linux-user: Support for restarting system calls for tilegx targets
[qemu.git] / linux-user / main.c
blob4607e4827861bad9b3733933caaead22666d543e
1 /*
2 * qemu user main
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include <sys/mman.h>
21 #include <sys/syscall.h>
22 #include <sys/resource.h>
24 #include "qemu.h"
25 #include "qemu/path.h"
26 #include "qemu/cutils.h"
27 #include "qemu/help_option.h"
28 #include "cpu.h"
29 #include "exec/exec-all.h"
30 #include "tcg.h"
31 #include "qemu/timer.h"
32 #include "qemu/envlist.h"
33 #include "elf.h"
34 #include "exec/log.h"
36 char *exec_path;
38 int singlestep;
39 static const char *filename;
40 static const char *argv0;
41 static int gdbstub_port;
42 static envlist_t *envlist;
43 static const char *cpu_model;
44 unsigned long mmap_min_addr;
45 unsigned long guest_base;
46 int have_guest_base;
48 #define EXCP_DUMP(env, fmt, ...) \
49 do { \
50 CPUState *cs = ENV_GET_CPU(env); \
51 fprintf(stderr, fmt , ## __VA_ARGS__); \
52 cpu_dump_state(cs, stderr, fprintf, 0); \
53 if (qemu_log_separate()) { \
54 qemu_log(fmt, ## __VA_ARGS__); \
55 log_cpu_state(cs, 0); \
56 } \
57 } while (0)
59 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
61 * When running 32-on-64 we should make sure we can fit all of the possible
62 * guest address space into a contiguous chunk of virtual host memory.
64 * This way we will never overlap with our own libraries or binaries or stack
65 * or anything else that QEMU maps.
67 # ifdef TARGET_MIPS
68 /* MIPS only supports 31 bits of virtual address space for user space */
69 unsigned long reserved_va = 0x77000000;
70 # else
71 unsigned long reserved_va = 0xf7000000;
72 # endif
73 #else
74 unsigned long reserved_va;
75 #endif
77 static void usage(int exitcode);
79 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
80 const char *qemu_uname_release;
82 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
83 we allocate a bigger stack. Need a better solution, for example
84 by remapping the process stack directly at the right place */
85 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
87 void gemu_log(const char *fmt, ...)
89 va_list ap;
91 va_start(ap, fmt);
92 vfprintf(stderr, fmt, ap);
93 va_end(ap);
96 #if defined(TARGET_I386)
97 int cpu_get_pic_interrupt(CPUX86State *env)
99 return -1;
101 #endif
103 /***********************************************************/
104 /* Helper routines for implementing atomic operations. */
106 /* To implement exclusive operations we force all cpus to syncronise.
107 We don't require a full sync, only that no cpus are executing guest code.
108 The alternative is to map target atomic ops onto host equivalents,
109 which requires quite a lot of per host/target work. */
110 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
111 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
112 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
113 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
114 static int pending_cpus;
116 /* Make sure everything is in a consistent state for calling fork(). */
117 void fork_start(void)
119 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
120 pthread_mutex_lock(&exclusive_lock);
121 mmap_fork_start();
124 void fork_end(int child)
126 mmap_fork_end(child);
127 if (child) {
128 CPUState *cpu, *next_cpu;
129 /* Child processes created by fork() only have a single thread.
130 Discard information about the parent threads. */
131 CPU_FOREACH_SAFE(cpu, next_cpu) {
132 if (cpu != thread_cpu) {
133 QTAILQ_REMOVE(&cpus, thread_cpu, node);
136 pending_cpus = 0;
137 pthread_mutex_init(&exclusive_lock, NULL);
138 pthread_mutex_init(&cpu_list_mutex, NULL);
139 pthread_cond_init(&exclusive_cond, NULL);
140 pthread_cond_init(&exclusive_resume, NULL);
141 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
142 gdbserver_fork(thread_cpu);
143 } else {
144 pthread_mutex_unlock(&exclusive_lock);
145 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
149 /* Wait for pending exclusive operations to complete. The exclusive lock
150 must be held. */
151 static inline void exclusive_idle(void)
153 while (pending_cpus) {
154 pthread_cond_wait(&exclusive_resume, &exclusive_lock);
158 /* Start an exclusive operation.
159 Must only be called from outside cpu_arm_exec. */
160 static inline void start_exclusive(void)
162 CPUState *other_cpu;
164 pthread_mutex_lock(&exclusive_lock);
165 exclusive_idle();
167 pending_cpus = 1;
168 /* Make all other cpus stop executing. */
169 CPU_FOREACH(other_cpu) {
170 if (other_cpu->running) {
171 pending_cpus++;
172 cpu_exit(other_cpu);
175 if (pending_cpus > 1) {
176 pthread_cond_wait(&exclusive_cond, &exclusive_lock);
180 /* Finish an exclusive operation. */
181 static inline void __attribute__((unused)) end_exclusive(void)
183 pending_cpus = 0;
184 pthread_cond_broadcast(&exclusive_resume);
185 pthread_mutex_unlock(&exclusive_lock);
188 /* Wait for exclusive ops to finish, and begin cpu execution. */
189 static inline void cpu_exec_start(CPUState *cpu)
191 pthread_mutex_lock(&exclusive_lock);
192 exclusive_idle();
193 cpu->running = true;
194 pthread_mutex_unlock(&exclusive_lock);
197 /* Mark cpu as not executing, and release pending exclusive ops. */
198 static inline void cpu_exec_end(CPUState *cpu)
200 pthread_mutex_lock(&exclusive_lock);
201 cpu->running = false;
202 if (pending_cpus > 1) {
203 pending_cpus--;
204 if (pending_cpus == 1) {
205 pthread_cond_signal(&exclusive_cond);
208 exclusive_idle();
209 pthread_mutex_unlock(&exclusive_lock);
212 void cpu_list_lock(void)
214 pthread_mutex_lock(&cpu_list_mutex);
217 void cpu_list_unlock(void)
219 pthread_mutex_unlock(&cpu_list_mutex);
223 #ifdef TARGET_I386
224 /***********************************************************/
225 /* CPUX86 core interface */
227 uint64_t cpu_get_tsc(CPUX86State *env)
229 return cpu_get_host_ticks();
232 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
233 int flags)
235 unsigned int e1, e2;
236 uint32_t *p;
237 e1 = (addr << 16) | (limit & 0xffff);
238 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
239 e2 |= flags;
240 p = ptr;
241 p[0] = tswap32(e1);
242 p[1] = tswap32(e2);
245 static uint64_t *idt_table;
246 #ifdef TARGET_X86_64
247 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
248 uint64_t addr, unsigned int sel)
250 uint32_t *p, e1, e2;
251 e1 = (addr & 0xffff) | (sel << 16);
252 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
253 p = ptr;
254 p[0] = tswap32(e1);
255 p[1] = tswap32(e2);
256 p[2] = tswap32(addr >> 32);
257 p[3] = 0;
259 /* only dpl matters as we do only user space emulation */
260 static void set_idt(int n, unsigned int dpl)
262 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
264 #else
265 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
266 uint32_t addr, unsigned int sel)
268 uint32_t *p, e1, e2;
269 e1 = (addr & 0xffff) | (sel << 16);
270 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
271 p = ptr;
272 p[0] = tswap32(e1);
273 p[1] = tswap32(e2);
276 /* only dpl matters as we do only user space emulation */
277 static void set_idt(int n, unsigned int dpl)
279 set_gate(idt_table + n, 0, dpl, 0, 0);
281 #endif
283 void cpu_loop(CPUX86State *env)
285 CPUState *cs = CPU(x86_env_get_cpu(env));
286 int trapnr;
287 abi_ulong pc;
288 abi_ulong ret;
289 target_siginfo_t info;
291 for(;;) {
292 cpu_exec_start(cs);
293 trapnr = cpu_x86_exec(cs);
294 cpu_exec_end(cs);
295 switch(trapnr) {
296 case 0x80:
297 /* linux syscall from int $0x80 */
298 ret = do_syscall(env,
299 env->regs[R_EAX],
300 env->regs[R_EBX],
301 env->regs[R_ECX],
302 env->regs[R_EDX],
303 env->regs[R_ESI],
304 env->regs[R_EDI],
305 env->regs[R_EBP],
306 0, 0);
307 if (ret == -TARGET_ERESTARTSYS) {
308 env->eip -= 2;
309 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
310 env->regs[R_EAX] = ret;
312 break;
313 #ifndef TARGET_ABI32
314 case EXCP_SYSCALL:
315 /* linux syscall from syscall instruction */
316 ret = do_syscall(env,
317 env->regs[R_EAX],
318 env->regs[R_EDI],
319 env->regs[R_ESI],
320 env->regs[R_EDX],
321 env->regs[10],
322 env->regs[8],
323 env->regs[9],
324 0, 0);
325 if (ret == -TARGET_ERESTARTSYS) {
326 env->eip -= 2;
327 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
328 env->regs[R_EAX] = ret;
330 break;
331 #endif
332 case EXCP0B_NOSEG:
333 case EXCP0C_STACK:
334 info.si_signo = TARGET_SIGBUS;
335 info.si_errno = 0;
336 info.si_code = TARGET_SI_KERNEL;
337 info._sifields._sigfault._addr = 0;
338 queue_signal(env, info.si_signo, &info);
339 break;
340 case EXCP0D_GPF:
341 /* XXX: potential problem if ABI32 */
342 #ifndef TARGET_X86_64
343 if (env->eflags & VM_MASK) {
344 handle_vm86_fault(env);
345 } else
346 #endif
348 info.si_signo = TARGET_SIGSEGV;
349 info.si_errno = 0;
350 info.si_code = TARGET_SI_KERNEL;
351 info._sifields._sigfault._addr = 0;
352 queue_signal(env, info.si_signo, &info);
354 break;
355 case EXCP0E_PAGE:
356 info.si_signo = TARGET_SIGSEGV;
357 info.si_errno = 0;
358 if (!(env->error_code & 1))
359 info.si_code = TARGET_SEGV_MAPERR;
360 else
361 info.si_code = TARGET_SEGV_ACCERR;
362 info._sifields._sigfault._addr = env->cr[2];
363 queue_signal(env, info.si_signo, &info);
364 break;
365 case EXCP00_DIVZ:
366 #ifndef TARGET_X86_64
367 if (env->eflags & VM_MASK) {
368 handle_vm86_trap(env, trapnr);
369 } else
370 #endif
372 /* division by zero */
373 info.si_signo = TARGET_SIGFPE;
374 info.si_errno = 0;
375 info.si_code = TARGET_FPE_INTDIV;
376 info._sifields._sigfault._addr = env->eip;
377 queue_signal(env, info.si_signo, &info);
379 break;
380 case EXCP01_DB:
381 case EXCP03_INT3:
382 #ifndef TARGET_X86_64
383 if (env->eflags & VM_MASK) {
384 handle_vm86_trap(env, trapnr);
385 } else
386 #endif
388 info.si_signo = TARGET_SIGTRAP;
389 info.si_errno = 0;
390 if (trapnr == EXCP01_DB) {
391 info.si_code = TARGET_TRAP_BRKPT;
392 info._sifields._sigfault._addr = env->eip;
393 } else {
394 info.si_code = TARGET_SI_KERNEL;
395 info._sifields._sigfault._addr = 0;
397 queue_signal(env, info.si_signo, &info);
399 break;
400 case EXCP04_INTO:
401 case EXCP05_BOUND:
402 #ifndef TARGET_X86_64
403 if (env->eflags & VM_MASK) {
404 handle_vm86_trap(env, trapnr);
405 } else
406 #endif
408 info.si_signo = TARGET_SIGSEGV;
409 info.si_errno = 0;
410 info.si_code = TARGET_SI_KERNEL;
411 info._sifields._sigfault._addr = 0;
412 queue_signal(env, info.si_signo, &info);
414 break;
415 case EXCP06_ILLOP:
416 info.si_signo = TARGET_SIGILL;
417 info.si_errno = 0;
418 info.si_code = TARGET_ILL_ILLOPN;
419 info._sifields._sigfault._addr = env->eip;
420 queue_signal(env, info.si_signo, &info);
421 break;
422 case EXCP_INTERRUPT:
423 /* just indicate that signals should be handled asap */
424 break;
425 case EXCP_DEBUG:
427 int sig;
429 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
430 if (sig)
432 info.si_signo = sig;
433 info.si_errno = 0;
434 info.si_code = TARGET_TRAP_BRKPT;
435 queue_signal(env, info.si_signo, &info);
438 break;
439 default:
440 pc = env->segs[R_CS].base + env->eip;
441 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
442 (long)pc, trapnr);
443 abort();
445 process_pending_signals(env);
448 #endif
450 #ifdef TARGET_ARM
452 #define get_user_code_u32(x, gaddr, env) \
453 ({ abi_long __r = get_user_u32((x), (gaddr)); \
454 if (!__r && bswap_code(arm_sctlr_b(env))) { \
455 (x) = bswap32(x); \
457 __r; \
460 #define get_user_code_u16(x, gaddr, env) \
461 ({ abi_long __r = get_user_u16((x), (gaddr)); \
462 if (!__r && bswap_code(arm_sctlr_b(env))) { \
463 (x) = bswap16(x); \
465 __r; \
468 #define get_user_data_u32(x, gaddr, env) \
469 ({ abi_long __r = get_user_u32((x), (gaddr)); \
470 if (!__r && arm_cpu_bswap_data(env)) { \
471 (x) = bswap32(x); \
473 __r; \
476 #define get_user_data_u16(x, gaddr, env) \
477 ({ abi_long __r = get_user_u16((x), (gaddr)); \
478 if (!__r && arm_cpu_bswap_data(env)) { \
479 (x) = bswap16(x); \
481 __r; \
484 #define put_user_data_u32(x, gaddr, env) \
485 ({ typeof(x) __x = (x); \
486 if (arm_cpu_bswap_data(env)) { \
487 __x = bswap32(__x); \
489 put_user_u32(__x, (gaddr)); \
492 #define put_user_data_u16(x, gaddr, env) \
493 ({ typeof(x) __x = (x); \
494 if (arm_cpu_bswap_data(env)) { \
495 __x = bswap16(__x); \
497 put_user_u16(__x, (gaddr)); \
500 #ifdef TARGET_ABI32
501 /* Commpage handling -- there is no commpage for AArch64 */
504 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
505 * Input:
506 * r0 = pointer to oldval
507 * r1 = pointer to newval
508 * r2 = pointer to target value
510 * Output:
511 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
512 * C set if *ptr was changed, clear if no exchange happened
514 * Note segv's in kernel helpers are a bit tricky, we can set the
515 * data address sensibly but the PC address is just the entry point.
517 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
519 uint64_t oldval, newval, val;
520 uint32_t addr, cpsr;
521 target_siginfo_t info;
523 /* Based on the 32 bit code in do_kernel_trap */
525 /* XXX: This only works between threads, not between processes.
526 It's probably possible to implement this with native host
527 operations. However things like ldrex/strex are much harder so
528 there's not much point trying. */
529 start_exclusive();
530 cpsr = cpsr_read(env);
531 addr = env->regs[2];
533 if (get_user_u64(oldval, env->regs[0])) {
534 env->exception.vaddress = env->regs[0];
535 goto segv;
538 if (get_user_u64(newval, env->regs[1])) {
539 env->exception.vaddress = env->regs[1];
540 goto segv;
543 if (get_user_u64(val, addr)) {
544 env->exception.vaddress = addr;
545 goto segv;
548 if (val == oldval) {
549 val = newval;
551 if (put_user_u64(val, addr)) {
552 env->exception.vaddress = addr;
553 goto segv;
556 env->regs[0] = 0;
557 cpsr |= CPSR_C;
558 } else {
559 env->regs[0] = -1;
560 cpsr &= ~CPSR_C;
562 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
563 end_exclusive();
564 return;
566 segv:
567 end_exclusive();
568 /* We get the PC of the entry address - which is as good as anything,
569 on a real kernel what you get depends on which mode it uses. */
570 info.si_signo = TARGET_SIGSEGV;
571 info.si_errno = 0;
572 /* XXX: check env->error_code */
573 info.si_code = TARGET_SEGV_MAPERR;
574 info._sifields._sigfault._addr = env->exception.vaddress;
575 queue_signal(env, info.si_signo, &info);
578 /* Handle a jump to the kernel code page. */
579 static int
580 do_kernel_trap(CPUARMState *env)
582 uint32_t addr;
583 uint32_t cpsr;
584 uint32_t val;
586 switch (env->regs[15]) {
587 case 0xffff0fa0: /* __kernel_memory_barrier */
588 /* ??? No-op. Will need to do better for SMP. */
589 break;
590 case 0xffff0fc0: /* __kernel_cmpxchg */
591 /* XXX: This only works between threads, not between processes.
592 It's probably possible to implement this with native host
593 operations. However things like ldrex/strex are much harder so
594 there's not much point trying. */
595 start_exclusive();
596 cpsr = cpsr_read(env);
597 addr = env->regs[2];
598 /* FIXME: This should SEGV if the access fails. */
599 if (get_user_u32(val, addr))
600 val = ~env->regs[0];
601 if (val == env->regs[0]) {
602 val = env->regs[1];
603 /* FIXME: Check for segfaults. */
604 put_user_u32(val, addr);
605 env->regs[0] = 0;
606 cpsr |= CPSR_C;
607 } else {
608 env->regs[0] = -1;
609 cpsr &= ~CPSR_C;
611 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
612 end_exclusive();
613 break;
614 case 0xffff0fe0: /* __kernel_get_tls */
615 env->regs[0] = cpu_get_tls(env);
616 break;
617 case 0xffff0f60: /* __kernel_cmpxchg64 */
618 arm_kernel_cmpxchg64_helper(env);
619 break;
621 default:
622 return 1;
624 /* Jump back to the caller. */
625 addr = env->regs[14];
626 if (addr & 1) {
627 env->thumb = 1;
628 addr &= ~1;
630 env->regs[15] = addr;
632 return 0;
635 /* Store exclusive handling for AArch32 */
636 static int do_strex(CPUARMState *env)
638 uint64_t val;
639 int size;
640 int rc = 1;
641 int segv = 0;
642 uint32_t addr;
643 start_exclusive();
644 if (env->exclusive_addr != env->exclusive_test) {
645 goto fail;
647 /* We know we're always AArch32 so the address is in uint32_t range
648 * unless it was the -1 exclusive-monitor-lost value (which won't
649 * match exclusive_test above).
651 assert(extract64(env->exclusive_addr, 32, 32) == 0);
652 addr = env->exclusive_addr;
653 size = env->exclusive_info & 0xf;
654 switch (size) {
655 case 0:
656 segv = get_user_u8(val, addr);
657 break;
658 case 1:
659 segv = get_user_data_u16(val, addr, env);
660 break;
661 case 2:
662 case 3:
663 segv = get_user_data_u32(val, addr, env);
664 break;
665 default:
666 abort();
668 if (segv) {
669 env->exception.vaddress = addr;
670 goto done;
672 if (size == 3) {
673 uint32_t valhi;
674 segv = get_user_data_u32(valhi, addr + 4, env);
675 if (segv) {
676 env->exception.vaddress = addr + 4;
677 goto done;
679 if (arm_cpu_bswap_data(env)) {
680 val = deposit64((uint64_t)valhi, 32, 32, val);
681 } else {
682 val = deposit64(val, 32, 32, valhi);
685 if (val != env->exclusive_val) {
686 goto fail;
689 val = env->regs[(env->exclusive_info >> 8) & 0xf];
690 switch (size) {
691 case 0:
692 segv = put_user_u8(val, addr);
693 break;
694 case 1:
695 segv = put_user_data_u16(val, addr, env);
696 break;
697 case 2:
698 case 3:
699 segv = put_user_data_u32(val, addr, env);
700 break;
702 if (segv) {
703 env->exception.vaddress = addr;
704 goto done;
706 if (size == 3) {
707 val = env->regs[(env->exclusive_info >> 12) & 0xf];
708 segv = put_user_data_u32(val, addr + 4, env);
709 if (segv) {
710 env->exception.vaddress = addr + 4;
711 goto done;
714 rc = 0;
715 fail:
716 env->regs[15] += 4;
717 env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
718 done:
719 end_exclusive();
720 return segv;
723 void cpu_loop(CPUARMState *env)
725 CPUState *cs = CPU(arm_env_get_cpu(env));
726 int trapnr;
727 unsigned int n, insn;
728 target_siginfo_t info;
729 uint32_t addr;
730 abi_ulong ret;
732 for(;;) {
733 cpu_exec_start(cs);
734 trapnr = cpu_arm_exec(cs);
735 cpu_exec_end(cs);
736 switch(trapnr) {
737 case EXCP_UDEF:
739 TaskState *ts = cs->opaque;
740 uint32_t opcode;
741 int rc;
743 /* we handle the FPU emulation here, as Linux */
744 /* we get the opcode */
745 /* FIXME - what to do if get_user() fails? */
746 get_user_code_u32(opcode, env->regs[15], env);
748 rc = EmulateAll(opcode, &ts->fpa, env);
749 if (rc == 0) { /* illegal instruction */
750 info.si_signo = TARGET_SIGILL;
751 info.si_errno = 0;
752 info.si_code = TARGET_ILL_ILLOPN;
753 info._sifields._sigfault._addr = env->regs[15];
754 queue_signal(env, info.si_signo, &info);
755 } else if (rc < 0) { /* FP exception */
756 int arm_fpe=0;
758 /* translate softfloat flags to FPSR flags */
759 if (-rc & float_flag_invalid)
760 arm_fpe |= BIT_IOC;
761 if (-rc & float_flag_divbyzero)
762 arm_fpe |= BIT_DZC;
763 if (-rc & float_flag_overflow)
764 arm_fpe |= BIT_OFC;
765 if (-rc & float_flag_underflow)
766 arm_fpe |= BIT_UFC;
767 if (-rc & float_flag_inexact)
768 arm_fpe |= BIT_IXC;
770 FPSR fpsr = ts->fpa.fpsr;
771 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
773 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
774 info.si_signo = TARGET_SIGFPE;
775 info.si_errno = 0;
777 /* ordered by priority, least first */
778 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
779 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
780 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
781 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
782 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
784 info._sifields._sigfault._addr = env->regs[15];
785 queue_signal(env, info.si_signo, &info);
786 } else {
787 env->regs[15] += 4;
790 /* accumulate unenabled exceptions */
791 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
792 fpsr |= BIT_IXC;
793 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
794 fpsr |= BIT_UFC;
795 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
796 fpsr |= BIT_OFC;
797 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
798 fpsr |= BIT_DZC;
799 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
800 fpsr |= BIT_IOC;
801 ts->fpa.fpsr=fpsr;
802 } else { /* everything OK */
803 /* increment PC */
804 env->regs[15] += 4;
807 break;
808 case EXCP_SWI:
809 case EXCP_BKPT:
811 env->eabi = 1;
812 /* system call */
813 if (trapnr == EXCP_BKPT) {
814 if (env->thumb) {
815 /* FIXME - what to do if get_user() fails? */
816 get_user_code_u16(insn, env->regs[15], env);
817 n = insn & 0xff;
818 env->regs[15] += 2;
819 } else {
820 /* FIXME - what to do if get_user() fails? */
821 get_user_code_u32(insn, env->regs[15], env);
822 n = (insn & 0xf) | ((insn >> 4) & 0xff0);
823 env->regs[15] += 4;
825 } else {
826 if (env->thumb) {
827 /* FIXME - what to do if get_user() fails? */
828 get_user_code_u16(insn, env->regs[15] - 2, env);
829 n = insn & 0xff;
830 } else {
831 /* FIXME - what to do if get_user() fails? */
832 get_user_code_u32(insn, env->regs[15] - 4, env);
833 n = insn & 0xffffff;
837 if (n == ARM_NR_cacheflush) {
838 /* nop */
839 } else if (n == ARM_NR_semihosting
840 || n == ARM_NR_thumb_semihosting) {
841 env->regs[0] = do_arm_semihosting (env);
842 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
843 /* linux syscall */
844 if (env->thumb || n == 0) {
845 n = env->regs[7];
846 } else {
847 n -= ARM_SYSCALL_BASE;
848 env->eabi = 0;
850 if ( n > ARM_NR_BASE) {
851 switch (n) {
852 case ARM_NR_cacheflush:
853 /* nop */
854 break;
855 case ARM_NR_set_tls:
856 cpu_set_tls(env, env->regs[0]);
857 env->regs[0] = 0;
858 break;
859 case ARM_NR_breakpoint:
860 env->regs[15] -= env->thumb ? 2 : 4;
861 goto excp_debug;
862 default:
863 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
865 env->regs[0] = -TARGET_ENOSYS;
866 break;
868 } else {
869 ret = do_syscall(env,
871 env->regs[0],
872 env->regs[1],
873 env->regs[2],
874 env->regs[3],
875 env->regs[4],
876 env->regs[5],
877 0, 0);
878 if (ret == -TARGET_ERESTARTSYS) {
879 env->regs[15] -= env->thumb ? 2 : 4;
880 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
881 env->regs[0] = ret;
884 } else {
885 goto error;
888 break;
889 case EXCP_INTERRUPT:
890 /* just indicate that signals should be handled asap */
891 break;
892 case EXCP_STREX:
893 if (!do_strex(env)) {
894 break;
896 /* fall through for segv */
897 case EXCP_PREFETCH_ABORT:
898 case EXCP_DATA_ABORT:
899 addr = env->exception.vaddress;
901 info.si_signo = TARGET_SIGSEGV;
902 info.si_errno = 0;
903 /* XXX: check env->error_code */
904 info.si_code = TARGET_SEGV_MAPERR;
905 info._sifields._sigfault._addr = addr;
906 queue_signal(env, info.si_signo, &info);
908 break;
909 case EXCP_DEBUG:
910 excp_debug:
912 int sig;
914 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
915 if (sig)
917 info.si_signo = sig;
918 info.si_errno = 0;
919 info.si_code = TARGET_TRAP_BRKPT;
920 queue_signal(env, info.si_signo, &info);
923 break;
924 case EXCP_KERNEL_TRAP:
925 if (do_kernel_trap(env))
926 goto error;
927 break;
928 case EXCP_YIELD:
929 /* nothing to do here for user-mode, just resume guest code */
930 break;
931 default:
932 error:
933 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
934 abort();
936 process_pending_signals(env);
940 #else
943 * Handle AArch64 store-release exclusive
945 * rs = gets the status result of store exclusive
946 * rt = is the register that is stored
947 * rt2 = is the second register store (in STP)
950 static int do_strex_a64(CPUARMState *env)
952 uint64_t val;
953 int size;
954 bool is_pair;
955 int rc = 1;
956 int segv = 0;
957 uint64_t addr;
958 int rs, rt, rt2;
960 start_exclusive();
961 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
962 size = extract32(env->exclusive_info, 0, 2);
963 is_pair = extract32(env->exclusive_info, 2, 1);
964 rs = extract32(env->exclusive_info, 4, 5);
965 rt = extract32(env->exclusive_info, 9, 5);
966 rt2 = extract32(env->exclusive_info, 14, 5);
968 addr = env->exclusive_addr;
970 if (addr != env->exclusive_test) {
971 goto finish;
974 switch (size) {
975 case 0:
976 segv = get_user_u8(val, addr);
977 break;
978 case 1:
979 segv = get_user_u16(val, addr);
980 break;
981 case 2:
982 segv = get_user_u32(val, addr);
983 break;
984 case 3:
985 segv = get_user_u64(val, addr);
986 break;
987 default:
988 abort();
990 if (segv) {
991 env->exception.vaddress = addr;
992 goto error;
994 if (val != env->exclusive_val) {
995 goto finish;
997 if (is_pair) {
998 if (size == 2) {
999 segv = get_user_u32(val, addr + 4);
1000 } else {
1001 segv = get_user_u64(val, addr + 8);
1003 if (segv) {
1004 env->exception.vaddress = addr + (size == 2 ? 4 : 8);
1005 goto error;
1007 if (val != env->exclusive_high) {
1008 goto finish;
1011 /* handle the zero register */
1012 val = rt == 31 ? 0 : env->xregs[rt];
1013 switch (size) {
1014 case 0:
1015 segv = put_user_u8(val, addr);
1016 break;
1017 case 1:
1018 segv = put_user_u16(val, addr);
1019 break;
1020 case 2:
1021 segv = put_user_u32(val, addr);
1022 break;
1023 case 3:
1024 segv = put_user_u64(val, addr);
1025 break;
1027 if (segv) {
1028 goto error;
1030 if (is_pair) {
1031 /* handle the zero register */
1032 val = rt2 == 31 ? 0 : env->xregs[rt2];
1033 if (size == 2) {
1034 segv = put_user_u32(val, addr + 4);
1035 } else {
1036 segv = put_user_u64(val, addr + 8);
1038 if (segv) {
1039 env->exception.vaddress = addr + (size == 2 ? 4 : 8);
1040 goto error;
1043 rc = 0;
1044 finish:
1045 env->pc += 4;
1046 /* rs == 31 encodes a write to the ZR, thus throwing away
1047 * the status return. This is rather silly but valid.
1049 if (rs < 31) {
1050 env->xregs[rs] = rc;
1052 error:
1053 /* instruction faulted, PC does not advance */
1054 /* either way a strex releases any exclusive lock we have */
1055 env->exclusive_addr = -1;
1056 end_exclusive();
1057 return segv;
1060 /* AArch64 main loop */
1061 void cpu_loop(CPUARMState *env)
1063 CPUState *cs = CPU(arm_env_get_cpu(env));
1064 int trapnr, sig;
1065 abi_long ret;
1066 target_siginfo_t info;
1068 for (;;) {
1069 cpu_exec_start(cs);
1070 trapnr = cpu_arm_exec(cs);
1071 cpu_exec_end(cs);
1073 switch (trapnr) {
1074 case EXCP_SWI:
1075 ret = do_syscall(env,
1076 env->xregs[8],
1077 env->xregs[0],
1078 env->xregs[1],
1079 env->xregs[2],
1080 env->xregs[3],
1081 env->xregs[4],
1082 env->xregs[5],
1083 0, 0);
1084 if (ret == -TARGET_ERESTARTSYS) {
1085 env->pc -= 4;
1086 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
1087 env->xregs[0] = ret;
1089 break;
1090 case EXCP_INTERRUPT:
1091 /* just indicate that signals should be handled asap */
1092 break;
1093 case EXCP_UDEF:
1094 info.si_signo = TARGET_SIGILL;
1095 info.si_errno = 0;
1096 info.si_code = TARGET_ILL_ILLOPN;
1097 info._sifields._sigfault._addr = env->pc;
1098 queue_signal(env, info.si_signo, &info);
1099 break;
1100 case EXCP_STREX:
1101 if (!do_strex_a64(env)) {
1102 break;
1104 /* fall through for segv */
1105 case EXCP_PREFETCH_ABORT:
1106 case EXCP_DATA_ABORT:
1107 info.si_signo = TARGET_SIGSEGV;
1108 info.si_errno = 0;
1109 /* XXX: check env->error_code */
1110 info.si_code = TARGET_SEGV_MAPERR;
1111 info._sifields._sigfault._addr = env->exception.vaddress;
1112 queue_signal(env, info.si_signo, &info);
1113 break;
1114 case EXCP_DEBUG:
1115 case EXCP_BKPT:
1116 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1117 if (sig) {
1118 info.si_signo = sig;
1119 info.si_errno = 0;
1120 info.si_code = TARGET_TRAP_BRKPT;
1121 queue_signal(env, info.si_signo, &info);
1123 break;
1124 case EXCP_SEMIHOST:
1125 env->xregs[0] = do_arm_semihosting(env);
1126 break;
1127 case EXCP_YIELD:
1128 /* nothing to do here for user-mode, just resume guest code */
1129 break;
1130 default:
1131 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
1132 abort();
1134 process_pending_signals(env);
1135 /* Exception return on AArch64 always clears the exclusive monitor,
1136 * so any return to running guest code implies this.
1137 * A strex (successful or otherwise) also clears the monitor, so
1138 * we don't need to specialcase EXCP_STREX.
1140 env->exclusive_addr = -1;
1143 #endif /* ndef TARGET_ABI32 */
1145 #endif
1147 #ifdef TARGET_UNICORE32
1149 void cpu_loop(CPUUniCore32State *env)
1151 CPUState *cs = CPU(uc32_env_get_cpu(env));
1152 int trapnr;
1153 unsigned int n, insn;
1154 target_siginfo_t info;
1156 for (;;) {
1157 cpu_exec_start(cs);
1158 trapnr = uc32_cpu_exec(cs);
1159 cpu_exec_end(cs);
1160 switch (trapnr) {
1161 case UC32_EXCP_PRIV:
1163 /* system call */
1164 get_user_u32(insn, env->regs[31] - 4);
1165 n = insn & 0xffffff;
1167 if (n >= UC32_SYSCALL_BASE) {
1168 /* linux syscall */
1169 n -= UC32_SYSCALL_BASE;
1170 if (n == UC32_SYSCALL_NR_set_tls) {
1171 cpu_set_tls(env, env->regs[0]);
1172 env->regs[0] = 0;
1173 } else {
1174 abi_long ret = do_syscall(env,
1176 env->regs[0],
1177 env->regs[1],
1178 env->regs[2],
1179 env->regs[3],
1180 env->regs[4],
1181 env->regs[5],
1182 0, 0);
1183 if (ret == -TARGET_ERESTARTSYS) {
1184 env->regs[31] -= 4;
1185 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
1186 env->regs[0] = ret;
1189 } else {
1190 goto error;
1193 break;
1194 case UC32_EXCP_DTRAP:
1195 case UC32_EXCP_ITRAP:
1196 info.si_signo = TARGET_SIGSEGV;
1197 info.si_errno = 0;
1198 /* XXX: check env->error_code */
1199 info.si_code = TARGET_SEGV_MAPERR;
1200 info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
1201 queue_signal(env, info.si_signo, &info);
1202 break;
1203 case EXCP_INTERRUPT:
1204 /* just indicate that signals should be handled asap */
1205 break;
1206 case EXCP_DEBUG:
1208 int sig;
1210 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1211 if (sig) {
1212 info.si_signo = sig;
1213 info.si_errno = 0;
1214 info.si_code = TARGET_TRAP_BRKPT;
1215 queue_signal(env, info.si_signo, &info);
1218 break;
1219 default:
1220 goto error;
1222 process_pending_signals(env);
1225 error:
1226 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
1227 abort();
1229 #endif
1231 #ifdef TARGET_SPARC
1232 #define SPARC64_STACK_BIAS 2047
1234 //#define DEBUG_WIN
1236 /* WARNING: dealing with register windows _is_ complicated. More info
1237 can be found at http://www.sics.se/~psm/sparcstack.html */
1238 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
1240 index = (index + cwp * 16) % (16 * env->nwindows);
1241 /* wrap handling : if cwp is on the last window, then we use the
1242 registers 'after' the end */
1243 if (index < 8 && env->cwp == env->nwindows - 1)
1244 index += 16 * env->nwindows;
1245 return index;
1248 /* save the register window 'cwp1' */
1249 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
1251 unsigned int i;
1252 abi_ulong sp_ptr;
1254 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1255 #ifdef TARGET_SPARC64
1256 if (sp_ptr & 3)
1257 sp_ptr += SPARC64_STACK_BIAS;
1258 #endif
1259 #if defined(DEBUG_WIN)
1260 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
1261 sp_ptr, cwp1);
1262 #endif
1263 for(i = 0; i < 16; i++) {
1264 /* FIXME - what to do if put_user() fails? */
1265 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1266 sp_ptr += sizeof(abi_ulong);
1270 static void save_window(CPUSPARCState *env)
1272 #ifndef TARGET_SPARC64
1273 unsigned int new_wim;
1274 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
1275 ((1LL << env->nwindows) - 1);
1276 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1277 env->wim = new_wim;
1278 #else
1279 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1280 env->cansave++;
1281 env->canrestore--;
1282 #endif
1285 static void restore_window(CPUSPARCState *env)
1287 #ifndef TARGET_SPARC64
1288 unsigned int new_wim;
1289 #endif
1290 unsigned int i, cwp1;
1291 abi_ulong sp_ptr;
1293 #ifndef TARGET_SPARC64
1294 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1295 ((1LL << env->nwindows) - 1);
1296 #endif
1298 /* restore the invalid window */
1299 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1300 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1301 #ifdef TARGET_SPARC64
1302 if (sp_ptr & 3)
1303 sp_ptr += SPARC64_STACK_BIAS;
1304 #endif
1305 #if defined(DEBUG_WIN)
1306 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1307 sp_ptr, cwp1);
1308 #endif
1309 for(i = 0; i < 16; i++) {
1310 /* FIXME - what to do if get_user() fails? */
1311 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1312 sp_ptr += sizeof(abi_ulong);
1314 #ifdef TARGET_SPARC64
1315 env->canrestore++;
1316 if (env->cleanwin < env->nwindows - 1)
1317 env->cleanwin++;
1318 env->cansave--;
1319 #else
1320 env->wim = new_wim;
1321 #endif
1324 static void flush_windows(CPUSPARCState *env)
1326 int offset, cwp1;
1328 offset = 1;
1329 for(;;) {
1330 /* if restore would invoke restore_window(), then we can stop */
1331 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1332 #ifndef TARGET_SPARC64
1333 if (env->wim & (1 << cwp1))
1334 break;
1335 #else
1336 if (env->canrestore == 0)
1337 break;
1338 env->cansave++;
1339 env->canrestore--;
1340 #endif
1341 save_window_offset(env, cwp1);
1342 offset++;
1344 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1345 #ifndef TARGET_SPARC64
1346 /* set wim so that restore will reload the registers */
1347 env->wim = 1 << cwp1;
1348 #endif
1349 #if defined(DEBUG_WIN)
1350 printf("flush_windows: nb=%d\n", offset - 1);
1351 #endif
1354 void cpu_loop (CPUSPARCState *env)
1356 CPUState *cs = CPU(sparc_env_get_cpu(env));
1357 int trapnr;
1358 abi_long ret;
1359 target_siginfo_t info;
1361 while (1) {
1362 cpu_exec_start(cs);
1363 trapnr = cpu_sparc_exec(cs);
1364 cpu_exec_end(cs);
1366 /* Compute PSR before exposing state. */
1367 if (env->cc_op != CC_OP_FLAGS) {
1368 cpu_get_psr(env);
1371 switch (trapnr) {
1372 #ifndef TARGET_SPARC64
1373 case 0x88:
1374 case 0x90:
1375 #else
1376 case 0x110:
1377 case 0x16d:
1378 #endif
1379 ret = do_syscall (env, env->gregs[1],
1380 env->regwptr[0], env->regwptr[1],
1381 env->regwptr[2], env->regwptr[3],
1382 env->regwptr[4], env->regwptr[5],
1383 0, 0);
1384 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) {
1385 break;
1387 if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1388 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1389 env->xcc |= PSR_CARRY;
1390 #else
1391 env->psr |= PSR_CARRY;
1392 #endif
1393 ret = -ret;
1394 } else {
1395 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1396 env->xcc &= ~PSR_CARRY;
1397 #else
1398 env->psr &= ~PSR_CARRY;
1399 #endif
1401 env->regwptr[0] = ret;
1402 /* next instruction */
1403 env->pc = env->npc;
1404 env->npc = env->npc + 4;
1405 break;
1406 case 0x83: /* flush windows */
1407 #ifdef TARGET_ABI32
1408 case 0x103:
1409 #endif
1410 flush_windows(env);
1411 /* next instruction */
1412 env->pc = env->npc;
1413 env->npc = env->npc + 4;
1414 break;
1415 #ifndef TARGET_SPARC64
1416 case TT_WIN_OVF: /* window overflow */
1417 save_window(env);
1418 break;
1419 case TT_WIN_UNF: /* window underflow */
1420 restore_window(env);
1421 break;
1422 case TT_TFAULT:
1423 case TT_DFAULT:
1425 info.si_signo = TARGET_SIGSEGV;
1426 info.si_errno = 0;
1427 /* XXX: check env->error_code */
1428 info.si_code = TARGET_SEGV_MAPERR;
1429 info._sifields._sigfault._addr = env->mmuregs[4];
1430 queue_signal(env, info.si_signo, &info);
1432 break;
1433 #else
1434 case TT_SPILL: /* window overflow */
1435 save_window(env);
1436 break;
1437 case TT_FILL: /* window underflow */
1438 restore_window(env);
1439 break;
1440 case TT_TFAULT:
1441 case TT_DFAULT:
1443 info.si_signo = TARGET_SIGSEGV;
1444 info.si_errno = 0;
1445 /* XXX: check env->error_code */
1446 info.si_code = TARGET_SEGV_MAPERR;
1447 if (trapnr == TT_DFAULT)
1448 info._sifields._sigfault._addr = env->dmmuregs[4];
1449 else
1450 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1451 queue_signal(env, info.si_signo, &info);
1453 break;
1454 #ifndef TARGET_ABI32
1455 case 0x16e:
1456 flush_windows(env);
1457 sparc64_get_context(env);
1458 break;
1459 case 0x16f:
1460 flush_windows(env);
1461 sparc64_set_context(env);
1462 break;
1463 #endif
1464 #endif
1465 case EXCP_INTERRUPT:
1466 /* just indicate that signals should be handled asap */
1467 break;
1468 case TT_ILL_INSN:
1470 info.si_signo = TARGET_SIGILL;
1471 info.si_errno = 0;
1472 info.si_code = TARGET_ILL_ILLOPC;
1473 info._sifields._sigfault._addr = env->pc;
1474 queue_signal(env, info.si_signo, &info);
1476 break;
1477 case EXCP_DEBUG:
1479 int sig;
1481 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1482 if (sig)
1484 info.si_signo = sig;
1485 info.si_errno = 0;
1486 info.si_code = TARGET_TRAP_BRKPT;
1487 queue_signal(env, info.si_signo, &info);
1490 break;
1491 default:
1492 printf ("Unhandled trap: 0x%x\n", trapnr);
1493 cpu_dump_state(cs, stderr, fprintf, 0);
1494 exit(EXIT_FAILURE);
1496 process_pending_signals (env);
1500 #endif
1502 #ifdef TARGET_PPC
1503 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1505 return cpu_get_host_ticks();
1508 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1510 return cpu_ppc_get_tb(env);
1513 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1515 return cpu_ppc_get_tb(env) >> 32;
1518 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1520 return cpu_ppc_get_tb(env);
1523 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1525 return cpu_ppc_get_tb(env) >> 32;
1528 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1529 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1531 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1533 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1536 /* XXX: to be fixed */
1537 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1539 return -1;
1542 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1544 return -1;
1547 static int do_store_exclusive(CPUPPCState *env)
1549 target_ulong addr;
1550 target_ulong page_addr;
1551 target_ulong val, val2 __attribute__((unused)) = 0;
1552 int flags;
1553 int segv = 0;
1555 addr = env->reserve_ea;
1556 page_addr = addr & TARGET_PAGE_MASK;
1557 start_exclusive();
1558 mmap_lock();
1559 flags = page_get_flags(page_addr);
1560 if ((flags & PAGE_READ) == 0) {
1561 segv = 1;
1562 } else {
1563 int reg = env->reserve_info & 0x1f;
1564 int size = env->reserve_info >> 5;
1565 int stored = 0;
1567 if (addr == env->reserve_addr) {
1568 switch (size) {
1569 case 1: segv = get_user_u8(val, addr); break;
1570 case 2: segv = get_user_u16(val, addr); break;
1571 case 4: segv = get_user_u32(val, addr); break;
1572 #if defined(TARGET_PPC64)
1573 case 8: segv = get_user_u64(val, addr); break;
1574 case 16: {
1575 segv = get_user_u64(val, addr);
1576 if (!segv) {
1577 segv = get_user_u64(val2, addr + 8);
1579 break;
1581 #endif
1582 default: abort();
1584 if (!segv && val == env->reserve_val) {
1585 val = env->gpr[reg];
1586 switch (size) {
1587 case 1: segv = put_user_u8(val, addr); break;
1588 case 2: segv = put_user_u16(val, addr); break;
1589 case 4: segv = put_user_u32(val, addr); break;
1590 #if defined(TARGET_PPC64)
1591 case 8: segv = put_user_u64(val, addr); break;
1592 case 16: {
1593 if (val2 == env->reserve_val2) {
1594 if (msr_le) {
1595 val2 = val;
1596 val = env->gpr[reg+1];
1597 } else {
1598 val2 = env->gpr[reg+1];
1600 segv = put_user_u64(val, addr);
1601 if (!segv) {
1602 segv = put_user_u64(val2, addr + 8);
1605 break;
1607 #endif
1608 default: abort();
1610 if (!segv) {
1611 stored = 1;
1615 env->crf[0] = (stored << 1) | xer_so;
1616 env->reserve_addr = (target_ulong)-1;
1618 if (!segv) {
1619 env->nip += 4;
1621 mmap_unlock();
1622 end_exclusive();
1623 return segv;
1626 void cpu_loop(CPUPPCState *env)
1628 CPUState *cs = CPU(ppc_env_get_cpu(env));
1629 target_siginfo_t info;
1630 int trapnr;
1631 target_ulong ret;
1633 for(;;) {
1634 cpu_exec_start(cs);
1635 trapnr = cpu_ppc_exec(cs);
1636 cpu_exec_end(cs);
1637 switch(trapnr) {
1638 case POWERPC_EXCP_NONE:
1639 /* Just go on */
1640 break;
1641 case POWERPC_EXCP_CRITICAL: /* Critical input */
1642 cpu_abort(cs, "Critical interrupt while in user mode. "
1643 "Aborting\n");
1644 break;
1645 case POWERPC_EXCP_MCHECK: /* Machine check exception */
1646 cpu_abort(cs, "Machine check exception while in user mode. "
1647 "Aborting\n");
1648 break;
1649 case POWERPC_EXCP_DSI: /* Data storage exception */
1650 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1651 env->spr[SPR_DAR]);
1652 /* XXX: check this. Seems bugged */
1653 switch (env->error_code & 0xFF000000) {
1654 case 0x40000000:
1655 info.si_signo = TARGET_SIGSEGV;
1656 info.si_errno = 0;
1657 info.si_code = TARGET_SEGV_MAPERR;
1658 break;
1659 case 0x04000000:
1660 info.si_signo = TARGET_SIGILL;
1661 info.si_errno = 0;
1662 info.si_code = TARGET_ILL_ILLADR;
1663 break;
1664 case 0x08000000:
1665 info.si_signo = TARGET_SIGSEGV;
1666 info.si_errno = 0;
1667 info.si_code = TARGET_SEGV_ACCERR;
1668 break;
1669 default:
1670 /* Let's send a regular segfault... */
1671 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1672 env->error_code);
1673 info.si_signo = TARGET_SIGSEGV;
1674 info.si_errno = 0;
1675 info.si_code = TARGET_SEGV_MAPERR;
1676 break;
1678 info._sifields._sigfault._addr = env->nip;
1679 queue_signal(env, info.si_signo, &info);
1680 break;
1681 case POWERPC_EXCP_ISI: /* Instruction storage exception */
1682 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1683 "\n", env->spr[SPR_SRR0]);
1684 /* XXX: check this */
1685 switch (env->error_code & 0xFF000000) {
1686 case 0x40000000:
1687 info.si_signo = TARGET_SIGSEGV;
1688 info.si_errno = 0;
1689 info.si_code = TARGET_SEGV_MAPERR;
1690 break;
1691 case 0x10000000:
1692 case 0x08000000:
1693 info.si_signo = TARGET_SIGSEGV;
1694 info.si_errno = 0;
1695 info.si_code = TARGET_SEGV_ACCERR;
1696 break;
1697 default:
1698 /* Let's send a regular segfault... */
1699 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1700 env->error_code);
1701 info.si_signo = TARGET_SIGSEGV;
1702 info.si_errno = 0;
1703 info.si_code = TARGET_SEGV_MAPERR;
1704 break;
1706 info._sifields._sigfault._addr = env->nip - 4;
1707 queue_signal(env, info.si_signo, &info);
1708 break;
1709 case POWERPC_EXCP_EXTERNAL: /* External input */
1710 cpu_abort(cs, "External interrupt while in user mode. "
1711 "Aborting\n");
1712 break;
1713 case POWERPC_EXCP_ALIGN: /* Alignment exception */
1714 EXCP_DUMP(env, "Unaligned memory access\n");
1715 /* XXX: check this */
1716 info.si_signo = TARGET_SIGBUS;
1717 info.si_errno = 0;
1718 info.si_code = TARGET_BUS_ADRALN;
1719 info._sifields._sigfault._addr = env->nip;
1720 queue_signal(env, info.si_signo, &info);
1721 break;
1722 case POWERPC_EXCP_PROGRAM: /* Program exception */
1723 /* XXX: check this */
1724 switch (env->error_code & ~0xF) {
1725 case POWERPC_EXCP_FP:
1726 EXCP_DUMP(env, "Floating point program exception\n");
1727 info.si_signo = TARGET_SIGFPE;
1728 info.si_errno = 0;
1729 switch (env->error_code & 0xF) {
1730 case POWERPC_EXCP_FP_OX:
1731 info.si_code = TARGET_FPE_FLTOVF;
1732 break;
1733 case POWERPC_EXCP_FP_UX:
1734 info.si_code = TARGET_FPE_FLTUND;
1735 break;
1736 case POWERPC_EXCP_FP_ZX:
1737 case POWERPC_EXCP_FP_VXZDZ:
1738 info.si_code = TARGET_FPE_FLTDIV;
1739 break;
1740 case POWERPC_EXCP_FP_XX:
1741 info.si_code = TARGET_FPE_FLTRES;
1742 break;
1743 case POWERPC_EXCP_FP_VXSOFT:
1744 info.si_code = TARGET_FPE_FLTINV;
1745 break;
1746 case POWERPC_EXCP_FP_VXSNAN:
1747 case POWERPC_EXCP_FP_VXISI:
1748 case POWERPC_EXCP_FP_VXIDI:
1749 case POWERPC_EXCP_FP_VXIMZ:
1750 case POWERPC_EXCP_FP_VXVC:
1751 case POWERPC_EXCP_FP_VXSQRT:
1752 case POWERPC_EXCP_FP_VXCVI:
1753 info.si_code = TARGET_FPE_FLTSUB;
1754 break;
1755 default:
1756 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1757 env->error_code);
1758 break;
1760 break;
1761 case POWERPC_EXCP_INVAL:
1762 EXCP_DUMP(env, "Invalid instruction\n");
1763 info.si_signo = TARGET_SIGILL;
1764 info.si_errno = 0;
1765 switch (env->error_code & 0xF) {
1766 case POWERPC_EXCP_INVAL_INVAL:
1767 info.si_code = TARGET_ILL_ILLOPC;
1768 break;
1769 case POWERPC_EXCP_INVAL_LSWX:
1770 info.si_code = TARGET_ILL_ILLOPN;
1771 break;
1772 case POWERPC_EXCP_INVAL_SPR:
1773 info.si_code = TARGET_ILL_PRVREG;
1774 break;
1775 case POWERPC_EXCP_INVAL_FP:
1776 info.si_code = TARGET_ILL_COPROC;
1777 break;
1778 default:
1779 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1780 env->error_code & 0xF);
1781 info.si_code = TARGET_ILL_ILLADR;
1782 break;
1784 break;
1785 case POWERPC_EXCP_PRIV:
1786 EXCP_DUMP(env, "Privilege violation\n");
1787 info.si_signo = TARGET_SIGILL;
1788 info.si_errno = 0;
1789 switch (env->error_code & 0xF) {
1790 case POWERPC_EXCP_PRIV_OPC:
1791 info.si_code = TARGET_ILL_PRVOPC;
1792 break;
1793 case POWERPC_EXCP_PRIV_REG:
1794 info.si_code = TARGET_ILL_PRVREG;
1795 break;
1796 default:
1797 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1798 env->error_code & 0xF);
1799 info.si_code = TARGET_ILL_PRVOPC;
1800 break;
1802 break;
1803 case POWERPC_EXCP_TRAP:
1804 cpu_abort(cs, "Tried to call a TRAP\n");
1805 break;
1806 default:
1807 /* Should not happen ! */
1808 cpu_abort(cs, "Unknown program exception (%02x)\n",
1809 env->error_code);
1810 break;
1812 info._sifields._sigfault._addr = env->nip - 4;
1813 queue_signal(env, info.si_signo, &info);
1814 break;
1815 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
1816 EXCP_DUMP(env, "No floating point allowed\n");
1817 info.si_signo = TARGET_SIGILL;
1818 info.si_errno = 0;
1819 info.si_code = TARGET_ILL_COPROC;
1820 info._sifields._sigfault._addr = env->nip - 4;
1821 queue_signal(env, info.si_signo, &info);
1822 break;
1823 case POWERPC_EXCP_SYSCALL: /* System call exception */
1824 cpu_abort(cs, "Syscall exception while in user mode. "
1825 "Aborting\n");
1826 break;
1827 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
1828 EXCP_DUMP(env, "No APU instruction allowed\n");
1829 info.si_signo = TARGET_SIGILL;
1830 info.si_errno = 0;
1831 info.si_code = TARGET_ILL_COPROC;
1832 info._sifields._sigfault._addr = env->nip - 4;
1833 queue_signal(env, info.si_signo, &info);
1834 break;
1835 case POWERPC_EXCP_DECR: /* Decrementer exception */
1836 cpu_abort(cs, "Decrementer interrupt while in user mode. "
1837 "Aborting\n");
1838 break;
1839 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
1840 cpu_abort(cs, "Fix interval timer interrupt while in user mode. "
1841 "Aborting\n");
1842 break;
1843 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
1844 cpu_abort(cs, "Watchdog timer interrupt while in user mode. "
1845 "Aborting\n");
1846 break;
1847 case POWERPC_EXCP_DTLB: /* Data TLB error */
1848 cpu_abort(cs, "Data TLB exception while in user mode. "
1849 "Aborting\n");
1850 break;
1851 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
1852 cpu_abort(cs, "Instruction TLB exception while in user mode. "
1853 "Aborting\n");
1854 break;
1855 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
1856 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1857 info.si_signo = TARGET_SIGILL;
1858 info.si_errno = 0;
1859 info.si_code = TARGET_ILL_COPROC;
1860 info._sifields._sigfault._addr = env->nip - 4;
1861 queue_signal(env, info.si_signo, &info);
1862 break;
1863 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
1864 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n");
1865 break;
1866 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
1867 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n");
1868 break;
1869 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
1870 cpu_abort(cs, "Performance monitor exception not handled\n");
1871 break;
1872 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
1873 cpu_abort(cs, "Doorbell interrupt while in user mode. "
1874 "Aborting\n");
1875 break;
1876 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
1877 cpu_abort(cs, "Doorbell critical interrupt while in user mode. "
1878 "Aborting\n");
1879 break;
1880 case POWERPC_EXCP_RESET: /* System reset exception */
1881 cpu_abort(cs, "Reset interrupt while in user mode. "
1882 "Aborting\n");
1883 break;
1884 case POWERPC_EXCP_DSEG: /* Data segment exception */
1885 cpu_abort(cs, "Data segment exception while in user mode. "
1886 "Aborting\n");
1887 break;
1888 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
1889 cpu_abort(cs, "Instruction segment exception "
1890 "while in user mode. Aborting\n");
1891 break;
1892 /* PowerPC 64 with hypervisor mode support */
1893 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
1894 cpu_abort(cs, "Hypervisor decrementer interrupt "
1895 "while in user mode. Aborting\n");
1896 break;
1897 case POWERPC_EXCP_TRACE: /* Trace exception */
1898 /* Nothing to do:
1899 * we use this exception to emulate step-by-step execution mode.
1901 break;
1902 /* PowerPC 64 with hypervisor mode support */
1903 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
1904 cpu_abort(cs, "Hypervisor data storage exception "
1905 "while in user mode. Aborting\n");
1906 break;
1907 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
1908 cpu_abort(cs, "Hypervisor instruction storage exception "
1909 "while in user mode. Aborting\n");
1910 break;
1911 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
1912 cpu_abort(cs, "Hypervisor data segment exception "
1913 "while in user mode. Aborting\n");
1914 break;
1915 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
1916 cpu_abort(cs, "Hypervisor instruction segment exception "
1917 "while in user mode. Aborting\n");
1918 break;
1919 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
1920 EXCP_DUMP(env, "No Altivec instructions allowed\n");
1921 info.si_signo = TARGET_SIGILL;
1922 info.si_errno = 0;
1923 info.si_code = TARGET_ILL_COPROC;
1924 info._sifields._sigfault._addr = env->nip - 4;
1925 queue_signal(env, info.si_signo, &info);
1926 break;
1927 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
1928 cpu_abort(cs, "Programmable interval timer interrupt "
1929 "while in user mode. Aborting\n");
1930 break;
1931 case POWERPC_EXCP_IO: /* IO error exception */
1932 cpu_abort(cs, "IO error exception while in user mode. "
1933 "Aborting\n");
1934 break;
1935 case POWERPC_EXCP_RUNM: /* Run mode exception */
1936 cpu_abort(cs, "Run mode exception while in user mode. "
1937 "Aborting\n");
1938 break;
1939 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
1940 cpu_abort(cs, "Emulation trap exception not handled\n");
1941 break;
1942 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
1943 cpu_abort(cs, "Instruction fetch TLB exception "
1944 "while in user-mode. Aborting");
1945 break;
1946 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
1947 cpu_abort(cs, "Data load TLB exception while in user-mode. "
1948 "Aborting");
1949 break;
1950 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
1951 cpu_abort(cs, "Data store TLB exception while in user-mode. "
1952 "Aborting");
1953 break;
1954 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
1955 cpu_abort(cs, "Floating-point assist exception not handled\n");
1956 break;
1957 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
1958 cpu_abort(cs, "Instruction address breakpoint exception "
1959 "not handled\n");
1960 break;
1961 case POWERPC_EXCP_SMI: /* System management interrupt */
1962 cpu_abort(cs, "System management interrupt while in user mode. "
1963 "Aborting\n");
1964 break;
1965 case POWERPC_EXCP_THERM: /* Thermal interrupt */
1966 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. "
1967 "Aborting\n");
1968 break;
1969 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
1970 cpu_abort(cs, "Performance monitor exception not handled\n");
1971 break;
1972 case POWERPC_EXCP_VPUA: /* Vector assist exception */
1973 cpu_abort(cs, "Vector assist exception not handled\n");
1974 break;
1975 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
1976 cpu_abort(cs, "Soft patch exception not handled\n");
1977 break;
1978 case POWERPC_EXCP_MAINT: /* Maintenance exception */
1979 cpu_abort(cs, "Maintenance exception while in user mode. "
1980 "Aborting\n");
1981 break;
1982 case POWERPC_EXCP_STOP: /* stop translation */
1983 /* We did invalidate the instruction cache. Go on */
1984 break;
1985 case POWERPC_EXCP_BRANCH: /* branch instruction: */
1986 /* We just stopped because of a branch. Go on */
1987 break;
1988 case POWERPC_EXCP_SYSCALL_USER:
1989 /* system call in user-mode emulation */
1990 /* WARNING:
1991 * PPC ABI uses overflow flag in cr0 to signal an error
1992 * in syscalls.
1994 env->crf[0] &= ~0x1;
1995 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1996 env->gpr[5], env->gpr[6], env->gpr[7],
1997 env->gpr[8], 0, 0);
1998 if (ret == -TARGET_ERESTARTSYS) {
1999 env->nip -= 4;
2000 break;
2002 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
2003 /* Returning from a successful sigreturn syscall.
2004 Avoid corrupting register state. */
2005 break;
2007 if (ret > (target_ulong)(-515)) {
2008 env->crf[0] |= 0x1;
2009 ret = -ret;
2011 env->gpr[3] = ret;
2012 break;
2013 case POWERPC_EXCP_STCX:
2014 if (do_store_exclusive(env)) {
2015 info.si_signo = TARGET_SIGSEGV;
2016 info.si_errno = 0;
2017 info.si_code = TARGET_SEGV_MAPERR;
2018 info._sifields._sigfault._addr = env->nip;
2019 queue_signal(env, info.si_signo, &info);
2021 break;
2022 case EXCP_DEBUG:
2024 int sig;
2026 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2027 if (sig) {
2028 info.si_signo = sig;
2029 info.si_errno = 0;
2030 info.si_code = TARGET_TRAP_BRKPT;
2031 queue_signal(env, info.si_signo, &info);
2034 break;
2035 case EXCP_INTERRUPT:
2036 /* just indicate that signals should be handled asap */
2037 break;
2038 default:
2039 cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr);
2040 break;
2042 process_pending_signals(env);
2045 #endif
2047 #ifdef TARGET_MIPS
2049 # ifdef TARGET_ABI_MIPSO32
2050 # define MIPS_SYS(name, args) args,
2051 static const uint8_t mips_syscall_args[] = {
2052 MIPS_SYS(sys_syscall , 8) /* 4000 */
2053 MIPS_SYS(sys_exit , 1)
2054 MIPS_SYS(sys_fork , 0)
2055 MIPS_SYS(sys_read , 3)
2056 MIPS_SYS(sys_write , 3)
2057 MIPS_SYS(sys_open , 3) /* 4005 */
2058 MIPS_SYS(sys_close , 1)
2059 MIPS_SYS(sys_waitpid , 3)
2060 MIPS_SYS(sys_creat , 2)
2061 MIPS_SYS(sys_link , 2)
2062 MIPS_SYS(sys_unlink , 1) /* 4010 */
2063 MIPS_SYS(sys_execve , 0)
2064 MIPS_SYS(sys_chdir , 1)
2065 MIPS_SYS(sys_time , 1)
2066 MIPS_SYS(sys_mknod , 3)
2067 MIPS_SYS(sys_chmod , 2) /* 4015 */
2068 MIPS_SYS(sys_lchown , 3)
2069 MIPS_SYS(sys_ni_syscall , 0)
2070 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
2071 MIPS_SYS(sys_lseek , 3)
2072 MIPS_SYS(sys_getpid , 0) /* 4020 */
2073 MIPS_SYS(sys_mount , 5)
2074 MIPS_SYS(sys_umount , 1)
2075 MIPS_SYS(sys_setuid , 1)
2076 MIPS_SYS(sys_getuid , 0)
2077 MIPS_SYS(sys_stime , 1) /* 4025 */
2078 MIPS_SYS(sys_ptrace , 4)
2079 MIPS_SYS(sys_alarm , 1)
2080 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
2081 MIPS_SYS(sys_pause , 0)
2082 MIPS_SYS(sys_utime , 2) /* 4030 */
2083 MIPS_SYS(sys_ni_syscall , 0)
2084 MIPS_SYS(sys_ni_syscall , 0)
2085 MIPS_SYS(sys_access , 2)
2086 MIPS_SYS(sys_nice , 1)
2087 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
2088 MIPS_SYS(sys_sync , 0)
2089 MIPS_SYS(sys_kill , 2)
2090 MIPS_SYS(sys_rename , 2)
2091 MIPS_SYS(sys_mkdir , 2)
2092 MIPS_SYS(sys_rmdir , 1) /* 4040 */
2093 MIPS_SYS(sys_dup , 1)
2094 MIPS_SYS(sys_pipe , 0)
2095 MIPS_SYS(sys_times , 1)
2096 MIPS_SYS(sys_ni_syscall , 0)
2097 MIPS_SYS(sys_brk , 1) /* 4045 */
2098 MIPS_SYS(sys_setgid , 1)
2099 MIPS_SYS(sys_getgid , 0)
2100 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
2101 MIPS_SYS(sys_geteuid , 0)
2102 MIPS_SYS(sys_getegid , 0) /* 4050 */
2103 MIPS_SYS(sys_acct , 0)
2104 MIPS_SYS(sys_umount2 , 2)
2105 MIPS_SYS(sys_ni_syscall , 0)
2106 MIPS_SYS(sys_ioctl , 3)
2107 MIPS_SYS(sys_fcntl , 3) /* 4055 */
2108 MIPS_SYS(sys_ni_syscall , 2)
2109 MIPS_SYS(sys_setpgid , 2)
2110 MIPS_SYS(sys_ni_syscall , 0)
2111 MIPS_SYS(sys_olduname , 1)
2112 MIPS_SYS(sys_umask , 1) /* 4060 */
2113 MIPS_SYS(sys_chroot , 1)
2114 MIPS_SYS(sys_ustat , 2)
2115 MIPS_SYS(sys_dup2 , 2)
2116 MIPS_SYS(sys_getppid , 0)
2117 MIPS_SYS(sys_getpgrp , 0) /* 4065 */
2118 MIPS_SYS(sys_setsid , 0)
2119 MIPS_SYS(sys_sigaction , 3)
2120 MIPS_SYS(sys_sgetmask , 0)
2121 MIPS_SYS(sys_ssetmask , 1)
2122 MIPS_SYS(sys_setreuid , 2) /* 4070 */
2123 MIPS_SYS(sys_setregid , 2)
2124 MIPS_SYS(sys_sigsuspend , 0)
2125 MIPS_SYS(sys_sigpending , 1)
2126 MIPS_SYS(sys_sethostname , 2)
2127 MIPS_SYS(sys_setrlimit , 2) /* 4075 */
2128 MIPS_SYS(sys_getrlimit , 2)
2129 MIPS_SYS(sys_getrusage , 2)
2130 MIPS_SYS(sys_gettimeofday, 2)
2131 MIPS_SYS(sys_settimeofday, 2)
2132 MIPS_SYS(sys_getgroups , 2) /* 4080 */
2133 MIPS_SYS(sys_setgroups , 2)
2134 MIPS_SYS(sys_ni_syscall , 0) /* old_select */
2135 MIPS_SYS(sys_symlink , 2)
2136 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
2137 MIPS_SYS(sys_readlink , 3) /* 4085 */
2138 MIPS_SYS(sys_uselib , 1)
2139 MIPS_SYS(sys_swapon , 2)
2140 MIPS_SYS(sys_reboot , 3)
2141 MIPS_SYS(old_readdir , 3)
2142 MIPS_SYS(old_mmap , 6) /* 4090 */
2143 MIPS_SYS(sys_munmap , 2)
2144 MIPS_SYS(sys_truncate , 2)
2145 MIPS_SYS(sys_ftruncate , 2)
2146 MIPS_SYS(sys_fchmod , 2)
2147 MIPS_SYS(sys_fchown , 3) /* 4095 */
2148 MIPS_SYS(sys_getpriority , 2)
2149 MIPS_SYS(sys_setpriority , 3)
2150 MIPS_SYS(sys_ni_syscall , 0)
2151 MIPS_SYS(sys_statfs , 2)
2152 MIPS_SYS(sys_fstatfs , 2) /* 4100 */
2153 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
2154 MIPS_SYS(sys_socketcall , 2)
2155 MIPS_SYS(sys_syslog , 3)
2156 MIPS_SYS(sys_setitimer , 3)
2157 MIPS_SYS(sys_getitimer , 2) /* 4105 */
2158 MIPS_SYS(sys_newstat , 2)
2159 MIPS_SYS(sys_newlstat , 2)
2160 MIPS_SYS(sys_newfstat , 2)
2161 MIPS_SYS(sys_uname , 1)
2162 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
2163 MIPS_SYS(sys_vhangup , 0)
2164 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
2165 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
2166 MIPS_SYS(sys_wait4 , 4)
2167 MIPS_SYS(sys_swapoff , 1) /* 4115 */
2168 MIPS_SYS(sys_sysinfo , 1)
2169 MIPS_SYS(sys_ipc , 6)
2170 MIPS_SYS(sys_fsync , 1)
2171 MIPS_SYS(sys_sigreturn , 0)
2172 MIPS_SYS(sys_clone , 6) /* 4120 */
2173 MIPS_SYS(sys_setdomainname, 2)
2174 MIPS_SYS(sys_newuname , 1)
2175 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
2176 MIPS_SYS(sys_adjtimex , 1)
2177 MIPS_SYS(sys_mprotect , 3) /* 4125 */
2178 MIPS_SYS(sys_sigprocmask , 3)
2179 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
2180 MIPS_SYS(sys_init_module , 5)
2181 MIPS_SYS(sys_delete_module, 1)
2182 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
2183 MIPS_SYS(sys_quotactl , 0)
2184 MIPS_SYS(sys_getpgid , 1)
2185 MIPS_SYS(sys_fchdir , 1)
2186 MIPS_SYS(sys_bdflush , 2)
2187 MIPS_SYS(sys_sysfs , 3) /* 4135 */
2188 MIPS_SYS(sys_personality , 1)
2189 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
2190 MIPS_SYS(sys_setfsuid , 1)
2191 MIPS_SYS(sys_setfsgid , 1)
2192 MIPS_SYS(sys_llseek , 5) /* 4140 */
2193 MIPS_SYS(sys_getdents , 3)
2194 MIPS_SYS(sys_select , 5)
2195 MIPS_SYS(sys_flock , 2)
2196 MIPS_SYS(sys_msync , 3)
2197 MIPS_SYS(sys_readv , 3) /* 4145 */
2198 MIPS_SYS(sys_writev , 3)
2199 MIPS_SYS(sys_cacheflush , 3)
2200 MIPS_SYS(sys_cachectl , 3)
2201 MIPS_SYS(sys_sysmips , 4)
2202 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
2203 MIPS_SYS(sys_getsid , 1)
2204 MIPS_SYS(sys_fdatasync , 0)
2205 MIPS_SYS(sys_sysctl , 1)
2206 MIPS_SYS(sys_mlock , 2)
2207 MIPS_SYS(sys_munlock , 2) /* 4155 */
2208 MIPS_SYS(sys_mlockall , 1)
2209 MIPS_SYS(sys_munlockall , 0)
2210 MIPS_SYS(sys_sched_setparam, 2)
2211 MIPS_SYS(sys_sched_getparam, 2)
2212 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
2213 MIPS_SYS(sys_sched_getscheduler, 1)
2214 MIPS_SYS(sys_sched_yield , 0)
2215 MIPS_SYS(sys_sched_get_priority_max, 1)
2216 MIPS_SYS(sys_sched_get_priority_min, 1)
2217 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
2218 MIPS_SYS(sys_nanosleep, 2)
2219 MIPS_SYS(sys_mremap , 5)
2220 MIPS_SYS(sys_accept , 3)
2221 MIPS_SYS(sys_bind , 3)
2222 MIPS_SYS(sys_connect , 3) /* 4170 */
2223 MIPS_SYS(sys_getpeername , 3)
2224 MIPS_SYS(sys_getsockname , 3)
2225 MIPS_SYS(sys_getsockopt , 5)
2226 MIPS_SYS(sys_listen , 2)
2227 MIPS_SYS(sys_recv , 4) /* 4175 */
2228 MIPS_SYS(sys_recvfrom , 6)
2229 MIPS_SYS(sys_recvmsg , 3)
2230 MIPS_SYS(sys_send , 4)
2231 MIPS_SYS(sys_sendmsg , 3)
2232 MIPS_SYS(sys_sendto , 6) /* 4180 */
2233 MIPS_SYS(sys_setsockopt , 5)
2234 MIPS_SYS(sys_shutdown , 2)
2235 MIPS_SYS(sys_socket , 3)
2236 MIPS_SYS(sys_socketpair , 4)
2237 MIPS_SYS(sys_setresuid , 3) /* 4185 */
2238 MIPS_SYS(sys_getresuid , 3)
2239 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
2240 MIPS_SYS(sys_poll , 3)
2241 MIPS_SYS(sys_nfsservctl , 3)
2242 MIPS_SYS(sys_setresgid , 3) /* 4190 */
2243 MIPS_SYS(sys_getresgid , 3)
2244 MIPS_SYS(sys_prctl , 5)
2245 MIPS_SYS(sys_rt_sigreturn, 0)
2246 MIPS_SYS(sys_rt_sigaction, 4)
2247 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
2248 MIPS_SYS(sys_rt_sigpending, 2)
2249 MIPS_SYS(sys_rt_sigtimedwait, 4)
2250 MIPS_SYS(sys_rt_sigqueueinfo, 3)
2251 MIPS_SYS(sys_rt_sigsuspend, 0)
2252 MIPS_SYS(sys_pread64 , 6) /* 4200 */
2253 MIPS_SYS(sys_pwrite64 , 6)
2254 MIPS_SYS(sys_chown , 3)
2255 MIPS_SYS(sys_getcwd , 2)
2256 MIPS_SYS(sys_capget , 2)
2257 MIPS_SYS(sys_capset , 2) /* 4205 */
2258 MIPS_SYS(sys_sigaltstack , 2)
2259 MIPS_SYS(sys_sendfile , 4)
2260 MIPS_SYS(sys_ni_syscall , 0)
2261 MIPS_SYS(sys_ni_syscall , 0)
2262 MIPS_SYS(sys_mmap2 , 6) /* 4210 */
2263 MIPS_SYS(sys_truncate64 , 4)
2264 MIPS_SYS(sys_ftruncate64 , 4)
2265 MIPS_SYS(sys_stat64 , 2)
2266 MIPS_SYS(sys_lstat64 , 2)
2267 MIPS_SYS(sys_fstat64 , 2) /* 4215 */
2268 MIPS_SYS(sys_pivot_root , 2)
2269 MIPS_SYS(sys_mincore , 3)
2270 MIPS_SYS(sys_madvise , 3)
2271 MIPS_SYS(sys_getdents64 , 3)
2272 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
2273 MIPS_SYS(sys_ni_syscall , 0)
2274 MIPS_SYS(sys_gettid , 0)
2275 MIPS_SYS(sys_readahead , 5)
2276 MIPS_SYS(sys_setxattr , 5)
2277 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
2278 MIPS_SYS(sys_fsetxattr , 5)
2279 MIPS_SYS(sys_getxattr , 4)
2280 MIPS_SYS(sys_lgetxattr , 4)
2281 MIPS_SYS(sys_fgetxattr , 4)
2282 MIPS_SYS(sys_listxattr , 3) /* 4230 */
2283 MIPS_SYS(sys_llistxattr , 3)
2284 MIPS_SYS(sys_flistxattr , 3)
2285 MIPS_SYS(sys_removexattr , 2)
2286 MIPS_SYS(sys_lremovexattr, 2)
2287 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
2288 MIPS_SYS(sys_tkill , 2)
2289 MIPS_SYS(sys_sendfile64 , 5)
2290 MIPS_SYS(sys_futex , 6)
2291 MIPS_SYS(sys_sched_setaffinity, 3)
2292 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
2293 MIPS_SYS(sys_io_setup , 2)
2294 MIPS_SYS(sys_io_destroy , 1)
2295 MIPS_SYS(sys_io_getevents, 5)
2296 MIPS_SYS(sys_io_submit , 3)
2297 MIPS_SYS(sys_io_cancel , 3) /* 4245 */
2298 MIPS_SYS(sys_exit_group , 1)
2299 MIPS_SYS(sys_lookup_dcookie, 3)
2300 MIPS_SYS(sys_epoll_create, 1)
2301 MIPS_SYS(sys_epoll_ctl , 4)
2302 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
2303 MIPS_SYS(sys_remap_file_pages, 5)
2304 MIPS_SYS(sys_set_tid_address, 1)
2305 MIPS_SYS(sys_restart_syscall, 0)
2306 MIPS_SYS(sys_fadvise64_64, 7)
2307 MIPS_SYS(sys_statfs64 , 3) /* 4255 */
2308 MIPS_SYS(sys_fstatfs64 , 2)
2309 MIPS_SYS(sys_timer_create, 3)
2310 MIPS_SYS(sys_timer_settime, 4)
2311 MIPS_SYS(sys_timer_gettime, 2)
2312 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
2313 MIPS_SYS(sys_timer_delete, 1)
2314 MIPS_SYS(sys_clock_settime, 2)
2315 MIPS_SYS(sys_clock_gettime, 2)
2316 MIPS_SYS(sys_clock_getres, 2)
2317 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
2318 MIPS_SYS(sys_tgkill , 3)
2319 MIPS_SYS(sys_utimes , 2)
2320 MIPS_SYS(sys_mbind , 4)
2321 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
2322 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
2323 MIPS_SYS(sys_mq_open , 4)
2324 MIPS_SYS(sys_mq_unlink , 1)
2325 MIPS_SYS(sys_mq_timedsend, 5)
2326 MIPS_SYS(sys_mq_timedreceive, 5)
2327 MIPS_SYS(sys_mq_notify , 2) /* 4275 */
2328 MIPS_SYS(sys_mq_getsetattr, 3)
2329 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
2330 MIPS_SYS(sys_waitid , 4)
2331 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
2332 MIPS_SYS(sys_add_key , 5)
2333 MIPS_SYS(sys_request_key, 4)
2334 MIPS_SYS(sys_keyctl , 5)
2335 MIPS_SYS(sys_set_thread_area, 1)
2336 MIPS_SYS(sys_inotify_init, 0)
2337 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2338 MIPS_SYS(sys_inotify_rm_watch, 2)
2339 MIPS_SYS(sys_migrate_pages, 4)
2340 MIPS_SYS(sys_openat, 4)
2341 MIPS_SYS(sys_mkdirat, 3)
2342 MIPS_SYS(sys_mknodat, 4) /* 4290 */
2343 MIPS_SYS(sys_fchownat, 5)
2344 MIPS_SYS(sys_futimesat, 3)
2345 MIPS_SYS(sys_fstatat64, 4)
2346 MIPS_SYS(sys_unlinkat, 3)
2347 MIPS_SYS(sys_renameat, 4) /* 4295 */
2348 MIPS_SYS(sys_linkat, 5)
2349 MIPS_SYS(sys_symlinkat, 3)
2350 MIPS_SYS(sys_readlinkat, 4)
2351 MIPS_SYS(sys_fchmodat, 3)
2352 MIPS_SYS(sys_faccessat, 3) /* 4300 */
2353 MIPS_SYS(sys_pselect6, 6)
2354 MIPS_SYS(sys_ppoll, 5)
2355 MIPS_SYS(sys_unshare, 1)
2356 MIPS_SYS(sys_splice, 6)
2357 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2358 MIPS_SYS(sys_tee, 4)
2359 MIPS_SYS(sys_vmsplice, 4)
2360 MIPS_SYS(sys_move_pages, 6)
2361 MIPS_SYS(sys_set_robust_list, 2)
2362 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2363 MIPS_SYS(sys_kexec_load, 4)
2364 MIPS_SYS(sys_getcpu, 3)
2365 MIPS_SYS(sys_epoll_pwait, 6)
2366 MIPS_SYS(sys_ioprio_set, 3)
2367 MIPS_SYS(sys_ioprio_get, 2)
2368 MIPS_SYS(sys_utimensat, 4)
2369 MIPS_SYS(sys_signalfd, 3)
2370 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
2371 MIPS_SYS(sys_eventfd, 1)
2372 MIPS_SYS(sys_fallocate, 6) /* 4320 */
2373 MIPS_SYS(sys_timerfd_create, 2)
2374 MIPS_SYS(sys_timerfd_gettime, 2)
2375 MIPS_SYS(sys_timerfd_settime, 4)
2376 MIPS_SYS(sys_signalfd4, 4)
2377 MIPS_SYS(sys_eventfd2, 2) /* 4325 */
2378 MIPS_SYS(sys_epoll_create1, 1)
2379 MIPS_SYS(sys_dup3, 3)
2380 MIPS_SYS(sys_pipe2, 2)
2381 MIPS_SYS(sys_inotify_init1, 1)
2382 MIPS_SYS(sys_preadv, 6) /* 4330 */
2383 MIPS_SYS(sys_pwritev, 6)
2384 MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2385 MIPS_SYS(sys_perf_event_open, 5)
2386 MIPS_SYS(sys_accept4, 4)
2387 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
2388 MIPS_SYS(sys_fanotify_init, 2)
2389 MIPS_SYS(sys_fanotify_mark, 6)
2390 MIPS_SYS(sys_prlimit64, 4)
2391 MIPS_SYS(sys_name_to_handle_at, 5)
2392 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2393 MIPS_SYS(sys_clock_adjtime, 2)
2394 MIPS_SYS(sys_syncfs, 1)
2396 # undef MIPS_SYS
2397 # endif /* O32 */
2399 static int do_store_exclusive(CPUMIPSState *env)
2401 target_ulong addr;
2402 target_ulong page_addr;
2403 target_ulong val;
2404 int flags;
2405 int segv = 0;
2406 int reg;
2407 int d;
2409 addr = env->lladdr;
2410 page_addr = addr & TARGET_PAGE_MASK;
2411 start_exclusive();
2412 mmap_lock();
2413 flags = page_get_flags(page_addr);
2414 if ((flags & PAGE_READ) == 0) {
2415 segv = 1;
2416 } else {
2417 reg = env->llreg & 0x1f;
2418 d = (env->llreg & 0x20) != 0;
2419 if (d) {
2420 segv = get_user_s64(val, addr);
2421 } else {
2422 segv = get_user_s32(val, addr);
2424 if (!segv) {
2425 if (val != env->llval) {
2426 env->active_tc.gpr[reg] = 0;
2427 } else {
2428 if (d) {
2429 segv = put_user_u64(env->llnewval, addr);
2430 } else {
2431 segv = put_user_u32(env->llnewval, addr);
2433 if (!segv) {
2434 env->active_tc.gpr[reg] = 1;
2439 env->lladdr = -1;
2440 if (!segv) {
2441 env->active_tc.PC += 4;
2443 mmap_unlock();
2444 end_exclusive();
2445 return segv;
2448 /* Break codes */
2449 enum {
2450 BRK_OVERFLOW = 6,
2451 BRK_DIVZERO = 7
2454 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2455 unsigned int code)
2457 int ret = -1;
2459 switch (code) {
2460 case BRK_OVERFLOW:
2461 case BRK_DIVZERO:
2462 info->si_signo = TARGET_SIGFPE;
2463 info->si_errno = 0;
2464 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2465 queue_signal(env, info->si_signo, &*info);
2466 ret = 0;
2467 break;
2468 default:
2469 info->si_signo = TARGET_SIGTRAP;
2470 info->si_errno = 0;
2471 queue_signal(env, info->si_signo, &*info);
2472 ret = 0;
2473 break;
2476 return ret;
2479 void cpu_loop(CPUMIPSState *env)
2481 CPUState *cs = CPU(mips_env_get_cpu(env));
2482 target_siginfo_t info;
2483 int trapnr;
2484 abi_long ret;
2485 # ifdef TARGET_ABI_MIPSO32
2486 unsigned int syscall_num;
2487 # endif
2489 for(;;) {
2490 cpu_exec_start(cs);
2491 trapnr = cpu_mips_exec(cs);
2492 cpu_exec_end(cs);
2493 switch(trapnr) {
2494 case EXCP_SYSCALL:
2495 env->active_tc.PC += 4;
2496 # ifdef TARGET_ABI_MIPSO32
2497 syscall_num = env->active_tc.gpr[2] - 4000;
2498 if (syscall_num >= sizeof(mips_syscall_args)) {
2499 ret = -TARGET_ENOSYS;
2500 } else {
2501 int nb_args;
2502 abi_ulong sp_reg;
2503 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2505 nb_args = mips_syscall_args[syscall_num];
2506 sp_reg = env->active_tc.gpr[29];
2507 switch (nb_args) {
2508 /* these arguments are taken from the stack */
2509 case 8:
2510 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2511 goto done_syscall;
2513 case 7:
2514 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2515 goto done_syscall;
2517 case 6:
2518 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2519 goto done_syscall;
2521 case 5:
2522 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2523 goto done_syscall;
2525 default:
2526 break;
2528 ret = do_syscall(env, env->active_tc.gpr[2],
2529 env->active_tc.gpr[4],
2530 env->active_tc.gpr[5],
2531 env->active_tc.gpr[6],
2532 env->active_tc.gpr[7],
2533 arg5, arg6, arg7, arg8);
2535 done_syscall:
2536 # else
2537 ret = do_syscall(env, env->active_tc.gpr[2],
2538 env->active_tc.gpr[4], env->active_tc.gpr[5],
2539 env->active_tc.gpr[6], env->active_tc.gpr[7],
2540 env->active_tc.gpr[8], env->active_tc.gpr[9],
2541 env->active_tc.gpr[10], env->active_tc.gpr[11]);
2542 # endif /* O32 */
2543 if (ret == -TARGET_ERESTARTSYS) {
2544 env->active_tc.PC -= 4;
2545 break;
2547 if (ret == -TARGET_QEMU_ESIGRETURN) {
2548 /* Returning from a successful sigreturn syscall.
2549 Avoid clobbering register state. */
2550 break;
2552 if ((abi_ulong)ret >= (abi_ulong)-1133) {
2553 env->active_tc.gpr[7] = 1; /* error flag */
2554 ret = -ret;
2555 } else {
2556 env->active_tc.gpr[7] = 0; /* error flag */
2558 env->active_tc.gpr[2] = ret;
2559 break;
2560 case EXCP_TLBL:
2561 case EXCP_TLBS:
2562 case EXCP_AdEL:
2563 case EXCP_AdES:
2564 info.si_signo = TARGET_SIGSEGV;
2565 info.si_errno = 0;
2566 /* XXX: check env->error_code */
2567 info.si_code = TARGET_SEGV_MAPERR;
2568 info._sifields._sigfault._addr = env->CP0_BadVAddr;
2569 queue_signal(env, info.si_signo, &info);
2570 break;
2571 case EXCP_CpU:
2572 case EXCP_RI:
2573 info.si_signo = TARGET_SIGILL;
2574 info.si_errno = 0;
2575 info.si_code = 0;
2576 queue_signal(env, info.si_signo, &info);
2577 break;
2578 case EXCP_INTERRUPT:
2579 /* just indicate that signals should be handled asap */
2580 break;
2581 case EXCP_DEBUG:
2583 int sig;
2585 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2586 if (sig)
2588 info.si_signo = sig;
2589 info.si_errno = 0;
2590 info.si_code = TARGET_TRAP_BRKPT;
2591 queue_signal(env, info.si_signo, &info);
2594 break;
2595 case EXCP_SC:
2596 if (do_store_exclusive(env)) {
2597 info.si_signo = TARGET_SIGSEGV;
2598 info.si_errno = 0;
2599 info.si_code = TARGET_SEGV_MAPERR;
2600 info._sifields._sigfault._addr = env->active_tc.PC;
2601 queue_signal(env, info.si_signo, &info);
2603 break;
2604 case EXCP_DSPDIS:
2605 info.si_signo = TARGET_SIGILL;
2606 info.si_errno = 0;
2607 info.si_code = TARGET_ILL_ILLOPC;
2608 queue_signal(env, info.si_signo, &info);
2609 break;
2610 /* The code below was inspired by the MIPS Linux kernel trap
2611 * handling code in arch/mips/kernel/traps.c.
2613 case EXCP_BREAK:
2615 abi_ulong trap_instr;
2616 unsigned int code;
2618 if (env->hflags & MIPS_HFLAG_M16) {
2619 if (env->insn_flags & ASE_MICROMIPS) {
2620 /* microMIPS mode */
2621 ret = get_user_u16(trap_instr, env->active_tc.PC);
2622 if (ret != 0) {
2623 goto error;
2626 if ((trap_instr >> 10) == 0x11) {
2627 /* 16-bit instruction */
2628 code = trap_instr & 0xf;
2629 } else {
2630 /* 32-bit instruction */
2631 abi_ulong instr_lo;
2633 ret = get_user_u16(instr_lo,
2634 env->active_tc.PC + 2);
2635 if (ret != 0) {
2636 goto error;
2638 trap_instr = (trap_instr << 16) | instr_lo;
2639 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2640 /* Unfortunately, microMIPS also suffers from
2641 the old assembler bug... */
2642 if (code >= (1 << 10)) {
2643 code >>= 10;
2646 } else {
2647 /* MIPS16e mode */
2648 ret = get_user_u16(trap_instr, env->active_tc.PC);
2649 if (ret != 0) {
2650 goto error;
2652 code = (trap_instr >> 6) & 0x3f;
2654 } else {
2655 ret = get_user_u32(trap_instr, env->active_tc.PC);
2656 if (ret != 0) {
2657 goto error;
2660 /* As described in the original Linux kernel code, the
2661 * below checks on 'code' are to work around an old
2662 * assembly bug.
2664 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2665 if (code >= (1 << 10)) {
2666 code >>= 10;
2670 if (do_break(env, &info, code) != 0) {
2671 goto error;
2674 break;
2675 case EXCP_TRAP:
2677 abi_ulong trap_instr;
2678 unsigned int code = 0;
2680 if (env->hflags & MIPS_HFLAG_M16) {
2681 /* microMIPS mode */
2682 abi_ulong instr[2];
2684 ret = get_user_u16(instr[0], env->active_tc.PC) ||
2685 get_user_u16(instr[1], env->active_tc.PC + 2);
2687 trap_instr = (instr[0] << 16) | instr[1];
2688 } else {
2689 ret = get_user_u32(trap_instr, env->active_tc.PC);
2692 if (ret != 0) {
2693 goto error;
2696 /* The immediate versions don't provide a code. */
2697 if (!(trap_instr & 0xFC000000)) {
2698 if (env->hflags & MIPS_HFLAG_M16) {
2699 /* microMIPS mode */
2700 code = ((trap_instr >> 12) & ((1 << 4) - 1));
2701 } else {
2702 code = ((trap_instr >> 6) & ((1 << 10) - 1));
2706 if (do_break(env, &info, code) != 0) {
2707 goto error;
2710 break;
2711 default:
2712 error:
2713 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
2714 abort();
2716 process_pending_signals(env);
2719 #endif
2721 #ifdef TARGET_OPENRISC
2723 void cpu_loop(CPUOpenRISCState *env)
2725 CPUState *cs = CPU(openrisc_env_get_cpu(env));
2726 int trapnr, gdbsig;
2727 abi_long ret;
2729 for (;;) {
2730 cpu_exec_start(cs);
2731 trapnr = cpu_openrisc_exec(cs);
2732 cpu_exec_end(cs);
2733 gdbsig = 0;
2735 switch (trapnr) {
2736 case EXCP_RESET:
2737 qemu_log_mask(CPU_LOG_INT, "\nReset request, exit, pc is %#x\n", env->pc);
2738 exit(EXIT_FAILURE);
2739 break;
2740 case EXCP_BUSERR:
2741 qemu_log_mask(CPU_LOG_INT, "\nBus error, exit, pc is %#x\n", env->pc);
2742 gdbsig = TARGET_SIGBUS;
2743 break;
2744 case EXCP_DPF:
2745 case EXCP_IPF:
2746 cpu_dump_state(cs, stderr, fprintf, 0);
2747 gdbsig = TARGET_SIGSEGV;
2748 break;
2749 case EXCP_TICK:
2750 qemu_log_mask(CPU_LOG_INT, "\nTick time interrupt pc is %#x\n", env->pc);
2751 break;
2752 case EXCP_ALIGN:
2753 qemu_log_mask(CPU_LOG_INT, "\nAlignment pc is %#x\n", env->pc);
2754 gdbsig = TARGET_SIGBUS;
2755 break;
2756 case EXCP_ILLEGAL:
2757 qemu_log_mask(CPU_LOG_INT, "\nIllegal instructionpc is %#x\n", env->pc);
2758 gdbsig = TARGET_SIGILL;
2759 break;
2760 case EXCP_INT:
2761 qemu_log_mask(CPU_LOG_INT, "\nExternal interruptpc is %#x\n", env->pc);
2762 break;
2763 case EXCP_DTLBMISS:
2764 case EXCP_ITLBMISS:
2765 qemu_log_mask(CPU_LOG_INT, "\nTLB miss\n");
2766 break;
2767 case EXCP_RANGE:
2768 qemu_log_mask(CPU_LOG_INT, "\nRange\n");
2769 gdbsig = TARGET_SIGSEGV;
2770 break;
2771 case EXCP_SYSCALL:
2772 env->pc += 4; /* 0xc00; */
2773 ret = do_syscall(env,
2774 env->gpr[11], /* return value */
2775 env->gpr[3], /* r3 - r7 are params */
2776 env->gpr[4],
2777 env->gpr[5],
2778 env->gpr[6],
2779 env->gpr[7],
2780 env->gpr[8], 0, 0);
2781 if (ret == -TARGET_ERESTARTSYS) {
2782 env->pc -= 4;
2783 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2784 env->gpr[11] = ret;
2786 break;
2787 case EXCP_FPE:
2788 qemu_log_mask(CPU_LOG_INT, "\nFloating point error\n");
2789 break;
2790 case EXCP_TRAP:
2791 qemu_log_mask(CPU_LOG_INT, "\nTrap\n");
2792 gdbsig = TARGET_SIGTRAP;
2793 break;
2794 case EXCP_NR:
2795 qemu_log_mask(CPU_LOG_INT, "\nNR\n");
2796 break;
2797 default:
2798 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n",
2799 trapnr);
2800 gdbsig = TARGET_SIGILL;
2801 break;
2803 if (gdbsig) {
2804 gdb_handlesig(cs, gdbsig);
2805 if (gdbsig != TARGET_SIGTRAP) {
2806 exit(EXIT_FAILURE);
2810 process_pending_signals(env);
2814 #endif /* TARGET_OPENRISC */
2816 #ifdef TARGET_SH4
2817 void cpu_loop(CPUSH4State *env)
2819 CPUState *cs = CPU(sh_env_get_cpu(env));
2820 int trapnr, ret;
2821 target_siginfo_t info;
2823 while (1) {
2824 cpu_exec_start(cs);
2825 trapnr = cpu_sh4_exec(cs);
2826 cpu_exec_end(cs);
2828 switch (trapnr) {
2829 case 0x160:
2830 env->pc += 2;
2831 ret = do_syscall(env,
2832 env->gregs[3],
2833 env->gregs[4],
2834 env->gregs[5],
2835 env->gregs[6],
2836 env->gregs[7],
2837 env->gregs[0],
2838 env->gregs[1],
2839 0, 0);
2840 if (ret == -TARGET_ERESTARTSYS) {
2841 env->pc -= 2;
2842 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2843 env->gregs[0] = ret;
2845 break;
2846 case EXCP_INTERRUPT:
2847 /* just indicate that signals should be handled asap */
2848 break;
2849 case EXCP_DEBUG:
2851 int sig;
2853 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2854 if (sig)
2856 info.si_signo = sig;
2857 info.si_errno = 0;
2858 info.si_code = TARGET_TRAP_BRKPT;
2859 queue_signal(env, info.si_signo, &info);
2862 break;
2863 case 0xa0:
2864 case 0xc0:
2865 info.si_signo = TARGET_SIGSEGV;
2866 info.si_errno = 0;
2867 info.si_code = TARGET_SEGV_MAPERR;
2868 info._sifields._sigfault._addr = env->tea;
2869 queue_signal(env, info.si_signo, &info);
2870 break;
2872 default:
2873 printf ("Unhandled trap: 0x%x\n", trapnr);
2874 cpu_dump_state(cs, stderr, fprintf, 0);
2875 exit(EXIT_FAILURE);
2877 process_pending_signals (env);
2880 #endif
2882 #ifdef TARGET_CRIS
2883 void cpu_loop(CPUCRISState *env)
2885 CPUState *cs = CPU(cris_env_get_cpu(env));
2886 int trapnr, ret;
2887 target_siginfo_t info;
2889 while (1) {
2890 cpu_exec_start(cs);
2891 trapnr = cpu_cris_exec(cs);
2892 cpu_exec_end(cs);
2893 switch (trapnr) {
2894 case 0xaa:
2896 info.si_signo = TARGET_SIGSEGV;
2897 info.si_errno = 0;
2898 /* XXX: check env->error_code */
2899 info.si_code = TARGET_SEGV_MAPERR;
2900 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2901 queue_signal(env, info.si_signo, &info);
2903 break;
2904 case EXCP_INTERRUPT:
2905 /* just indicate that signals should be handled asap */
2906 break;
2907 case EXCP_BREAK:
2908 ret = do_syscall(env,
2909 env->regs[9],
2910 env->regs[10],
2911 env->regs[11],
2912 env->regs[12],
2913 env->regs[13],
2914 env->pregs[7],
2915 env->pregs[11],
2916 0, 0);
2917 if (ret == -TARGET_ERESTARTSYS) {
2918 env->pc -= 2;
2919 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2920 env->regs[10] = ret;
2922 break;
2923 case EXCP_DEBUG:
2925 int sig;
2927 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2928 if (sig)
2930 info.si_signo = sig;
2931 info.si_errno = 0;
2932 info.si_code = TARGET_TRAP_BRKPT;
2933 queue_signal(env, info.si_signo, &info);
2936 break;
2937 default:
2938 printf ("Unhandled trap: 0x%x\n", trapnr);
2939 cpu_dump_state(cs, stderr, fprintf, 0);
2940 exit(EXIT_FAILURE);
2942 process_pending_signals (env);
2945 #endif
2947 #ifdef TARGET_MICROBLAZE
2948 void cpu_loop(CPUMBState *env)
2950 CPUState *cs = CPU(mb_env_get_cpu(env));
2951 int trapnr, ret;
2952 target_siginfo_t info;
2954 while (1) {
2955 cpu_exec_start(cs);
2956 trapnr = cpu_mb_exec(cs);
2957 cpu_exec_end(cs);
2958 switch (trapnr) {
2959 case 0xaa:
2961 info.si_signo = TARGET_SIGSEGV;
2962 info.si_errno = 0;
2963 /* XXX: check env->error_code */
2964 info.si_code = TARGET_SEGV_MAPERR;
2965 info._sifields._sigfault._addr = 0;
2966 queue_signal(env, info.si_signo, &info);
2968 break;
2969 case EXCP_INTERRUPT:
2970 /* just indicate that signals should be handled asap */
2971 break;
2972 case EXCP_BREAK:
2973 /* Return address is 4 bytes after the call. */
2974 env->regs[14] += 4;
2975 env->sregs[SR_PC] = env->regs[14];
2976 ret = do_syscall(env,
2977 env->regs[12],
2978 env->regs[5],
2979 env->regs[6],
2980 env->regs[7],
2981 env->regs[8],
2982 env->regs[9],
2983 env->regs[10],
2984 0, 0);
2985 env->regs[3] = ret;
2986 break;
2987 case EXCP_HW_EXCP:
2988 env->regs[17] = env->sregs[SR_PC] + 4;
2989 if (env->iflags & D_FLAG) {
2990 env->sregs[SR_ESR] |= 1 << 12;
2991 env->sregs[SR_PC] -= 4;
2992 /* FIXME: if branch was immed, replay the imm as well. */
2995 env->iflags &= ~(IMM_FLAG | D_FLAG);
2997 switch (env->sregs[SR_ESR] & 31) {
2998 case ESR_EC_DIVZERO:
2999 info.si_signo = TARGET_SIGFPE;
3000 info.si_errno = 0;
3001 info.si_code = TARGET_FPE_FLTDIV;
3002 info._sifields._sigfault._addr = 0;
3003 queue_signal(env, info.si_signo, &info);
3004 break;
3005 case ESR_EC_FPU:
3006 info.si_signo = TARGET_SIGFPE;
3007 info.si_errno = 0;
3008 if (env->sregs[SR_FSR] & FSR_IO) {
3009 info.si_code = TARGET_FPE_FLTINV;
3011 if (env->sregs[SR_FSR] & FSR_DZ) {
3012 info.si_code = TARGET_FPE_FLTDIV;
3014 info._sifields._sigfault._addr = 0;
3015 queue_signal(env, info.si_signo, &info);
3016 break;
3017 default:
3018 printf ("Unhandled hw-exception: 0x%x\n",
3019 env->sregs[SR_ESR] & ESR_EC_MASK);
3020 cpu_dump_state(cs, stderr, fprintf, 0);
3021 exit(EXIT_FAILURE);
3022 break;
3024 break;
3025 case EXCP_DEBUG:
3027 int sig;
3029 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3030 if (sig)
3032 info.si_signo = sig;
3033 info.si_errno = 0;
3034 info.si_code = TARGET_TRAP_BRKPT;
3035 queue_signal(env, info.si_signo, &info);
3038 break;
3039 default:
3040 printf ("Unhandled trap: 0x%x\n", trapnr);
3041 cpu_dump_state(cs, stderr, fprintf, 0);
3042 exit(EXIT_FAILURE);
3044 process_pending_signals (env);
3047 #endif
3049 #ifdef TARGET_M68K
3051 void cpu_loop(CPUM68KState *env)
3053 CPUState *cs = CPU(m68k_env_get_cpu(env));
3054 int trapnr;
3055 unsigned int n;
3056 target_siginfo_t info;
3057 TaskState *ts = cs->opaque;
3059 for(;;) {
3060 cpu_exec_start(cs);
3061 trapnr = cpu_m68k_exec(cs);
3062 cpu_exec_end(cs);
3063 switch(trapnr) {
3064 case EXCP_ILLEGAL:
3066 if (ts->sim_syscalls) {
3067 uint16_t nr;
3068 get_user_u16(nr, env->pc + 2);
3069 env->pc += 4;
3070 do_m68k_simcall(env, nr);
3071 } else {
3072 goto do_sigill;
3075 break;
3076 case EXCP_HALT_INSN:
3077 /* Semihosing syscall. */
3078 env->pc += 4;
3079 do_m68k_semihosting(env, env->dregs[0]);
3080 break;
3081 case EXCP_LINEA:
3082 case EXCP_LINEF:
3083 case EXCP_UNSUPPORTED:
3084 do_sigill:
3085 info.si_signo = TARGET_SIGILL;
3086 info.si_errno = 0;
3087 info.si_code = TARGET_ILL_ILLOPN;
3088 info._sifields._sigfault._addr = env->pc;
3089 queue_signal(env, info.si_signo, &info);
3090 break;
3091 case EXCP_TRAP0:
3093 abi_long ret;
3094 ts->sim_syscalls = 0;
3095 n = env->dregs[0];
3096 env->pc += 2;
3097 ret = do_syscall(env,
3099 env->dregs[1],
3100 env->dregs[2],
3101 env->dregs[3],
3102 env->dregs[4],
3103 env->dregs[5],
3104 env->aregs[0],
3105 0, 0);
3106 if (ret == -TARGET_ERESTARTSYS) {
3107 env->pc -= 2;
3108 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3109 env->dregs[0] = ret;
3112 break;
3113 case EXCP_INTERRUPT:
3114 /* just indicate that signals should be handled asap */
3115 break;
3116 case EXCP_ACCESS:
3118 info.si_signo = TARGET_SIGSEGV;
3119 info.si_errno = 0;
3120 /* XXX: check env->error_code */
3121 info.si_code = TARGET_SEGV_MAPERR;
3122 info._sifields._sigfault._addr = env->mmu.ar;
3123 queue_signal(env, info.si_signo, &info);
3125 break;
3126 case EXCP_DEBUG:
3128 int sig;
3130 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3131 if (sig)
3133 info.si_signo = sig;
3134 info.si_errno = 0;
3135 info.si_code = TARGET_TRAP_BRKPT;
3136 queue_signal(env, info.si_signo, &info);
3139 break;
3140 default:
3141 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
3142 abort();
3144 process_pending_signals(env);
3147 #endif /* TARGET_M68K */
3149 #ifdef TARGET_ALPHA
3150 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
3152 target_ulong addr, val, tmp;
3153 target_siginfo_t info;
3154 int ret = 0;
3156 addr = env->lock_addr;
3157 tmp = env->lock_st_addr;
3158 env->lock_addr = -1;
3159 env->lock_st_addr = 0;
3161 start_exclusive();
3162 mmap_lock();
3164 if (addr == tmp) {
3165 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3166 goto do_sigsegv;
3169 if (val == env->lock_value) {
3170 tmp = env->ir[reg];
3171 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
3172 goto do_sigsegv;
3174 ret = 1;
3177 env->ir[reg] = ret;
3178 env->pc += 4;
3180 mmap_unlock();
3181 end_exclusive();
3182 return;
3184 do_sigsegv:
3185 mmap_unlock();
3186 end_exclusive();
3188 info.si_signo = TARGET_SIGSEGV;
3189 info.si_errno = 0;
3190 info.si_code = TARGET_SEGV_MAPERR;
3191 info._sifields._sigfault._addr = addr;
3192 queue_signal(env, TARGET_SIGSEGV, &info);
3195 void cpu_loop(CPUAlphaState *env)
3197 CPUState *cs = CPU(alpha_env_get_cpu(env));
3198 int trapnr;
3199 target_siginfo_t info;
3200 abi_long sysret;
3202 while (1) {
3203 cpu_exec_start(cs);
3204 trapnr = cpu_alpha_exec(cs);
3205 cpu_exec_end(cs);
3207 /* All of the traps imply a transition through PALcode, which
3208 implies an REI instruction has been executed. Which means
3209 that the intr_flag should be cleared. */
3210 env->intr_flag = 0;
3212 switch (trapnr) {
3213 case EXCP_RESET:
3214 fprintf(stderr, "Reset requested. Exit\n");
3215 exit(EXIT_FAILURE);
3216 break;
3217 case EXCP_MCHK:
3218 fprintf(stderr, "Machine check exception. Exit\n");
3219 exit(EXIT_FAILURE);
3220 break;
3221 case EXCP_SMP_INTERRUPT:
3222 case EXCP_CLK_INTERRUPT:
3223 case EXCP_DEV_INTERRUPT:
3224 fprintf(stderr, "External interrupt. Exit\n");
3225 exit(EXIT_FAILURE);
3226 break;
3227 case EXCP_MMFAULT:
3228 env->lock_addr = -1;
3229 info.si_signo = TARGET_SIGSEGV;
3230 info.si_errno = 0;
3231 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
3232 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
3233 info._sifields._sigfault._addr = env->trap_arg0;
3234 queue_signal(env, info.si_signo, &info);
3235 break;
3236 case EXCP_UNALIGN:
3237 env->lock_addr = -1;
3238 info.si_signo = TARGET_SIGBUS;
3239 info.si_errno = 0;
3240 info.si_code = TARGET_BUS_ADRALN;
3241 info._sifields._sigfault._addr = env->trap_arg0;
3242 queue_signal(env, info.si_signo, &info);
3243 break;
3244 case EXCP_OPCDEC:
3245 do_sigill:
3246 env->lock_addr = -1;
3247 info.si_signo = TARGET_SIGILL;
3248 info.si_errno = 0;
3249 info.si_code = TARGET_ILL_ILLOPC;
3250 info._sifields._sigfault._addr = env->pc;
3251 queue_signal(env, info.si_signo, &info);
3252 break;
3253 case EXCP_ARITH:
3254 env->lock_addr = -1;
3255 info.si_signo = TARGET_SIGFPE;
3256 info.si_errno = 0;
3257 info.si_code = TARGET_FPE_FLTINV;
3258 info._sifields._sigfault._addr = env->pc;
3259 queue_signal(env, info.si_signo, &info);
3260 break;
3261 case EXCP_FEN:
3262 /* No-op. Linux simply re-enables the FPU. */
3263 break;
3264 case EXCP_CALL_PAL:
3265 env->lock_addr = -1;
3266 switch (env->error_code) {
3267 case 0x80:
3268 /* BPT */
3269 info.si_signo = TARGET_SIGTRAP;
3270 info.si_errno = 0;
3271 info.si_code = TARGET_TRAP_BRKPT;
3272 info._sifields._sigfault._addr = env->pc;
3273 queue_signal(env, info.si_signo, &info);
3274 break;
3275 case 0x81:
3276 /* BUGCHK */
3277 info.si_signo = TARGET_SIGTRAP;
3278 info.si_errno = 0;
3279 info.si_code = 0;
3280 info._sifields._sigfault._addr = env->pc;
3281 queue_signal(env, info.si_signo, &info);
3282 break;
3283 case 0x83:
3284 /* CALLSYS */
3285 trapnr = env->ir[IR_V0];
3286 sysret = do_syscall(env, trapnr,
3287 env->ir[IR_A0], env->ir[IR_A1],
3288 env->ir[IR_A2], env->ir[IR_A3],
3289 env->ir[IR_A4], env->ir[IR_A5],
3290 0, 0);
3291 if (sysret == -TARGET_ERESTARTSYS) {
3292 env->pc -= 4;
3293 break;
3295 if (sysret == -TARGET_QEMU_ESIGRETURN) {
3296 break;
3298 /* Syscall writes 0 to V0 to bypass error check, similar
3299 to how this is handled internal to Linux kernel.
3300 (Ab)use trapnr temporarily as boolean indicating error. */
3301 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
3302 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
3303 env->ir[IR_A3] = trapnr;
3304 break;
3305 case 0x86:
3306 /* IMB */
3307 /* ??? We can probably elide the code using page_unprotect
3308 that is checking for self-modifying code. Instead we
3309 could simply call tb_flush here. Until we work out the
3310 changes required to turn off the extra write protection,
3311 this can be a no-op. */
3312 break;
3313 case 0x9E:
3314 /* RDUNIQUE */
3315 /* Handled in the translator for usermode. */
3316 abort();
3317 case 0x9F:
3318 /* WRUNIQUE */
3319 /* Handled in the translator for usermode. */
3320 abort();
3321 case 0xAA:
3322 /* GENTRAP */
3323 info.si_signo = TARGET_SIGFPE;
3324 switch (env->ir[IR_A0]) {
3325 case TARGET_GEN_INTOVF:
3326 info.si_code = TARGET_FPE_INTOVF;
3327 break;
3328 case TARGET_GEN_INTDIV:
3329 info.si_code = TARGET_FPE_INTDIV;
3330 break;
3331 case TARGET_GEN_FLTOVF:
3332 info.si_code = TARGET_FPE_FLTOVF;
3333 break;
3334 case TARGET_GEN_FLTUND:
3335 info.si_code = TARGET_FPE_FLTUND;
3336 break;
3337 case TARGET_GEN_FLTINV:
3338 info.si_code = TARGET_FPE_FLTINV;
3339 break;
3340 case TARGET_GEN_FLTINE:
3341 info.si_code = TARGET_FPE_FLTRES;
3342 break;
3343 case TARGET_GEN_ROPRAND:
3344 info.si_code = 0;
3345 break;
3346 default:
3347 info.si_signo = TARGET_SIGTRAP;
3348 info.si_code = 0;
3349 break;
3351 info.si_errno = 0;
3352 info._sifields._sigfault._addr = env->pc;
3353 queue_signal(env, info.si_signo, &info);
3354 break;
3355 default:
3356 goto do_sigill;
3358 break;
3359 case EXCP_DEBUG:
3360 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP);
3361 if (info.si_signo) {
3362 env->lock_addr = -1;
3363 info.si_errno = 0;
3364 info.si_code = TARGET_TRAP_BRKPT;
3365 queue_signal(env, info.si_signo, &info);
3367 break;
3368 case EXCP_STL_C:
3369 case EXCP_STQ_C:
3370 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
3371 break;
3372 case EXCP_INTERRUPT:
3373 /* Just indicate that signals should be handled asap. */
3374 break;
3375 default:
3376 printf ("Unhandled trap: 0x%x\n", trapnr);
3377 cpu_dump_state(cs, stderr, fprintf, 0);
3378 exit(EXIT_FAILURE);
3380 process_pending_signals (env);
3383 #endif /* TARGET_ALPHA */
3385 #ifdef TARGET_S390X
3386 void cpu_loop(CPUS390XState *env)
3388 CPUState *cs = CPU(s390_env_get_cpu(env));
3389 int trapnr, n, sig;
3390 target_siginfo_t info;
3391 target_ulong addr;
3392 abi_long ret;
3394 while (1) {
3395 cpu_exec_start(cs);
3396 trapnr = cpu_s390x_exec(cs);
3397 cpu_exec_end(cs);
3398 switch (trapnr) {
3399 case EXCP_INTERRUPT:
3400 /* Just indicate that signals should be handled asap. */
3401 break;
3403 case EXCP_SVC:
3404 n = env->int_svc_code;
3405 if (!n) {
3406 /* syscalls > 255 */
3407 n = env->regs[1];
3409 env->psw.addr += env->int_svc_ilen;
3410 ret = do_syscall(env, n, env->regs[2], env->regs[3],
3411 env->regs[4], env->regs[5],
3412 env->regs[6], env->regs[7], 0, 0);
3413 if (ret == -TARGET_ERESTARTSYS) {
3414 env->psw.addr -= env->int_svc_ilen;
3415 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3416 env->regs[2] = ret;
3418 break;
3420 case EXCP_DEBUG:
3421 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3422 if (sig) {
3423 n = TARGET_TRAP_BRKPT;
3424 goto do_signal_pc;
3426 break;
3427 case EXCP_PGM:
3428 n = env->int_pgm_code;
3429 switch (n) {
3430 case PGM_OPERATION:
3431 case PGM_PRIVILEGED:
3432 sig = TARGET_SIGILL;
3433 n = TARGET_ILL_ILLOPC;
3434 goto do_signal_pc;
3435 case PGM_PROTECTION:
3436 case PGM_ADDRESSING:
3437 sig = TARGET_SIGSEGV;
3438 /* XXX: check env->error_code */
3439 n = TARGET_SEGV_MAPERR;
3440 addr = env->__excp_addr;
3441 goto do_signal;
3442 case PGM_EXECUTE:
3443 case PGM_SPECIFICATION:
3444 case PGM_SPECIAL_OP:
3445 case PGM_OPERAND:
3446 do_sigill_opn:
3447 sig = TARGET_SIGILL;
3448 n = TARGET_ILL_ILLOPN;
3449 goto do_signal_pc;
3451 case PGM_FIXPT_OVERFLOW:
3452 sig = TARGET_SIGFPE;
3453 n = TARGET_FPE_INTOVF;
3454 goto do_signal_pc;
3455 case PGM_FIXPT_DIVIDE:
3456 sig = TARGET_SIGFPE;
3457 n = TARGET_FPE_INTDIV;
3458 goto do_signal_pc;
3460 case PGM_DATA:
3461 n = (env->fpc >> 8) & 0xff;
3462 if (n == 0xff) {
3463 /* compare-and-trap */
3464 goto do_sigill_opn;
3465 } else {
3466 /* An IEEE exception, simulated or otherwise. */
3467 if (n & 0x80) {
3468 n = TARGET_FPE_FLTINV;
3469 } else if (n & 0x40) {
3470 n = TARGET_FPE_FLTDIV;
3471 } else if (n & 0x20) {
3472 n = TARGET_FPE_FLTOVF;
3473 } else if (n & 0x10) {
3474 n = TARGET_FPE_FLTUND;
3475 } else if (n & 0x08) {
3476 n = TARGET_FPE_FLTRES;
3477 } else {
3478 /* ??? Quantum exception; BFP, DFP error. */
3479 goto do_sigill_opn;
3481 sig = TARGET_SIGFPE;
3482 goto do_signal_pc;
3485 default:
3486 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3487 cpu_dump_state(cs, stderr, fprintf, 0);
3488 exit(EXIT_FAILURE);
3490 break;
3492 do_signal_pc:
3493 addr = env->psw.addr;
3494 do_signal:
3495 info.si_signo = sig;
3496 info.si_errno = 0;
3497 info.si_code = n;
3498 info._sifields._sigfault._addr = addr;
3499 queue_signal(env, info.si_signo, &info);
3500 break;
3502 default:
3503 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3504 cpu_dump_state(cs, stderr, fprintf, 0);
3505 exit(EXIT_FAILURE);
3507 process_pending_signals (env);
3511 #endif /* TARGET_S390X */
3513 #ifdef TARGET_TILEGX
3515 static void gen_sigill_reg(CPUTLGState *env)
3517 target_siginfo_t info;
3519 info.si_signo = TARGET_SIGILL;
3520 info.si_errno = 0;
3521 info.si_code = TARGET_ILL_PRVREG;
3522 info._sifields._sigfault._addr = env->pc;
3523 queue_signal(env, info.si_signo, &info);
3526 static void do_signal(CPUTLGState *env, int signo, int sigcode)
3528 target_siginfo_t info;
3530 info.si_signo = signo;
3531 info.si_errno = 0;
3532 info._sifields._sigfault._addr = env->pc;
3534 if (signo == TARGET_SIGSEGV) {
3535 /* The passed in sigcode is a dummy; check for a page mapping
3536 and pass either MAPERR or ACCERR. */
3537 target_ulong addr = env->excaddr;
3538 info._sifields._sigfault._addr = addr;
3539 if (page_check_range(addr, 1, PAGE_VALID) < 0) {
3540 sigcode = TARGET_SEGV_MAPERR;
3541 } else {
3542 sigcode = TARGET_SEGV_ACCERR;
3545 info.si_code = sigcode;
3547 queue_signal(env, info.si_signo, &info);
3550 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr)
3552 env->excaddr = addr;
3553 do_signal(env, TARGET_SIGSEGV, 0);
3556 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val)
3558 if (unlikely(reg >= TILEGX_R_COUNT)) {
3559 switch (reg) {
3560 case TILEGX_R_SN:
3561 case TILEGX_R_ZERO:
3562 return;
3563 case TILEGX_R_IDN0:
3564 case TILEGX_R_IDN1:
3565 case TILEGX_R_UDN0:
3566 case TILEGX_R_UDN1:
3567 case TILEGX_R_UDN2:
3568 case TILEGX_R_UDN3:
3569 gen_sigill_reg(env);
3570 return;
3571 default:
3572 g_assert_not_reached();
3575 env->regs[reg] = val;
3579 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
3580 * memory at the address held in the first source register. If the values are
3581 * not equal, then no memory operation is performed. If the values are equal,
3582 * the 8-byte quantity from the second source register is written into memory
3583 * at the address held in the first source register. In either case, the result
3584 * of the instruction is the value read from memory. The compare and write to
3585 * memory are atomic and thus can be used for synchronization purposes. This
3586 * instruction only operates for addresses aligned to a 8-byte boundary.
3587 * Unaligned memory access causes an Unaligned Data Reference interrupt.
3589 * Functional Description (64-bit)
3590 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
3591 * rf[Dest] = memVal;
3592 * if (memVal == SPR[CmpValueSPR])
3593 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
3595 * Functional Description (32-bit)
3596 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
3597 * rf[Dest] = memVal;
3598 * if (memVal == signExtend32 (SPR[CmpValueSPR]))
3599 * memoryWriteWord (rf[SrcA], rf[SrcB]);
3602 * This function also processes exch and exch4 which need not process SPR.
3604 static void do_exch(CPUTLGState *env, bool quad, bool cmp)
3606 target_ulong addr;
3607 target_long val, sprval;
3609 start_exclusive();
3611 addr = env->atomic_srca;
3612 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3613 goto sigsegv_maperr;
3616 if (cmp) {
3617 if (quad) {
3618 sprval = env->spregs[TILEGX_SPR_CMPEXCH];
3619 } else {
3620 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32);
3624 if (!cmp || val == sprval) {
3625 target_long valb = env->atomic_srcb;
3626 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
3627 goto sigsegv_maperr;
3631 set_regval(env, env->atomic_dstr, val);
3632 end_exclusive();
3633 return;
3635 sigsegv_maperr:
3636 end_exclusive();
3637 gen_sigsegv_maperr(env, addr);
3640 static void do_fetch(CPUTLGState *env, int trapnr, bool quad)
3642 int8_t write = 1;
3643 target_ulong addr;
3644 target_long val, valb;
3646 start_exclusive();
3648 addr = env->atomic_srca;
3649 valb = env->atomic_srcb;
3650 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3651 goto sigsegv_maperr;
3654 switch (trapnr) {
3655 case TILEGX_EXCP_OPCODE_FETCHADD:
3656 case TILEGX_EXCP_OPCODE_FETCHADD4:
3657 valb += val;
3658 break;
3659 case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
3660 valb += val;
3661 if (valb < 0) {
3662 write = 0;
3664 break;
3665 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
3666 valb += val;
3667 if ((int32_t)valb < 0) {
3668 write = 0;
3670 break;
3671 case TILEGX_EXCP_OPCODE_FETCHAND:
3672 case TILEGX_EXCP_OPCODE_FETCHAND4:
3673 valb &= val;
3674 break;
3675 case TILEGX_EXCP_OPCODE_FETCHOR:
3676 case TILEGX_EXCP_OPCODE_FETCHOR4:
3677 valb |= val;
3678 break;
3679 default:
3680 g_assert_not_reached();
3683 if (write) {
3684 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
3685 goto sigsegv_maperr;
3689 set_regval(env, env->atomic_dstr, val);
3690 end_exclusive();
3691 return;
3693 sigsegv_maperr:
3694 end_exclusive();
3695 gen_sigsegv_maperr(env, addr);
3698 void cpu_loop(CPUTLGState *env)
3700 CPUState *cs = CPU(tilegx_env_get_cpu(env));
3701 int trapnr;
3703 while (1) {
3704 cpu_exec_start(cs);
3705 trapnr = cpu_tilegx_exec(cs);
3706 cpu_exec_end(cs);
3707 switch (trapnr) {
3708 case TILEGX_EXCP_SYSCALL:
3710 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR],
3711 env->regs[0], env->regs[1],
3712 env->regs[2], env->regs[3],
3713 env->regs[4], env->regs[5],
3714 env->regs[6], env->regs[7]);
3715 if (ret == -TARGET_ERESTARTSYS) {
3716 env->pc -= 8;
3717 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3718 env->regs[TILEGX_R_RE] = ret;
3719 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0;
3721 break;
3723 case TILEGX_EXCP_OPCODE_EXCH:
3724 do_exch(env, true, false);
3725 break;
3726 case TILEGX_EXCP_OPCODE_EXCH4:
3727 do_exch(env, false, false);
3728 break;
3729 case TILEGX_EXCP_OPCODE_CMPEXCH:
3730 do_exch(env, true, true);
3731 break;
3732 case TILEGX_EXCP_OPCODE_CMPEXCH4:
3733 do_exch(env, false, true);
3734 break;
3735 case TILEGX_EXCP_OPCODE_FETCHADD:
3736 case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
3737 case TILEGX_EXCP_OPCODE_FETCHAND:
3738 case TILEGX_EXCP_OPCODE_FETCHOR:
3739 do_fetch(env, trapnr, true);
3740 break;
3741 case TILEGX_EXCP_OPCODE_FETCHADD4:
3742 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
3743 case TILEGX_EXCP_OPCODE_FETCHAND4:
3744 case TILEGX_EXCP_OPCODE_FETCHOR4:
3745 do_fetch(env, trapnr, false);
3746 break;
3747 case TILEGX_EXCP_SIGNAL:
3748 do_signal(env, env->signo, env->sigcode);
3749 break;
3750 case TILEGX_EXCP_REG_IDN_ACCESS:
3751 case TILEGX_EXCP_REG_UDN_ACCESS:
3752 gen_sigill_reg(env);
3753 break;
3754 default:
3755 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr);
3756 g_assert_not_reached();
3758 process_pending_signals(env);
3762 #endif
3764 THREAD CPUState *thread_cpu;
3766 void task_settid(TaskState *ts)
3768 if (ts->ts_tid == 0) {
3769 ts->ts_tid = (pid_t)syscall(SYS_gettid);
3773 void stop_all_tasks(void)
3776 * We trust that when using NPTL, start_exclusive()
3777 * handles thread stopping correctly.
3779 start_exclusive();
3782 /* Assumes contents are already zeroed. */
3783 void init_task_state(TaskState *ts)
3785 int i;
3787 ts->used = 1;
3788 ts->first_free = ts->sigqueue_table;
3789 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
3790 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
3792 ts->sigqueue_table[i].next = NULL;
3795 CPUArchState *cpu_copy(CPUArchState *env)
3797 CPUState *cpu = ENV_GET_CPU(env);
3798 CPUState *new_cpu = cpu_init(cpu_model);
3799 CPUArchState *new_env = new_cpu->env_ptr;
3800 CPUBreakpoint *bp;
3801 CPUWatchpoint *wp;
3803 /* Reset non arch specific state */
3804 cpu_reset(new_cpu);
3806 memcpy(new_env, env, sizeof(CPUArchState));
3808 /* Clone all break/watchpoints.
3809 Note: Once we support ptrace with hw-debug register access, make sure
3810 BP_CPU break/watchpoints are handled correctly on clone. */
3811 QTAILQ_INIT(&new_cpu->breakpoints);
3812 QTAILQ_INIT(&new_cpu->watchpoints);
3813 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
3814 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL);
3816 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
3817 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL);
3820 return new_env;
3823 static void handle_arg_help(const char *arg)
3825 usage(EXIT_SUCCESS);
3828 static void handle_arg_log(const char *arg)
3830 int mask;
3832 mask = qemu_str_to_log_mask(arg);
3833 if (!mask) {
3834 qemu_print_log_usage(stdout);
3835 exit(EXIT_FAILURE);
3837 qemu_log_needs_buffers();
3838 qemu_set_log(mask);
3841 static void handle_arg_log_filename(const char *arg)
3843 qemu_set_log_filename(arg);
3846 static void handle_arg_set_env(const char *arg)
3848 char *r, *p, *token;
3849 r = p = strdup(arg);
3850 while ((token = strsep(&p, ",")) != NULL) {
3851 if (envlist_setenv(envlist, token) != 0) {
3852 usage(EXIT_FAILURE);
3855 free(r);
3858 static void handle_arg_unset_env(const char *arg)
3860 char *r, *p, *token;
3861 r = p = strdup(arg);
3862 while ((token = strsep(&p, ",")) != NULL) {
3863 if (envlist_unsetenv(envlist, token) != 0) {
3864 usage(EXIT_FAILURE);
3867 free(r);
3870 static void handle_arg_argv0(const char *arg)
3872 argv0 = strdup(arg);
3875 static void handle_arg_stack_size(const char *arg)
3877 char *p;
3878 guest_stack_size = strtoul(arg, &p, 0);
3879 if (guest_stack_size == 0) {
3880 usage(EXIT_FAILURE);
3883 if (*p == 'M') {
3884 guest_stack_size *= 1024 * 1024;
3885 } else if (*p == 'k' || *p == 'K') {
3886 guest_stack_size *= 1024;
3890 static void handle_arg_ld_prefix(const char *arg)
3892 interp_prefix = strdup(arg);
3895 static void handle_arg_pagesize(const char *arg)
3897 qemu_host_page_size = atoi(arg);
3898 if (qemu_host_page_size == 0 ||
3899 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3900 fprintf(stderr, "page size must be a power of two\n");
3901 exit(EXIT_FAILURE);
3905 static void handle_arg_randseed(const char *arg)
3907 unsigned long long seed;
3909 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) {
3910 fprintf(stderr, "Invalid seed number: %s\n", arg);
3911 exit(EXIT_FAILURE);
3913 srand(seed);
3916 static void handle_arg_gdb(const char *arg)
3918 gdbstub_port = atoi(arg);
3921 static void handle_arg_uname(const char *arg)
3923 qemu_uname_release = strdup(arg);
3926 static void handle_arg_cpu(const char *arg)
3928 cpu_model = strdup(arg);
3929 if (cpu_model == NULL || is_help_option(cpu_model)) {
3930 /* XXX: implement xxx_cpu_list for targets that still miss it */
3931 #if defined(cpu_list)
3932 cpu_list(stdout, &fprintf);
3933 #endif
3934 exit(EXIT_FAILURE);
3938 static void handle_arg_guest_base(const char *arg)
3940 guest_base = strtol(arg, NULL, 0);
3941 have_guest_base = 1;
3944 static void handle_arg_reserved_va(const char *arg)
3946 char *p;
3947 int shift = 0;
3948 reserved_va = strtoul(arg, &p, 0);
3949 switch (*p) {
3950 case 'k':
3951 case 'K':
3952 shift = 10;
3953 break;
3954 case 'M':
3955 shift = 20;
3956 break;
3957 case 'G':
3958 shift = 30;
3959 break;
3961 if (shift) {
3962 unsigned long unshifted = reserved_va;
3963 p++;
3964 reserved_va <<= shift;
3965 if (((reserved_va >> shift) != unshifted)
3966 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3967 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3968 #endif
3970 fprintf(stderr, "Reserved virtual address too big\n");
3971 exit(EXIT_FAILURE);
3974 if (*p) {
3975 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3976 exit(EXIT_FAILURE);
3980 static void handle_arg_singlestep(const char *arg)
3982 singlestep = 1;
3985 static void handle_arg_strace(const char *arg)
3987 do_strace = 1;
3990 static void handle_arg_version(const char *arg)
3992 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
3993 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3994 exit(EXIT_SUCCESS);
3997 struct qemu_argument {
3998 const char *argv;
3999 const char *env;
4000 bool has_arg;
4001 void (*handle_opt)(const char *arg);
4002 const char *example;
4003 const char *help;
4006 static const struct qemu_argument arg_table[] = {
4007 {"h", "", false, handle_arg_help,
4008 "", "print this help"},
4009 {"help", "", false, handle_arg_help,
4010 "", ""},
4011 {"g", "QEMU_GDB", true, handle_arg_gdb,
4012 "port", "wait gdb connection to 'port'"},
4013 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
4014 "path", "set the elf interpreter prefix to 'path'"},
4015 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
4016 "size", "set the stack size to 'size' bytes"},
4017 {"cpu", "QEMU_CPU", true, handle_arg_cpu,
4018 "model", "select CPU (-cpu help for list)"},
4019 {"E", "QEMU_SET_ENV", true, handle_arg_set_env,
4020 "var=value", "sets targets environment variable (see below)"},
4021 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
4022 "var", "unsets targets environment variable (see below)"},
4023 {"0", "QEMU_ARGV0", true, handle_arg_argv0,
4024 "argv0", "forces target process argv[0] to be 'argv0'"},
4025 {"r", "QEMU_UNAME", true, handle_arg_uname,
4026 "uname", "set qemu uname release string to 'uname'"},
4027 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
4028 "address", "set guest_base address to 'address'"},
4029 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
4030 "size", "reserve 'size' bytes for guest virtual address space"},
4031 {"d", "QEMU_LOG", true, handle_arg_log,
4032 "item[,...]", "enable logging of specified items "
4033 "(use '-d help' for a list of items)"},
4034 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
4035 "logfile", "write logs to 'logfile' (default stderr)"},
4036 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
4037 "pagesize", "set the host page size to 'pagesize'"},
4038 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
4039 "", "run in singlestep mode"},
4040 {"strace", "QEMU_STRACE", false, handle_arg_strace,
4041 "", "log system calls"},
4042 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed,
4043 "", "Seed for pseudo-random number generator"},
4044 {"version", "QEMU_VERSION", false, handle_arg_version,
4045 "", "display version information and exit"},
4046 {NULL, NULL, false, NULL, NULL, NULL}
4049 static void usage(int exitcode)
4051 const struct qemu_argument *arginfo;
4052 int maxarglen;
4053 int maxenvlen;
4055 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
4056 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
4057 "\n"
4058 "Options and associated environment variables:\n"
4059 "\n");
4061 /* Calculate column widths. We must always have at least enough space
4062 * for the column header.
4064 maxarglen = strlen("Argument");
4065 maxenvlen = strlen("Env-variable");
4067 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4068 int arglen = strlen(arginfo->argv);
4069 if (arginfo->has_arg) {
4070 arglen += strlen(arginfo->example) + 1;
4072 if (strlen(arginfo->env) > maxenvlen) {
4073 maxenvlen = strlen(arginfo->env);
4075 if (arglen > maxarglen) {
4076 maxarglen = arglen;
4080 printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
4081 maxenvlen, "Env-variable");
4083 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4084 if (arginfo->has_arg) {
4085 printf("-%s %-*s %-*s %s\n", arginfo->argv,
4086 (int)(maxarglen - strlen(arginfo->argv) - 1),
4087 arginfo->example, maxenvlen, arginfo->env, arginfo->help);
4088 } else {
4089 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
4090 maxenvlen, arginfo->env,
4091 arginfo->help);
4095 printf("\n"
4096 "Defaults:\n"
4097 "QEMU_LD_PREFIX = %s\n"
4098 "QEMU_STACK_SIZE = %ld byte\n",
4099 interp_prefix,
4100 guest_stack_size);
4102 printf("\n"
4103 "You can use -E and -U options or the QEMU_SET_ENV and\n"
4104 "QEMU_UNSET_ENV environment variables to set and unset\n"
4105 "environment variables for the target process.\n"
4106 "It is possible to provide several variables by separating them\n"
4107 "by commas in getsubopt(3) style. Additionally it is possible to\n"
4108 "provide the -E and -U options multiple times.\n"
4109 "The following lines are equivalent:\n"
4110 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
4111 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
4112 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
4113 "Note that if you provide several changes to a single variable\n"
4114 "the last change will stay in effect.\n");
4116 exit(exitcode);
4119 static int parse_args(int argc, char **argv)
4121 const char *r;
4122 int optind;
4123 const struct qemu_argument *arginfo;
4125 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4126 if (arginfo->env == NULL) {
4127 continue;
4130 r = getenv(arginfo->env);
4131 if (r != NULL) {
4132 arginfo->handle_opt(r);
4136 optind = 1;
4137 for (;;) {
4138 if (optind >= argc) {
4139 break;
4141 r = argv[optind];
4142 if (r[0] != '-') {
4143 break;
4145 optind++;
4146 r++;
4147 if (!strcmp(r, "-")) {
4148 break;
4150 /* Treat --foo the same as -foo. */
4151 if (r[0] == '-') {
4152 r++;
4155 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4156 if (!strcmp(r, arginfo->argv)) {
4157 if (arginfo->has_arg) {
4158 if (optind >= argc) {
4159 (void) fprintf(stderr,
4160 "qemu: missing argument for option '%s'\n", r);
4161 exit(EXIT_FAILURE);
4163 arginfo->handle_opt(argv[optind]);
4164 optind++;
4165 } else {
4166 arginfo->handle_opt(NULL);
4168 break;
4172 /* no option matched the current argv */
4173 if (arginfo->handle_opt == NULL) {
4174 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r);
4175 exit(EXIT_FAILURE);
4179 if (optind >= argc) {
4180 (void) fprintf(stderr, "qemu: no user program specified\n");
4181 exit(EXIT_FAILURE);
4184 filename = argv[optind];
4185 exec_path = argv[optind];
4187 return optind;
4190 int main(int argc, char **argv, char **envp)
4192 struct target_pt_regs regs1, *regs = &regs1;
4193 struct image_info info1, *info = &info1;
4194 struct linux_binprm bprm;
4195 TaskState *ts;
4196 CPUArchState *env;
4197 CPUState *cpu;
4198 int optind;
4199 char **target_environ, **wrk;
4200 char **target_argv;
4201 int target_argc;
4202 int i;
4203 int ret;
4204 int execfd;
4206 module_call_init(MODULE_INIT_QOM);
4208 if ((envlist = envlist_create()) == NULL) {
4209 (void) fprintf(stderr, "Unable to allocate envlist\n");
4210 exit(EXIT_FAILURE);
4213 /* add current environment into the list */
4214 for (wrk = environ; *wrk != NULL; wrk++) {
4215 (void) envlist_setenv(envlist, *wrk);
4218 /* Read the stack limit from the kernel. If it's "unlimited",
4219 then we can do little else besides use the default. */
4221 struct rlimit lim;
4222 if (getrlimit(RLIMIT_STACK, &lim) == 0
4223 && lim.rlim_cur != RLIM_INFINITY
4224 && lim.rlim_cur == (target_long)lim.rlim_cur) {
4225 guest_stack_size = lim.rlim_cur;
4229 cpu_model = NULL;
4231 srand(time(NULL));
4233 optind = parse_args(argc, argv);
4235 /* Zero out regs */
4236 memset(regs, 0, sizeof(struct target_pt_regs));
4238 /* Zero out image_info */
4239 memset(info, 0, sizeof(struct image_info));
4241 memset(&bprm, 0, sizeof (bprm));
4243 /* Scan interp_prefix dir for replacement files. */
4244 init_paths(interp_prefix);
4246 init_qemu_uname_release();
4248 if (cpu_model == NULL) {
4249 #if defined(TARGET_I386)
4250 #ifdef TARGET_X86_64
4251 cpu_model = "qemu64";
4252 #else
4253 cpu_model = "qemu32";
4254 #endif
4255 #elif defined(TARGET_ARM)
4256 cpu_model = "any";
4257 #elif defined(TARGET_UNICORE32)
4258 cpu_model = "any";
4259 #elif defined(TARGET_M68K)
4260 cpu_model = "any";
4261 #elif defined(TARGET_SPARC)
4262 #ifdef TARGET_SPARC64
4263 cpu_model = "TI UltraSparc II";
4264 #else
4265 cpu_model = "Fujitsu MB86904";
4266 #endif
4267 #elif defined(TARGET_MIPS)
4268 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
4269 cpu_model = "5KEf";
4270 #else
4271 cpu_model = "24Kf";
4272 #endif
4273 #elif defined TARGET_OPENRISC
4274 cpu_model = "or1200";
4275 #elif defined(TARGET_PPC)
4276 # ifdef TARGET_PPC64
4277 cpu_model = "POWER8";
4278 # else
4279 cpu_model = "750";
4280 # endif
4281 #elif defined TARGET_SH4
4282 cpu_model = TYPE_SH7785_CPU;
4283 #else
4284 cpu_model = "any";
4285 #endif
4287 tcg_exec_init(0);
4288 /* NOTE: we need to init the CPU at this stage to get
4289 qemu_host_page_size */
4290 cpu = cpu_init(cpu_model);
4291 if (!cpu) {
4292 fprintf(stderr, "Unable to find CPU definition\n");
4293 exit(EXIT_FAILURE);
4295 env = cpu->env_ptr;
4296 cpu_reset(cpu);
4298 thread_cpu = cpu;
4300 if (getenv("QEMU_STRACE")) {
4301 do_strace = 1;
4304 if (getenv("QEMU_RAND_SEED")) {
4305 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
4308 target_environ = envlist_to_environ(envlist, NULL);
4309 envlist_free(envlist);
4312 * Now that page sizes are configured in cpu_init() we can do
4313 * proper page alignment for guest_base.
4315 guest_base = HOST_PAGE_ALIGN(guest_base);
4317 if (reserved_va || have_guest_base) {
4318 guest_base = init_guest_space(guest_base, reserved_va, 0,
4319 have_guest_base);
4320 if (guest_base == (unsigned long)-1) {
4321 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
4322 "space for use as guest address space (check your virtual "
4323 "memory ulimit setting or reserve less using -R option)\n",
4324 reserved_va);
4325 exit(EXIT_FAILURE);
4328 if (reserved_va) {
4329 mmap_next_start = reserved_va;
4334 * Read in mmap_min_addr kernel parameter. This value is used
4335 * When loading the ELF image to determine whether guest_base
4336 * is needed. It is also used in mmap_find_vma.
4339 FILE *fp;
4341 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
4342 unsigned long tmp;
4343 if (fscanf(fp, "%lu", &tmp) == 1) {
4344 mmap_min_addr = tmp;
4345 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
4347 fclose(fp);
4352 * Prepare copy of argv vector for target.
4354 target_argc = argc - optind;
4355 target_argv = calloc(target_argc + 1, sizeof (char *));
4356 if (target_argv == NULL) {
4357 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
4358 exit(EXIT_FAILURE);
4362 * If argv0 is specified (using '-0' switch) we replace
4363 * argv[0] pointer with the given one.
4365 i = 0;
4366 if (argv0 != NULL) {
4367 target_argv[i++] = strdup(argv0);
4369 for (; i < target_argc; i++) {
4370 target_argv[i] = strdup(argv[optind + i]);
4372 target_argv[target_argc] = NULL;
4374 ts = g_new0(TaskState, 1);
4375 init_task_state(ts);
4376 /* build Task State */
4377 ts->info = info;
4378 ts->bprm = &bprm;
4379 cpu->opaque = ts;
4380 task_settid(ts);
4382 execfd = qemu_getauxval(AT_EXECFD);
4383 if (execfd == 0) {
4384 execfd = open(filename, O_RDONLY);
4385 if (execfd < 0) {
4386 printf("Error while loading %s: %s\n", filename, strerror(errno));
4387 _exit(EXIT_FAILURE);
4391 ret = loader_exec(execfd, filename, target_argv, target_environ, regs,
4392 info, &bprm);
4393 if (ret != 0) {
4394 printf("Error while loading %s: %s\n", filename, strerror(-ret));
4395 _exit(EXIT_FAILURE);
4398 for (wrk = target_environ; *wrk; wrk++) {
4399 free(*wrk);
4402 free(target_environ);
4404 if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
4405 qemu_log("guest_base 0x%lx\n", guest_base);
4406 log_page_dump();
4408 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
4409 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
4410 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
4411 info->start_code);
4412 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
4413 info->start_data);
4414 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
4415 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
4416 info->start_stack);
4417 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
4418 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
4421 target_set_brk(info->brk);
4422 syscall_init();
4423 signal_init();
4425 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4426 generating the prologue until now so that the prologue can take
4427 the real value of GUEST_BASE into account. */
4428 tcg_prologue_init(&tcg_ctx);
4430 #if defined(TARGET_I386)
4431 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
4432 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
4433 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
4434 env->cr[4] |= CR4_OSFXSR_MASK;
4435 env->hflags |= HF_OSFXSR_MASK;
4437 #ifndef TARGET_ABI32
4438 /* enable 64 bit mode if possible */
4439 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
4440 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
4441 exit(EXIT_FAILURE);
4443 env->cr[4] |= CR4_PAE_MASK;
4444 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
4445 env->hflags |= HF_LMA_MASK;
4446 #endif
4448 /* flags setup : we activate the IRQs by default as in user mode */
4449 env->eflags |= IF_MASK;
4451 /* linux register setup */
4452 #ifndef TARGET_ABI32
4453 env->regs[R_EAX] = regs->rax;
4454 env->regs[R_EBX] = regs->rbx;
4455 env->regs[R_ECX] = regs->rcx;
4456 env->regs[R_EDX] = regs->rdx;
4457 env->regs[R_ESI] = regs->rsi;
4458 env->regs[R_EDI] = regs->rdi;
4459 env->regs[R_EBP] = regs->rbp;
4460 env->regs[R_ESP] = regs->rsp;
4461 env->eip = regs->rip;
4462 #else
4463 env->regs[R_EAX] = regs->eax;
4464 env->regs[R_EBX] = regs->ebx;
4465 env->regs[R_ECX] = regs->ecx;
4466 env->regs[R_EDX] = regs->edx;
4467 env->regs[R_ESI] = regs->esi;
4468 env->regs[R_EDI] = regs->edi;
4469 env->regs[R_EBP] = regs->ebp;
4470 env->regs[R_ESP] = regs->esp;
4471 env->eip = regs->eip;
4472 #endif
4474 /* linux interrupt setup */
4475 #ifndef TARGET_ABI32
4476 env->idt.limit = 511;
4477 #else
4478 env->idt.limit = 255;
4479 #endif
4480 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
4481 PROT_READ|PROT_WRITE,
4482 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4483 idt_table = g2h(env->idt.base);
4484 set_idt(0, 0);
4485 set_idt(1, 0);
4486 set_idt(2, 0);
4487 set_idt(3, 3);
4488 set_idt(4, 3);
4489 set_idt(5, 0);
4490 set_idt(6, 0);
4491 set_idt(7, 0);
4492 set_idt(8, 0);
4493 set_idt(9, 0);
4494 set_idt(10, 0);
4495 set_idt(11, 0);
4496 set_idt(12, 0);
4497 set_idt(13, 0);
4498 set_idt(14, 0);
4499 set_idt(15, 0);
4500 set_idt(16, 0);
4501 set_idt(17, 0);
4502 set_idt(18, 0);
4503 set_idt(19, 0);
4504 set_idt(0x80, 3);
4506 /* linux segment setup */
4508 uint64_t *gdt_table;
4509 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
4510 PROT_READ|PROT_WRITE,
4511 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4512 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
4513 gdt_table = g2h(env->gdt.base);
4514 #ifdef TARGET_ABI32
4515 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4516 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4517 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4518 #else
4519 /* 64 bit code segment */
4520 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4521 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4522 DESC_L_MASK |
4523 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4524 #endif
4525 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
4526 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4527 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
4529 cpu_x86_load_seg(env, R_CS, __USER_CS);
4530 cpu_x86_load_seg(env, R_SS, __USER_DS);
4531 #ifdef TARGET_ABI32
4532 cpu_x86_load_seg(env, R_DS, __USER_DS);
4533 cpu_x86_load_seg(env, R_ES, __USER_DS);
4534 cpu_x86_load_seg(env, R_FS, __USER_DS);
4535 cpu_x86_load_seg(env, R_GS, __USER_DS);
4536 /* This hack makes Wine work... */
4537 env->segs[R_FS].selector = 0;
4538 #else
4539 cpu_x86_load_seg(env, R_DS, 0);
4540 cpu_x86_load_seg(env, R_ES, 0);
4541 cpu_x86_load_seg(env, R_FS, 0);
4542 cpu_x86_load_seg(env, R_GS, 0);
4543 #endif
4544 #elif defined(TARGET_AARCH64)
4546 int i;
4548 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
4549 fprintf(stderr,
4550 "The selected ARM CPU does not support 64 bit mode\n");
4551 exit(EXIT_FAILURE);
4554 for (i = 0; i < 31; i++) {
4555 env->xregs[i] = regs->regs[i];
4557 env->pc = regs->pc;
4558 env->xregs[31] = regs->sp;
4560 #elif defined(TARGET_ARM)
4562 int i;
4563 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
4564 CPSRWriteByInstr);
4565 for(i = 0; i < 16; i++) {
4566 env->regs[i] = regs->uregs[i];
4568 #ifdef TARGET_WORDS_BIGENDIAN
4569 /* Enable BE8. */
4570 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
4571 && (info->elf_flags & EF_ARM_BE8)) {
4572 env->uncached_cpsr |= CPSR_E;
4573 env->cp15.sctlr_el[1] |= SCTLR_E0E;
4574 } else {
4575 env->cp15.sctlr_el[1] |= SCTLR_B;
4577 #endif
4579 #elif defined(TARGET_UNICORE32)
4581 int i;
4582 cpu_asr_write(env, regs->uregs[32], 0xffffffff);
4583 for (i = 0; i < 32; i++) {
4584 env->regs[i] = regs->uregs[i];
4587 #elif defined(TARGET_SPARC)
4589 int i;
4590 env->pc = regs->pc;
4591 env->npc = regs->npc;
4592 env->y = regs->y;
4593 for(i = 0; i < 8; i++)
4594 env->gregs[i] = regs->u_regs[i];
4595 for(i = 0; i < 8; i++)
4596 env->regwptr[i] = regs->u_regs[i + 8];
4598 #elif defined(TARGET_PPC)
4600 int i;
4602 #if defined(TARGET_PPC64)
4603 #if defined(TARGET_ABI32)
4604 env->msr &= ~((target_ulong)1 << MSR_SF);
4605 #else
4606 env->msr |= (target_ulong)1 << MSR_SF;
4607 #endif
4608 #endif
4609 env->nip = regs->nip;
4610 for(i = 0; i < 32; i++) {
4611 env->gpr[i] = regs->gpr[i];
4614 #elif defined(TARGET_M68K)
4616 env->pc = regs->pc;
4617 env->dregs[0] = regs->d0;
4618 env->dregs[1] = regs->d1;
4619 env->dregs[2] = regs->d2;
4620 env->dregs[3] = regs->d3;
4621 env->dregs[4] = regs->d4;
4622 env->dregs[5] = regs->d5;
4623 env->dregs[6] = regs->d6;
4624 env->dregs[7] = regs->d7;
4625 env->aregs[0] = regs->a0;
4626 env->aregs[1] = regs->a1;
4627 env->aregs[2] = regs->a2;
4628 env->aregs[3] = regs->a3;
4629 env->aregs[4] = regs->a4;
4630 env->aregs[5] = regs->a5;
4631 env->aregs[6] = regs->a6;
4632 env->aregs[7] = regs->usp;
4633 env->sr = regs->sr;
4634 ts->sim_syscalls = 1;
4636 #elif defined(TARGET_MICROBLAZE)
4638 env->regs[0] = regs->r0;
4639 env->regs[1] = regs->r1;
4640 env->regs[2] = regs->r2;
4641 env->regs[3] = regs->r3;
4642 env->regs[4] = regs->r4;
4643 env->regs[5] = regs->r5;
4644 env->regs[6] = regs->r6;
4645 env->regs[7] = regs->r7;
4646 env->regs[8] = regs->r8;
4647 env->regs[9] = regs->r9;
4648 env->regs[10] = regs->r10;
4649 env->regs[11] = regs->r11;
4650 env->regs[12] = regs->r12;
4651 env->regs[13] = regs->r13;
4652 env->regs[14] = regs->r14;
4653 env->regs[15] = regs->r15;
4654 env->regs[16] = regs->r16;
4655 env->regs[17] = regs->r17;
4656 env->regs[18] = regs->r18;
4657 env->regs[19] = regs->r19;
4658 env->regs[20] = regs->r20;
4659 env->regs[21] = regs->r21;
4660 env->regs[22] = regs->r22;
4661 env->regs[23] = regs->r23;
4662 env->regs[24] = regs->r24;
4663 env->regs[25] = regs->r25;
4664 env->regs[26] = regs->r26;
4665 env->regs[27] = regs->r27;
4666 env->regs[28] = regs->r28;
4667 env->regs[29] = regs->r29;
4668 env->regs[30] = regs->r30;
4669 env->regs[31] = regs->r31;
4670 env->sregs[SR_PC] = regs->pc;
4672 #elif defined(TARGET_MIPS)
4674 int i;
4676 for(i = 0; i < 32; i++) {
4677 env->active_tc.gpr[i] = regs->regs[i];
4679 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
4680 if (regs->cp0_epc & 1) {
4681 env->hflags |= MIPS_HFLAG_M16;
4684 #elif defined(TARGET_OPENRISC)
4686 int i;
4688 for (i = 0; i < 32; i++) {
4689 env->gpr[i] = regs->gpr[i];
4692 env->sr = regs->sr;
4693 env->pc = regs->pc;
4695 #elif defined(TARGET_SH4)
4697 int i;
4699 for(i = 0; i < 16; i++) {
4700 env->gregs[i] = regs->regs[i];
4702 env->pc = regs->pc;
4704 #elif defined(TARGET_ALPHA)
4706 int i;
4708 for(i = 0; i < 28; i++) {
4709 env->ir[i] = ((abi_ulong *)regs)[i];
4711 env->ir[IR_SP] = regs->usp;
4712 env->pc = regs->pc;
4714 #elif defined(TARGET_CRIS)
4716 env->regs[0] = regs->r0;
4717 env->regs[1] = regs->r1;
4718 env->regs[2] = regs->r2;
4719 env->regs[3] = regs->r3;
4720 env->regs[4] = regs->r4;
4721 env->regs[5] = regs->r5;
4722 env->regs[6] = regs->r6;
4723 env->regs[7] = regs->r7;
4724 env->regs[8] = regs->r8;
4725 env->regs[9] = regs->r9;
4726 env->regs[10] = regs->r10;
4727 env->regs[11] = regs->r11;
4728 env->regs[12] = regs->r12;
4729 env->regs[13] = regs->r13;
4730 env->regs[14] = info->start_stack;
4731 env->regs[15] = regs->acr;
4732 env->pc = regs->erp;
4734 #elif defined(TARGET_S390X)
4736 int i;
4737 for (i = 0; i < 16; i++) {
4738 env->regs[i] = regs->gprs[i];
4740 env->psw.mask = regs->psw.mask;
4741 env->psw.addr = regs->psw.addr;
4743 #elif defined(TARGET_TILEGX)
4745 int i;
4746 for (i = 0; i < TILEGX_R_COUNT; i++) {
4747 env->regs[i] = regs->regs[i];
4749 for (i = 0; i < TILEGX_SPR_COUNT; i++) {
4750 env->spregs[i] = 0;
4752 env->pc = regs->pc;
4754 #else
4755 #error unsupported target CPU
4756 #endif
4758 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4759 ts->stack_base = info->start_stack;
4760 ts->heap_base = info->brk;
4761 /* This will be filled in on the first SYS_HEAPINFO call. */
4762 ts->heap_limit = 0;
4763 #endif
4765 if (gdbstub_port) {
4766 if (gdbserver_start(gdbstub_port) < 0) {
4767 fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4768 gdbstub_port);
4769 exit(EXIT_FAILURE);
4771 gdb_handlesig(cpu, 0);
4773 cpu_loop(env);
4774 /* never exits */
4775 return 0;