virtio-iommu: Implement fault reporting
[qemu.git] / block / io.c
blob7e4cb74cf4c815dea38bef713ebc6b01598f8959
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "sysemu/replay.h"
38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int bytes, BdrvRequestFlags flags);
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
50 BdrvChild *c, *next;
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
54 continue;
56 bdrv_parent_drained_begin_single(c, false);
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61 int *drained_end_counter)
63 assert(c->parent_quiesce_counter > 0);
64 c->parent_quiesce_counter--;
65 if (c->role->drained_end) {
66 c->role->drained_end(c, drained_end_counter);
70 void bdrv_parent_drained_end_single(BdrvChild *c)
72 int drained_end_counter = 0;
73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78 bool ignore_bds_parents,
79 int *drained_end_counter)
81 BdrvChild *c;
83 QLIST_FOREACH(c, &bs->parents, next_parent) {
84 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
85 continue;
87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
93 if (c->role->drained_poll) {
94 return c->role->drained_poll(c);
96 return false;
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100 bool ignore_bds_parents)
102 BdrvChild *c, *next;
103 bool busy = false;
105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
107 continue;
109 busy |= bdrv_parent_drained_poll_single(c);
112 return busy;
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
117 c->parent_quiesce_counter++;
118 if (c->role->drained_begin) {
119 c->role->drained_begin(c);
121 if (poll) {
122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
131 src->opt_mem_alignment);
132 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
133 src->min_mem_alignment);
134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
139 BlockDriver *drv = bs->drv;
140 Error *local_err = NULL;
142 memset(&bs->bl, 0, sizeof(bs->bl));
144 if (!drv) {
145 return;
148 /* Default alignment based on whether driver has byte interface */
149 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
150 drv->bdrv_aio_preadv ||
151 drv->bdrv_co_preadv_part) ? 1 : 512;
153 /* Take some limits from the children as a default */
154 if (bs->file) {
155 bdrv_refresh_limits(bs->file->bs, &local_err);
156 if (local_err) {
157 error_propagate(errp, local_err);
158 return;
160 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
161 } else {
162 bs->bl.min_mem_alignment = 512;
163 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
165 /* Safe default since most protocols use readv()/writev()/etc */
166 bs->bl.max_iov = IOV_MAX;
169 if (bs->backing) {
170 bdrv_refresh_limits(bs->backing->bs, &local_err);
171 if (local_err) {
172 error_propagate(errp, local_err);
173 return;
175 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
178 /* Then let the driver override it */
179 if (drv->bdrv_refresh_limits) {
180 drv->bdrv_refresh_limits(bs, errp);
185 * The copy-on-read flag is actually a reference count so multiple users may
186 * use the feature without worrying about clobbering its previous state.
187 * Copy-on-read stays enabled until all users have called to disable it.
189 void bdrv_enable_copy_on_read(BlockDriverState *bs)
191 atomic_inc(&bs->copy_on_read);
194 void bdrv_disable_copy_on_read(BlockDriverState *bs)
196 int old = atomic_fetch_dec(&bs->copy_on_read);
197 assert(old >= 1);
200 typedef struct {
201 Coroutine *co;
202 BlockDriverState *bs;
203 bool done;
204 bool begin;
205 bool recursive;
206 bool poll;
207 BdrvChild *parent;
208 bool ignore_bds_parents;
209 int *drained_end_counter;
210 } BdrvCoDrainData;
212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
214 BdrvCoDrainData *data = opaque;
215 BlockDriverState *bs = data->bs;
217 if (data->begin) {
218 bs->drv->bdrv_co_drain_begin(bs);
219 } else {
220 bs->drv->bdrv_co_drain_end(bs);
223 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
224 atomic_mb_set(&data->done, true);
225 if (!data->begin) {
226 atomic_dec(data->drained_end_counter);
228 bdrv_dec_in_flight(bs);
230 g_free(data);
233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
235 int *drained_end_counter)
237 BdrvCoDrainData *data;
239 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
240 (!begin && !bs->drv->bdrv_co_drain_end)) {
241 return;
244 data = g_new(BdrvCoDrainData, 1);
245 *data = (BdrvCoDrainData) {
246 .bs = bs,
247 .done = false,
248 .begin = begin,
249 .drained_end_counter = drained_end_counter,
252 if (!begin) {
253 atomic_inc(drained_end_counter);
256 /* Make sure the driver callback completes during the polling phase for
257 * drain_begin. */
258 bdrv_inc_in_flight(bs);
259 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
260 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
265 BdrvChild *ignore_parent, bool ignore_bds_parents)
267 BdrvChild *child, *next;
269 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
270 return true;
273 if (atomic_read(&bs->in_flight)) {
274 return true;
277 if (recursive) {
278 assert(!ignore_bds_parents);
279 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
280 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
281 return true;
286 return false;
289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
290 BdrvChild *ignore_parent)
292 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
296 BdrvChild *parent, bool ignore_bds_parents,
297 bool poll);
298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
299 BdrvChild *parent, bool ignore_bds_parents,
300 int *drained_end_counter);
302 static void bdrv_co_drain_bh_cb(void *opaque)
304 BdrvCoDrainData *data = opaque;
305 Coroutine *co = data->co;
306 BlockDriverState *bs = data->bs;
308 if (bs) {
309 AioContext *ctx = bdrv_get_aio_context(bs);
310 AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
313 * When the coroutine yielded, the lock for its home context was
314 * released, so we need to re-acquire it here. If it explicitly
315 * acquired a different context, the lock is still held and we don't
316 * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
318 if (ctx == co_ctx) {
319 aio_context_acquire(ctx);
321 bdrv_dec_in_flight(bs);
322 if (data->begin) {
323 assert(!data->drained_end_counter);
324 bdrv_do_drained_begin(bs, data->recursive, data->parent,
325 data->ignore_bds_parents, data->poll);
326 } else {
327 assert(!data->poll);
328 bdrv_do_drained_end(bs, data->recursive, data->parent,
329 data->ignore_bds_parents,
330 data->drained_end_counter);
332 if (ctx == co_ctx) {
333 aio_context_release(ctx);
335 } else {
336 assert(data->begin);
337 bdrv_drain_all_begin();
340 data->done = true;
341 aio_co_wake(co);
344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
345 bool begin, bool recursive,
346 BdrvChild *parent,
347 bool ignore_bds_parents,
348 bool poll,
349 int *drained_end_counter)
351 BdrvCoDrainData data;
353 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
354 * other coroutines run if they were queued by aio_co_enter(). */
356 assert(qemu_in_coroutine());
357 data = (BdrvCoDrainData) {
358 .co = qemu_coroutine_self(),
359 .bs = bs,
360 .done = false,
361 .begin = begin,
362 .recursive = recursive,
363 .parent = parent,
364 .ignore_bds_parents = ignore_bds_parents,
365 .poll = poll,
366 .drained_end_counter = drained_end_counter,
369 if (bs) {
370 bdrv_inc_in_flight(bs);
372 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs),
373 bdrv_co_drain_bh_cb, &data);
375 qemu_coroutine_yield();
376 /* If we are resumed from some other event (such as an aio completion or a
377 * timer callback), it is a bug in the caller that should be fixed. */
378 assert(data.done);
381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
382 BdrvChild *parent, bool ignore_bds_parents)
384 assert(!qemu_in_coroutine());
386 /* Stop things in parent-to-child order */
387 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
388 aio_disable_external(bdrv_get_aio_context(bs));
391 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
392 bdrv_drain_invoke(bs, true, NULL);
395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
396 BdrvChild *parent, bool ignore_bds_parents,
397 bool poll)
399 BdrvChild *child, *next;
401 if (qemu_in_coroutine()) {
402 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
403 poll, NULL);
404 return;
407 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
409 if (recursive) {
410 assert(!ignore_bds_parents);
411 bs->recursive_quiesce_counter++;
412 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
413 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
414 false);
419 * Wait for drained requests to finish.
421 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
422 * call is needed so things in this AioContext can make progress even
423 * though we don't return to the main AioContext loop - this automatically
424 * includes other nodes in the same AioContext and therefore all child
425 * nodes.
427 if (poll) {
428 assert(!ignore_bds_parents);
429 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
433 void bdrv_drained_begin(BlockDriverState *bs)
435 bdrv_do_drained_begin(bs, false, NULL, false, true);
438 void bdrv_subtree_drained_begin(BlockDriverState *bs)
440 bdrv_do_drained_begin(bs, true, NULL, false, true);
444 * This function does not poll, nor must any of its recursively called
445 * functions. The *drained_end_counter pointee will be incremented
446 * once for every background operation scheduled, and decremented once
447 * the operation settles. Therefore, the pointer must remain valid
448 * until the pointee reaches 0. That implies that whoever sets up the
449 * pointee has to poll until it is 0.
451 * We use atomic operations to access *drained_end_counter, because
452 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
453 * @bs may contain nodes in different AioContexts,
454 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
455 * regardless of which AioContext they are in.
457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
458 BdrvChild *parent, bool ignore_bds_parents,
459 int *drained_end_counter)
461 BdrvChild *child;
462 int old_quiesce_counter;
464 assert(drained_end_counter != NULL);
466 if (qemu_in_coroutine()) {
467 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
468 false, drained_end_counter);
469 return;
471 assert(bs->quiesce_counter > 0);
473 /* Re-enable things in child-to-parent order */
474 bdrv_drain_invoke(bs, false, drained_end_counter);
475 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
476 drained_end_counter);
478 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
479 if (old_quiesce_counter == 1) {
480 aio_enable_external(bdrv_get_aio_context(bs));
483 if (recursive) {
484 assert(!ignore_bds_parents);
485 bs->recursive_quiesce_counter--;
486 QLIST_FOREACH(child, &bs->children, next) {
487 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
488 drained_end_counter);
493 void bdrv_drained_end(BlockDriverState *bs)
495 int drained_end_counter = 0;
496 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
497 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
502 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
505 void bdrv_subtree_drained_end(BlockDriverState *bs)
507 int drained_end_counter = 0;
508 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
509 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
514 int i;
516 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
517 bdrv_do_drained_begin(child->bs, true, child, false, true);
521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
523 int drained_end_counter = 0;
524 int i;
526 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
527 bdrv_do_drained_end(child->bs, true, child, false,
528 &drained_end_counter);
531 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
535 * Wait for pending requests to complete on a single BlockDriverState subtree,
536 * and suspend block driver's internal I/O until next request arrives.
538 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
539 * AioContext.
541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
543 assert(qemu_in_coroutine());
544 bdrv_drained_begin(bs);
545 bdrv_drained_end(bs);
548 void bdrv_drain(BlockDriverState *bs)
550 bdrv_drained_begin(bs);
551 bdrv_drained_end(bs);
554 static void bdrv_drain_assert_idle(BlockDriverState *bs)
556 BdrvChild *child, *next;
558 assert(atomic_read(&bs->in_flight) == 0);
559 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
560 bdrv_drain_assert_idle(child->bs);
564 unsigned int bdrv_drain_all_count = 0;
566 static bool bdrv_drain_all_poll(void)
568 BlockDriverState *bs = NULL;
569 bool result = false;
571 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
572 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
573 while ((bs = bdrv_next_all_states(bs))) {
574 AioContext *aio_context = bdrv_get_aio_context(bs);
575 aio_context_acquire(aio_context);
576 result |= bdrv_drain_poll(bs, false, NULL, true);
577 aio_context_release(aio_context);
580 return result;
584 * Wait for pending requests to complete across all BlockDriverStates
586 * This function does not flush data to disk, use bdrv_flush_all() for that
587 * after calling this function.
589 * This pauses all block jobs and disables external clients. It must
590 * be paired with bdrv_drain_all_end().
592 * NOTE: no new block jobs or BlockDriverStates can be created between
593 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
595 void bdrv_drain_all_begin(void)
597 BlockDriverState *bs = NULL;
599 if (qemu_in_coroutine()) {
600 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
601 return;
605 * bdrv queue is managed by record/replay,
606 * waiting for finishing the I/O requests may
607 * be infinite
609 if (replay_events_enabled()) {
610 return;
613 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
614 * loop AioContext, so make sure we're in the main context. */
615 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
616 assert(bdrv_drain_all_count < INT_MAX);
617 bdrv_drain_all_count++;
619 /* Quiesce all nodes, without polling in-flight requests yet. The graph
620 * cannot change during this loop. */
621 while ((bs = bdrv_next_all_states(bs))) {
622 AioContext *aio_context = bdrv_get_aio_context(bs);
624 aio_context_acquire(aio_context);
625 bdrv_do_drained_begin(bs, false, NULL, true, false);
626 aio_context_release(aio_context);
629 /* Now poll the in-flight requests */
630 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
632 while ((bs = bdrv_next_all_states(bs))) {
633 bdrv_drain_assert_idle(bs);
637 void bdrv_drain_all_end(void)
639 BlockDriverState *bs = NULL;
640 int drained_end_counter = 0;
643 * bdrv queue is managed by record/replay,
644 * waiting for finishing the I/O requests may
645 * be endless
647 if (replay_events_enabled()) {
648 return;
651 while ((bs = bdrv_next_all_states(bs))) {
652 AioContext *aio_context = bdrv_get_aio_context(bs);
654 aio_context_acquire(aio_context);
655 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
656 aio_context_release(aio_context);
659 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
660 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
662 assert(bdrv_drain_all_count > 0);
663 bdrv_drain_all_count--;
666 void bdrv_drain_all(void)
668 bdrv_drain_all_begin();
669 bdrv_drain_all_end();
673 * Remove an active request from the tracked requests list
675 * This function should be called when a tracked request is completing.
677 static void tracked_request_end(BdrvTrackedRequest *req)
679 if (req->serialising) {
680 atomic_dec(&req->bs->serialising_in_flight);
683 qemu_co_mutex_lock(&req->bs->reqs_lock);
684 QLIST_REMOVE(req, list);
685 qemu_co_queue_restart_all(&req->wait_queue);
686 qemu_co_mutex_unlock(&req->bs->reqs_lock);
690 * Add an active request to the tracked requests list
692 static void tracked_request_begin(BdrvTrackedRequest *req,
693 BlockDriverState *bs,
694 int64_t offset,
695 uint64_t bytes,
696 enum BdrvTrackedRequestType type)
698 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
700 *req = (BdrvTrackedRequest){
701 .bs = bs,
702 .offset = offset,
703 .bytes = bytes,
704 .type = type,
705 .co = qemu_coroutine_self(),
706 .serialising = false,
707 .overlap_offset = offset,
708 .overlap_bytes = bytes,
711 qemu_co_queue_init(&req->wait_queue);
713 qemu_co_mutex_lock(&bs->reqs_lock);
714 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
715 qemu_co_mutex_unlock(&bs->reqs_lock);
718 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
719 int64_t offset, uint64_t bytes)
721 /* aaaa bbbb */
722 if (offset >= req->overlap_offset + req->overlap_bytes) {
723 return false;
725 /* bbbb aaaa */
726 if (req->overlap_offset >= offset + bytes) {
727 return false;
729 return true;
732 static bool coroutine_fn
733 bdrv_wait_serialising_requests_locked(BlockDriverState *bs,
734 BdrvTrackedRequest *self)
736 BdrvTrackedRequest *req;
737 bool retry;
738 bool waited = false;
740 do {
741 retry = false;
742 QLIST_FOREACH(req, &bs->tracked_requests, list) {
743 if (req == self || (!req->serialising && !self->serialising)) {
744 continue;
746 if (tracked_request_overlaps(req, self->overlap_offset,
747 self->overlap_bytes))
749 /* Hitting this means there was a reentrant request, for
750 * example, a block driver issuing nested requests. This must
751 * never happen since it means deadlock.
753 assert(qemu_coroutine_self() != req->co);
755 /* If the request is already (indirectly) waiting for us, or
756 * will wait for us as soon as it wakes up, then just go on
757 * (instead of producing a deadlock in the former case). */
758 if (!req->waiting_for) {
759 self->waiting_for = req;
760 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
761 self->waiting_for = NULL;
762 retry = true;
763 waited = true;
764 break;
768 } while (retry);
769 return waited;
772 bool bdrv_mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
774 BlockDriverState *bs = req->bs;
775 int64_t overlap_offset = req->offset & ~(align - 1);
776 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
777 - overlap_offset;
778 bool waited;
780 qemu_co_mutex_lock(&bs->reqs_lock);
781 if (!req->serialising) {
782 atomic_inc(&req->bs->serialising_in_flight);
783 req->serialising = true;
786 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
787 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
788 waited = bdrv_wait_serialising_requests_locked(bs, req);
789 qemu_co_mutex_unlock(&bs->reqs_lock);
790 return waited;
794 * Return the tracked request on @bs for the current coroutine, or
795 * NULL if there is none.
797 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
799 BdrvTrackedRequest *req;
800 Coroutine *self = qemu_coroutine_self();
802 QLIST_FOREACH(req, &bs->tracked_requests, list) {
803 if (req->co == self) {
804 return req;
808 return NULL;
812 * Round a region to cluster boundaries
814 void bdrv_round_to_clusters(BlockDriverState *bs,
815 int64_t offset, int64_t bytes,
816 int64_t *cluster_offset,
817 int64_t *cluster_bytes)
819 BlockDriverInfo bdi;
821 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
822 *cluster_offset = offset;
823 *cluster_bytes = bytes;
824 } else {
825 int64_t c = bdi.cluster_size;
826 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
827 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
831 static int bdrv_get_cluster_size(BlockDriverState *bs)
833 BlockDriverInfo bdi;
834 int ret;
836 ret = bdrv_get_info(bs, &bdi);
837 if (ret < 0 || bdi.cluster_size == 0) {
838 return bs->bl.request_alignment;
839 } else {
840 return bdi.cluster_size;
844 void bdrv_inc_in_flight(BlockDriverState *bs)
846 atomic_inc(&bs->in_flight);
849 void bdrv_wakeup(BlockDriverState *bs)
851 aio_wait_kick();
854 void bdrv_dec_in_flight(BlockDriverState *bs)
856 atomic_dec(&bs->in_flight);
857 bdrv_wakeup(bs);
860 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
862 BlockDriverState *bs = self->bs;
863 bool waited = false;
865 if (!atomic_read(&bs->serialising_in_flight)) {
866 return false;
869 qemu_co_mutex_lock(&bs->reqs_lock);
870 waited = bdrv_wait_serialising_requests_locked(bs, self);
871 qemu_co_mutex_unlock(&bs->reqs_lock);
873 return waited;
876 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
877 size_t size)
879 if (size > BDRV_REQUEST_MAX_BYTES) {
880 return -EIO;
883 if (!bdrv_is_inserted(bs)) {
884 return -ENOMEDIUM;
887 if (offset < 0) {
888 return -EIO;
891 return 0;
894 typedef struct RwCo {
895 BdrvChild *child;
896 int64_t offset;
897 QEMUIOVector *qiov;
898 bool is_write;
899 int ret;
900 BdrvRequestFlags flags;
901 } RwCo;
903 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
905 RwCo *rwco = opaque;
907 if (!rwco->is_write) {
908 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
909 rwco->qiov->size, rwco->qiov,
910 rwco->flags);
911 } else {
912 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
913 rwco->qiov->size, rwco->qiov,
914 rwco->flags);
916 aio_wait_kick();
920 * Process a vectored synchronous request using coroutines
922 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
923 QEMUIOVector *qiov, bool is_write,
924 BdrvRequestFlags flags)
926 Coroutine *co;
927 RwCo rwco = {
928 .child = child,
929 .offset = offset,
930 .qiov = qiov,
931 .is_write = is_write,
932 .ret = NOT_DONE,
933 .flags = flags,
936 if (qemu_in_coroutine()) {
937 /* Fast-path if already in coroutine context */
938 bdrv_rw_co_entry(&rwco);
939 } else {
940 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
941 bdrv_coroutine_enter(child->bs, co);
942 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
944 return rwco.ret;
947 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
948 int bytes, BdrvRequestFlags flags)
950 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
952 return bdrv_prwv_co(child, offset, &qiov, true,
953 BDRV_REQ_ZERO_WRITE | flags);
957 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
958 * The operation is sped up by checking the block status and only writing
959 * zeroes to the device if they currently do not return zeroes. Optional
960 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
961 * BDRV_REQ_FUA).
963 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
965 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
967 int ret;
968 int64_t target_size, bytes, offset = 0;
969 BlockDriverState *bs = child->bs;
971 target_size = bdrv_getlength(bs);
972 if (target_size < 0) {
973 return target_size;
976 for (;;) {
977 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
978 if (bytes <= 0) {
979 return 0;
981 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
982 if (ret < 0) {
983 return ret;
985 if (ret & BDRV_BLOCK_ZERO) {
986 offset += bytes;
987 continue;
989 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
990 if (ret < 0) {
991 return ret;
993 offset += bytes;
997 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
999 int ret;
1001 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
1002 if (ret < 0) {
1003 return ret;
1006 return qiov->size;
1009 /* See bdrv_pwrite() for the return codes */
1010 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
1012 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1014 if (bytes < 0) {
1015 return -EINVAL;
1018 return bdrv_preadv(child, offset, &qiov);
1021 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
1023 int ret;
1025 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
1026 if (ret < 0) {
1027 return ret;
1030 return qiov->size;
1033 /* Return no. of bytes on success or < 0 on error. Important errors are:
1034 -EIO generic I/O error (may happen for all errors)
1035 -ENOMEDIUM No media inserted.
1036 -EINVAL Invalid offset or number of bytes
1037 -EACCES Trying to write a read-only device
1039 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1041 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1043 if (bytes < 0) {
1044 return -EINVAL;
1047 return bdrv_pwritev(child, offset, &qiov);
1051 * Writes to the file and ensures that no writes are reordered across this
1052 * request (acts as a barrier)
1054 * Returns 0 on success, -errno in error cases.
1056 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1057 const void *buf, int count)
1059 int ret;
1061 ret = bdrv_pwrite(child, offset, buf, count);
1062 if (ret < 0) {
1063 return ret;
1066 ret = bdrv_flush(child->bs);
1067 if (ret < 0) {
1068 return ret;
1071 return 0;
1074 typedef struct CoroutineIOCompletion {
1075 Coroutine *coroutine;
1076 int ret;
1077 } CoroutineIOCompletion;
1079 static void bdrv_co_io_em_complete(void *opaque, int ret)
1081 CoroutineIOCompletion *co = opaque;
1083 co->ret = ret;
1084 aio_co_wake(co->coroutine);
1087 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1088 uint64_t offset, uint64_t bytes,
1089 QEMUIOVector *qiov,
1090 size_t qiov_offset, int flags)
1092 BlockDriver *drv = bs->drv;
1093 int64_t sector_num;
1094 unsigned int nb_sectors;
1095 QEMUIOVector local_qiov;
1096 int ret;
1098 assert(!(flags & ~BDRV_REQ_MASK));
1099 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1101 if (!drv) {
1102 return -ENOMEDIUM;
1105 if (drv->bdrv_co_preadv_part) {
1106 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1107 flags);
1110 if (qiov_offset > 0 || bytes != qiov->size) {
1111 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1112 qiov = &local_qiov;
1115 if (drv->bdrv_co_preadv) {
1116 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1117 goto out;
1120 if (drv->bdrv_aio_preadv) {
1121 BlockAIOCB *acb;
1122 CoroutineIOCompletion co = {
1123 .coroutine = qemu_coroutine_self(),
1126 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1127 bdrv_co_io_em_complete, &co);
1128 if (acb == NULL) {
1129 ret = -EIO;
1130 goto out;
1131 } else {
1132 qemu_coroutine_yield();
1133 ret = co.ret;
1134 goto out;
1138 sector_num = offset >> BDRV_SECTOR_BITS;
1139 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1141 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1142 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1143 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1144 assert(drv->bdrv_co_readv);
1146 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1148 out:
1149 if (qiov == &local_qiov) {
1150 qemu_iovec_destroy(&local_qiov);
1153 return ret;
1156 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1157 uint64_t offset, uint64_t bytes,
1158 QEMUIOVector *qiov,
1159 size_t qiov_offset, int flags)
1161 BlockDriver *drv = bs->drv;
1162 int64_t sector_num;
1163 unsigned int nb_sectors;
1164 QEMUIOVector local_qiov;
1165 int ret;
1167 assert(!(flags & ~BDRV_REQ_MASK));
1168 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1170 if (!drv) {
1171 return -ENOMEDIUM;
1174 if (drv->bdrv_co_pwritev_part) {
1175 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1176 flags & bs->supported_write_flags);
1177 flags &= ~bs->supported_write_flags;
1178 goto emulate_flags;
1181 if (qiov_offset > 0 || bytes != qiov->size) {
1182 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1183 qiov = &local_qiov;
1186 if (drv->bdrv_co_pwritev) {
1187 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1188 flags & bs->supported_write_flags);
1189 flags &= ~bs->supported_write_flags;
1190 goto emulate_flags;
1193 if (drv->bdrv_aio_pwritev) {
1194 BlockAIOCB *acb;
1195 CoroutineIOCompletion co = {
1196 .coroutine = qemu_coroutine_self(),
1199 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1200 flags & bs->supported_write_flags,
1201 bdrv_co_io_em_complete, &co);
1202 flags &= ~bs->supported_write_flags;
1203 if (acb == NULL) {
1204 ret = -EIO;
1205 } else {
1206 qemu_coroutine_yield();
1207 ret = co.ret;
1209 goto emulate_flags;
1212 sector_num = offset >> BDRV_SECTOR_BITS;
1213 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1215 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1216 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1217 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1219 assert(drv->bdrv_co_writev);
1220 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1221 flags & bs->supported_write_flags);
1222 flags &= ~bs->supported_write_flags;
1224 emulate_flags:
1225 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1226 ret = bdrv_co_flush(bs);
1229 if (qiov == &local_qiov) {
1230 qemu_iovec_destroy(&local_qiov);
1233 return ret;
1236 static int coroutine_fn
1237 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1238 uint64_t bytes, QEMUIOVector *qiov,
1239 size_t qiov_offset)
1241 BlockDriver *drv = bs->drv;
1242 QEMUIOVector local_qiov;
1243 int ret;
1245 if (!drv) {
1246 return -ENOMEDIUM;
1249 if (!block_driver_can_compress(drv)) {
1250 return -ENOTSUP;
1253 if (drv->bdrv_co_pwritev_compressed_part) {
1254 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1255 qiov, qiov_offset);
1258 if (qiov_offset == 0) {
1259 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1262 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1263 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1264 qemu_iovec_destroy(&local_qiov);
1266 return ret;
1269 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1270 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1271 size_t qiov_offset, int flags)
1273 BlockDriverState *bs = child->bs;
1275 /* Perform I/O through a temporary buffer so that users who scribble over
1276 * their read buffer while the operation is in progress do not end up
1277 * modifying the image file. This is critical for zero-copy guest I/O
1278 * where anything might happen inside guest memory.
1280 void *bounce_buffer = NULL;
1282 BlockDriver *drv = bs->drv;
1283 int64_t cluster_offset;
1284 int64_t cluster_bytes;
1285 size_t skip_bytes;
1286 int ret;
1287 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1288 BDRV_REQUEST_MAX_BYTES);
1289 unsigned int progress = 0;
1290 bool skip_write;
1292 if (!drv) {
1293 return -ENOMEDIUM;
1297 * Do not write anything when the BDS is inactive. That is not
1298 * allowed, and it would not help.
1300 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1302 /* FIXME We cannot require callers to have write permissions when all they
1303 * are doing is a read request. If we did things right, write permissions
1304 * would be obtained anyway, but internally by the copy-on-read code. As
1305 * long as it is implemented here rather than in a separate filter driver,
1306 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1307 * it could request permissions. Therefore we have to bypass the permission
1308 * system for the moment. */
1309 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1311 /* Cover entire cluster so no additional backing file I/O is required when
1312 * allocating cluster in the image file. Note that this value may exceed
1313 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1314 * is one reason we loop rather than doing it all at once.
1316 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1317 skip_bytes = offset - cluster_offset;
1319 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1320 cluster_offset, cluster_bytes);
1322 while (cluster_bytes) {
1323 int64_t pnum;
1325 if (skip_write) {
1326 ret = 1; /* "already allocated", so nothing will be copied */
1327 pnum = MIN(cluster_bytes, max_transfer);
1328 } else {
1329 ret = bdrv_is_allocated(bs, cluster_offset,
1330 MIN(cluster_bytes, max_transfer), &pnum);
1331 if (ret < 0) {
1333 * Safe to treat errors in querying allocation as if
1334 * unallocated; we'll probably fail again soon on the
1335 * read, but at least that will set a decent errno.
1337 pnum = MIN(cluster_bytes, max_transfer);
1340 /* Stop at EOF if the image ends in the middle of the cluster */
1341 if (ret == 0 && pnum == 0) {
1342 assert(progress >= bytes);
1343 break;
1346 assert(skip_bytes < pnum);
1349 if (ret <= 0) {
1350 QEMUIOVector local_qiov;
1352 /* Must copy-on-read; use the bounce buffer */
1353 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1354 if (!bounce_buffer) {
1355 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1356 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1357 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1359 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1360 if (!bounce_buffer) {
1361 ret = -ENOMEM;
1362 goto err;
1365 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1367 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1368 &local_qiov, 0, 0);
1369 if (ret < 0) {
1370 goto err;
1373 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1374 if (drv->bdrv_co_pwrite_zeroes &&
1375 buffer_is_zero(bounce_buffer, pnum)) {
1376 /* FIXME: Should we (perhaps conditionally) be setting
1377 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1378 * that still correctly reads as zero? */
1379 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1380 BDRV_REQ_WRITE_UNCHANGED);
1381 } else {
1382 /* This does not change the data on the disk, it is not
1383 * necessary to flush even in cache=writethrough mode.
1385 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1386 &local_qiov, 0,
1387 BDRV_REQ_WRITE_UNCHANGED);
1390 if (ret < 0) {
1391 /* It might be okay to ignore write errors for guest
1392 * requests. If this is a deliberate copy-on-read
1393 * then we don't want to ignore the error. Simply
1394 * report it in all cases.
1396 goto err;
1399 if (!(flags & BDRV_REQ_PREFETCH)) {
1400 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1401 bounce_buffer + skip_bytes,
1402 pnum - skip_bytes);
1404 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1405 /* Read directly into the destination */
1406 ret = bdrv_driver_preadv(bs, offset + progress,
1407 MIN(pnum - skip_bytes, bytes - progress),
1408 qiov, qiov_offset + progress, 0);
1409 if (ret < 0) {
1410 goto err;
1414 cluster_offset += pnum;
1415 cluster_bytes -= pnum;
1416 progress += pnum - skip_bytes;
1417 skip_bytes = 0;
1419 ret = 0;
1421 err:
1422 qemu_vfree(bounce_buffer);
1423 return ret;
1427 * Forwards an already correctly aligned request to the BlockDriver. This
1428 * handles copy on read, zeroing after EOF, and fragmentation of large
1429 * reads; any other features must be implemented by the caller.
1431 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1432 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1433 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1435 BlockDriverState *bs = child->bs;
1436 int64_t total_bytes, max_bytes;
1437 int ret = 0;
1438 uint64_t bytes_remaining = bytes;
1439 int max_transfer;
1441 assert(is_power_of_2(align));
1442 assert((offset & (align - 1)) == 0);
1443 assert((bytes & (align - 1)) == 0);
1444 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1445 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1446 align);
1448 /* TODO: We would need a per-BDS .supported_read_flags and
1449 * potential fallback support, if we ever implement any read flags
1450 * to pass through to drivers. For now, there aren't any
1451 * passthrough flags. */
1452 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1454 /* Handle Copy on Read and associated serialisation */
1455 if (flags & BDRV_REQ_COPY_ON_READ) {
1456 /* If we touch the same cluster it counts as an overlap. This
1457 * guarantees that allocating writes will be serialized and not race
1458 * with each other for the same cluster. For example, in copy-on-read
1459 * it ensures that the CoR read and write operations are atomic and
1460 * guest writes cannot interleave between them. */
1461 bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1462 } else {
1463 bdrv_wait_serialising_requests(req);
1466 if (flags & BDRV_REQ_COPY_ON_READ) {
1467 int64_t pnum;
1469 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1470 if (ret < 0) {
1471 goto out;
1474 if (!ret || pnum != bytes) {
1475 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1476 qiov, qiov_offset, flags);
1477 goto out;
1478 } else if (flags & BDRV_REQ_PREFETCH) {
1479 goto out;
1483 /* Forward the request to the BlockDriver, possibly fragmenting it */
1484 total_bytes = bdrv_getlength(bs);
1485 if (total_bytes < 0) {
1486 ret = total_bytes;
1487 goto out;
1490 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1491 if (bytes <= max_bytes && bytes <= max_transfer) {
1492 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1493 goto out;
1496 while (bytes_remaining) {
1497 int num;
1499 if (max_bytes) {
1500 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1501 assert(num);
1503 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1504 num, qiov, bytes - bytes_remaining, 0);
1505 max_bytes -= num;
1506 } else {
1507 num = bytes_remaining;
1508 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1509 bytes_remaining);
1511 if (ret < 0) {
1512 goto out;
1514 bytes_remaining -= num;
1517 out:
1518 return ret < 0 ? ret : 0;
1522 * Request padding
1524 * |<---- align ----->| |<----- align ---->|
1525 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1526 * | | | | | |
1527 * -*----------$-------*-------- ... --------*-----$------------*---
1528 * | | | | | |
1529 * | offset | | end |
1530 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1531 * [buf ... ) [tail_buf )
1533 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1534 * is placed at the beginning of @buf and @tail at the @end.
1536 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1537 * around tail, if tail exists.
1539 * @merge_reads is true for small requests,
1540 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1541 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1543 typedef struct BdrvRequestPadding {
1544 uint8_t *buf;
1545 size_t buf_len;
1546 uint8_t *tail_buf;
1547 size_t head;
1548 size_t tail;
1549 bool merge_reads;
1550 QEMUIOVector local_qiov;
1551 } BdrvRequestPadding;
1553 static bool bdrv_init_padding(BlockDriverState *bs,
1554 int64_t offset, int64_t bytes,
1555 BdrvRequestPadding *pad)
1557 uint64_t align = bs->bl.request_alignment;
1558 size_t sum;
1560 memset(pad, 0, sizeof(*pad));
1562 pad->head = offset & (align - 1);
1563 pad->tail = ((offset + bytes) & (align - 1));
1564 if (pad->tail) {
1565 pad->tail = align - pad->tail;
1568 if (!pad->head && !pad->tail) {
1569 return false;
1572 assert(bytes); /* Nothing good in aligning zero-length requests */
1574 sum = pad->head + bytes + pad->tail;
1575 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1576 pad->buf = qemu_blockalign(bs, pad->buf_len);
1577 pad->merge_reads = sum == pad->buf_len;
1578 if (pad->tail) {
1579 pad->tail_buf = pad->buf + pad->buf_len - align;
1582 return true;
1585 static int bdrv_padding_rmw_read(BdrvChild *child,
1586 BdrvTrackedRequest *req,
1587 BdrvRequestPadding *pad,
1588 bool zero_middle)
1590 QEMUIOVector local_qiov;
1591 BlockDriverState *bs = child->bs;
1592 uint64_t align = bs->bl.request_alignment;
1593 int ret;
1595 assert(req->serialising && pad->buf);
1597 if (pad->head || pad->merge_reads) {
1598 uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1600 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1602 if (pad->head) {
1603 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1605 if (pad->merge_reads && pad->tail) {
1606 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1608 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1609 align, &local_qiov, 0, 0);
1610 if (ret < 0) {
1611 return ret;
1613 if (pad->head) {
1614 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1616 if (pad->merge_reads && pad->tail) {
1617 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1620 if (pad->merge_reads) {
1621 goto zero_mem;
1625 if (pad->tail) {
1626 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1628 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1629 ret = bdrv_aligned_preadv(
1630 child, req,
1631 req->overlap_offset + req->overlap_bytes - align,
1632 align, align, &local_qiov, 0, 0);
1633 if (ret < 0) {
1634 return ret;
1636 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1639 zero_mem:
1640 if (zero_middle) {
1641 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1644 return 0;
1647 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1649 if (pad->buf) {
1650 qemu_vfree(pad->buf);
1651 qemu_iovec_destroy(&pad->local_qiov);
1656 * bdrv_pad_request
1658 * Exchange request parameters with padded request if needed. Don't include RMW
1659 * read of padding, bdrv_padding_rmw_read() should be called separately if
1660 * needed.
1662 * All parameters except @bs are in-out: they represent original request at
1663 * function call and padded (if padding needed) at function finish.
1665 * Function always succeeds.
1667 static bool bdrv_pad_request(BlockDriverState *bs,
1668 QEMUIOVector **qiov, size_t *qiov_offset,
1669 int64_t *offset, unsigned int *bytes,
1670 BdrvRequestPadding *pad)
1672 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1673 return false;
1676 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1677 *qiov, *qiov_offset, *bytes,
1678 pad->buf + pad->buf_len - pad->tail, pad->tail);
1679 *bytes += pad->head + pad->tail;
1680 *offset -= pad->head;
1681 *qiov = &pad->local_qiov;
1682 *qiov_offset = 0;
1684 return true;
1687 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1688 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1689 BdrvRequestFlags flags)
1691 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1694 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1695 int64_t offset, unsigned int bytes,
1696 QEMUIOVector *qiov, size_t qiov_offset,
1697 BdrvRequestFlags flags)
1699 BlockDriverState *bs = child->bs;
1700 BdrvTrackedRequest req;
1701 BdrvRequestPadding pad;
1702 int ret;
1704 trace_bdrv_co_preadv(bs, offset, bytes, flags);
1706 ret = bdrv_check_byte_request(bs, offset, bytes);
1707 if (ret < 0) {
1708 return ret;
1711 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1713 * Aligning zero request is nonsense. Even if driver has special meaning
1714 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1715 * it to driver due to request_alignment.
1717 * Still, no reason to return an error if someone do unaligned
1718 * zero-length read occasionally.
1720 return 0;
1723 bdrv_inc_in_flight(bs);
1725 /* Don't do copy-on-read if we read data before write operation */
1726 if (atomic_read(&bs->copy_on_read)) {
1727 flags |= BDRV_REQ_COPY_ON_READ;
1730 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1732 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1733 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1734 bs->bl.request_alignment,
1735 qiov, qiov_offset, flags);
1736 tracked_request_end(&req);
1737 bdrv_dec_in_flight(bs);
1739 bdrv_padding_destroy(&pad);
1741 return ret;
1744 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1745 int64_t offset, int bytes, BdrvRequestFlags flags)
1747 BlockDriver *drv = bs->drv;
1748 QEMUIOVector qiov;
1749 void *buf = NULL;
1750 int ret = 0;
1751 bool need_flush = false;
1752 int head = 0;
1753 int tail = 0;
1755 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1756 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1757 bs->bl.request_alignment);
1758 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1760 if (!drv) {
1761 return -ENOMEDIUM;
1764 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1765 return -ENOTSUP;
1768 assert(alignment % bs->bl.request_alignment == 0);
1769 head = offset % alignment;
1770 tail = (offset + bytes) % alignment;
1771 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1772 assert(max_write_zeroes >= bs->bl.request_alignment);
1774 while (bytes > 0 && !ret) {
1775 int num = bytes;
1777 /* Align request. Block drivers can expect the "bulk" of the request
1778 * to be aligned, and that unaligned requests do not cross cluster
1779 * boundaries.
1781 if (head) {
1782 /* Make a small request up to the first aligned sector. For
1783 * convenience, limit this request to max_transfer even if
1784 * we don't need to fall back to writes. */
1785 num = MIN(MIN(bytes, max_transfer), alignment - head);
1786 head = (head + num) % alignment;
1787 assert(num < max_write_zeroes);
1788 } else if (tail && num > alignment) {
1789 /* Shorten the request to the last aligned sector. */
1790 num -= tail;
1793 /* limit request size */
1794 if (num > max_write_zeroes) {
1795 num = max_write_zeroes;
1798 ret = -ENOTSUP;
1799 /* First try the efficient write zeroes operation */
1800 if (drv->bdrv_co_pwrite_zeroes) {
1801 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1802 flags & bs->supported_zero_flags);
1803 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1804 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1805 need_flush = true;
1807 } else {
1808 assert(!bs->supported_zero_flags);
1811 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1812 /* Fall back to bounce buffer if write zeroes is unsupported */
1813 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1815 if ((flags & BDRV_REQ_FUA) &&
1816 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1817 /* No need for bdrv_driver_pwrite() to do a fallback
1818 * flush on each chunk; use just one at the end */
1819 write_flags &= ~BDRV_REQ_FUA;
1820 need_flush = true;
1822 num = MIN(num, max_transfer);
1823 if (buf == NULL) {
1824 buf = qemu_try_blockalign0(bs, num);
1825 if (buf == NULL) {
1826 ret = -ENOMEM;
1827 goto fail;
1830 qemu_iovec_init_buf(&qiov, buf, num);
1832 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1834 /* Keep bounce buffer around if it is big enough for all
1835 * all future requests.
1837 if (num < max_transfer) {
1838 qemu_vfree(buf);
1839 buf = NULL;
1843 offset += num;
1844 bytes -= num;
1847 fail:
1848 if (ret == 0 && need_flush) {
1849 ret = bdrv_co_flush(bs);
1851 qemu_vfree(buf);
1852 return ret;
1855 static inline int coroutine_fn
1856 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1857 BdrvTrackedRequest *req, int flags)
1859 BlockDriverState *bs = child->bs;
1860 bool waited;
1861 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1863 if (bs->read_only) {
1864 return -EPERM;
1867 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1868 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1869 assert(!(flags & ~BDRV_REQ_MASK));
1871 if (flags & BDRV_REQ_SERIALISING) {
1872 waited = bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1874 * For a misaligned request we should have already waited earlier,
1875 * because we come after bdrv_padding_rmw_read which must be called
1876 * with the request already marked as serialising.
1878 assert(!waited ||
1879 (req->offset == req->overlap_offset &&
1880 req->bytes == req->overlap_bytes));
1881 } else {
1882 bdrv_wait_serialising_requests(req);
1885 assert(req->overlap_offset <= offset);
1886 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1887 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1889 switch (req->type) {
1890 case BDRV_TRACKED_WRITE:
1891 case BDRV_TRACKED_DISCARD:
1892 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1893 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1894 } else {
1895 assert(child->perm & BLK_PERM_WRITE);
1897 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1898 req);
1899 case BDRV_TRACKED_TRUNCATE:
1900 assert(child->perm & BLK_PERM_RESIZE);
1901 return 0;
1902 default:
1903 abort();
1907 static inline void coroutine_fn
1908 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1909 BdrvTrackedRequest *req, int ret)
1911 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1912 BlockDriverState *bs = child->bs;
1914 atomic_inc(&bs->write_gen);
1917 * Discard cannot extend the image, but in error handling cases, such as
1918 * when reverting a qcow2 cluster allocation, the discarded range can pass
1919 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1920 * here. Instead, just skip it, since semantically a discard request
1921 * beyond EOF cannot expand the image anyway.
1923 if (ret == 0 &&
1924 (req->type == BDRV_TRACKED_TRUNCATE ||
1925 end_sector > bs->total_sectors) &&
1926 req->type != BDRV_TRACKED_DISCARD) {
1927 bs->total_sectors = end_sector;
1928 bdrv_parent_cb_resize(bs);
1929 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1931 if (req->bytes) {
1932 switch (req->type) {
1933 case BDRV_TRACKED_WRITE:
1934 stat64_max(&bs->wr_highest_offset, offset + bytes);
1935 /* fall through, to set dirty bits */
1936 case BDRV_TRACKED_DISCARD:
1937 bdrv_set_dirty(bs, offset, bytes);
1938 break;
1939 default:
1940 break;
1946 * Forwards an already correctly aligned write request to the BlockDriver,
1947 * after possibly fragmenting it.
1949 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1950 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1951 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1953 BlockDriverState *bs = child->bs;
1954 BlockDriver *drv = bs->drv;
1955 int ret;
1957 uint64_t bytes_remaining = bytes;
1958 int max_transfer;
1960 if (!drv) {
1961 return -ENOMEDIUM;
1964 if (bdrv_has_readonly_bitmaps(bs)) {
1965 return -EPERM;
1968 assert(is_power_of_2(align));
1969 assert((offset & (align - 1)) == 0);
1970 assert((bytes & (align - 1)) == 0);
1971 assert(!qiov || qiov_offset + bytes <= qiov->size);
1972 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1973 align);
1975 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1977 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1978 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1979 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1980 flags |= BDRV_REQ_ZERO_WRITE;
1981 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1982 flags |= BDRV_REQ_MAY_UNMAP;
1986 if (ret < 0) {
1987 /* Do nothing, write notifier decided to fail this request */
1988 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1989 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1990 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1991 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1992 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1993 qiov, qiov_offset);
1994 } else if (bytes <= max_transfer) {
1995 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1996 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1997 } else {
1998 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1999 while (bytes_remaining) {
2000 int num = MIN(bytes_remaining, max_transfer);
2001 int local_flags = flags;
2003 assert(num);
2004 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2005 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2006 /* If FUA is going to be emulated by flush, we only
2007 * need to flush on the last iteration */
2008 local_flags &= ~BDRV_REQ_FUA;
2011 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2012 num, qiov, bytes - bytes_remaining,
2013 local_flags);
2014 if (ret < 0) {
2015 break;
2017 bytes_remaining -= num;
2020 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2022 if (ret >= 0) {
2023 ret = 0;
2025 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2027 return ret;
2030 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2031 int64_t offset,
2032 unsigned int bytes,
2033 BdrvRequestFlags flags,
2034 BdrvTrackedRequest *req)
2036 BlockDriverState *bs = child->bs;
2037 QEMUIOVector local_qiov;
2038 uint64_t align = bs->bl.request_alignment;
2039 int ret = 0;
2040 bool padding;
2041 BdrvRequestPadding pad;
2043 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2044 if (padding) {
2045 bdrv_mark_request_serialising(req, align);
2047 bdrv_padding_rmw_read(child, req, &pad, true);
2049 if (pad.head || pad.merge_reads) {
2050 int64_t aligned_offset = offset & ~(align - 1);
2051 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2053 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2054 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2055 align, &local_qiov, 0,
2056 flags & ~BDRV_REQ_ZERO_WRITE);
2057 if (ret < 0 || pad.merge_reads) {
2058 /* Error or all work is done */
2059 goto out;
2061 offset += write_bytes - pad.head;
2062 bytes -= write_bytes - pad.head;
2066 assert(!bytes || (offset & (align - 1)) == 0);
2067 if (bytes >= align) {
2068 /* Write the aligned part in the middle. */
2069 uint64_t aligned_bytes = bytes & ~(align - 1);
2070 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2071 NULL, 0, flags);
2072 if (ret < 0) {
2073 goto out;
2075 bytes -= aligned_bytes;
2076 offset += aligned_bytes;
2079 assert(!bytes || (offset & (align - 1)) == 0);
2080 if (bytes) {
2081 assert(align == pad.tail + bytes);
2083 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2084 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2085 &local_qiov, 0,
2086 flags & ~BDRV_REQ_ZERO_WRITE);
2089 out:
2090 bdrv_padding_destroy(&pad);
2092 return ret;
2096 * Handle a write request in coroutine context
2098 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2099 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2100 BdrvRequestFlags flags)
2102 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2105 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2106 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2107 BdrvRequestFlags flags)
2109 BlockDriverState *bs = child->bs;
2110 BdrvTrackedRequest req;
2111 uint64_t align = bs->bl.request_alignment;
2112 BdrvRequestPadding pad;
2113 int ret;
2115 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2117 if (!bs->drv) {
2118 return -ENOMEDIUM;
2121 ret = bdrv_check_byte_request(bs, offset, bytes);
2122 if (ret < 0) {
2123 return ret;
2126 /* If the request is misaligned then we can't make it efficient */
2127 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2128 !QEMU_IS_ALIGNED(offset | bytes, align))
2130 return -ENOTSUP;
2133 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2135 * Aligning zero request is nonsense. Even if driver has special meaning
2136 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2137 * it to driver due to request_alignment.
2139 * Still, no reason to return an error if someone do unaligned
2140 * zero-length write occasionally.
2142 return 0;
2145 bdrv_inc_in_flight(bs);
2147 * Align write if necessary by performing a read-modify-write cycle.
2148 * Pad qiov with the read parts and be sure to have a tracked request not
2149 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2151 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2153 if (flags & BDRV_REQ_ZERO_WRITE) {
2154 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2155 goto out;
2158 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2159 bdrv_mark_request_serialising(&req, align);
2160 bdrv_padding_rmw_read(child, &req, &pad, false);
2163 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2164 qiov, qiov_offset, flags);
2166 bdrv_padding_destroy(&pad);
2168 out:
2169 tracked_request_end(&req);
2170 bdrv_dec_in_flight(bs);
2172 return ret;
2175 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2176 int bytes, BdrvRequestFlags flags)
2178 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2180 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2181 flags &= ~BDRV_REQ_MAY_UNMAP;
2184 return bdrv_co_pwritev(child, offset, bytes, NULL,
2185 BDRV_REQ_ZERO_WRITE | flags);
2189 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2191 int bdrv_flush_all(void)
2193 BdrvNextIterator it;
2194 BlockDriverState *bs = NULL;
2195 int result = 0;
2198 * bdrv queue is managed by record/replay,
2199 * creating new flush request for stopping
2200 * the VM may break the determinism
2202 if (replay_events_enabled()) {
2203 return result;
2206 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2207 AioContext *aio_context = bdrv_get_aio_context(bs);
2208 int ret;
2210 aio_context_acquire(aio_context);
2211 ret = bdrv_flush(bs);
2212 if (ret < 0 && !result) {
2213 result = ret;
2215 aio_context_release(aio_context);
2218 return result;
2222 typedef struct BdrvCoBlockStatusData {
2223 BlockDriverState *bs;
2224 BlockDriverState *base;
2225 bool want_zero;
2226 int64_t offset;
2227 int64_t bytes;
2228 int64_t *pnum;
2229 int64_t *map;
2230 BlockDriverState **file;
2231 int ret;
2232 bool done;
2233 } BdrvCoBlockStatusData;
2235 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2236 bool want_zero,
2237 int64_t offset,
2238 int64_t bytes,
2239 int64_t *pnum,
2240 int64_t *map,
2241 BlockDriverState **file)
2243 assert(bs->file && bs->file->bs);
2244 *pnum = bytes;
2245 *map = offset;
2246 *file = bs->file->bs;
2247 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2250 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2251 bool want_zero,
2252 int64_t offset,
2253 int64_t bytes,
2254 int64_t *pnum,
2255 int64_t *map,
2256 BlockDriverState **file)
2258 assert(bs->backing && bs->backing->bs);
2259 *pnum = bytes;
2260 *map = offset;
2261 *file = bs->backing->bs;
2262 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2266 * Returns the allocation status of the specified sectors.
2267 * Drivers not implementing the functionality are assumed to not support
2268 * backing files, hence all their sectors are reported as allocated.
2270 * If 'want_zero' is true, the caller is querying for mapping
2271 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2272 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2273 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2275 * If 'offset' is beyond the end of the disk image the return value is
2276 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2278 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2279 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2280 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2282 * 'pnum' is set to the number of bytes (including and immediately
2283 * following the specified offset) that are easily known to be in the
2284 * same allocated/unallocated state. Note that a second call starting
2285 * at the original offset plus returned pnum may have the same status.
2286 * The returned value is non-zero on success except at end-of-file.
2288 * Returns negative errno on failure. Otherwise, if the
2289 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2290 * set to the host mapping and BDS corresponding to the guest offset.
2292 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2293 bool want_zero,
2294 int64_t offset, int64_t bytes,
2295 int64_t *pnum, int64_t *map,
2296 BlockDriverState **file)
2298 int64_t total_size;
2299 int64_t n; /* bytes */
2300 int ret;
2301 int64_t local_map = 0;
2302 BlockDriverState *local_file = NULL;
2303 int64_t aligned_offset, aligned_bytes;
2304 uint32_t align;
2306 assert(pnum);
2307 *pnum = 0;
2308 total_size = bdrv_getlength(bs);
2309 if (total_size < 0) {
2310 ret = total_size;
2311 goto early_out;
2314 if (offset >= total_size) {
2315 ret = BDRV_BLOCK_EOF;
2316 goto early_out;
2318 if (!bytes) {
2319 ret = 0;
2320 goto early_out;
2323 n = total_size - offset;
2324 if (n < bytes) {
2325 bytes = n;
2328 /* Must be non-NULL or bdrv_getlength() would have failed */
2329 assert(bs->drv);
2330 if (!bs->drv->bdrv_co_block_status) {
2331 *pnum = bytes;
2332 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2333 if (offset + bytes == total_size) {
2334 ret |= BDRV_BLOCK_EOF;
2336 if (bs->drv->protocol_name) {
2337 ret |= BDRV_BLOCK_OFFSET_VALID;
2338 local_map = offset;
2339 local_file = bs;
2341 goto early_out;
2344 bdrv_inc_in_flight(bs);
2346 /* Round out to request_alignment boundaries */
2347 align = bs->bl.request_alignment;
2348 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2349 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2351 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2352 aligned_bytes, pnum, &local_map,
2353 &local_file);
2354 if (ret < 0) {
2355 *pnum = 0;
2356 goto out;
2360 * The driver's result must be a non-zero multiple of request_alignment.
2361 * Clamp pnum and adjust map to original request.
2363 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2364 align > offset - aligned_offset);
2365 if (ret & BDRV_BLOCK_RECURSE) {
2366 assert(ret & BDRV_BLOCK_DATA);
2367 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2368 assert(!(ret & BDRV_BLOCK_ZERO));
2371 *pnum -= offset - aligned_offset;
2372 if (*pnum > bytes) {
2373 *pnum = bytes;
2375 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2376 local_map += offset - aligned_offset;
2379 if (ret & BDRV_BLOCK_RAW) {
2380 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2381 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2382 *pnum, pnum, &local_map, &local_file);
2383 goto out;
2386 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2387 ret |= BDRV_BLOCK_ALLOCATED;
2388 } else if (want_zero) {
2389 if (bdrv_unallocated_blocks_are_zero(bs)) {
2390 ret |= BDRV_BLOCK_ZERO;
2391 } else if (bs->backing) {
2392 BlockDriverState *bs2 = bs->backing->bs;
2393 int64_t size2 = bdrv_getlength(bs2);
2395 if (size2 >= 0 && offset >= size2) {
2396 ret |= BDRV_BLOCK_ZERO;
2401 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2402 local_file && local_file != bs &&
2403 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2404 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2405 int64_t file_pnum;
2406 int ret2;
2408 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2409 *pnum, &file_pnum, NULL, NULL);
2410 if (ret2 >= 0) {
2411 /* Ignore errors. This is just providing extra information, it
2412 * is useful but not necessary.
2414 if (ret2 & BDRV_BLOCK_EOF &&
2415 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2417 * It is valid for the format block driver to read
2418 * beyond the end of the underlying file's current
2419 * size; such areas read as zero.
2421 ret |= BDRV_BLOCK_ZERO;
2422 } else {
2423 /* Limit request to the range reported by the protocol driver */
2424 *pnum = file_pnum;
2425 ret |= (ret2 & BDRV_BLOCK_ZERO);
2430 out:
2431 bdrv_dec_in_flight(bs);
2432 if (ret >= 0 && offset + *pnum == total_size) {
2433 ret |= BDRV_BLOCK_EOF;
2435 early_out:
2436 if (file) {
2437 *file = local_file;
2439 if (map) {
2440 *map = local_map;
2442 return ret;
2445 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2446 BlockDriverState *base,
2447 bool want_zero,
2448 int64_t offset,
2449 int64_t bytes,
2450 int64_t *pnum,
2451 int64_t *map,
2452 BlockDriverState **file)
2454 BlockDriverState *p;
2455 int ret = 0;
2456 bool first = true;
2458 assert(bs != base);
2459 for (p = bs; p != base; p = backing_bs(p)) {
2460 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2461 file);
2462 if (ret < 0) {
2463 break;
2465 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2467 * Reading beyond the end of the file continues to read
2468 * zeroes, but we can only widen the result to the
2469 * unallocated length we learned from an earlier
2470 * iteration.
2472 *pnum = bytes;
2474 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2475 break;
2477 /* [offset, pnum] unallocated on this layer, which could be only
2478 * the first part of [offset, bytes]. */
2479 bytes = MIN(bytes, *pnum);
2480 first = false;
2482 return ret;
2485 /* Coroutine wrapper for bdrv_block_status_above() */
2486 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2488 BdrvCoBlockStatusData *data = opaque;
2490 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2491 data->want_zero,
2492 data->offset, data->bytes,
2493 data->pnum, data->map, data->file);
2494 data->done = true;
2495 aio_wait_kick();
2499 * Synchronous wrapper around bdrv_co_block_status_above().
2501 * See bdrv_co_block_status_above() for details.
2503 static int bdrv_common_block_status_above(BlockDriverState *bs,
2504 BlockDriverState *base,
2505 bool want_zero, int64_t offset,
2506 int64_t bytes, int64_t *pnum,
2507 int64_t *map,
2508 BlockDriverState **file)
2510 Coroutine *co;
2511 BdrvCoBlockStatusData data = {
2512 .bs = bs,
2513 .base = base,
2514 .want_zero = want_zero,
2515 .offset = offset,
2516 .bytes = bytes,
2517 .pnum = pnum,
2518 .map = map,
2519 .file = file,
2520 .done = false,
2523 if (qemu_in_coroutine()) {
2524 /* Fast-path if already in coroutine context */
2525 bdrv_block_status_above_co_entry(&data);
2526 } else {
2527 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2528 bdrv_coroutine_enter(bs, co);
2529 BDRV_POLL_WHILE(bs, !data.done);
2531 return data.ret;
2534 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2535 int64_t offset, int64_t bytes, int64_t *pnum,
2536 int64_t *map, BlockDriverState **file)
2538 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2539 pnum, map, file);
2542 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2543 int64_t *pnum, int64_t *map, BlockDriverState **file)
2545 return bdrv_block_status_above(bs, backing_bs(bs),
2546 offset, bytes, pnum, map, file);
2549 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2550 int64_t bytes, int64_t *pnum)
2552 int ret;
2553 int64_t dummy;
2555 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2556 bytes, pnum ? pnum : &dummy, NULL,
2557 NULL);
2558 if (ret < 0) {
2559 return ret;
2561 return !!(ret & BDRV_BLOCK_ALLOCATED);
2565 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2567 * Return 1 if (a prefix of) the given range is allocated in any image
2568 * between BASE and TOP (BASE is only included if include_base is set).
2569 * BASE can be NULL to check if the given offset is allocated in any
2570 * image of the chain. Return 0 otherwise, or negative errno on
2571 * failure.
2573 * 'pnum' is set to the number of bytes (including and immediately
2574 * following the specified offset) that are known to be in the same
2575 * allocated/unallocated state. Note that a subsequent call starting
2576 * at 'offset + *pnum' may return the same allocation status (in other
2577 * words, the result is not necessarily the maximum possible range);
2578 * but 'pnum' will only be 0 when end of file is reached.
2581 int bdrv_is_allocated_above(BlockDriverState *top,
2582 BlockDriverState *base,
2583 bool include_base, int64_t offset,
2584 int64_t bytes, int64_t *pnum)
2586 BlockDriverState *intermediate;
2587 int ret;
2588 int64_t n = bytes;
2590 assert(base || !include_base);
2592 intermediate = top;
2593 while (include_base || intermediate != base) {
2594 int64_t pnum_inter;
2595 int64_t size_inter;
2597 assert(intermediate);
2598 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2599 if (ret < 0) {
2600 return ret;
2602 if (ret) {
2603 *pnum = pnum_inter;
2604 return 1;
2607 size_inter = bdrv_getlength(intermediate);
2608 if (size_inter < 0) {
2609 return size_inter;
2611 if (n > pnum_inter &&
2612 (intermediate == top || offset + pnum_inter < size_inter)) {
2613 n = pnum_inter;
2616 if (intermediate == base) {
2617 break;
2620 intermediate = backing_bs(intermediate);
2623 *pnum = n;
2624 return 0;
2627 typedef struct BdrvVmstateCo {
2628 BlockDriverState *bs;
2629 QEMUIOVector *qiov;
2630 int64_t pos;
2631 bool is_read;
2632 int ret;
2633 } BdrvVmstateCo;
2635 static int coroutine_fn
2636 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2637 bool is_read)
2639 BlockDriver *drv = bs->drv;
2640 int ret = -ENOTSUP;
2642 bdrv_inc_in_flight(bs);
2644 if (!drv) {
2645 ret = -ENOMEDIUM;
2646 } else if (drv->bdrv_load_vmstate) {
2647 if (is_read) {
2648 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2649 } else {
2650 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2652 } else if (bs->file) {
2653 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2656 bdrv_dec_in_flight(bs);
2657 return ret;
2660 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2662 BdrvVmstateCo *co = opaque;
2663 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2664 aio_wait_kick();
2667 static inline int
2668 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2669 bool is_read)
2671 if (qemu_in_coroutine()) {
2672 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2673 } else {
2674 BdrvVmstateCo data = {
2675 .bs = bs,
2676 .qiov = qiov,
2677 .pos = pos,
2678 .is_read = is_read,
2679 .ret = -EINPROGRESS,
2681 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2683 bdrv_coroutine_enter(bs, co);
2684 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2685 return data.ret;
2689 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2690 int64_t pos, int size)
2692 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2693 int ret;
2695 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2696 if (ret < 0) {
2697 return ret;
2700 return size;
2703 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2705 return bdrv_rw_vmstate(bs, qiov, pos, false);
2708 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2709 int64_t pos, int size)
2711 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2712 int ret;
2714 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2715 if (ret < 0) {
2716 return ret;
2719 return size;
2722 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2724 return bdrv_rw_vmstate(bs, qiov, pos, true);
2727 /**************************************************************/
2728 /* async I/Os */
2730 void bdrv_aio_cancel(BlockAIOCB *acb)
2732 qemu_aio_ref(acb);
2733 bdrv_aio_cancel_async(acb);
2734 while (acb->refcnt > 1) {
2735 if (acb->aiocb_info->get_aio_context) {
2736 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2737 } else if (acb->bs) {
2738 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2739 * assert that we're not using an I/O thread. Thread-safe
2740 * code should use bdrv_aio_cancel_async exclusively.
2742 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2743 aio_poll(bdrv_get_aio_context(acb->bs), true);
2744 } else {
2745 abort();
2748 qemu_aio_unref(acb);
2751 /* Async version of aio cancel. The caller is not blocked if the acb implements
2752 * cancel_async, otherwise we do nothing and let the request normally complete.
2753 * In either case the completion callback must be called. */
2754 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2756 if (acb->aiocb_info->cancel_async) {
2757 acb->aiocb_info->cancel_async(acb);
2761 /**************************************************************/
2762 /* Coroutine block device emulation */
2764 typedef struct FlushCo {
2765 BlockDriverState *bs;
2766 int ret;
2767 } FlushCo;
2770 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2772 FlushCo *rwco = opaque;
2774 rwco->ret = bdrv_co_flush(rwco->bs);
2775 aio_wait_kick();
2778 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2780 int current_gen;
2781 int ret = 0;
2783 bdrv_inc_in_flight(bs);
2785 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2786 bdrv_is_sg(bs)) {
2787 goto early_exit;
2790 qemu_co_mutex_lock(&bs->reqs_lock);
2791 current_gen = atomic_read(&bs->write_gen);
2793 /* Wait until any previous flushes are completed */
2794 while (bs->active_flush_req) {
2795 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2798 /* Flushes reach this point in nondecreasing current_gen order. */
2799 bs->active_flush_req = true;
2800 qemu_co_mutex_unlock(&bs->reqs_lock);
2802 /* Write back all layers by calling one driver function */
2803 if (bs->drv->bdrv_co_flush) {
2804 ret = bs->drv->bdrv_co_flush(bs);
2805 goto out;
2808 /* Write back cached data to the OS even with cache=unsafe */
2809 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2810 if (bs->drv->bdrv_co_flush_to_os) {
2811 ret = bs->drv->bdrv_co_flush_to_os(bs);
2812 if (ret < 0) {
2813 goto out;
2817 /* But don't actually force it to the disk with cache=unsafe */
2818 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2819 goto flush_parent;
2822 /* Check if we really need to flush anything */
2823 if (bs->flushed_gen == current_gen) {
2824 goto flush_parent;
2827 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2828 if (!bs->drv) {
2829 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2830 * (even in case of apparent success) */
2831 ret = -ENOMEDIUM;
2832 goto out;
2834 if (bs->drv->bdrv_co_flush_to_disk) {
2835 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2836 } else if (bs->drv->bdrv_aio_flush) {
2837 BlockAIOCB *acb;
2838 CoroutineIOCompletion co = {
2839 .coroutine = qemu_coroutine_self(),
2842 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2843 if (acb == NULL) {
2844 ret = -EIO;
2845 } else {
2846 qemu_coroutine_yield();
2847 ret = co.ret;
2849 } else {
2851 * Some block drivers always operate in either writethrough or unsafe
2852 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2853 * know how the server works (because the behaviour is hardcoded or
2854 * depends on server-side configuration), so we can't ensure that
2855 * everything is safe on disk. Returning an error doesn't work because
2856 * that would break guests even if the server operates in writethrough
2857 * mode.
2859 * Let's hope the user knows what he's doing.
2861 ret = 0;
2864 if (ret < 0) {
2865 goto out;
2868 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2869 * in the case of cache=unsafe, so there are no useless flushes.
2871 flush_parent:
2872 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2873 out:
2874 /* Notify any pending flushes that we have completed */
2875 if (ret == 0) {
2876 bs->flushed_gen = current_gen;
2879 qemu_co_mutex_lock(&bs->reqs_lock);
2880 bs->active_flush_req = false;
2881 /* Return value is ignored - it's ok if wait queue is empty */
2882 qemu_co_queue_next(&bs->flush_queue);
2883 qemu_co_mutex_unlock(&bs->reqs_lock);
2885 early_exit:
2886 bdrv_dec_in_flight(bs);
2887 return ret;
2890 int bdrv_flush(BlockDriverState *bs)
2892 Coroutine *co;
2893 FlushCo flush_co = {
2894 .bs = bs,
2895 .ret = NOT_DONE,
2898 if (qemu_in_coroutine()) {
2899 /* Fast-path if already in coroutine context */
2900 bdrv_flush_co_entry(&flush_co);
2901 } else {
2902 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2903 bdrv_coroutine_enter(bs, co);
2904 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2907 return flush_co.ret;
2910 typedef struct DiscardCo {
2911 BdrvChild *child;
2912 int64_t offset;
2913 int64_t bytes;
2914 int ret;
2915 } DiscardCo;
2916 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2918 DiscardCo *rwco = opaque;
2920 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2921 aio_wait_kick();
2924 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2925 int64_t bytes)
2927 BdrvTrackedRequest req;
2928 int max_pdiscard, ret;
2929 int head, tail, align;
2930 BlockDriverState *bs = child->bs;
2932 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2933 return -ENOMEDIUM;
2936 if (bdrv_has_readonly_bitmaps(bs)) {
2937 return -EPERM;
2940 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2941 return -EIO;
2944 /* Do nothing if disabled. */
2945 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2946 return 0;
2949 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2950 return 0;
2953 /* Discard is advisory, but some devices track and coalesce
2954 * unaligned requests, so we must pass everything down rather than
2955 * round here. Still, most devices will just silently ignore
2956 * unaligned requests (by returning -ENOTSUP), so we must fragment
2957 * the request accordingly. */
2958 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2959 assert(align % bs->bl.request_alignment == 0);
2960 head = offset % align;
2961 tail = (offset + bytes) % align;
2963 bdrv_inc_in_flight(bs);
2964 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2966 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2967 if (ret < 0) {
2968 goto out;
2971 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2972 align);
2973 assert(max_pdiscard >= bs->bl.request_alignment);
2975 while (bytes > 0) {
2976 int64_t num = bytes;
2978 if (head) {
2979 /* Make small requests to get to alignment boundaries. */
2980 num = MIN(bytes, align - head);
2981 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2982 num %= bs->bl.request_alignment;
2984 head = (head + num) % align;
2985 assert(num < max_pdiscard);
2986 } else if (tail) {
2987 if (num > align) {
2988 /* Shorten the request to the last aligned cluster. */
2989 num -= tail;
2990 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2991 tail > bs->bl.request_alignment) {
2992 tail %= bs->bl.request_alignment;
2993 num -= tail;
2996 /* limit request size */
2997 if (num > max_pdiscard) {
2998 num = max_pdiscard;
3001 if (!bs->drv) {
3002 ret = -ENOMEDIUM;
3003 goto out;
3005 if (bs->drv->bdrv_co_pdiscard) {
3006 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3007 } else {
3008 BlockAIOCB *acb;
3009 CoroutineIOCompletion co = {
3010 .coroutine = qemu_coroutine_self(),
3013 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3014 bdrv_co_io_em_complete, &co);
3015 if (acb == NULL) {
3016 ret = -EIO;
3017 goto out;
3018 } else {
3019 qemu_coroutine_yield();
3020 ret = co.ret;
3023 if (ret && ret != -ENOTSUP) {
3024 goto out;
3027 offset += num;
3028 bytes -= num;
3030 ret = 0;
3031 out:
3032 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3033 tracked_request_end(&req);
3034 bdrv_dec_in_flight(bs);
3035 return ret;
3038 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
3040 Coroutine *co;
3041 DiscardCo rwco = {
3042 .child = child,
3043 .offset = offset,
3044 .bytes = bytes,
3045 .ret = NOT_DONE,
3048 if (qemu_in_coroutine()) {
3049 /* Fast-path if already in coroutine context */
3050 bdrv_pdiscard_co_entry(&rwco);
3051 } else {
3052 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
3053 bdrv_coroutine_enter(child->bs, co);
3054 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
3057 return rwco.ret;
3060 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3062 BlockDriver *drv = bs->drv;
3063 CoroutineIOCompletion co = {
3064 .coroutine = qemu_coroutine_self(),
3066 BlockAIOCB *acb;
3068 bdrv_inc_in_flight(bs);
3069 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3070 co.ret = -ENOTSUP;
3071 goto out;
3074 if (drv->bdrv_co_ioctl) {
3075 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3076 } else {
3077 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3078 if (!acb) {
3079 co.ret = -ENOTSUP;
3080 goto out;
3082 qemu_coroutine_yield();
3084 out:
3085 bdrv_dec_in_flight(bs);
3086 return co.ret;
3089 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3091 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3094 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3096 return memset(qemu_blockalign(bs, size), 0, size);
3099 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3101 size_t align = bdrv_opt_mem_align(bs);
3103 /* Ensure that NULL is never returned on success */
3104 assert(align > 0);
3105 if (size == 0) {
3106 size = align;
3109 return qemu_try_memalign(align, size);
3112 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3114 void *mem = qemu_try_blockalign(bs, size);
3116 if (mem) {
3117 memset(mem, 0, size);
3120 return mem;
3124 * Check if all memory in this vector is sector aligned.
3126 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3128 int i;
3129 size_t alignment = bdrv_min_mem_align(bs);
3131 for (i = 0; i < qiov->niov; i++) {
3132 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3133 return false;
3135 if (qiov->iov[i].iov_len % alignment) {
3136 return false;
3140 return true;
3143 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3144 NotifierWithReturn *notifier)
3146 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3149 void bdrv_io_plug(BlockDriverState *bs)
3151 BdrvChild *child;
3153 QLIST_FOREACH(child, &bs->children, next) {
3154 bdrv_io_plug(child->bs);
3157 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
3158 BlockDriver *drv = bs->drv;
3159 if (drv && drv->bdrv_io_plug) {
3160 drv->bdrv_io_plug(bs);
3165 void bdrv_io_unplug(BlockDriverState *bs)
3167 BdrvChild *child;
3169 assert(bs->io_plugged);
3170 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
3171 BlockDriver *drv = bs->drv;
3172 if (drv && drv->bdrv_io_unplug) {
3173 drv->bdrv_io_unplug(bs);
3177 QLIST_FOREACH(child, &bs->children, next) {
3178 bdrv_io_unplug(child->bs);
3182 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3184 BdrvChild *child;
3186 if (bs->drv && bs->drv->bdrv_register_buf) {
3187 bs->drv->bdrv_register_buf(bs, host, size);
3189 QLIST_FOREACH(child, &bs->children, next) {
3190 bdrv_register_buf(child->bs, host, size);
3194 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3196 BdrvChild *child;
3198 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3199 bs->drv->bdrv_unregister_buf(bs, host);
3201 QLIST_FOREACH(child, &bs->children, next) {
3202 bdrv_unregister_buf(child->bs, host);
3206 static int coroutine_fn bdrv_co_copy_range_internal(
3207 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3208 uint64_t dst_offset, uint64_t bytes,
3209 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3210 bool recurse_src)
3212 BdrvTrackedRequest req;
3213 int ret;
3215 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3216 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3217 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3219 if (!dst || !dst->bs) {
3220 return -ENOMEDIUM;
3222 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3223 if (ret) {
3224 return ret;
3226 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3227 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3230 if (!src || !src->bs) {
3231 return -ENOMEDIUM;
3233 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3234 if (ret) {
3235 return ret;
3238 if (!src->bs->drv->bdrv_co_copy_range_from
3239 || !dst->bs->drv->bdrv_co_copy_range_to
3240 || src->bs->encrypted || dst->bs->encrypted) {
3241 return -ENOTSUP;
3244 if (recurse_src) {
3245 bdrv_inc_in_flight(src->bs);
3246 tracked_request_begin(&req, src->bs, src_offset, bytes,
3247 BDRV_TRACKED_READ);
3249 /* BDRV_REQ_SERIALISING is only for write operation */
3250 assert(!(read_flags & BDRV_REQ_SERIALISING));
3251 bdrv_wait_serialising_requests(&req);
3253 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3254 src, src_offset,
3255 dst, dst_offset,
3256 bytes,
3257 read_flags, write_flags);
3259 tracked_request_end(&req);
3260 bdrv_dec_in_flight(src->bs);
3261 } else {
3262 bdrv_inc_in_flight(dst->bs);
3263 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3264 BDRV_TRACKED_WRITE);
3265 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3266 write_flags);
3267 if (!ret) {
3268 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3269 src, src_offset,
3270 dst, dst_offset,
3271 bytes,
3272 read_flags, write_flags);
3274 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3275 tracked_request_end(&req);
3276 bdrv_dec_in_flight(dst->bs);
3279 return ret;
3282 /* Copy range from @src to @dst.
3284 * See the comment of bdrv_co_copy_range for the parameter and return value
3285 * semantics. */
3286 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3287 BdrvChild *dst, uint64_t dst_offset,
3288 uint64_t bytes,
3289 BdrvRequestFlags read_flags,
3290 BdrvRequestFlags write_flags)
3292 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3293 read_flags, write_flags);
3294 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3295 bytes, read_flags, write_flags, true);
3298 /* Copy range from @src to @dst.
3300 * See the comment of bdrv_co_copy_range for the parameter and return value
3301 * semantics. */
3302 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3303 BdrvChild *dst, uint64_t dst_offset,
3304 uint64_t bytes,
3305 BdrvRequestFlags read_flags,
3306 BdrvRequestFlags write_flags)
3308 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3309 read_flags, write_flags);
3310 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3311 bytes, read_flags, write_flags, false);
3314 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3315 BdrvChild *dst, uint64_t dst_offset,
3316 uint64_t bytes, BdrvRequestFlags read_flags,
3317 BdrvRequestFlags write_flags)
3319 return bdrv_co_copy_range_from(src, src_offset,
3320 dst, dst_offset,
3321 bytes, read_flags, write_flags);
3324 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3326 BdrvChild *c;
3327 QLIST_FOREACH(c, &bs->parents, next_parent) {
3328 if (c->role->resize) {
3329 c->role->resize(c);
3335 * Truncate file to 'offset' bytes (needed only for file protocols)
3337 * If 'exact' is true, the file must be resized to exactly the given
3338 * 'offset'. Otherwise, it is sufficient for the node to be at least
3339 * 'offset' bytes in length.
3341 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3342 PreallocMode prealloc, Error **errp)
3344 BlockDriverState *bs = child->bs;
3345 BlockDriver *drv = bs->drv;
3346 BdrvTrackedRequest req;
3347 int64_t old_size, new_bytes;
3348 int ret;
3351 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3352 if (!drv) {
3353 error_setg(errp, "No medium inserted");
3354 return -ENOMEDIUM;
3356 if (offset < 0) {
3357 error_setg(errp, "Image size cannot be negative");
3358 return -EINVAL;
3361 old_size = bdrv_getlength(bs);
3362 if (old_size < 0) {
3363 error_setg_errno(errp, -old_size, "Failed to get old image size");
3364 return old_size;
3367 if (offset > old_size) {
3368 new_bytes = offset - old_size;
3369 } else {
3370 new_bytes = 0;
3373 bdrv_inc_in_flight(bs);
3374 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3375 BDRV_TRACKED_TRUNCATE);
3377 /* If we are growing the image and potentially using preallocation for the
3378 * new area, we need to make sure that no write requests are made to it
3379 * concurrently or they might be overwritten by preallocation. */
3380 if (new_bytes) {
3381 bdrv_mark_request_serialising(&req, 1);
3383 if (bs->read_only) {
3384 error_setg(errp, "Image is read-only");
3385 ret = -EACCES;
3386 goto out;
3388 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3390 if (ret < 0) {
3391 error_setg_errno(errp, -ret,
3392 "Failed to prepare request for truncation");
3393 goto out;
3396 if (drv->bdrv_co_truncate) {
3397 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, errp);
3398 } else if (bs->file && drv->is_filter) {
3399 ret = bdrv_co_truncate(bs->file, offset, exact, prealloc, errp);
3400 } else {
3401 error_setg(errp, "Image format driver does not support resize");
3402 ret = -ENOTSUP;
3403 goto out;
3405 if (ret < 0) {
3406 goto out;
3409 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3410 if (ret < 0) {
3411 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3412 } else {
3413 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3415 /* It's possible that truncation succeeded but refresh_total_sectors
3416 * failed, but the latter doesn't affect how we should finish the request.
3417 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3418 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3420 out:
3421 tracked_request_end(&req);
3422 bdrv_dec_in_flight(bs);
3424 return ret;
3427 typedef struct TruncateCo {
3428 BdrvChild *child;
3429 int64_t offset;
3430 bool exact;
3431 PreallocMode prealloc;
3432 Error **errp;
3433 int ret;
3434 } TruncateCo;
3436 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3438 TruncateCo *tco = opaque;
3439 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->exact,
3440 tco->prealloc, tco->errp);
3441 aio_wait_kick();
3444 int bdrv_truncate(BdrvChild *child, int64_t offset, bool exact,
3445 PreallocMode prealloc, Error **errp)
3447 Coroutine *co;
3448 TruncateCo tco = {
3449 .child = child,
3450 .offset = offset,
3451 .exact = exact,
3452 .prealloc = prealloc,
3453 .errp = errp,
3454 .ret = NOT_DONE,
3457 if (qemu_in_coroutine()) {
3458 /* Fast-path if already in coroutine context */
3459 bdrv_truncate_co_entry(&tco);
3460 } else {
3461 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3462 bdrv_coroutine_enter(child->bs, co);
3463 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3466 return tco.ret;