMP(env
, "Floating point program exception\n");
1727 info
.si_signo
= TARGET_SIGFPE
;
1729 switch (env
->error_code
& 0xF) {
1730 case POWERPC_EXCP_FP_OX
:
1731 info
.si_code
= TARGET_FPE_FLTOVF
;
1733 case POWERPC_EXCP_FP_UX
:
1734 info
.si_code
= TARGET_FPE_FLTUND
;
1736 case POWERPC_EXCP_FP_ZX
:
1737 case POWERPC_EXCP_FP_VXZDZ
:
1738 info
.si_code
= TARGET_FPE_FLTDIV
;
1740 case POWERPC_EXCP_FP_XX
:
1741 info
.si_code
= TARGET_FPE_FLTRES
;
1743 case POWERPC_EXCP_FP_VXSOFT
:
1744 info
.si_code
= TARGET_FPE_FLTINV
;
1746 case POWERPC_EXCP_FP_VXSNAN
:
1747 case POWERPC_EXCP_FP_VXISI
:
1748 case POWERPC_EXCP_FP_VXIDI
:
1749 case POWERPC_EXCP_FP_VXIMZ
:
1750 case POWERPC_EXCP_FP_VXVC
:
1751 case POWERPC_EXCP_FP_VXSQRT
:
1752 case POWERPC_EXCP_FP_VXCVI
:
1753 info
.si_code
= TARGET_FPE_FLTSUB
;
1756 EXCP_DUMP(env
, "Unknown floating point exception (%02x)\n",
1761 case POWERPC_EXCP_INVAL
:
1762 EXCP_DUMP(env
, "Invalid instruction\n");
1763 info
.si_signo
= TARGET_SIGILL
;
1765 switch (env
->error_code
& 0xF) {
1766 case POWERPC_EXCP_INVAL_INVAL
:
1767 info
.si_code
= TARGET_ILL_ILLOPC
;
1769 case POWERPC_EXCP_INVAL_LSWX
:
1770 info
.si_code
= TARGET_ILL_ILLOPN
;
1772 case POWERPC_EXCP_INVAL_SPR
:
1773 info
.si_code
= TARGET_ILL_PRVREG
;
1775 case POWERPC_EXCP_INVAL_FP
:
1776 info
.si_code
= TARGET_ILL_COPROC
;
1779 EXCP_DUMP(env
, "Unknown invalid operation (%02x)\n",
1780 env
->error_code
& 0xF);
1781 info
.si_code
= TARGET_ILL_ILLADR
;
1785 case POWERPC_EXCP_PRIV
:
1786 EXCP_DUMP(env
, "Privilege violation\n");
1787 info
.si_signo
= TARGET_SIGILL
;
1789 switch (env
->error_code
& 0xF) {
1790 case POWERPC_EXCP_PRIV_OPC
:
1791 info
.si_code
= TARGET_ILL_PRVOPC
;
1793 case POWERPC_EXCP_PRIV_REG
:
1794 info
.si_code
= TARGET_ILL_PRVREG
;
1797 EXCP_DUMP(env
, "Unknown privilege violation (%02x)\n",
1798 env
->error_code
& 0xF);
1799 info
.si_code
= TARGET_ILL_PRVOPC
;
1803 case POWERPC_EXCP_TRAP
:
1804 cpu_abort(cs
, "Tried to call a TRAP\n");
1807 /* Should not happen ! */
1808 cpu_abort(cs
, "Unknown program exception (%02x)\n",
1812 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1813 queue_signal(env
, info
.si_signo
, &info
);
1815 case POWERPC_EXCP_FPU
: /* Floating-point unavailable exception */
1816 EXCP_DUMP(env
, "No floating point allowed\n");
1817 info
.si_signo
= TARGET_SIGILL
;
1819 info
.si_code
= TARGET_ILL_COPROC
;
1820 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1821 queue_signal(env
, info
.si_signo
, &info
);
1823 case POWERPC_EXCP_SYSCALL
: /* System call exception */
1824 cpu_abort(cs
, "Syscall exception while in user mode. "
1827 case POWERPC_EXCP_APU
: /* Auxiliary processor unavailable */
1828 EXCP_DUMP(env
, "No APU instruction allowed\n");
1829 info
.si_signo
= TARGET_SIGILL
;
1831 info
.si_code
= TARGET_ILL_COPROC
;
1832 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1833 queue_signal(env
, info
.si_signo
, &info
);
1835 case POWERPC_EXCP_DECR
: /* Decrementer exception */
1836 cpu_abort(cs
, "Decrementer interrupt while in user mode. "
1839 case POWERPC_EXCP_FIT
: /* Fixed-interval timer interrupt */
1840 cpu_abort(cs
, "Fix interval timer interrupt while in user mode. "
1843 case POWERPC_EXCP_WDT
: /* Watchdog timer interrupt */
1844 cpu_abort(cs
, "Watchdog timer interrupt while in user mode. "
1847 case POWERPC_EXCP_DTLB
: /* Data TLB error */
1848 cpu_abort(cs
, "Data TLB exception while in user mode. "
1851 case POWERPC_EXCP_ITLB
: /* Instruction TLB error */
1852 cpu_abort(cs
, "Instruction TLB exception while in user mode. "
1855 case POWERPC_EXCP_SPEU
: /* SPE/embedded floating-point unavail. */
1856 EXCP_DUMP(env
, "No SPE/floating-point instruction allowed\n");
1857 info
.si_signo
= TARGET_SIGILL
;
1859 info
.si_code
= TARGET_ILL_COPROC
;
1860 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1861 queue_signal(env
, info
.si_signo
, &info
);
1863 case POWERPC_EXCP_EFPDI
: /* Embedded floating-point data IRQ */
1864 cpu_abort(cs
, "Embedded floating-point data IRQ not handled\n");
1866 case POWERPC_EXCP_EFPRI
: /* Embedded floating-point round IRQ */
1867 cpu_abort(cs
, "Embedded floating-point round IRQ not handled\n");
1869 case POWERPC_EXCP_EPERFM
: /* Embedded performance monitor IRQ */
1870 cpu_abort(cs
, "Performance monitor exception not handled\n");
1872 case POWERPC_EXCP_DOORI
: /* Embedded doorbell interrupt */
1873 cpu_abort(cs
, "Doorbell interrupt while in user mode. "
1876 case POWERPC_EXCP_DOORCI
: /* Embedded doorbell critical interrupt */
1877 cpu_abort(cs
, "Doorbell critical interrupt while in user mode. "
1880 case POWERPC_EXCP_RESET
: /* System reset exception */
1881 cpu_abort(cs
, "Reset interrupt while in user mode. "
1884 case POWERPC_EXCP_DSEG
: /* Data segment exception */
1885 cpu_abort(cs
, "Data segment exception while in user mode. "
1888 case POWERPC_EXCP_ISEG
: /* Instruction segment exception */
1889 cpu_abort(cs
, "Instruction segment exception "
1890 "while in user mode. Aborting\n");
1892 /* PowerPC 64 with hypervisor mode support */
1893 case POWERPC_EXCP_HDECR
: /* Hypervisor decrementer exception */
1894 cpu_abort(cs
, "Hypervisor decrementer interrupt "
1895 "while in user mode. Aborting\n");
1897 case POWERPC_EXCP_TRACE
: /* Trace exception */
1899 * we use this exception to emulate step-by-step execution mode.
1902 /* PowerPC 64 with hypervisor mode support */
1903 case POWERPC_EXCP_HDSI
: /* Hypervisor data storage exception */
1904 cpu_abort(cs
, "Hypervisor data storage exception "
1905 "while in user mode. Aborting\n");
1907 case POWERPC_EXCP_HISI
: /* Hypervisor instruction storage excp */
1908 cpu_abort(cs
, "Hypervisor instruction storage exception "
1909 "while in user mode. Aborting\n");
1911 case POWERPC_EXCP_HDSEG
: /* Hypervisor data segment exception */
1912 cpu_abort(cs
, "Hypervisor data segment exception "
1913 "while in user mode. Aborting\n");
1915 case POWERPC_EXCP_HISEG
: /* Hypervisor instruction segment excp */
1916 cpu_abort(cs
, "Hypervisor instruction segment exception "
1917 "while in user mode. Aborting\n");
1919 case POWERPC_EXCP_VPU
: /* Vector unavailable exception */
1920 EXCP_DUMP(env
, "No Altivec instructions allowed\n");
1921 info
.si_signo
= TARGET_SIGILL
;
1923 info
.si_code
= TARGET_ILL_COPROC
;
1924 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1925 queue_signal(env
, info
.si_signo
, &info
);
1927 case POWERPC_EXCP_PIT
: /* Programmable interval timer IRQ */
1928 cpu_abort(cs
, "Programmable interval timer interrupt "
1929 "while in user mode. Aborting\n");
1931 case POWERPC_EXCP_IO
: /* IO error exception */
1932 cpu_abort(cs
, "IO error exception while in user mode. "
1935 case POWERPC_EXCP_RUNM
: /* Run mode exception */
1936 cpu_abort(cs
, "Run mode exception while in user mode. "
1939 case POWERPC_EXCP_EMUL
: /* Emulation trap exception */
1940 cpu_abort(cs
, "Emulation trap exception not handled\n");
1942 case POWERPC_EXCP_IFTLB
: /* Instruction fetch TLB error */
1943 cpu_abort(cs
, "Instruction fetch TLB exception "
1944 "while in user-mode. Aborting");
1946 case POWERPC_EXCP_DLTLB
: /* Data load TLB miss */
1947 cpu_abort(cs
, "Data load TLB exception while in user-mode. "
1950 case POWERPC_EXCP_DSTLB
: /* Data store TLB miss */
1951 cpu_abort(cs
, "Data store TLB exception while in user-mode. "
1954 case POWERPC_EXCP_FPA
: /* Floating-point assist exception */
1955 cpu_abort(cs
, "Floating-point assist exception not handled\n");
1957 case POWERPC_EXCP_IABR
: /* Instruction address breakpoint */
1958 cpu_abort(cs
, "Instruction address breakpoint exception "
1961 case POWERPC_EXCP_SMI
: /* System management interrupt */
1962 cpu_abort(cs
, "System management interrupt while in user mode. "
1965 case POWERPC_EXCP_THERM
: /* Thermal interrupt */
1966 cpu_abort(cs
, "Thermal interrupt interrupt while in user mode. "
1969 case POWERPC_EXCP_PERFM
: /* Embedded performance monitor IRQ */
1970 cpu_abort(cs
, "Performance monitor exception not handled\n");
1972 case POWERPC_EXCP_VPUA
: /* Vector assist exception */
1973 cpu_abort(cs
, "Vector assist exception not handled\n");
1975 case POWERPC_EXCP_SOFTP
: /* Soft patch exception */
1976 cpu_abort(cs
, "Soft patch exception not handled\n");
1978 case POWERPC_EXCP_MAINT
: /* Maintenance exception */
1979 cpu_abort(cs
, "Maintenance exception while in user mode. "
1982 case POWERPC_EXCP_STOP
: /* stop translation */
1983 /* We did invalidate the instruction cache. Go on */
1985 case POWERPC_EXCP_BRANCH
: /* branch instruction: */
1986 /* We just stopped because of a branch. Go on */
1988 case POWERPC_EXCP_SYSCALL_USER
:
1989 /* system call in user-mode emulation */
1991 * PPC ABI uses overflow flag in cr0 to signal an error
1994 env
->crf
[0] &= ~0x1;
1995 ret
= do_syscall(env
, env
->gpr
[0], env
->gpr
[3], env
->gpr
[4],
1996 env
->gpr
[5], env
->gpr
[6], env
->gpr
[7],
1998 if (ret
== -TARGET_ERESTARTSYS
) {
2002 if (ret
== (target_ulong
)(-TARGET_QEMU_ESIGRETURN
)) {
2003 /* Returning from a successful sigreturn syscall.
2004 Avoid corrupting register state. */
2007 if (ret
> (target_ulong
)(-515)) {
2013 case POWERPC_EXCP_STCX
:
2014 if (do_store_exclusive(env
)) {
2015 info
.si_signo
= TARGET_SIGSEGV
;
2017 info
.si_code
= TARGET_SEGV_MAPERR
;
2018 info
._sifields
._sigfault
._addr
= env
->nip
;
2019 queue_signal(env
, info
.si_signo
, &info
);
2026 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2028 info
.si_signo
= sig
;
2030 info
.si_code
= TARGET_TRAP_BRKPT
;
2031 queue_signal(env
, info
.si_signo
, &info
);
2035 case EXCP_INTERRUPT
:
2036 /* just indicate that signals should be handled asap */
2039 cpu_abort(cs
, "Unknown exception 0x%d. Aborting\n", trapnr
);
2042 process_pending_signals(env
);
2049 # ifdef TARGET_ABI_MIPSO32
2050 # define MIPS_SYS(name, args) args,
2051 static const uint8_t mips_syscall_args
[] = {
2052 MIPS_SYS(sys_syscall
, 8) /* 4000 */
2053 MIPS_SYS(sys_exit
, 1)
2054 MIPS_SYS(sys_fork
, 0)
2055 MIPS_SYS(sys_read
, 3)
2056 MIPS_SYS(sys_write
, 3)
2057 MIPS_SYS(sys_open
, 3) /* 4005 */
2058 MIPS_SYS(sys_close
, 1)
2059 MIPS_SYS(sys_waitpid
, 3)
2060 MIPS_SYS(sys_creat
, 2)
2061 MIPS_SYS(sys_link
, 2)
2062 MIPS_SYS(sys_unlink
, 1) /* 4010 */
2063 MIPS_SYS(sys_execve
, 0)
2064 MIPS_SYS(sys_chdir
, 1)
2065 MIPS_SYS(sys_time
, 1)
2066 MIPS_SYS(sys_mknod
, 3)
2067 MIPS_SYS(sys_chmod
, 2) /* 4015 */
2068 MIPS_SYS(sys_lchown
, 3)
2069 MIPS_SYS(sys_ni_syscall
, 0)
2070 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_stat */
2071 MIPS_SYS(sys_lseek
, 3)
2072 MIPS_SYS(sys_getpid
, 0) /* 4020 */
2073 MIPS_SYS(sys_mount
, 5)
2074 MIPS_SYS(sys_umount
, 1)
2075 MIPS_SYS(sys_setuid
, 1)
2076 MIPS_SYS(sys_getuid
, 0)
2077 MIPS_SYS(sys_stime
, 1) /* 4025 */
2078 MIPS_SYS(sys_ptrace
, 4)
2079 MIPS_SYS(sys_alarm
, 1)
2080 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_fstat */
2081 MIPS_SYS(sys_pause
, 0)
2082 MIPS_SYS(sys_utime
, 2) /* 4030 */
2083 MIPS_SYS(sys_ni_syscall
, 0)
2084 MIPS_SYS(sys_ni_syscall
, 0)
2085 MIPS_SYS(sys_access
, 2)
2086 MIPS_SYS(sys_nice
, 1)
2087 MIPS_SYS(sys_ni_syscall
, 0) /* 4035 */
2088 MIPS_SYS(sys_sync
, 0)
2089 MIPS_SYS(sys_kill
, 2)
2090 MIPS_SYS(sys_rename
, 2)
2091 MIPS_SYS(sys_mkdir
, 2)
2092 MIPS_SYS(sys_rmdir
, 1) /* 4040 */
2093 MIPS_SYS(sys_dup
, 1)
2094 MIPS_SYS(sys_pipe
, 0)
2095 MIPS_SYS(sys_times
, 1)
2096 MIPS_SYS(sys_ni_syscall
, 0)
2097 MIPS_SYS(sys_brk
, 1) /* 4045 */
2098 MIPS_SYS(sys_setgid
, 1)
2099 MIPS_SYS(sys_getgid
, 0)
2100 MIPS_SYS(sys_ni_syscall
, 0) /* was signal(2) */
2101 MIPS_SYS(sys_geteuid
, 0)
2102 MIPS_SYS(sys_getegid
, 0) /* 4050 */
2103 MIPS_SYS(sys_acct
, 0)
2104 MIPS_SYS(sys_umount2
, 2)
2105 MIPS_SYS(sys_ni_syscall
, 0)
2106 MIPS_SYS(sys_ioctl
, 3)
2107 MIPS_SYS(sys_fcntl
, 3) /* 4055 */
2108 MIPS_SYS(sys_ni_syscall
, 2)
2109 MIPS_SYS(sys_setpgid
, 2)
2110 MIPS_SYS(sys_ni_syscall
, 0)
2111 MIPS_SYS(sys_olduname
, 1)
2112 MIPS_SYS(sys_umask
, 1) /* 4060 */
2113 MIPS_SYS(sys_chroot
, 1)
2114 MIPS_SYS(sys_ustat
, 2)
2115 MIPS_SYS(sys_dup2
, 2)
2116 MIPS_SYS(sys_getppid
, 0)
2117 MIPS_SYS(sys_getpgrp
, 0) /* 4065 */
2118 MIPS_SYS(sys_setsid
, 0)
2119 MIPS_SYS(sys_sigaction
, 3)
2120 MIPS_SYS(sys_sgetmask
, 0)
2121 MIPS_SYS(sys_ssetmask
, 1)
2122 MIPS_SYS(sys_setreuid
, 2) /* 4070 */
2123 MIPS_SYS(sys_setregid
, 2)
2124 MIPS_SYS(sys_sigsuspend
, 0)
2125 MIPS_SYS(sys_sigpending
, 1)
2126 MIPS_SYS(sys_sethostname
, 2)
2127 MIPS_SYS(sys_setrlimit
, 2) /* 4075 */
2128 MIPS_SYS(sys_getrlimit
, 2)
2129 MIPS_SYS(sys_getrusage
, 2)
2130 MIPS_SYS(sys_gettimeofday
, 2)
2131 MIPS_SYS(sys_settimeofday
, 2)
2132 MIPS_SYS(sys_getgroups
, 2) /* 4080 */
2133 MIPS_SYS(sys_setgroups
, 2)
2134 MIPS_SYS(sys_ni_syscall
, 0) /* old_select */
2135 MIPS_SYS(sys_symlink
, 2)
2136 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_lstat */
2137 MIPS_SYS(sys_readlink
, 3) /* 4085 */
2138 MIPS_SYS(sys_uselib
, 1)
2139 MIPS_SYS(sys_swapon
, 2)
2140 MIPS_SYS(sys_reboot
, 3)
2141 MIPS_SYS(old_readdir
, 3)
2142 MIPS_SYS(old_mmap
, 6) /* 4090 */
2143 MIPS_SYS(sys_munmap
, 2)
2144 MIPS_SYS(sys_truncate
, 2)
2145 MIPS_SYS(sys_ftruncate
, 2)
2146 MIPS_SYS(sys_fchmod
, 2)
2147 MIPS_SYS(sys_fchown
, 3) /* 4095 */
2148 MIPS_SYS(sys_getpriority
, 2)
2149 MIPS_SYS(sys_setpriority
, 3)
2150 MIPS_SYS(sys_ni_syscall
, 0)
2151 MIPS_SYS(sys_statfs
, 2)
2152 MIPS_SYS(sys_fstatfs
, 2) /* 4100 */
2153 MIPS_SYS(sys_ni_syscall
, 0) /* was ioperm(2) */
2154 MIPS_SYS(sys_socketcall
, 2)
2155 MIPS_SYS(sys_syslog
, 3)
2156 MIPS_SYS(sys_setitimer
, 3)
2157 MIPS_SYS(sys_getitimer
, 2) /* 4105 */
2158 MIPS_SYS(sys_newstat
, 2)
2159 MIPS_SYS(sys_newlstat
, 2)
2160 MIPS_SYS(sys_newfstat
, 2)
2161 MIPS_SYS(sys_uname
, 1)
2162 MIPS_SYS(sys_ni_syscall
, 0) /* 4110 was iopl(2) */
2163 MIPS_SYS(sys_vhangup
, 0)
2164 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_idle() */
2165 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_vm86 */
2166 MIPS_SYS(sys_wait4
, 4)
2167 MIPS_SYS(sys_swapoff
, 1) /* 4115 */
2168 MIPS_SYS(sys_sysinfo
, 1)
2169 MIPS_SYS(sys_ipc
, 6)
2170 MIPS_SYS(sys_fsync
, 1)
2171 MIPS_SYS(sys_sigreturn
, 0)
2172 MIPS_SYS(sys_clone
, 6) /* 4120 */
2173 MIPS_SYS(sys_setdomainname
, 2)
2174 MIPS_SYS(sys_newuname
, 1)
2175 MIPS_SYS(sys_ni_syscall
, 0) /* sys_modify_ldt */
2176 MIPS_SYS(sys_adjtimex
, 1)
2177 MIPS_SYS(sys_mprotect
, 3) /* 4125 */
2178 MIPS_SYS(sys_sigprocmask
, 3)
2179 MIPS_SYS(sys_ni_syscall
, 0) /* was create_module */
2180 MIPS_SYS(sys_init_module
, 5)
2181 MIPS_SYS(sys_delete_module
, 1)
2182 MIPS_SYS(sys_ni_syscall
, 0) /* 4130 was get_kernel_syms */
2183 MIPS_SYS(sys_quotactl
, 0)
2184 MIPS_SYS(sys_getpgid
, 1)
2185 MIPS_SYS(sys_fchdir
, 1)
2186 MIPS_SYS(sys_bdflush
, 2)
2187 MIPS_SYS(sys_sysfs
, 3) /* 4135 */
2188 MIPS_SYS(sys_personality
, 1)
2189 MIPS_SYS(sys_ni_syscall
, 0) /* for afs_syscall */
2190 MIPS_SYS(sys_setfsuid
, 1)
2191 MIPS_SYS(sys_setfsgid
, 1)
2192 MIPS_SYS(sys_llseek
, 5) /* 4140 */
2193 MIPS_SYS(sys_getdents
, 3)
2194 MIPS_SYS(sys_select
, 5)
2195 MIPS_SYS(sys_flock
, 2)
2196 MIPS_SYS(sys_msync
, 3)
2197 MIPS_SYS(sys_readv
, 3) /* 4145 */
2198 MIPS_SYS(sys_writev
, 3)
2199 MIPS_SYS(sys_cacheflush
, 3)
2200 MIPS_SYS(sys_cachectl
, 3)
2201 MIPS_SYS(sys_sysmips
, 4)
2202 MIPS_SYS(sys_ni_syscall
, 0) /* 4150 */
2203 MIPS_SYS(sys_getsid
, 1)
2204 MIPS_SYS(sys_fdatasync
, 0)
2205 MIPS_SYS(sys_sysctl
, 1)
2206 MIPS_SYS(sys_mlock
, 2)
2207 MIPS_SYS(sys_munlock
, 2) /* 4155 */
2208 MIPS_SYS(sys_mlockall
, 1)
2209 MIPS_SYS(sys_munlockall
, 0)
2210 MIPS_SYS(sys_sched_setparam
, 2)
2211 MIPS_SYS(sys_sched_getparam
, 2)
2212 MIPS_SYS(sys_sched_setscheduler
, 3) /* 4160 */
2213 MIPS_SYS(sys_sched_getscheduler
, 1)
2214 MIPS_SYS(sys_sched_yield
, 0)
2215 MIPS_SYS(sys_sched_get_priority_max
, 1)
2216 MIPS_SYS(sys_sched_get_priority_min
, 1)
2217 MIPS_SYS(sys_sched_rr_get_interval
, 2) /* 4165 */
2218 MIPS_SYS(sys_nanosleep
, 2)
2219 MIPS_SYS(sys_mremap
, 5)
2220 MIPS_SYS(sys_accept
, 3)
2221 MIPS_SYS(sys_bind
, 3)
2222 MIPS_SYS(sys_connect
, 3) /* 4170 */
2223 MIPS_SYS(sys_getpeername
, 3)
2224 MIPS_SYS(sys_getsockname
, 3)
2225 MIPS_SYS(sys_getsockopt
, 5)
2226 MIPS_SYS(sys_listen
, 2)
2227 MIPS_SYS(sys_recv
, 4) /* 4175 */
2228 MIPS_SYS(sys_recvfrom
, 6)
2229 MIPS_SYS(sys_recvmsg
, 3)
2230 MIPS_SYS(sys_send
, 4)
2231 MIPS_SYS(sys_sendmsg
, 3)
2232 MIPS_SYS(sys_sendto
, 6) /* 4180 */
2233 MIPS_SYS(sys_setsockopt
, 5)
2234 MIPS_SYS(sys_shutdown
, 2)
2235 MIPS_SYS(sys_socket
, 3)
2236 MIPS_SYS(sys_socketpair
, 4)
2237 MIPS_SYS(sys_setresuid
, 3) /* 4185 */
2238 MIPS_SYS(sys_getresuid
, 3)
2239 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_query_module */
2240 MIPS_SYS(sys_poll
, 3)
2241 MIPS_SYS(sys_nfsservctl
, 3)
2242 MIPS_SYS(sys_setresgid
, 3) /* 4190 */
2243 MIPS_SYS(sys_getresgid
, 3)
2244 MIPS_SYS(sys_prctl
, 5)
2245 MIPS_SYS(sys_rt_sigreturn
, 0)
2246 MIPS_SYS(sys_rt_sigaction
, 4)
2247 MIPS_SYS(sys_rt_sigprocmask
, 4) /* 4195 */
2248 MIPS_SYS(sys_rt_sigpending
, 2)
2249 MIPS_SYS(sys_rt_sigtimedwait
, 4)
2250 MIPS_SYS(sys_rt_sigqueueinfo
, 3)
2251 MIPS_SYS(sys_rt_sigsuspend
, 0)
2252 MIPS_SYS(sys_pread64
, 6) /* 4200 */
2253 MIPS_SYS(sys_pwrite64
, 6)
2254 MIPS_SYS(sys_chown
, 3)
2255 MIPS_SYS(sys_getcwd
, 2)
2256 MIPS_SYS(sys_capget
, 2)
2257 MIPS_SYS(sys_capset
, 2) /* 4205 */
2258 MIPS_SYS(sys_sigaltstack
, 2)
2259 MIPS_SYS(sys_sendfile
, 4)
2260 MIPS_SYS(sys_ni_syscall
, 0)
2261 MIPS_SYS(sys_ni_syscall
, 0)
2262 MIPS_SYS(sys_mmap2
, 6) /* 4210 */
2263 MIPS_SYS(sys_truncate64
, 4)
2264 MIPS_SYS(sys_ftruncate64
, 4)
2265 MIPS_SYS(sys_stat64
, 2)
2266 MIPS_SYS(sys_lstat64
, 2)
2267 MIPS_SYS(sys_fstat64
, 2) /* 4215 */
2268 MIPS_SYS(sys_pivot_root
, 2)
2269 MIPS_SYS(sys_mincore
, 3)
2270 MIPS_SYS(sys_madvise
, 3)
2271 MIPS_SYS(sys_getdents64
, 3)
2272 MIPS_SYS(sys_fcntl64
, 3) /* 4220 */
2273 MIPS_SYS(sys_ni_syscall
, 0)
2274 MIPS_SYS(sys_gettid
, 0)
2275 MIPS_SYS(sys_readahead
, 5)
2276 MIPS_SYS(sys_setxattr
, 5)
2277 MIPS_SYS(sys_lsetxattr
, 5) /* 4225 */
2278 MIPS_SYS(sys_fsetxattr
, 5)
2279 MIPS_SYS(sys_getxattr
, 4)
2280 MIPS_SYS(sys_lgetxattr
, 4)
2281 MIPS_SYS(sys_fgetxattr
, 4)
2282 MIPS_SYS(sys_listxattr
, 3) /* 4230 */
2283 MIPS_SYS(sys_llistxattr
, 3)
2284 MIPS_SYS(sys_flistxattr
, 3)
2285 MIPS_SYS(sys_removexattr
, 2)
2286 MIPS_SYS(sys_lremovexattr
, 2)
2287 MIPS_SYS(sys_fremovexattr
, 2) /* 4235 */
2288 MIPS_SYS(sys_tkill
, 2)
2289 MIPS_SYS(sys_sendfile64
, 5)
2290 MIPS_SYS(sys_futex
, 6)
2291 MIPS_SYS(sys_sched_setaffinity
, 3)
2292 MIPS_SYS(sys_sched_getaffinity
, 3) /* 4240 */
2293 MIPS_SYS(sys_io_setup
, 2)
2294 MIPS_SYS(sys_io_destroy
, 1)
2295 MIPS_SYS(sys_io_getevents
, 5)
2296 MIPS_SYS(sys_io_submit
, 3)
2297 MIPS_SYS(sys_io_cancel
, 3) /* 4245 */
2298 MIPS_SYS(sys_exit_group
, 1)
2299 MIPS_SYS(sys_lookup_dcookie
, 3)
2300 MIPS_SYS(sys_epoll_create
, 1)
2301 MIPS_SYS(sys_epoll_ctl
, 4)
2302 MIPS_SYS(sys_epoll_wait
, 3) /* 4250 */
2303 MIPS_SYS(sys_remap_file_pages
, 5)
2304 MIPS_SYS(sys_set_tid_address
, 1)
2305 MIPS_SYS(sys_restart_syscall
, 0)
2306 MIPS_SYS(sys_fadvise64_64
, 7)
2307 MIPS_SYS(sys_statfs64
, 3) /* 4255 */
2308 MIPS_SYS(sys_fstatfs64
, 2)
2309 MIPS_SYS(sys_timer_create
, 3)
2310 MIPS_SYS(sys_timer_settime
, 4)
2311 MIPS_SYS(sys_timer_gettime
, 2)
2312 MIPS_SYS(sys_timer_getoverrun
, 1) /* 4260 */
2313 MIPS_SYS(sys_timer_delete
, 1)
2314 MIPS_SYS(sys_clock_settime
, 2)
2315 MIPS_SYS(sys_clock_gettime
, 2)
2316 MIPS_SYS(sys_clock_getres
, 2)
2317 MIPS_SYS(sys_clock_nanosleep
, 4) /* 4265 */
2318 MIPS_SYS(sys_tgkill
, 3)
2319 MIPS_SYS(sys_utimes
, 2)
2320 MIPS_SYS(sys_mbind
, 4)
2321 MIPS_SYS(sys_ni_syscall
, 0) /* sys_get_mempolicy */
2322 MIPS_SYS(sys_ni_syscall
, 0) /* 4270 sys_set_mempolicy */
2323 MIPS_SYS(sys_mq_open
, 4)
2324 MIPS_SYS(sys_mq_unlink
, 1)
2325 MIPS_SYS(sys_mq_timedsend
, 5)
2326 MIPS_SYS(sys_mq_timedreceive
, 5)
2327 MIPS_SYS(sys_mq_notify
, 2) /* 4275 */
2328 MIPS_SYS(sys_mq_getsetattr
, 3)
2329 MIPS_SYS(sys_ni_syscall
, 0) /* sys_vserver */
2330 MIPS_SYS(sys_waitid
, 4)
2331 MIPS_SYS(sys_ni_syscall
, 0) /* available, was setaltroot */
2332 MIPS_SYS(sys_add_key
, 5)
2333 MIPS_SYS(sys_request_key
, 4)
2334 MIPS_SYS(sys_keyctl
, 5)
2335 MIPS_SYS(sys_set_thread_area
, 1)
2336 MIPS_SYS(sys_inotify_init
, 0)
2337 MIPS_SYS(sys_inotify_add_watch
, 3) /* 4285 */
2338 MIPS_SYS(sys_inotify_rm_watch
, 2)
2339 MIPS_SYS(sys_migrate_pages
, 4)
2340 MIPS_SYS(sys_openat
, 4)
2341 MIPS_SYS(sys_mkdirat
, 3)
2342 MIPS_SYS(sys_mknodat
, 4) /* 4290 */
2343 MIPS_SYS(sys_fchownat
, 5)
2344 MIPS_SYS(sys_futimesat
, 3)
2345 MIPS_SYS(sys_fstatat64
, 4)
2346 MIPS_SYS(sys_unlinkat
, 3)
2347 MIPS_SYS(sys_renameat
, 4) /* 4295 */
2348 MIPS_SYS(sys_linkat
, 5)
2349 MIPS_SYS(sys_symlinkat
, 3)
2350 MIPS_SYS(sys_readlinkat
, 4)
2351 MIPS_SYS(sys_fchmodat
, 3)
2352 MIPS_SYS(sys_faccessat
, 3) /* 4300 */
2353 MIPS_SYS(sys_pselect6
, 6)
2354 MIPS_SYS(sys_ppoll
, 5)
2355 MIPS_SYS(sys_unshare
, 1)
2356 MIPS_SYS(sys_splice
, 6)
2357 MIPS_SYS(sys_sync_file_range
, 7) /* 4305 */
2358 MIPS_SYS(sys_tee
, 4)
2359 MIPS_SYS(sys_vmsplice
, 4)
2360 MIPS_SYS(sys_move_pages
, 6)
2361 MIPS_SYS(sys_set_robust_list
, 2)
2362 MIPS_SYS(sys_get_robust_list
, 3) /* 4310 */
2363 MIPS_SYS(sys_kexec_load
, 4)
2364 MIPS_SYS(sys_getcpu
, 3)
2365 MIPS_SYS(sys_epoll_pwait
, 6)
2366 MIPS_SYS(sys_ioprio_set
, 3)
2367 MIPS_SYS(sys_ioprio_get
, 2)
2368 MIPS_SYS(sys_utimensat
, 4)
2369 MIPS_SYS(sys_signalfd
, 3)
2370 MIPS_SYS(sys_ni_syscall
, 0) /* was timerfd */
2371 MIPS_SYS(sys_eventfd
, 1)
2372 MIPS_SYS(sys_fallocate
, 6) /* 4320 */
2373 MIPS_SYS(sys_timerfd_create
, 2)
2374 MIPS_SYS(sys_timerfd_gettime
, 2)
2375 MIPS_SYS(sys_timerfd_settime
, 4)
2376 MIPS_SYS(sys_signalfd4
, 4)
2377 MIPS_SYS(sys_eventfd2
, 2) /* 4325 */
2378 MIPS_SYS(sys_epoll_create1
, 1)
2379 MIPS_SYS(sys_dup3
, 3)
2380 MIPS_SYS(sys_pipe2
, 2)
2381 MIPS_SYS(sys_inotify_init1
, 1)
2382 MIPS_SYS(sys_preadv
, 6) /* 4330 */
2383 MIPS_SYS(sys_pwritev
, 6)
2384 MIPS_SYS(sys_rt_tgsigqueueinfo
, 4)
2385 MIPS_SYS(sys_perf_event_open
, 5)
2386 MIPS_SYS(sys_accept4
, 4)
2387 MIPS_SYS(sys_recvmmsg
, 5) /* 4335 */
2388 MIPS_SYS(sys_fanotify_init
, 2)
2389 MIPS_SYS(sys_fanotify_mark
, 6)
2390 MIPS_SYS(sys_prlimit64
, 4)
2391 MIPS_SYS(sys_name_to_handle_at
, 5)
2392 MIPS_SYS(sys_open_by_handle_at
, 3) /* 4340 */
2393 MIPS_SYS(sys_clock_adjtime
, 2)
2394 MIPS_SYS(sys_syncfs
, 1)
2399 static int do_store_exclusive(CPUMIPSState
*env
)
2402 target_ulong page_addr
;
2410 page_addr
= addr
& TARGET_PAGE_MASK
;
2413 flags
= page_get_flags(page_addr
);
2414 if ((flags
& PAGE_READ
) == 0) {
2417 reg
= env
->llreg
& 0x1f;
2418 d
= (env
->llreg
& 0x20) != 0;
2420 segv
= get_user_s64(val
, addr
);
2422 segv
= get_user_s32(val
, addr
);
2425 if (val
!= env
->llval
) {
2426 env
->active_tc
.gpr
[reg
] = 0;
2429 segv
= put_user_u64(env
->llnewval
, addr
);
2431 segv
= put_user_u32(env
->llnewval
, addr
);
2434 env
->active_tc
.gpr
[reg
] = 1;
2441 env
->active_tc
.PC
+= 4;
2454 static int do_break(CPUMIPSState
*env
, target_siginfo_t
*info
,
2462 info
->si_signo
= TARGET_SIGFPE
;
2464 info
->si_code
= (code
== BRK_OVERFLOW
) ? FPE_INTOVF
: FPE_INTDIV
;
2465 queue_signal(env
, info
->si_signo
, &*info
);
2469 info
->si_signo
= TARGET_SIGTRAP
;
2471 queue_signal(env
, info
->si_signo
, &*info
);
2479 void cpu_loop(CPUMIPSState
*env
)
2481 CPUState
*cs
= CPU(mips_env_get_cpu(env
));
2482 target_siginfo_t info
;
2485 # ifdef TARGET_ABI_MIPSO32
2486 unsigned int syscall_num
;
2491 trapnr
= cpu_mips_exec(cs
);
2495 env
->active_tc
.PC
+= 4;
2496 # ifdef TARGET_ABI_MIPSO32
2497 syscall_num
= env
->active_tc
.gpr
[2] - 4000;
2498 if (syscall_num
>= sizeof(mips_syscall_args
)) {
2499 ret
= -TARGET_ENOSYS
;
2503 abi_ulong arg5
= 0, arg6
= 0, arg7
= 0, arg8
= 0;
2505 nb_args
= mips_syscall_args
[syscall_num
];
2506 sp_reg
= env
->active_tc
.gpr
[29];
2508 /* these arguments are taken from the stack */
2510 if ((ret
= get_user_ual(arg8
, sp_reg
+ 28)) != 0) {
2514 if ((ret
= get_user_ual(arg7
, sp_reg
+ 24)) != 0) {
2518 if ((ret
= get_user_ual(arg6
, sp_reg
+ 20)) != 0) {
2522 if ((ret
= get_user_ual(arg5
, sp_reg
+ 16)) != 0) {
2528 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2529 env
->active_tc
.gpr
[4],
2530 env
->active_tc
.gpr
[5],
2531 env
->active_tc
.gpr
[6],
2532 env
->active_tc
.gpr
[7],
2533 arg5
, arg6
, arg7
, arg8
);
2537 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2538 env
->active_tc
.gpr
[4], env
->active_tc
.gpr
[5],
2539 env
->active_tc
.gpr
[6], env
->active_tc
.gpr
[7],
2540 env
->active_tc
.gpr
[8], env
->active_tc
.gpr
[9],
2541 env
->active_tc
.gpr
[10], env
->active_tc
.gpr
[11]);
2543 if (ret
== -TARGET_ERESTARTSYS
) {
2544 env
->active_tc
.PC
-= 4;
2547 if (ret
== -TARGET_QEMU_ESIGRETURN
) {
2548 /* Returning from a successful sigreturn syscall.
2549 Avoid clobbering register state. */
2552 if ((abi_ulong
)ret
>= (abi_ulong
)-1133) {
2553 env
->active_tc
.gpr
[7] = 1; /* error flag */
2556 env
->active_tc
.gpr
[7] = 0; /* error flag */
2558 env
->active_tc
.gpr
[2] = ret
;
2564 info
.si_signo
= TARGET_SIGSEGV
;
2566 /* XXX: check env->error_code */
2567 info
.si_code
= TARGET_SEGV_MAPERR
;
2568 info
._sifields
._sigfault
._addr
= env
->CP0_BadVAddr
;
2569 queue_signal(env
, info
.si_signo
, &info
);
2573 info
.si_signo
= TARGET_SIGILL
;
2576 queue_signal(env
, info
.si_signo
, &info
);
2578 case EXCP_INTERRUPT
:
2579 /* just indicate that signals should be handled asap */
2585 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2588 info
.si_signo
= sig
;
2590 info
.si_code
= TARGET_TRAP_BRKPT
;
2591 queue_signal(env
, info
.si_signo
, &info
);
2596 if (do_store_exclusive(env
)) {
2597 info
.si_signo
= TARGET_SIGSEGV
;
2599 info
.si_code
= TARGET_SEGV_MAPERR
;
2600 info
._sifields
._sigfault
._addr
= env
->active_tc
.PC
;
2601 queue_signal(env
, info
.si_signo
, &info
);
2605 info
.si_signo
= TARGET_SIGILL
;
2607 info
.si_code
= TARGET_ILL_ILLOPC
;
2608 queue_signal(env
, info
.si_signo
, &info
);
2610 /* The code below was inspired by the MIPS Linux kernel trap
2611 * handling code in arch/mips/kernel/traps.c.
2615 abi_ulong trap_instr
;
2618 if (env
->hflags
& MIPS_HFLAG_M16
) {
2619 if (env
->insn_flags
& ASE_MICROMIPS
) {
2620 /* microMIPS mode */
2621 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2626 if ((trap_instr
>> 10) == 0x11) {
2627 /* 16-bit instruction */
2628 code
= trap_instr
& 0xf;
2630 /* 32-bit instruction */
2633 ret
= get_user_u16(instr_lo
,
2634 env
->active_tc
.PC
+ 2);
2638 trap_instr
= (trap_instr
<< 16) | instr_lo
;
2639 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2640 /* Unfortunately, microMIPS also suffers from
2641 the old assembler bug... */
2642 if (code
>= (1 << 10)) {
2648 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2652 code
= (trap_instr
>> 6) & 0x3f;
2655 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2660 /* As described in the original Linux kernel code, the
2661 * below checks on 'code' are to work around an old
2664 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2665 if (code
>= (1 << 10)) {
2670 if (do_break(env
, &info
, code
) != 0) {
2677 abi_ulong trap_instr
;
2678 unsigned int code
= 0;
2680 if (env
->hflags
& MIPS_HFLAG_M16
) {
2681 /* microMIPS mode */
2684 ret
= get_user_u16(instr
[0], env
->active_tc
.PC
) ||
2685 get_user_u16(instr
[1], env
->active_tc
.PC
+ 2);
2687 trap_instr
= (instr
[0] << 16) | instr
[1];
2689 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2696 /* The immediate versions don't provide a code. */
2697 if (!(trap_instr
& 0xFC000000)) {
2698 if (env
->hflags
& MIPS_HFLAG_M16
) {
2699 /* microMIPS mode */
2700 code
= ((trap_instr
>> 12) & ((1 << 4) - 1));
2702 code
= ((trap_instr
>> 6) & ((1 << 10) - 1));
2706 if (do_break(env
, &info
, code
) != 0) {
2713 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
2716 process_pending_signals(env
);
2721 #ifdef TARGET_OPENRISC
2723 void cpu_loop(CPUOpenRISCState
*env
)
2725 CPUState
*cs
= CPU(openrisc_env_get_cpu(env
));
2731 trapnr
= cpu_openrisc_exec(cs
);
2737 qemu_log_mask(CPU_LOG_INT
, "\nReset request, exit, pc is %#x\n", env
->pc
);
2741 qemu_log_mask(CPU_LOG_INT
, "\nBus error, exit, pc is %#x\n", env
->pc
);
2742 gdbsig
= TARGET_SIGBUS
;
2746 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2747 gdbsig
= TARGET_SIGSEGV
;
2750 qemu_log_mask(CPU_LOG_INT
, "\nTick time interrupt pc is %#x\n", env
->pc
);
2753 qemu_log_mask(CPU_LOG_INT
, "\nAlignment pc is %#x\n", env
->pc
);
2754 gdbsig
= TARGET_SIGBUS
;
2757 qemu_log_mask(CPU_LOG_INT
, "\nIllegal instructionpc is %#x\n", env
->pc
);
2758 gdbsig
= TARGET_SIGILL
;
2761 qemu_log_mask(CPU_LOG_INT
, "\nExternal interruptpc is %#x\n", env
->pc
);
2765 qemu_log_mask(CPU_LOG_INT
, "\nTLB miss\n");
2768 qemu_log_mask(CPU_LOG_INT
, "\nRange\n");
2769 gdbsig
= TARGET_SIGSEGV
;
2772 env
->pc
+= 4; /* 0xc00; */
2773 ret
= do_syscall(env
,
2774 env
->gpr
[11], /* return value */
2775 env
->gpr
[3], /* r3 - r7 are params */
2781 if (ret
== -TARGET_ERESTARTSYS
) {
2783 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2788 qemu_log_mask(CPU_LOG_INT
, "\nFloating point error\n");
2791 qemu_log_mask(CPU_LOG_INT
, "\nTrap\n");
2792 gdbsig
= TARGET_SIGTRAP
;
2795 qemu_log_mask(CPU_LOG_INT
, "\nNR\n");
2798 EXCP_DUMP(env
, "\nqemu: unhandled CPU exception %#x - aborting\n",
2800 gdbsig
= TARGET_SIGILL
;
2804 gdb_handlesig(cs
, gdbsig
);
2805 if (gdbsig
!= TARGET_SIGTRAP
) {
2810 process_pending_signals(env
);
2814 #endif /* TARGET_OPENRISC */
2817 void cpu_loop(CPUSH4State
*env
)
2819 CPUState
*cs
= CPU(sh_env_get_cpu(env
));
2821 target_siginfo_t info
;
2825 trapnr
= cpu_sh4_exec(cs
);
2831 ret
= do_syscall(env
,
2840 if (ret
== -TARGET_ERESTARTSYS
) {
2842 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2843 env
->gregs
[0] = ret
;
2846 case EXCP_INTERRUPT
:
2847 /* just indicate that signals should be handled asap */
2853 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2856 info
.si_signo
= sig
;
2858 info
.si_code
= TARGET_TRAP_BRKPT
;
2859 queue_signal(env
, info
.si_signo
, &info
);
2865 info
.si_signo
= TARGET_SIGSEGV
;
2867 info
.si_code
= TARGET_SEGV_MAPERR
;
2868 info
._sifields
._sigfault
._addr
= env
->tea
;
2869 queue_signal(env
, info
.si_signo
, &info
);
2873 printf ("Unhandled trap: 0x%x\n", trapnr
);
2874 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2877 process_pending_signals (env
);
2883 void cpu_loop(CPUCRISState
*env
)
2885 CPUState
*cs
= CPU(cris_env_get_cpu(env
));
2887 target_siginfo_t info
;
2891 trapnr
= cpu_cris_exec(cs
);
2896 info
.si_signo
= TARGET_SIGSEGV
;
2898 /* XXX: check env->error_code */
2899 info
.si_code
= TARGET_SEGV_MAPERR
;
2900 info
._sifields
._sigfault
._addr
= env
->pregs
[PR_EDA
];
2901 queue_signal(env
, info
.si_signo
, &info
);
2904 case EXCP_INTERRUPT
:
2905 /* just indicate that signals should be handled asap */
2908 ret
= do_syscall(env
,
2917 if (ret
== -TARGET_ERESTARTSYS
) {
2919 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2920 env
->regs
[10] = ret
;
2927 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2930 info
.si_signo
= sig
;
2932 info
.si_code
= TARGET_TRAP_BRKPT
;
2933 queue_signal(env
, info
.si_signo
, &info
);
2938 printf ("Unhandled trap: 0x%x\n", trapnr
);
2939 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2942 process_pending_signals (env
);
2947 #ifdef TARGET_MICROBLAZE
2948 void cpu_loop(CPUMBState
*env
)
2950 CPUState
*cs
= CPU(mb_env_get_cpu(env
));
2952 target_siginfo_t info
;
2956 trapnr
= cpu_mb_exec(cs
);
2961 info
.si_signo
= TARGET_SIGSEGV
;
2963 /* XXX: check env->error_code */
2964 info
.si_code
= TARGET_SEGV_MAPERR
;
2965 info
._sifields
._sigfault
._addr
= 0;
2966 queue_signal(env
, info
.si_signo
, &info
);
2969 case EXCP_INTERRUPT
:
2970 /* just indicate that signals should be handled asap */
2973 /* Return address is 4 bytes after the call. */
2975 env
->sregs
[SR_PC
] = env
->regs
[14];
2976 ret
= do_syscall(env
,
2988 env
->regs
[17] = env
->sregs
[SR_PC
] + 4;
2989 if (env
->iflags
& D_FLAG
) {
2990 env
->sregs
[SR_ESR
] |= 1 << 12;
2991 env
->sregs
[SR_PC
] -= 4;
2992 /* FIXME: if branch was immed, replay the imm as well. */
2995 env
->iflags
&= ~(IMM_FLAG
| D_FLAG
);
2997 switch (env
->sregs
[SR_ESR
] & 31) {
2998 case ESR_EC_DIVZERO
:
2999 info
.si_signo
= TARGET_SIGFPE
;
3001 info
.si_code
= TARGET_FPE_FLTDIV
;
3002 info
._sifields
._sigfault
._addr
= 0;
3003 queue_signal(env
, info
.si_signo
, &info
);
3006 info
.si_signo
= TARGET_SIGFPE
;
3008 if (env
->sregs
[SR_FSR
] & FSR_IO
) {
3009 info
.si_code
= TARGET_FPE_FLTINV
;
3011 if (env
->sregs
[SR_FSR
] & FSR_DZ
) {
3012 info
.si_code
= TARGET_FPE_FLTDIV
;
3014 info
._sifields
._sigfault
._addr
= 0;
3015 queue_signal(env
, info
.si_signo
, &info
);
3018 printf ("Unhandled hw-exception: 0x%x\n",
3019 env
->sregs
[SR_ESR
] & ESR_EC_MASK
);
3020 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3029 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3032 info
.si_signo
= sig
;
3034 info
.si_code
= TARGET_TRAP_BRKPT
;
3035 queue_signal(env
, info
.si_signo
, &info
);
3040 printf ("Unhandled trap: 0x%x\n", trapnr
);
3041 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3044 process_pending_signals (env
);
3051 void cpu_loop(CPUM68KState
*env
)
3053 CPUState
*cs
= CPU(m68k_env_get_cpu(env
));
3056 target_siginfo_t info
;
3057 TaskState
*ts
= cs
->opaque
;
3061 trapnr
= cpu_m68k_exec(cs
);
3066 if (ts
->sim_syscalls
) {
3068 get_user_u16(nr
, env
->pc
+ 2);
3070 do_m68k_simcall(env
, nr
);
3076 case EXCP_HALT_INSN
:
3077 /* Semihosing syscall. */
3079 do_m68k_semihosting(env
, env
->dregs
[0]);
3083 case EXCP_UNSUPPORTED
:
3085 info
.si_signo
= TARGET_SIGILL
;
3087 info
.si_code
= TARGET_ILL_ILLOPN
;
3088 info
._sifields
._sigfault
._addr
= env
->pc
;
3089 queue_signal(env
, info
.si_signo
, &info
);
3094 ts
->sim_syscalls
= 0;
3097 ret
= do_syscall(env
,
3106 if (ret
== -TARGET_ERESTARTSYS
) {
3108 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3109 env
->dregs
[0] = ret
;
3113 case EXCP_INTERRUPT
:
3114 /* just indicate that signals should be handled asap */
3118 info
.si_signo
= TARGET_SIGSEGV
;
3120 /* XXX: check env->error_code */
3121 info
.si_code
= TARGET_SEGV_MAPERR
;
3122 info
._sifields
._sigfault
._addr
= env
->mmu
.ar
;
3123 queue_signal(env
, info
.si_signo
, &info
);
3130 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3133 info
.si_signo
= sig
;
3135 info
.si_code
= TARGET_TRAP_BRKPT
;
3136 queue_signal(env
, info
.si_signo
, &info
);
3141 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
3144 process_pending_signals(env
);
3147 #endif /* TARGET_M68K */
3150 static void do_store_exclusive(CPUAlphaState
*env
, int reg
, int quad
)
3152 target_ulong addr
, val
, tmp
;
3153 target_siginfo_t info
;
3156 addr
= env
->lock_addr
;
3157 tmp
= env
->lock_st_addr
;
3158 env
->lock_addr
= -1;
3159 env
->lock_st_addr
= 0;
3165 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3169 if (val
== env
->lock_value
) {
3171 if (quad
? put_user_u64(tmp
, addr
) : put_user_u32(tmp
, addr
)) {
3188 info
.si_signo
= TARGET_SIGSEGV
;
3190 info
.si_code
= TARGET_SEGV_MAPERR
;
3191 info
._sifields
._sigfault
._addr
= addr
;
3192 queue_signal(env
, TARGET_SIGSEGV
, &info
);
3195 void cpu_loop(CPUAlphaState
*env
)
3197 CPUState
*cs
= CPU(alpha_env_get_cpu(env
));
3199 target_siginfo_t info
;
3204 trapnr
= cpu_alpha_exec(cs
);
3207 /* All of the traps imply a transition through PALcode, which
3208 implies an REI instruction has been executed. Which means
3209 that the intr_flag should be cleared. */
3214 fprintf(stderr
, "Reset requested. Exit\n");
3218 fprintf(stderr
, "Machine check exception. Exit\n");
3221 case EXCP_SMP_INTERRUPT
:
3222 case EXCP_CLK_INTERRUPT
:
3223 case EXCP_DEV_INTERRUPT
:
3224 fprintf(stderr
, "External interrupt. Exit\n");
3228 env
->lock_addr
= -1;
3229 info
.si_signo
= TARGET_SIGSEGV
;
3231 info
.si_code
= (page_get_flags(env
->trap_arg0
) & PAGE_VALID
3232 ? TARGET_SEGV_ACCERR
: TARGET_SEGV_MAPERR
);
3233 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3234 queue_signal(env
, info
.si_signo
, &info
);
3237 env
->lock_addr
= -1;
3238 info
.si_signo
= TARGET_SIGBUS
;
3240 info
.si_code
= TARGET_BUS_ADRALN
;
3241 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3242 queue_signal(env
, info
.si_signo
, &info
);
3246 env
->lock_addr
= -1;
3247 info
.si_signo
= TARGET_SIGILL
;
3249 info
.si_code
= TARGET_ILL_ILLOPC
;
3250 info
._sifields
._sigfault
._addr
= env
->pc
;
3251 queue_signal(env
, info
.si_signo
, &info
);
3254 env
->lock_addr
= -1;
3255 info
.si_signo
= TARGET_SIGFPE
;
3257 info
.si_code
= TARGET_FPE_FLTINV
;
3258 info
._sifields
._sigfault
._addr
= env
->pc
;
3259 queue_signal(env
, info
.si_signo
, &info
);
3262 /* No-op. Linux simply re-enables the FPU. */
3265 env
->lock_addr
= -1;
3266 switch (env
->error_code
) {
3269 info
.si_signo
= TARGET_SIGTRAP
;
3271 info
.si_code
= TARGET_TRAP_BRKPT
;
3272 info
._sifields
._sigfault
._addr
= env
->pc
;
3273 queue_signal(env
, info
.si_signo
, &info
);
3277 info
.si_signo
= TARGET_SIGTRAP
;
3280 info
._sifields
._sigfault
._addr
= env
->pc
;
3281 queue_signal(env
, info
.si_signo
, &info
);
3285 trapnr
= env
->ir
[IR_V0
];
3286 sysret
= do_syscall(env
, trapnr
,
3287 env
->ir
[IR_A0
], env
->ir
[IR_A1
],
3288 env
->ir
[IR_A2
], env
->ir
[IR_A3
],
3289 env
->ir
[IR_A4
], env
->ir
[IR_A5
],
3291 if (sysret
== -TARGET_ERESTARTSYS
) {
3295 if (sysret
== -TARGET_QEMU_ESIGRETURN
) {
3298 /* Syscall writes 0 to V0 to bypass error check, similar
3299 to how this is handled internal to Linux kernel.
3300 (Ab)use trapnr temporarily as boolean indicating error. */
3301 trapnr
= (env
->ir
[IR_V0
] != 0 && sysret
< 0);
3302 env
->ir
[IR_V0
] = (trapnr
? -sysret
: sysret
);
3303 env
->ir
[IR_A3
] = trapnr
;
3307 /* ??? We can probably elide the code using page_unprotect
3308 that is checking for self-modifying code. Instead we
3309 could simply call tb_flush here. Until we work out the
3310 changes required to turn off the extra write protection,
3311 this can be a no-op. */
3315 /* Handled in the translator for usermode. */
3319 /* Handled in the translator for usermode. */
3323 info
.si_signo
= TARGET_SIGFPE
;
3324 switch (env
->ir
[IR_A0
]) {
3325 case TARGET_GEN_INTOVF
:
3326 info
.si_code
= TARGET_FPE_INTOVF
;
3328 case TARGET_GEN_INTDIV
:
3329 info
.si_code
= TARGET_FPE_INTDIV
;
3331 case TARGET_GEN_FLTOVF
:
3332 info
.si_code
= TARGET_FPE_FLTOVF
;
3334 case TARGET_GEN_FLTUND
:
3335 info
.si_code
= TARGET_FPE_FLTUND
;
3337 case TARGET_GEN_FLTINV
:
3338 info
.si_code
= TARGET_FPE_FLTINV
;
3340 case TARGET_GEN_FLTINE
:
3341 info
.si_code
= TARGET_FPE_FLTRES
;
3343 case TARGET_GEN_ROPRAND
:
3347 info
.si_signo
= TARGET_SIGTRAP
;
3352 info
._sifields
._sigfault
._addr
= env
->pc
;
3353 queue_signal(env
, info
.si_signo
, &info
);
3360 info
.si_signo
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3361 if (info
.si_signo
) {
3362 env
->lock_addr
= -1;
3364 info
.si_code
= TARGET_TRAP_BRKPT
;
3365 queue_signal(env
, info
.si_signo
, &info
);
3370 do_store_exclusive(env
, env
->error_code
, trapnr
- EXCP_STL_C
);
3372 case EXCP_INTERRUPT
:
3373 /* Just indicate that signals should be handled asap. */
3376 printf ("Unhandled trap: 0x%x\n", trapnr
);
3377 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3380 process_pending_signals (env
);
3383 #endif /* TARGET_ALPHA */
3386 void cpu_loop(CPUS390XState
*env
)
3388 CPUState
*cs
= CPU(s390_env_get_cpu(env
));
3390 target_siginfo_t info
;
3396 trapnr
= cpu_s390x_exec(cs
);
3399 case EXCP_INTERRUPT
:
3400 /* Just indicate that signals should be handled asap. */
3404 n
= env
->int_svc_code
;
3406 /* syscalls > 255 */
3409 env
->psw
.addr
+= env
->int_svc_ilen
;
3410 ret
= do_syscall(env
, n
, env
->regs
[2], env
->regs
[3],
3411 env
->regs
[4], env
->regs
[5],
3412 env
->regs
[6], env
->regs
[7], 0, 0);
3413 if (ret
== -TARGET_ERESTARTSYS
) {
3414 env
->psw
.addr
-= env
->int_svc_ilen
;
3415 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3421 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3423 n
= TARGET_TRAP_BRKPT
;
3428 n
= env
->int_pgm_code
;
3431 case PGM_PRIVILEGED
:
3432 sig
= TARGET_SIGILL
;
3433 n
= TARGET_ILL_ILLOPC
;
3435 case PGM_PROTECTION
:
3436 case PGM_ADDRESSING
:
3437 sig
= TARGET_SIGSEGV
;
3438 /* XXX: check env->error_code */
3439 n
= TARGET_SEGV_MAPERR
;
3440 addr
= env
->__excp_addr
;
3443 case PGM_SPECIFICATION
:
3444 case PGM_SPECIAL_OP
:
3447 sig
= TARGET_SIGILL
;
3448 n
= TARGET_ILL_ILLOPN
;
3451 case PGM_FIXPT_OVERFLOW
:
3452 sig
= TARGET_SIGFPE
;
3453 n
= TARGET_FPE_INTOVF
;
3455 case PGM_FIXPT_DIVIDE
:
3456 sig
= TARGET_SIGFPE
;
3457 n
= TARGET_FPE_INTDIV
;
3461 n
= (env
->fpc
>> 8) & 0xff;
3463 /* compare-and-trap */
3466 /* An IEEE exception, simulated or otherwise. */
3468 n
= TARGET_FPE_FLTINV
;
3469 } else if (n
& 0x40) {
3470 n
= TARGET_FPE_FLTDIV
;
3471 } else if (n
& 0x20) {
3472 n
= TARGET_FPE_FLTOVF
;
3473 } else if (n
& 0x10) {
3474 n
= TARGET_FPE_FLTUND
;
3475 } else if (n
& 0x08) {
3476 n
= TARGET_FPE_FLTRES
;
3478 /* ??? Quantum exception; BFP, DFP error. */
3481 sig
= TARGET_SIGFPE
;
3486 fprintf(stderr
, "Unhandled program exception: %#x\n", n
);
3487 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3493 addr
= env
->psw
.addr
;
3495 info
.si_signo
= sig
;
3498 info
._sifields
._sigfault
._addr
= addr
;
3499 queue_signal(env
, info
.si_signo
, &info
);
3503 fprintf(stderr
, "Unhandled trap: 0x%x\n", trapnr
);
3504 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3507 process_pending_signals (env
);
3511 #endif /* TARGET_S390X */
3513 #ifdef TARGET_TILEGX
3515 static void gen_sigill_reg(CPUTLGState
*env
)
3517 target_siginfo_t info
;
3519 info
.si_signo
= TARGET_SIGILL
;
3521 info
.si_code
= TARGET_ILL_PRVREG
;
3522 info
._sifields
._sigfault
._addr
= env
->pc
;
3523 queue_signal(env
, info
.si_signo
, &info
);
3526 static void do_signal(CPUTLGState
*env
, int signo
, int sigcode
)
3528 target_siginfo_t info
;
3530 info
.si_signo
= signo
;
3532 info
._sifields
._sigfault
._addr
= env
->pc
;
3534 if (signo
== TARGET_SIGSEGV
) {
3535 /* The passed in sigcode is a dummy; check for a page mapping
3536 and pass either MAPERR or ACCERR. */
3537 target_ulong addr
= env
->excaddr
;
3538 info
._sifields
._sigfault
._addr
= addr
;
3539 if (page_check_range(addr
, 1, PAGE_VALID
) < 0) {
3540 sigcode
= TARGET_SEGV_MAPERR
;
3542 sigcode
= TARGET_SEGV_ACCERR
;
3545 info
.si_code
= sigcode
;
3547 queue_signal(env
, info
.si_signo
, &info
);
3550 static void gen_sigsegv_maperr(CPUTLGState
*env
, target_ulong addr
)
3552 env
->excaddr
= addr
;
3553 do_signal(env
, TARGET_SIGSEGV
, 0);
3556 static void set_regval(CPUTLGState
*env
, uint8_t reg
, uint64_t val
)
3558 if (unlikely(reg
>= TILEGX_R_COUNT
)) {
3569 gen_sigill_reg(env
);
3572 g_assert_not_reached();
3575 env
->regs
[reg
] = val
;
3579 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
3580 * memory at the address held in the first source register. If the values are
3581 * not equal, then no memory operation is performed. If the values are equal,
3582 * the 8-byte quantity from the second source register is written into memory
3583 * at the address held in the first source register. In either case, the result
3584 * of the instruction is the value read from memory. The compare and write to
3585 * memory are atomic and thus can be used for synchronization purposes. This
3586 * instruction only operates for addresses aligned to a 8-byte boundary.
3587 * Unaligned memory access causes an Unaligned Data Reference interrupt.
3589 * Functional Description (64-bit)
3590 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
3591 * rf[Dest] = memVal;
3592 * if (memVal == SPR[CmpValueSPR])
3593 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
3595 * Functional Description (32-bit)
3596 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
3597 * rf[Dest] = memVal;
3598 * if (memVal == signExtend32 (SPR[CmpValueSPR]))
3599 * memoryWriteWord (rf[SrcA], rf[SrcB]);
3602 * This function also processes exch and exch4 which need not process SPR.
3604 static void do_exch(CPUTLGState
*env
, bool quad
, bool cmp
)
3607 target_long val
, sprval
;
3611 addr
= env
->atomic_srca
;
3612 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3613 goto sigsegv_maperr
;
3618 sprval
= env
->spregs
[TILEGX_SPR_CMPEXCH
];
3620 sprval
= sextract64(env
->spregs
[TILEGX_SPR_CMPEXCH
], 0, 32);
3624 if (!cmp
|| val
== sprval
) {
3625 target_long valb
= env
->atomic_srcb
;
3626 if (quad
? put_user_u64(valb
, addr
) : put_user_u32(valb
, addr
)) {
3627 goto sigsegv_maperr
;
3631 set_regval(env
, env
->atomic_dstr
, val
);
3637 gen_sigsegv_maperr(env
, addr
);
3640 static void do_fetch(CPUTLGState
*env
, int trapnr
, bool quad
)
3644 target_long val
, valb
;
3648 addr
= env
->atomic_srca
;
3649 valb
= env
->atomic_srcb
;
3650 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3651 goto sigsegv_maperr
;
3655 case TILEGX_EXCP_OPCODE_FETCHADD
:
3656 case TILEGX_EXCP_OPCODE_FETCHADD4
:
3659 case TILEGX_EXCP_OPCODE_FETCHADDGEZ
:
3665 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4
:
3667 if ((int32_t)valb
< 0) {
3671 case TILEGX_EXCP_OPCODE_FETCHAND
:
3672 case TILEGX_EXCP_OPCODE_FETCHAND4
:
3675 case TILEGX_EXCP_OPCODE_FETCHOR
:
3676 case TILEGX_EXCP_OPCODE_FETCHOR4
:
3680 g_assert_not_reached();
3684 if (quad
? put_user_u64(valb
, addr
) : put_user_u32(valb
, addr
)) {
3685 goto sigsegv_maperr
;
3689 set_regval(env
, env
->atomic_dstr
, val
);
3695 gen_sigsegv_maperr(env
, addr
);
3698 void cpu_loop(CPUTLGState
*env
)
3700 CPUState
*cs
= CPU(tilegx_env_get_cpu(env
));
3705 trapnr
= cpu_tilegx_exec(cs
);
3708 case TILEGX_EXCP_SYSCALL
:
3710 abi_ulong ret
= do_syscall(env
, env
->regs
[TILEGX_R_NR
],
3711 env
->regs
[0], env
->regs
[1],
3712 env
->regs
[2], env
->regs
[3],
3713 env
->regs
[4], env
->regs
[5],
3714 env
->regs
[6], env
->regs
[7]);
3715 if (ret
== -TARGET_ERESTARTSYS
) {
3717 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3718 env
->regs
[TILEGX_R_RE
] = ret
;
3719 env
->regs
[TILEGX_R_ERR
] = TILEGX_IS_ERRNO(ret
) ? -ret
: 0;
3723 case TILEGX_EXCP_OPCODE_EXCH
:
3724 do_exch(env
, true, false);
3726 case TILEGX_EXCP_OPCODE_EXCH4
:
3727 do_exch(env
, false, false);
3729 case TILEGX_EXCP_OPCODE_CMPEXCH
:
3730 do_exch(env
, true, true);
3732 case TILEGX_EXCP_OPCODE_CMPEXCH4
:
3733 do_exch(env
, false, true);
3735 case TILEGX_EXCP_OPCODE_FETCHADD
:
3736 case TILEGX_EXCP_OPCODE_FETCHADDGEZ
:
3737 case TILEGX_EXCP_OPCODE_FETCHAND
:
3738 case TILEGX_EXCP_OPCODE_FETCHOR
:
3739 do_fetch(env
, trapnr
, true);
3741 case TILEGX_EXCP_OPCODE_FETCHADD4
:
3742 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4
:
3743 case TILEGX_EXCP_OPCODE_FETCHAND4
:
3744 case TILEGX_EXCP_OPCODE_FETCHOR4
:
3745 do_fetch(env
, trapnr
, false);
3747 case TILEGX_EXCP_SIGNAL
:
3748 do_signal(env
, env
->signo
, env
->sigcode
);
3750 case TILEGX_EXCP_REG_IDN_ACCESS
:
3751 case TILEGX_EXCP_REG_UDN_ACCESS
:
3752 gen_sigill_reg(env
);
3755 fprintf(stderr
, "trapnr is %d[0x%x].\n", trapnr
, trapnr
);
3756 g_assert_not_reached();
3758 process_pending_signals(env
);
3764 THREAD CPUState
*thread_cpu
;
3766 void task_settid(TaskState
*ts
)
3768 if (ts
->ts_tid
== 0) {
3769 ts
->ts_tid
= (pid_t
)syscall(SYS_gettid
);
3773 void stop_all_tasks(void)
3776 * We trust that when using NPTL, start_exclusive()
3777 * handles thread stopping correctly.
3782 /* Assumes contents are already zeroed. */
3783 void init_task_state(TaskState
*ts
)
3788 ts
->first_free
= ts
->sigqueue_table
;
3789 for (i
= 0; i
< MAX_SIGQUEUE_SIZE
- 1; i
++) {
3790 ts
->sigqueue_table
[i
].next
= &ts
->sigqueue_table
[i
+ 1];
3792 ts
->sigqueue_table
[i
].next
= NULL
;
3795 CPUArchState
*cpu_copy(CPUArchState
*env
)
3797 CPUState
*cpu
= ENV_GET_CPU(env
);
3798 CPUState
*new_cpu
= cpu_init(cpu_model
);
3799 CPUArchState
*new_env
= new_cpu
->env_ptr
;
3803 /* Reset non arch specific state */
3806 memcpy(new_env
, env
, sizeof(CPUArchState
));
3808 /* Clone all break/watchpoints.
3809 Note: Once we support ptrace with hw-debug register access, make sure
3810 BP_CPU break/watchpoints are handled correctly on clone. */
3811 QTAILQ_INIT(&new_cpu
->breakpoints
);
3812 QTAILQ_INIT(&new_cpu
->watchpoints
);
3813 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
3814 cpu_breakpoint_insert(new_cpu
, bp
->pc
, bp
->flags
, NULL
);
3816 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
3817 cpu_watchpoint_insert(new_cpu
, wp
->vaddr
, wp
->len
, wp
->flags
, NULL
);
3823 static void handle_arg_help(const char *arg
)
3825 usage(EXIT_SUCCESS
);
3828 static void handle_arg_log(const char *arg
)
3832 mask
= qemu_str_to_log_mask(arg
);
3834 qemu_print_log_usage(stdout
);
3837 qemu_log_needs_buffers();
3841 static void handle_arg_log_filename(const char *arg
)
3843 qemu_set_log_filename(arg
);
3846 static void handle_arg_set_env(const char *arg
)
3848 char *r
, *p
, *token
;
3849 r
= p
= strdup(arg
);
3850 while ((token
= strsep(&p
, ",")) != NULL
) {
3851 if (envlist_setenv(envlist
, token
) != 0) {
3852 usage(EXIT_FAILURE
);
3858 static void handle_arg_unset_env(const char *arg
)
3860 char *r
, *p
, *token
;
3861 r
= p
= strdup(arg
);
3862 while ((token
= strsep(&p
, ",")) != NULL
) {
3863 if (envlist_unsetenv(envlist
, token
) != 0) {
3864 usage(EXIT_FAILURE
);
3870 static void handle_arg_argv0(const char *arg
)
3872 argv0
= strdup(arg
);
3875 static void handle_arg_stack_size(const char *arg
)
3878 guest_stack_size
= strtoul(arg
, &p
, 0);
3879 if (guest_stack_size
== 0) {
3880 usage(EXIT_FAILURE
);
3884 guest_stack_size
*= 1024 * 1024;
3885 } else if (*p
== 'k' || *p
== 'K') {
3886 guest_stack_size
*= 1024;
3890 static void handle_arg_ld_prefix(const char *arg
)
3892 interp_prefix
= strdup(arg
);
3895 static void handle_arg_pagesize(const char *arg
)
3897 qemu_host_page_size
= atoi(arg
);
3898 if (qemu_host_page_size
== 0 ||
3899 (qemu_host_page_size
& (qemu_host_page_size
- 1)) != 0) {
3900 fprintf(stderr
, "page size must be a power of two\n");
3905 static void handle_arg_randseed(const char *arg
)
3907 unsigned long long seed
;
3909 if (parse_uint_full(arg
, &seed
, 0) != 0 || seed
> UINT_MAX
) {
3910 fprintf(stderr
, "Invalid seed number: %s\n", arg
);
3916 static void handle_arg_gdb(const char *arg
)
3918 gdbstub_port
= atoi(arg
);
3921 static void handle_arg_uname(const char *arg
)
3923 qemu_uname_release
= strdup(arg
);
3926 static void handle_arg_cpu(const char *arg
)
3928 cpu_model
= strdup(arg
);
3929 if (cpu_model
== NULL
|| is_help_option(cpu_model
)) {
3930 /* XXX: implement xxx_cpu_list for targets that still miss it */
3931 #if defined(cpu_list)
3932 cpu_list(stdout
, &fprintf
);
3938 static void handle_arg_guest_base(const char *arg
)
3940 guest_base
= strtol(arg
, NULL
, 0);
3941 have_guest_base
= 1;
3944 static void handle_arg_reserved_va(const char *arg
)
3948 reserved_va
= strtoul(arg
, &p
, 0);
3962 unsigned long unshifted
= reserved_va
;
3964 reserved_va
<<= shift
;
3965 if (((reserved_va
>> shift
) != unshifted
)
3966 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3967 || (reserved_va
> (1ul << TARGET_VIRT_ADDR_SPACE_BITS
))
3970 fprintf(stderr
, "Reserved virtual address too big\n");
3975 fprintf(stderr
, "Unrecognised -R size suffix '%s'\n", p
);
3980 static void handle_arg_singlestep(const char *arg
)
3985 static void handle_arg_strace(const char *arg
)
3990 static void handle_arg_version(const char *arg
)
3992 printf("qemu-" TARGET_NAME
" version " QEMU_VERSION QEMU_PKGVERSION
3993 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3997 struct qemu_argument
{
4001 void (*handle_opt
)(const char *arg
);
4002 const char *example
;
4006 static const struct qemu_argument arg_table
[] = {
4007 {"h", "", false, handle_arg_help
,
4008 "", "print this help"},
4009 {"help", "", false, handle_arg_help
,
4011 {"g", "QEMU_GDB", true, handle_arg_gdb
,
4012 "port", "wait gdb connection to 'port'"},
4013 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix
,
4014 "path", "set the elf interpreter prefix to 'path'"},
4015 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size
,
4016 "size", "set the stack size to 'size' bytes"},
4017 {"cpu", "QEMU_CPU", true, handle_arg_cpu
,
4018 "model", "select CPU (-cpu help for list)"},
4019 {"E", "QEMU_SET_ENV", true, handle_arg_set_env
,
4020 "var=value", "sets targets environment variable (see below)"},
4021 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env
,
4022 "var", "unsets targets environment variable (see below)"},
4023 {"0", "QEMU_ARGV0", true, handle_arg_argv0
,
4024 "argv0", "forces target process argv[0] to be 'argv0'"},
4025 {"r", "QEMU_UNAME", true, handle_arg_uname
,
4026 "uname", "set qemu uname release string to 'uname'"},
4027 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base
,
4028 "address", "set guest_base address to 'address'"},
4029 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va
,
4030 "size", "reserve 'size' bytes for guest virtual address space"},
4031 {"d", "QEMU_LOG", true, handle_arg_log
,
4032 "item[,...]", "enable logging of specified items "
4033 "(use '-d help' for a list of items)"},
4034 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename
,
4035 "logfile", "write logs to 'logfile' (default stderr)"},
4036 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize
,
4037 "pagesize", "set the host page size to 'pagesize'"},
4038 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep
,
4039 "", "run in singlestep mode"},
4040 {"strace", "QEMU_STRACE", false, handle_arg_strace
,
4041 "", "log system calls"},
4042 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed
,
4043 "", "Seed for pseudo-random number generator"},
4044 {"version", "QEMU_VERSION", false, handle_arg_version
,
4045 "", "display version information and exit"},
4046 {NULL
, NULL
, false, NULL
, NULL
, NULL
}
4049 static void usage(int exitcode
)
4051 const struct qemu_argument
*arginfo
;
4055 printf("usage: qemu-" TARGET_NAME
" [options] program [arguments...]\n"
4056 "Linux CPU emulator (compiled for " TARGET_NAME
" emulation)\n"
4058 "Options and associated environment variables:\n"
4061 /* Calculate column widths. We must always have at least enough space
4062 * for the column header.
4064 maxarglen
= strlen("Argument");
4065 maxenvlen
= strlen("Env-variable");
4067 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4068 int arglen
= strlen(arginfo
->argv
);
4069 if (arginfo
->has_arg
) {
4070 arglen
+= strlen(arginfo
->example
) + 1;
4072 if (strlen(arginfo
->env
) > maxenvlen
) {
4073 maxenvlen
= strlen(arginfo
->env
);
4075 if (arglen
> maxarglen
) {
4080 printf("%-*s %-*s Description\n", maxarglen
+1, "Argument",
4081 maxenvlen
, "Env-variable");
4083 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4084 if (arginfo
->has_arg
) {
4085 printf("-%s %-*s %-*s %s\n", arginfo
->argv
,
4086 (int)(maxarglen
- strlen(arginfo
->argv
) - 1),
4087 arginfo
->example
, maxenvlen
, arginfo
->env
, arginfo
->help
);
4089 printf("-%-*s %-*s %s\n", maxarglen
, arginfo
->argv
,
4090 maxenvlen
, arginfo
->env
,
4097 "QEMU_LD_PREFIX = %s\n"
4098 "QEMU_STACK_SIZE = %ld byte\n",
4103 "You can use -E and -U options or the QEMU_SET_ENV and\n"
4104 "QEMU_UNSET_ENV environment variables to set and unset\n"
4105 "environment variables for the target process.\n"
4106 "It is possible to provide several variables by separating them\n"
4107 "by commas in getsubopt(3) style. Additionally it is possible to\n"
4108 "provide the -E and -U options multiple times.\n"
4109 "The following lines are equivalent:\n"
4110 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
4111 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
4112 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
4113 "Note that if you provide several changes to a single variable\n"
4114 "the last change will stay in effect.\n");
4119 static int parse_args(int argc
, char **argv
)
4123 const struct qemu_argument
*arginfo
;
4125 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4126 if (arginfo
->env
== NULL
) {
4130 r
= getenv(arginfo
->env
);
4132 arginfo
->handle_opt(r
);
4138 if (optind
>= argc
) {
4147 if (!strcmp(r
, "-")) {
4150 /* Treat --foo the same as -foo. */
4155 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4156 if (!strcmp(r
, arginfo
->argv
)) {
4157 if (arginfo
->has_arg
) {
4158 if (optind
>= argc
) {
4159 (void) fprintf(stderr
,
4160 "qemu: missing argument for option '%s'\n", r
);
4163 arginfo
->handle_opt(argv
[optind
]);
4166 arginfo
->handle_opt(NULL
);
4172 /* no option matched the current argv */
4173 if (arginfo
->handle_opt
== NULL
) {
4174 (void) fprintf(stderr
, "qemu: unknown option '%s'\n", r
);
4179 if (optind
>= argc
) {
4180 (void) fprintf(stderr
, "qemu: no user program specified\n");
4184 filename
= argv
[optind
];
4185 exec_path
= argv
[optind
];
4190 int main(int argc
, char **argv
, char **envp
)
4192 struct target_pt_regs regs1
, *regs
= ®s1
;
4193 struct image_info info1
, *info
= &info1
;
4194 struct linux_binprm bprm
;
4199 char **target_environ
, **wrk
;
4206 module_call_init(MODULE_INIT_QOM
);
4208 if ((envlist
= envlist_create()) == NULL
) {
4209 (void) fprintf(stderr
, "Unable to allocate envlist\n");
4213 /* add current environment into the list */
4214 for (wrk
= environ
; *wrk
!= NULL
; wrk
++) {
4215 (void) envlist_setenv(envlist
, *wrk
);
4218 /* Read the stack limit from the kernel. If it's "unlimited",
4219 then we can do little else besides use the default. */
4222 if (getrlimit(RLIMIT_STACK
, &lim
) == 0
4223 && lim
.rlim_cur
!= RLIM_INFINITY
4224 && lim
.rlim_cur
== (target_long
)lim
.rlim_cur
) {
4225 guest_stack_size
= lim
.rlim_cur
;
4233 optind
= parse_args(argc
, argv
);
4236 memset(regs
, 0, sizeof(struct target_pt_regs
));
4238 /* Zero out image_info */
4239 memset(info
, 0, sizeof(struct image_info
));
4241 memset(&bprm
, 0, sizeof (bprm
));
4243 /* Scan interp_prefix dir for replacement files. */
4244 init_paths(interp_prefix
);
4246 init_qemu_uname_release();
4248 if (cpu_model
== NULL
) {
4249 #if defined(TARGET_I386)
4250 #ifdef TARGET_X86_64
4251 cpu_model
= "qemu64";
4253 cpu_model
= "qemu32";
4255 #elif defined(TARGET_ARM)
4257 #elif defined(TARGET_UNICORE32)
4259 #elif defined(TARGET_M68K)
4261 #elif defined(TARGET_SPARC)
4262 #ifdef TARGET_SPARC64
4263 cpu_model
= "TI UltraSparc II";
4265 cpu_model
= "Fujitsu MB86904";
4267 #elif defined(TARGET_MIPS)
4268 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
4273 #elif defined TARGET_OPENRISC
4274 cpu_model
= "or1200";
4275 #elif defined(TARGET_PPC)
4276 # ifdef TARGET_PPC64
4277 cpu_model
= "POWER8";
4281 #elif defined TARGET_SH4
4282 cpu_model
= TYPE_SH7785_CPU
;
4288 /* NOTE: we need to init the CPU at this stage to get
4289 qemu_host_page_size */
4290 cpu
= cpu_init(cpu_model
);
4292 fprintf(stderr
, "Unable to find CPU definition\n");
4300 if (getenv("QEMU_STRACE")) {
4304 if (getenv("QEMU_RAND_SEED")) {
4305 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
4308 target_environ
= envlist_to_environ(envlist
, NULL
);
4309 envlist_free(envlist
);
4312 * Now that page sizes are configured in cpu_init() we can do
4313 * proper page alignment for guest_base.
4315 guest_base
= HOST_PAGE_ALIGN(guest_base
);
4317 if (reserved_va
|| have_guest_base
) {
4318 guest_base
= init_guest_space(guest_base
, reserved_va
, 0,
4320 if (guest_base
== (unsigned long)-1) {
4321 fprintf(stderr
, "Unable to reserve 0x%lx bytes of virtual address "
4322 "space for use as guest address space (check your virtual "
4323 "memory ulimit setting or reserve less using -R option)\n",
4329 mmap_next_start
= reserved_va
;
4334 * Read in mmap_min_addr kernel parameter. This value is used
4335 * When loading the ELF image to determine whether guest_base
4336 * is needed. It is also used in mmap_find_vma.
4341 if ((fp
= fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL
) {
4343 if (fscanf(fp
, "%lu", &tmp
) == 1) {
4344 mmap_min_addr
= tmp
;
4345 qemu_log_mask(CPU_LOG_PAGE
, "host mmap_min_addr=0x%lx\n", mmap_min_addr
);
4352 * Prepare copy of argv vector for target.
4354 target_argc
= argc
- optind
;
4355 target_argv
= calloc(target_argc
+ 1, sizeof (char *));
4356 if (target_argv
== NULL
) {
4357 (void) fprintf(stderr
, "Unable to allocate memory for target_argv\n");
4362 * If argv0 is specified (using '-0' switch) we replace
4363 * argv[0] pointer with the given one.
4366 if (argv0
!= NULL
) {
4367 target_argv
[i
++] = strdup(argv0
);
4369 for (; i
< target_argc
; i
++) {
4370 target_argv
[i
] = strdup(argv
[optind
+ i
]);
4372 target_argv
[target_argc
] = NULL
;
4374 ts
= g_new0(TaskState
, 1);
4375 init_task_state(ts
);
4376 /* build Task State */
4382 execfd
= qemu_getauxval(AT_EXECFD
);
4384 execfd
= open(filename
, O_RDONLY
);
4386 printf("Error while loading %s: %s\n", filename
, strerror(errno
));
4387 _exit(EXIT_FAILURE
);
4391 ret
= loader_exec(execfd
, filename
, target_argv
, target_environ
, regs
,
4394 printf("Error while loading %s: %s\n", filename
, strerror(-ret
));
4395 _exit(EXIT_FAILURE
);
4398 for (wrk
= target_environ
; *wrk
; wrk
++) {
4402 free(target_environ
);
4404 if (qemu_loglevel_mask(CPU_LOG_PAGE
)) {
4405 qemu_log("guest_base 0x%lx\n", guest_base
);
4408 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx
"\n", info
->start_brk
);
4409 qemu_log("end_code 0x" TARGET_ABI_FMT_lx
"\n", info
->end_code
);
4410 qemu_log("start_code 0x" TARGET_ABI_FMT_lx
"\n",
4412 qemu_log("start_data 0x" TARGET_ABI_FMT_lx
"\n",
4414 qemu_log("end_data 0x" TARGET_ABI_FMT_lx
"\n", info
->end_data
);
4415 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx
"\n",
4417 qemu_log("brk 0x" TARGET_ABI_FMT_lx
"\n", info
->brk
);
4418 qemu_log("entry 0x" TARGET_ABI_FMT_lx
"\n", info
->entry
);
4421 target_set_brk(info
->brk
);
4425 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4426 generating the prologue until now so that the prologue can take
4427 the real value of GUEST_BASE into account. */
4428 tcg_prologue_init(&tcg_ctx
);
4430 #if defined(TARGET_I386)
4431 env
->cr
[0] = CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
;
4432 env
->hflags
|= HF_PE_MASK
| HF_CPL_MASK
;
4433 if (env
->features
[FEAT_1_EDX
] & CPUID_SSE
) {
4434 env
->cr
[4] |= CR4_OSFXSR_MASK
;
4435 env
->hflags
|= HF_OSFXSR_MASK
;
4437 #ifndef TARGET_ABI32
4438 /* enable 64 bit mode if possible */
4439 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
)) {
4440 fprintf(stderr
, "The selected x86 CPU does not support 64 bit mode\n");
4443 env
->cr
[4] |= CR4_PAE_MASK
;
4444 env
->efer
|= MSR_EFER_LMA
| MSR_EFER_LME
;
4445 env
->hflags
|= HF_LMA_MASK
;
4448 /* flags setup : we activate the IRQs by default as in user mode */
4449 env
->eflags
|= IF_MASK
;
4451 /* linux register setup */
4452 #ifndef TARGET_ABI32
4453 env
->regs
[R_EAX
] = regs
->rax
;
4454 env
->regs
[R_EBX
] = regs
->rbx
;
4455 env
->regs
[R_ECX
] = regs
->rcx
;
4456 env
->regs
[R_EDX
] = regs
->rdx
;
4457 env
->regs
[R_ESI
] = regs
->rsi
;
4458 env
->regs
[R_EDI
] = regs
->rdi
;
4459 env
->regs
[R_EBP
] = regs
->rbp
;
4460 env
->regs
[R_ESP
] = regs
->rsp
;
4461 env
->eip
= regs
->rip
;
4463 env
->regs
[R_EAX
] = regs
->eax
;
4464 env
->regs
[R_EBX
] = regs
->ebx
;
4465 env
->regs
[R_ECX
] = regs
->ecx
;
4466 env
->regs
[R_EDX
] = regs
->edx
;
4467 env
->regs
[R_ESI
] = regs
->esi
;
4468 env
->regs
[R_EDI
] = regs
->edi
;
4469 env
->regs
[R_EBP
] = regs
->ebp
;
4470 env
->regs
[R_ESP
] = regs
->esp
;
4471 env
->eip
= regs
->eip
;
4474 /* linux interrupt setup */
4475 #ifndef TARGET_ABI32
4476 env
->idt
.limit
= 511;
4478 env
->idt
.limit
= 255;
4480 env
->idt
.base
= target_mmap(0, sizeof(uint64_t) * (env
->idt
.limit
+ 1),
4481 PROT_READ
|PROT_WRITE
,
4482 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4483 idt_table
= g2h(env
->idt
.base
);
4506 /* linux segment setup */
4508 uint64_t *gdt_table
;
4509 env
->gdt
.base
= target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES
,
4510 PROT_READ
|PROT_WRITE
,
4511 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4512 env
->gdt
.limit
= sizeof(uint64_t) * TARGET_GDT_ENTRIES
- 1;
4513 gdt_table
= g2h(env
->gdt
.base
);
4515 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4516 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4517 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4519 /* 64 bit code segment */
4520 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4521 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4523 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4525 write_dt(&gdt_table
[__USER_DS
>> 3], 0, 0xfffff,
4526 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4527 (3 << DESC_DPL_SHIFT
) | (0x2 << DESC_TYPE_SHIFT
));
4529 cpu_x86_load_seg(env
, R_CS
, __USER_CS
);
4530 cpu_x86_load_seg(env
, R_SS
, __USER_DS
);
4532 cpu_x86_load_seg(env
, R_DS
, __USER_DS
);
4533 cpu_x86_load_seg(env
, R_ES
, __USER_DS
);
4534 cpu_x86_load_seg(env
, R_FS
, __USER_DS
);
4535 cpu_x86_load_seg(env
, R_GS
, __USER_DS
);
4536 /* This hack makes Wine work... */
4537 env
->segs
[R_FS
].selector
= 0;
4539 cpu_x86_load_seg(env
, R_DS
, 0);
4540 cpu_x86_load_seg(env
, R_ES
, 0);
4541 cpu_x86_load_seg(env
, R_FS
, 0);
4542 cpu_x86_load_seg(env
, R_GS
, 0);
4544 #elif defined(TARGET_AARCH64)
4548 if (!(arm_feature(env
, ARM_FEATURE_AARCH64
))) {
4550 "The selected ARM CPU does not support 64 bit mode\n");
4554 for (i
= 0; i
< 31; i
++) {
4555 env
->xregs
[i
] = regs
->regs
[i
];
4558 env
->xregs
[31] = regs
->sp
;
4560 #elif defined(TARGET_ARM)
4563 cpsr_write(env
, regs
->uregs
[16], CPSR_USER
| CPSR_EXEC
,
4565 for(i
= 0; i
< 16; i
++) {
4566 env
->regs
[i
] = regs
->uregs
[i
];
4568 #ifdef TARGET_WORDS_BIGENDIAN
4570 if (EF_ARM_EABI_VERSION(info
->elf_flags
) >= EF_ARM_EABI_VER4
4571 && (info
->elf_flags
& EF_ARM_BE8
)) {
4572 env
->uncached_cpsr
|= CPSR_E
;
4573 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
4575 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
4579 #elif defined(TARGET_UNICORE32)
4582 cpu_asr_write(env
, regs
->uregs
[32], 0xffffffff);
4583 for (i
= 0; i
< 32; i
++) {
4584 env
->regs
[i
] = regs
->uregs
[i
];
4587 #elif defined(TARGET_SPARC)
4591 env
->npc
= regs
->npc
;
4593 for(i
= 0; i
< 8; i
++)
4594 env
->gregs
[i
] = regs
->u_regs
[i
];
4595 for(i
= 0; i
< 8; i
++)
4596 env
->regwptr
[i
] = regs
->u_regs
[i
+ 8];
4598 #elif defined(TARGET_PPC)
4602 #if defined(TARGET_PPC64)
4603 #if defined(TARGET_ABI32)
4604 env
->msr
&= ~((target_ulong
)1 << MSR_SF
);
4606 env
->msr
|= (target_ulong
)1 << MSR_SF
;
4609 env
->nip
= regs
->nip
;
4610 for(i
= 0; i
< 32; i
++) {
4611 env
->gpr
[i
] = regs
->gpr
[i
];
4614 #elif defined(TARGET_M68K)
4617 env
->dregs
[0] = regs
->d0
;
4618 env
->dregs
[1] = regs
->d1
;
4619 env
->dregs
[2] = regs
->d2
;
4620 env
->dregs
[3] = regs
->d3
;
4621 env
->dregs
[4] = regs
->d4
;
4622 env
->dregs
[5] = regs
->d5
;
4623 env
->dregs
[6] = regs
->d6
;
4624 env
->dregs
[7] = regs
->d7
;
4625 env
->aregs
[0] = regs
->a0
;
4626 env
->aregs
[1] = regs
->a1
;
4627 env
->aregs
[2] = regs
->a2
;
4628 env
->aregs
[3] = regs
->a3
;
4629 env
->aregs
[4] = regs
->a4
;
4630 env
->aregs
[5] = regs
->a5
;
4631 env
->aregs
[6] = regs
->a6
;
4632 env
->aregs
[7] = regs
->usp
;
4634 ts
->sim_syscalls
= 1;
4636 #elif defined(TARGET_MICROBLAZE)
4638 env
->regs
[0] = regs
->r0
;
4639 env
->regs
[1] = regs
->r1
;
4640 env
->regs
[2] = regs
->r2
;
4641 env
->regs
[3] = regs
->r3
;
4642 env
->regs
[4] = regs
->r4
;
4643 env
->regs
[5] = regs
->r5
;
4644 env
->regs
[6] = regs
->r6
;
4645 env
->regs
[7] = regs
->r7
;
4646 env
->regs
[8] = regs
->r8
;
4647 env
->regs
[9] = regs
->r9
;
4648 env
->regs
[10] = regs
->r10
;
4649 env
->regs
[11] = regs
->r11
;
4650 env
->regs
[12] = regs
->r12
;
4651 env
->regs
[13] = regs
->r13
;
4652 env
->regs
[14] = regs
->r14
;
4653 env
->regs
[15] = regs
->r15
;
4654 env
->regs
[16] = regs
->r16
;
4655 env
->regs
[17] = regs
->r17
;
4656 env
->regs
[18] = regs
->r18
;
4657 env
->regs
[19] = regs
->r19
;
4658 env
->regs
[20] = regs
->r20
;
4659 env
->regs
[21] = regs
->r21
;
4660 env
->regs
[22] = regs
->r22
;
4661 env
->regs
[23] = regs
->r23
;
4662 env
->regs
[24] = regs
->r24
;
4663 env
->regs
[25] = regs
->r25
;
4664 env
->regs
[26] = regs
->r26
;
4665 env
->regs
[27] = regs
->r27
;
4666 env
->regs
[28] = regs
->r28
;
4667 env
->regs
[29] = regs
->r29
;
4668 env
->regs
[30] = regs
->r30
;
4669 env
->regs
[31] = regs
->r31
;
4670 env
->sregs
[SR_PC
] = regs
->pc
;
4672 #elif defined(TARGET_MIPS)
4676 for(i
= 0; i
< 32; i
++) {
4677 env
->active_tc
.gpr
[i
] = regs
->regs
[i
];
4679 env
->active_tc
.PC
= regs
->cp0_epc
& ~(target_ulong
)1;
4680 if (regs
->cp0_epc
& 1) {
4681 env
->hflags
|= MIPS_HFLAG_M16
;
4684 #elif defined(TARGET_OPENRISC)
4688 for (i
= 0; i
< 32; i
++) {
4689 env
->gpr
[i
] = regs
->gpr
[i
];
4695 #elif defined(TARGET_SH4)
4699 for(i
= 0; i
< 16; i
++) {
4700 env
->gregs
[i
] = regs
->regs
[i
];
4704 #elif defined(TARGET_ALPHA)
4708 for(i
= 0; i
< 28; i
++) {
4709 env
->ir
[i
] = ((abi_ulong
*)regs
)[i
];
4711 env
->ir
[IR_SP
] = regs
->usp
;
4714 #elif defined(TARGET_CRIS)
4716 env
->regs
[0] = regs
->r0
;
4717 env
->regs
[1] = regs
->r1
;
4718 env
->regs
[2] = regs
->r2
;
4719 env
->regs
[3] = regs
->r3
;
4720 env
->regs
[4] = regs
->r4
;
4721 env
->regs
[5] = regs
->r5
;
4722 env
->regs
[6] = regs
->r6
;
4723 env
->regs
[7] = regs
->r7
;
4724 env
->regs
[8] = regs
->r8
;
4725 env
->regs
[9] = regs
->r9
;
4726 env
->regs
[10] = regs
->r10
;
4727 env
->regs
[11] = regs
->r11
;
4728 env
->regs
[12] = regs
->r12
;
4729 env
->regs
[13] = regs
->r13
;
4730 env
->regs
[14] = info
->start_stack
;
4731 env
->regs
[15] = regs
->acr
;
4732 env
->pc
= regs
->erp
;
4734 #elif defined(TARGET_S390X)
4737 for (i
= 0; i
< 16; i
++) {
4738 env
->regs
[i
] = regs
->gprs
[i
];
4740 env
->psw
.mask
= regs
->psw
.mask
;
4741 env
->psw
.addr
= regs
->psw
.addr
;
4743 #elif defined(TARGET_TILEGX)
4746 for (i
= 0; i
< TILEGX_R_COUNT
; i
++) {
4747 env
->regs
[i
] = regs
->regs
[i
];
4749 for (i
= 0; i
< TILEGX_SPR_COUNT
; i
++) {
4755 #error unsupported target CPU
4758 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4759 ts
->stack_base
= info
->start_stack
;
4760 ts
->heap_base
= info
->brk
;
4761 /* This will be filled in on the first SYS_HEAPINFO call. */
4766 if (gdbserver_start(gdbstub_port
) < 0) {
4767 fprintf(stderr
, "qemu: could not open gdbserver on port %d\n",
4771 gdb_handlesig(cpu
, 0);