ppc: function to setup latest class options
[qemu.git] / hw / ppc / spapr.c
blob691c39106095c16a30d1e412d126040787e11c17
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "monitor/monitor.h"
86 #include <libfdt.h>
88 /* SLOF memory layout:
90 * SLOF raw image loaded at 0, copies its romfs right below the flat
91 * device-tree, then position SLOF itself 31M below that
93 * So we set FW_OVERHEAD to 40MB which should account for all of that
94 * and more
96 * We load our kernel at 4M, leaving space for SLOF initial image
98 #define FDT_MAX_SIZE 0x100000
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105 #define MIN_RMA_SLOF 128UL
107 #define PHANDLE_INTC 0x00001111
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 MachineState *ms = MACHINE(spapr);
116 unsigned int smp_threads = ms->smp.threads;
118 assert(spapr->vsmt);
119 return
120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123 PowerPCCPU *cpu)
125 assert(spapr->vsmt);
126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 int spapr_max_server_number(SpaprMachineState *spapr)
165 MachineState *ms = MACHINE(spapr);
167 assert(spapr->vsmt);
168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172 int smt_threads)
174 int i, ret = 0;
175 uint32_t servers_prop[smt_threads];
176 uint32_t gservers_prop[smt_threads * 2];
177 int index = spapr_get_vcpu_id(cpu);
179 if (cpu->compat_pvr) {
180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181 if (ret < 0) {
182 return ret;
186 /* Build interrupt servers and gservers properties */
187 for (i = 0; i < smt_threads; i++) {
188 servers_prop[i] = cpu_to_be32(index + i);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop[i*2] = cpu_to_be32(index + i);
191 gservers_prop[i*2 + 1] = 0;
193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194 servers_prop, sizeof(servers_prop));
195 if (ret < 0) {
196 return ret;
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop, sizeof(gservers_prop));
201 return ret;
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 int index = spapr_get_vcpu_id(cpu);
207 uint32_t associativity[] = {cpu_to_be32(0x5),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(cpu->node_id),
212 cpu_to_be32(index)};
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216 sizeof(associativity));
219 /* Populate the "ibm,pa-features" property */
220 static void spapr_populate_pa_features(SpaprMachineState *spapr,
221 PowerPCCPU *cpu,
222 void *fdt, int offset)
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
271 if (!pa_features) {
272 return;
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
283 pa_features[3] |= 0x20;
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
288 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
298 static hwaddr spapr_node0_size(MachineState *machine)
300 if (machine->numa_state->num_nodes) {
301 int i;
302 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303 if (machine->numa_state->nodes[i].node_mem) {
304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305 machine->ram_size);
309 return machine->ram_size;
312 static void add_str(GString *s, const gchar *s1)
314 g_string_append_len(s, s1, strlen(s1) + 1);
317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
318 hwaddr size)
320 uint32_t associativity[] = {
321 cpu_to_be32(0x4), /* length */
322 cpu_to_be32(0x0), cpu_to_be32(0x0),
323 cpu_to_be32(0x0), cpu_to_be32(nodeid)
325 char mem_name[32];
326 uint64_t mem_reg_property[2];
327 int off;
329 mem_reg_property[0] = cpu_to_be64(start);
330 mem_reg_property[1] = cpu_to_be64(size);
332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333 off = fdt_add_subnode(fdt, 0, mem_name);
334 _FDT(off);
335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337 sizeof(mem_reg_property))));
338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339 sizeof(associativity))));
340 return off;
343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
345 MachineState *machine = MACHINE(spapr);
346 hwaddr mem_start, node_size;
347 int i, nb_nodes = machine->numa_state->num_nodes;
348 NodeInfo *nodes = machine->numa_state->nodes;
350 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
351 if (!nodes[i].node_mem) {
352 continue;
354 if (mem_start >= machine->ram_size) {
355 node_size = 0;
356 } else {
357 node_size = nodes[i].node_mem;
358 if (node_size > machine->ram_size - mem_start) {
359 node_size = machine->ram_size - mem_start;
362 if (!mem_start) {
363 /* spapr_machine_init() checks for rma_size <= node0_size
364 * already */
365 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
366 mem_start += spapr->rma_size;
367 node_size -= spapr->rma_size;
369 for ( ; node_size; ) {
370 hwaddr sizetmp = pow2floor(node_size);
372 /* mem_start != 0 here */
373 if (ctzl(mem_start) < ctzl(sizetmp)) {
374 sizetmp = 1ULL << ctzl(mem_start);
377 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
378 node_size -= sizetmp;
379 mem_start += sizetmp;
383 return 0;
386 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
387 SpaprMachineState *spapr)
389 MachineState *ms = MACHINE(spapr);
390 PowerPCCPU *cpu = POWERPC_CPU(cs);
391 CPUPPCState *env = &cpu->env;
392 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
393 int index = spapr_get_vcpu_id(cpu);
394 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
395 0xffffffff, 0xffffffff};
396 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
397 : SPAPR_TIMEBASE_FREQ;
398 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
399 uint32_t page_sizes_prop[64];
400 size_t page_sizes_prop_size;
401 unsigned int smp_threads = ms->smp.threads;
402 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
403 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
404 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
405 SpaprDrc *drc;
406 int drc_index;
407 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
408 int i;
410 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
411 if (drc) {
412 drc_index = spapr_drc_index(drc);
413 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
416 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
417 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
419 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
420 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
421 env->dcache_line_size)));
422 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
423 env->dcache_line_size)));
424 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
425 env->icache_line_size)));
426 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
427 env->icache_line_size)));
429 if (pcc->l1_dcache_size) {
430 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
431 pcc->l1_dcache_size)));
432 } else {
433 warn_report("Unknown L1 dcache size for cpu");
435 if (pcc->l1_icache_size) {
436 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
437 pcc->l1_icache_size)));
438 } else {
439 warn_report("Unknown L1 icache size for cpu");
442 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
443 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
444 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
445 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
446 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
447 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
449 if (env->spr_cb[SPR_PURR].oea_read) {
450 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
452 if (env->spr_cb[SPR_SPURR].oea_read) {
453 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
456 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
457 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
458 segs, sizeof(segs))));
461 /* Advertise VSX (vector extensions) if available
462 * 1 == VMX / Altivec available
463 * 2 == VSX available
465 * Only CPUs for which we create core types in spapr_cpu_core.c
466 * are possible, and all of those have VMX */
467 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
468 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
469 } else {
470 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
473 /* Advertise DFP (Decimal Floating Point) if available
474 * 0 / no property == no DFP
475 * 1 == DFP available */
476 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
477 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
480 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
481 sizeof(page_sizes_prop));
482 if (page_sizes_prop_size) {
483 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
484 page_sizes_prop, page_sizes_prop_size)));
487 spapr_populate_pa_features(spapr, cpu, fdt, offset);
489 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
490 cs->cpu_index / vcpus_per_socket)));
492 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
493 pft_size_prop, sizeof(pft_size_prop))));
495 if (ms->numa_state->num_nodes > 1) {
496 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
499 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
501 if (pcc->radix_page_info) {
502 for (i = 0; i < pcc->radix_page_info->count; i++) {
503 radix_AP_encodings[i] =
504 cpu_to_be32(pcc->radix_page_info->entries[i]);
506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
507 radix_AP_encodings,
508 pcc->radix_page_info->count *
509 sizeof(radix_AP_encodings[0]))));
513 * We set this property to let the guest know that it can use the large
514 * decrementer and its width in bits.
516 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
517 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
518 pcc->lrg_decr_bits)));
521 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
523 CPUState **rev;
524 CPUState *cs;
525 int n_cpus;
526 int cpus_offset;
527 char *nodename;
528 int i;
530 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
531 _FDT(cpus_offset);
532 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
533 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
536 * We walk the CPUs in reverse order to ensure that CPU DT nodes
537 * created by fdt_add_subnode() end up in the right order in FDT
538 * for the guest kernel the enumerate the CPUs correctly.
540 * The CPU list cannot be traversed in reverse order, so we need
541 * to do extra work.
543 n_cpus = 0;
544 rev = NULL;
545 CPU_FOREACH(cs) {
546 rev = g_renew(CPUState *, rev, n_cpus + 1);
547 rev[n_cpus++] = cs;
550 for (i = n_cpus - 1; i >= 0; i--) {
551 CPUState *cs = rev[i];
552 PowerPCCPU *cpu = POWERPC_CPU(cs);
553 int index = spapr_get_vcpu_id(cpu);
554 DeviceClass *dc = DEVICE_GET_CLASS(cs);
555 int offset;
557 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
558 continue;
561 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
562 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
563 g_free(nodename);
564 _FDT(offset);
565 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
568 g_free(rev);
571 static int spapr_rng_populate_dt(void *fdt)
573 int node;
574 int ret;
576 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
577 if (node <= 0) {
578 return -1;
580 ret = fdt_setprop_string(fdt, node, "device_type",
581 "ibm,platform-facilities");
582 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
583 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
585 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
586 if (node <= 0) {
587 return -1;
589 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
591 return ret ? -1 : 0;
594 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
596 MemoryDeviceInfoList *info;
598 for (info = list; info; info = info->next) {
599 MemoryDeviceInfo *value = info->value;
601 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
602 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
604 if (addr >= pcdimm_info->addr &&
605 addr < (pcdimm_info->addr + pcdimm_info->size)) {
606 return pcdimm_info->node;
611 return -1;
614 struct sPAPRDrconfCellV2 {
615 uint32_t seq_lmbs;
616 uint64_t base_addr;
617 uint32_t drc_index;
618 uint32_t aa_index;
619 uint32_t flags;
620 } QEMU_PACKED;
622 typedef struct DrconfCellQueue {
623 struct sPAPRDrconfCellV2 cell;
624 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
625 } DrconfCellQueue;
627 static DrconfCellQueue *
628 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
629 uint32_t drc_index, uint32_t aa_index,
630 uint32_t flags)
632 DrconfCellQueue *elem;
634 elem = g_malloc0(sizeof(*elem));
635 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
636 elem->cell.base_addr = cpu_to_be64(base_addr);
637 elem->cell.drc_index = cpu_to_be32(drc_index);
638 elem->cell.aa_index = cpu_to_be32(aa_index);
639 elem->cell.flags = cpu_to_be32(flags);
641 return elem;
644 /* ibm,dynamic-memory-v2 */
645 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
646 int offset, MemoryDeviceInfoList *dimms)
648 MachineState *machine = MACHINE(spapr);
649 uint8_t *int_buf, *cur_index;
650 int ret;
651 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
652 uint64_t addr, cur_addr, size;
653 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
654 uint64_t mem_end = machine->device_memory->base +
655 memory_region_size(&machine->device_memory->mr);
656 uint32_t node, buf_len, nr_entries = 0;
657 SpaprDrc *drc;
658 DrconfCellQueue *elem, *next;
659 MemoryDeviceInfoList *info;
660 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
661 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
663 /* Entry to cover RAM and the gap area */
664 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
665 SPAPR_LMB_FLAGS_RESERVED |
666 SPAPR_LMB_FLAGS_DRC_INVALID);
667 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
668 nr_entries++;
670 cur_addr = machine->device_memory->base;
671 for (info = dimms; info; info = info->next) {
672 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
674 addr = di->addr;
675 size = di->size;
676 node = di->node;
678 /* Entry for hot-pluggable area */
679 if (cur_addr < addr) {
680 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
681 g_assert(drc);
682 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
683 cur_addr, spapr_drc_index(drc), -1, 0);
684 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
685 nr_entries++;
688 /* Entry for DIMM */
689 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
690 g_assert(drc);
691 elem = spapr_get_drconf_cell(size / lmb_size, addr,
692 spapr_drc_index(drc), node,
693 SPAPR_LMB_FLAGS_ASSIGNED);
694 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
695 nr_entries++;
696 cur_addr = addr + size;
699 /* Entry for remaining hotpluggable area */
700 if (cur_addr < mem_end) {
701 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
702 g_assert(drc);
703 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
704 cur_addr, spapr_drc_index(drc), -1, 0);
705 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
706 nr_entries++;
709 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
710 int_buf = cur_index = g_malloc0(buf_len);
711 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
712 cur_index += sizeof(nr_entries);
714 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
715 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
716 cur_index += sizeof(elem->cell);
717 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
718 g_free(elem);
721 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
722 g_free(int_buf);
723 if (ret < 0) {
724 return -1;
726 return 0;
729 /* ibm,dynamic-memory */
730 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
731 int offset, MemoryDeviceInfoList *dimms)
733 MachineState *machine = MACHINE(spapr);
734 int i, ret;
735 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
736 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
737 uint32_t nr_lmbs = (machine->device_memory->base +
738 memory_region_size(&machine->device_memory->mr)) /
739 lmb_size;
740 uint32_t *int_buf, *cur_index, buf_len;
743 * Allocate enough buffer size to fit in ibm,dynamic-memory
745 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
746 cur_index = int_buf = g_malloc0(buf_len);
747 int_buf[0] = cpu_to_be32(nr_lmbs);
748 cur_index++;
749 for (i = 0; i < nr_lmbs; i++) {
750 uint64_t addr = i * lmb_size;
751 uint32_t *dynamic_memory = cur_index;
753 if (i >= device_lmb_start) {
754 SpaprDrc *drc;
756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
757 g_assert(drc);
759 dynamic_memory[0] = cpu_to_be32(addr >> 32);
760 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
761 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
762 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
763 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
764 if (memory_region_present(get_system_memory(), addr)) {
765 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
766 } else {
767 dynamic_memory[5] = cpu_to_be32(0);
769 } else {
771 * LMB information for RMA, boot time RAM and gap b/n RAM and
772 * device memory region -- all these are marked as reserved
773 * and as having no valid DRC.
775 dynamic_memory[0] = cpu_to_be32(addr >> 32);
776 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
777 dynamic_memory[2] = cpu_to_be32(0);
778 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
779 dynamic_memory[4] = cpu_to_be32(-1);
780 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
781 SPAPR_LMB_FLAGS_DRC_INVALID);
784 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
786 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
787 g_free(int_buf);
788 if (ret < 0) {
789 return -1;
791 return 0;
795 * Adds ibm,dynamic-reconfiguration-memory node.
796 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
797 * of this device tree node.
799 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
801 MachineState *machine = MACHINE(spapr);
802 int nb_numa_nodes = machine->numa_state->num_nodes;
803 int ret, i, offset;
804 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
805 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
806 uint32_t *int_buf, *cur_index, buf_len;
807 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
808 MemoryDeviceInfoList *dimms = NULL;
811 * Don't create the node if there is no device memory
813 if (machine->ram_size == machine->maxram_size) {
814 return 0;
817 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
819 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
820 sizeof(prop_lmb_size));
821 if (ret < 0) {
822 return ret;
825 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
826 if (ret < 0) {
827 return ret;
830 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
831 if (ret < 0) {
832 return ret;
835 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
836 dimms = qmp_memory_device_list();
837 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
838 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
839 } else {
840 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
842 qapi_free_MemoryDeviceInfoList(dimms);
844 if (ret < 0) {
845 return ret;
848 /* ibm,associativity-lookup-arrays */
849 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
850 cur_index = int_buf = g_malloc0(buf_len);
851 int_buf[0] = cpu_to_be32(nr_nodes);
852 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
853 cur_index += 2;
854 for (i = 0; i < nr_nodes; i++) {
855 uint32_t associativity[] = {
856 cpu_to_be32(0x0),
857 cpu_to_be32(0x0),
858 cpu_to_be32(0x0),
859 cpu_to_be32(i)
861 memcpy(cur_index, associativity, sizeof(associativity));
862 cur_index += 4;
864 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
865 (cur_index - int_buf) * sizeof(uint32_t));
866 g_free(int_buf);
868 return ret;
871 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
872 SpaprOptionVector *ov5_updates)
874 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
875 int ret = 0, offset;
877 /* Generate ibm,dynamic-reconfiguration-memory node if required */
878 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
879 g_assert(smc->dr_lmb_enabled);
880 ret = spapr_populate_drconf_memory(spapr, fdt);
881 if (ret) {
882 return ret;
886 offset = fdt_path_offset(fdt, "/chosen");
887 if (offset < 0) {
888 offset = fdt_add_subnode(fdt, 0, "chosen");
889 if (offset < 0) {
890 return offset;
893 return spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
894 "ibm,architecture-vec-5");
897 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
899 MachineState *ms = MACHINE(spapr);
900 int rtas;
901 GString *hypertas = g_string_sized_new(256);
902 GString *qemu_hypertas = g_string_sized_new(256);
903 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
904 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
905 memory_region_size(&MACHINE(spapr)->device_memory->mr);
906 uint32_t lrdr_capacity[] = {
907 cpu_to_be32(max_device_addr >> 32),
908 cpu_to_be32(max_device_addr & 0xffffffff),
909 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
910 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
912 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
913 uint32_t maxdomains[] = {
914 cpu_to_be32(4),
915 maxdomain,
916 maxdomain,
917 maxdomain,
918 cpu_to_be32(spapr->gpu_numa_id),
921 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
923 /* hypertas */
924 add_str(hypertas, "hcall-pft");
925 add_str(hypertas, "hcall-term");
926 add_str(hypertas, "hcall-dabr");
927 add_str(hypertas, "hcall-interrupt");
928 add_str(hypertas, "hcall-tce");
929 add_str(hypertas, "hcall-vio");
930 add_str(hypertas, "hcall-splpar");
931 add_str(hypertas, "hcall-join");
932 add_str(hypertas, "hcall-bulk");
933 add_str(hypertas, "hcall-set-mode");
934 add_str(hypertas, "hcall-sprg0");
935 add_str(hypertas, "hcall-copy");
936 add_str(hypertas, "hcall-debug");
937 add_str(hypertas, "hcall-vphn");
938 add_str(qemu_hypertas, "hcall-memop1");
940 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
941 add_str(hypertas, "hcall-multi-tce");
944 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
945 add_str(hypertas, "hcall-hpt-resize");
948 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
949 hypertas->str, hypertas->len));
950 g_string_free(hypertas, TRUE);
951 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
952 qemu_hypertas->str, qemu_hypertas->len));
953 g_string_free(qemu_hypertas, TRUE);
955 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
956 refpoints, sizeof(refpoints)));
958 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
959 maxdomains, sizeof(maxdomains)));
961 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
962 RTAS_ERROR_LOG_MAX));
963 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
964 RTAS_EVENT_SCAN_RATE));
966 g_assert(msi_nonbroken);
967 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
970 * According to PAPR, rtas ibm,os-term does not guarantee a return
971 * back to the guest cpu.
973 * While an additional ibm,extended-os-term property indicates
974 * that rtas call return will always occur. Set this property.
976 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
978 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
979 lrdr_capacity, sizeof(lrdr_capacity)));
981 spapr_dt_rtas_tokens(fdt, rtas);
985 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
986 * and the XIVE features that the guest may request and thus the valid
987 * values for bytes 23..26 of option vector 5:
989 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
990 int chosen)
992 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
994 char val[2 * 4] = {
995 23, 0x00, /* XICS / XIVE mode */
996 24, 0x00, /* Hash/Radix, filled in below. */
997 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
998 26, 0x40, /* Radix options: GTSE == yes. */
1001 if (spapr->irq->xics && spapr->irq->xive) {
1002 val[1] = SPAPR_OV5_XIVE_BOTH;
1003 } else if (spapr->irq->xive) {
1004 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1005 } else {
1006 assert(spapr->irq->xics);
1007 val[1] = SPAPR_OV5_XIVE_LEGACY;
1010 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1011 first_ppc_cpu->compat_pvr)) {
1013 * If we're in a pre POWER9 compat mode then the guest should
1014 * do hash and use the legacy interrupt mode
1016 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1017 val[3] = 0x00; /* Hash */
1018 } else if (kvm_enabled()) {
1019 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1020 val[3] = 0x80; /* OV5_MMU_BOTH */
1021 } else if (kvmppc_has_cap_mmu_radix()) {
1022 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1023 } else {
1024 val[3] = 0x00; /* Hash */
1026 } else {
1027 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1028 val[3] = 0xC0;
1030 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1031 val, sizeof(val)));
1034 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1036 MachineState *machine = MACHINE(spapr);
1037 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1038 int chosen;
1039 const char *boot_device = machine->boot_order;
1040 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1041 size_t cb = 0;
1042 char *bootlist = get_boot_devices_list(&cb);
1044 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1046 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1047 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1048 machine->kernel_cmdline));
1050 if (spapr->initrd_size) {
1051 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1052 spapr->initrd_base));
1053 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1054 spapr->initrd_base + spapr->initrd_size));
1057 if (spapr->kernel_size) {
1058 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1059 cpu_to_be64(spapr->kernel_size) };
1061 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1062 &kprop, sizeof(kprop)));
1063 if (spapr->kernel_le) {
1064 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1067 if (boot_menu) {
1068 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1070 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1071 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1072 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1074 if (cb && bootlist) {
1075 int i;
1077 for (i = 0; i < cb; i++) {
1078 if (bootlist[i] == '\n') {
1079 bootlist[i] = ' ';
1082 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1085 if (boot_device && strlen(boot_device)) {
1086 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1089 if (!spapr->has_graphics && stdout_path) {
1091 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1092 * kernel. New platforms should only use the "stdout-path" property. Set
1093 * the new property and continue using older property to remain
1094 * compatible with the existing firmware.
1096 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1097 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1100 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1101 if (smc->linux_pci_probe) {
1102 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1105 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1107 g_free(stdout_path);
1108 g_free(bootlist);
1111 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1113 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1114 * KVM to work under pHyp with some guest co-operation */
1115 int hypervisor;
1116 uint8_t hypercall[16];
1118 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1119 /* indicate KVM hypercall interface */
1120 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1121 if (kvmppc_has_cap_fixup_hcalls()) {
1123 * Older KVM versions with older guest kernels were broken
1124 * with the magic page, don't allow the guest to map it.
1126 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1127 sizeof(hypercall))) {
1128 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1129 hypercall, sizeof(hypercall)));
1134 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1136 MachineState *machine = MACHINE(spapr);
1137 MachineClass *mc = MACHINE_GET_CLASS(machine);
1138 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1139 int ret;
1140 void *fdt;
1141 SpaprPhbState *phb;
1142 char *buf;
1144 fdt = g_malloc0(space);
1145 _FDT((fdt_create_empty_tree(fdt, space)));
1147 /* Root node */
1148 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1149 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1150 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1152 /* Guest UUID & Name*/
1153 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1154 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1155 if (qemu_uuid_set) {
1156 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1158 g_free(buf);
1160 if (qemu_get_vm_name()) {
1161 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1162 qemu_get_vm_name()));
1165 /* Host Model & Serial Number */
1166 if (spapr->host_model) {
1167 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1168 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1169 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1170 g_free(buf);
1173 if (spapr->host_serial) {
1174 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1175 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1176 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1177 g_free(buf);
1180 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1181 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1183 /* /interrupt controller */
1184 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1186 ret = spapr_populate_memory(spapr, fdt);
1187 if (ret < 0) {
1188 error_report("couldn't setup memory nodes in fdt");
1189 exit(1);
1192 /* /vdevice */
1193 spapr_dt_vdevice(spapr->vio_bus, fdt);
1195 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1196 ret = spapr_rng_populate_dt(fdt);
1197 if (ret < 0) {
1198 error_report("could not set up rng device in the fdt");
1199 exit(1);
1203 QLIST_FOREACH(phb, &spapr->phbs, list) {
1204 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1205 if (ret < 0) {
1206 error_report("couldn't setup PCI devices in fdt");
1207 exit(1);
1211 /* cpus */
1212 spapr_populate_cpus_dt_node(fdt, spapr);
1214 if (smc->dr_lmb_enabled) {
1215 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1218 if (mc->has_hotpluggable_cpus) {
1219 int offset = fdt_path_offset(fdt, "/cpus");
1220 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1221 if (ret < 0) {
1222 error_report("Couldn't set up CPU DR device tree properties");
1223 exit(1);
1227 /* /event-sources */
1228 spapr_dt_events(spapr, fdt);
1230 /* /rtas */
1231 spapr_dt_rtas(spapr, fdt);
1233 /* /chosen */
1234 if (reset) {
1235 spapr_dt_chosen(spapr, fdt);
1238 /* /hypervisor */
1239 if (kvm_enabled()) {
1240 spapr_dt_hypervisor(spapr, fdt);
1243 /* Build memory reserve map */
1244 if (reset) {
1245 if (spapr->kernel_size) {
1246 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1248 if (spapr->initrd_size) {
1249 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1250 spapr->initrd_size)));
1254 /* ibm,client-architecture-support updates */
1255 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1256 if (ret < 0) {
1257 error_report("couldn't setup CAS properties fdt");
1258 exit(1);
1261 if (smc->dr_phb_enabled) {
1262 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1263 if (ret < 0) {
1264 error_report("Couldn't set up PHB DR device tree properties");
1265 exit(1);
1269 return fdt;
1272 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1274 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1277 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1278 PowerPCCPU *cpu)
1280 CPUPPCState *env = &cpu->env;
1282 /* The TCG path should also be holding the BQL at this point */
1283 g_assert(qemu_mutex_iothread_locked());
1285 if (msr_pr) {
1286 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1287 env->gpr[3] = H_PRIVILEGE;
1288 } else {
1289 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1293 struct LPCRSyncState {
1294 target_ulong value;
1295 target_ulong mask;
1298 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1300 struct LPCRSyncState *s = arg.host_ptr;
1301 PowerPCCPU *cpu = POWERPC_CPU(cs);
1302 CPUPPCState *env = &cpu->env;
1303 target_ulong lpcr;
1305 cpu_synchronize_state(cs);
1306 lpcr = env->spr[SPR_LPCR];
1307 lpcr &= ~s->mask;
1308 lpcr |= s->value;
1309 ppc_store_lpcr(cpu, lpcr);
1312 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1314 CPUState *cs;
1315 struct LPCRSyncState s = {
1316 .value = value,
1317 .mask = mask
1319 CPU_FOREACH(cs) {
1320 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1324 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1326 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1328 /* Copy PATE1:GR into PATE0:HR */
1329 entry->dw0 = spapr->patb_entry & PATE0_HR;
1330 entry->dw1 = spapr->patb_entry;
1333 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1334 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1335 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1336 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1337 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1340 * Get the fd to access the kernel htab, re-opening it if necessary
1342 static int get_htab_fd(SpaprMachineState *spapr)
1344 Error *local_err = NULL;
1346 if (spapr->htab_fd >= 0) {
1347 return spapr->htab_fd;
1350 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1351 if (spapr->htab_fd < 0) {
1352 error_report_err(local_err);
1355 return spapr->htab_fd;
1358 void close_htab_fd(SpaprMachineState *spapr)
1360 if (spapr->htab_fd >= 0) {
1361 close(spapr->htab_fd);
1363 spapr->htab_fd = -1;
1366 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1368 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1370 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1373 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1375 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1377 assert(kvm_enabled());
1379 if (!spapr->htab) {
1380 return 0;
1383 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1386 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1387 hwaddr ptex, int n)
1389 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1390 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1392 if (!spapr->htab) {
1394 * HTAB is controlled by KVM. Fetch into temporary buffer
1396 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1397 kvmppc_read_hptes(hptes, ptex, n);
1398 return hptes;
1402 * HTAB is controlled by QEMU. Just point to the internally
1403 * accessible PTEG.
1405 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1408 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1409 const ppc_hash_pte64_t *hptes,
1410 hwaddr ptex, int n)
1412 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1414 if (!spapr->htab) {
1415 g_free((void *)hptes);
1418 /* Nothing to do for qemu managed HPT */
1421 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1422 uint64_t pte0, uint64_t pte1)
1424 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1425 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1427 if (!spapr->htab) {
1428 kvmppc_write_hpte(ptex, pte0, pte1);
1429 } else {
1430 if (pte0 & HPTE64_V_VALID) {
1431 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1433 * When setting valid, we write PTE1 first. This ensures
1434 * proper synchronization with the reading code in
1435 * ppc_hash64_pteg_search()
1437 smp_wmb();
1438 stq_p(spapr->htab + offset, pte0);
1439 } else {
1440 stq_p(spapr->htab + offset, pte0);
1442 * When clearing it we set PTE0 first. This ensures proper
1443 * synchronization with the reading code in
1444 * ppc_hash64_pteg_search()
1446 smp_wmb();
1447 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1452 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1453 uint64_t pte1)
1455 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1456 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1458 if (!spapr->htab) {
1459 /* There should always be a hash table when this is called */
1460 error_report("spapr_hpte_set_c called with no hash table !");
1461 return;
1464 /* The HW performs a non-atomic byte update */
1465 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1468 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1469 uint64_t pte1)
1471 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1472 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1474 if (!spapr->htab) {
1475 /* There should always be a hash table when this is called */
1476 error_report("spapr_hpte_set_r called with no hash table !");
1477 return;
1480 /* The HW performs a non-atomic byte update */
1481 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1484 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1486 int shift;
1488 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1489 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1490 * that's much more than is needed for Linux guests */
1491 shift = ctz64(pow2ceil(ramsize)) - 7;
1492 shift = MAX(shift, 18); /* Minimum architected size */
1493 shift = MIN(shift, 46); /* Maximum architected size */
1494 return shift;
1497 void spapr_free_hpt(SpaprMachineState *spapr)
1499 g_free(spapr->htab);
1500 spapr->htab = NULL;
1501 spapr->htab_shift = 0;
1502 close_htab_fd(spapr);
1505 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1506 Error **errp)
1508 long rc;
1510 /* Clean up any HPT info from a previous boot */
1511 spapr_free_hpt(spapr);
1513 rc = kvmppc_reset_htab(shift);
1514 if (rc < 0) {
1515 /* kernel-side HPT needed, but couldn't allocate one */
1516 error_setg_errno(errp, errno,
1517 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1518 shift);
1519 /* This is almost certainly fatal, but if the caller really
1520 * wants to carry on with shift == 0, it's welcome to try */
1521 } else if (rc > 0) {
1522 /* kernel-side HPT allocated */
1523 if (rc != shift) {
1524 error_setg(errp,
1525 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1526 shift, rc);
1529 spapr->htab_shift = shift;
1530 spapr->htab = NULL;
1531 } else {
1532 /* kernel-side HPT not needed, allocate in userspace instead */
1533 size_t size = 1ULL << shift;
1534 int i;
1536 spapr->htab = qemu_memalign(size, size);
1537 if (!spapr->htab) {
1538 error_setg_errno(errp, errno,
1539 "Could not allocate HPT of order %d", shift);
1540 return;
1543 memset(spapr->htab, 0, size);
1544 spapr->htab_shift = shift;
1546 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1547 DIRTY_HPTE(HPTE(spapr->htab, i));
1550 /* We're setting up a hash table, so that means we're not radix */
1551 spapr->patb_entry = 0;
1552 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1555 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1557 int hpt_shift;
1559 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1560 || (spapr->cas_reboot
1561 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1562 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1563 } else {
1564 uint64_t current_ram_size;
1566 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1567 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1569 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1571 if (spapr->vrma_adjust) {
1572 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1573 spapr->htab_shift);
1577 static int spapr_reset_drcs(Object *child, void *opaque)
1579 SpaprDrc *drc =
1580 (SpaprDrc *) object_dynamic_cast(child,
1581 TYPE_SPAPR_DR_CONNECTOR);
1583 if (drc) {
1584 spapr_drc_reset(drc);
1587 return 0;
1590 static void spapr_machine_reset(MachineState *machine)
1592 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1593 PowerPCCPU *first_ppc_cpu;
1594 hwaddr fdt_addr;
1595 void *fdt;
1596 int rc;
1598 kvmppc_svm_off(&error_fatal);
1599 spapr_caps_apply(spapr);
1601 first_ppc_cpu = POWERPC_CPU(first_cpu);
1602 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1603 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1604 spapr->max_compat_pvr)) {
1606 * If using KVM with radix mode available, VCPUs can be started
1607 * without a HPT because KVM will start them in radix mode.
1608 * Set the GR bit in PATE so that we know there is no HPT.
1610 spapr->patb_entry = PATE1_GR;
1611 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1612 } else {
1613 spapr_setup_hpt_and_vrma(spapr);
1616 qemu_devices_reset();
1619 * If this reset wasn't generated by CAS, we should reset our
1620 * negotiated options and start from scratch
1622 if (!spapr->cas_reboot) {
1623 spapr_ovec_cleanup(spapr->ov5_cas);
1624 spapr->ov5_cas = spapr_ovec_new();
1626 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1630 * This is fixing some of the default configuration of the XIVE
1631 * devices. To be called after the reset of the machine devices.
1633 spapr_irq_reset(spapr, &error_fatal);
1636 * There is no CAS under qtest. Simulate one to please the code that
1637 * depends on spapr->ov5_cas. This is especially needed to test device
1638 * unplug, so we do that before resetting the DRCs.
1640 if (qtest_enabled()) {
1641 spapr_ovec_cleanup(spapr->ov5_cas);
1642 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1645 /* DRC reset may cause a device to be unplugged. This will cause troubles
1646 * if this device is used by another device (eg, a running vhost backend
1647 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1648 * situations, we reset DRCs after all devices have been reset.
1650 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1652 spapr_clear_pending_events(spapr);
1655 * We place the device tree and RTAS just below either the top of the RMA,
1656 * or just below 2GB, whichever is lower, so that it can be
1657 * processed with 32-bit real mode code if necessary
1659 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1661 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1663 rc = fdt_pack(fdt);
1665 /* Should only fail if we've built a corrupted tree */
1666 assert(rc == 0);
1668 /* Load the fdt */
1669 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1670 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1671 g_free(spapr->fdt_blob);
1672 spapr->fdt_size = fdt_totalsize(fdt);
1673 spapr->fdt_initial_size = spapr->fdt_size;
1674 spapr->fdt_blob = fdt;
1676 /* Set up the entry state */
1677 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1678 first_ppc_cpu->env.gpr[5] = 0;
1680 spapr->cas_reboot = false;
1682 spapr->mc_status = -1;
1683 spapr->guest_machine_check_addr = -1;
1685 /* Signal all vCPUs waiting on this condition */
1686 qemu_cond_broadcast(&spapr->mc_delivery_cond);
1688 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1691 static void spapr_create_nvram(SpaprMachineState *spapr)
1693 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1694 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1696 if (dinfo) {
1697 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1698 &error_fatal);
1701 qdev_init_nofail(dev);
1703 spapr->nvram = (struct SpaprNvram *)dev;
1706 static void spapr_rtc_create(SpaprMachineState *spapr)
1708 object_initialize_child(OBJECT(spapr), "rtc",
1709 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1710 &error_fatal, NULL);
1711 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1712 &error_fatal);
1713 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1714 "date", &error_fatal);
1717 /* Returns whether we want to use VGA or not */
1718 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1720 switch (vga_interface_type) {
1721 case VGA_NONE:
1722 return false;
1723 case VGA_DEVICE:
1724 return true;
1725 case VGA_STD:
1726 case VGA_VIRTIO:
1727 case VGA_CIRRUS:
1728 return pci_vga_init(pci_bus) != NULL;
1729 default:
1730 error_setg(errp,
1731 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1732 return false;
1736 static int spapr_pre_load(void *opaque)
1738 int rc;
1740 rc = spapr_caps_pre_load(opaque);
1741 if (rc) {
1742 return rc;
1745 return 0;
1748 static int spapr_post_load(void *opaque, int version_id)
1750 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1751 int err = 0;
1753 err = spapr_caps_post_migration(spapr);
1754 if (err) {
1755 return err;
1759 * In earlier versions, there was no separate qdev for the PAPR
1760 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1761 * So when migrating from those versions, poke the incoming offset
1762 * value into the RTC device
1764 if (version_id < 3) {
1765 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1766 if (err) {
1767 return err;
1771 if (kvm_enabled() && spapr->patb_entry) {
1772 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1773 bool radix = !!(spapr->patb_entry & PATE1_GR);
1774 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1777 * Update LPCR:HR and UPRT as they may not be set properly in
1778 * the stream
1780 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1781 LPCR_HR | LPCR_UPRT);
1783 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1784 if (err) {
1785 error_report("Process table config unsupported by the host");
1786 return -EINVAL;
1790 err = spapr_irq_post_load(spapr, version_id);
1791 if (err) {
1792 return err;
1795 return err;
1798 static int spapr_pre_save(void *opaque)
1800 int rc;
1802 rc = spapr_caps_pre_save(opaque);
1803 if (rc) {
1804 return rc;
1807 return 0;
1810 static bool version_before_3(void *opaque, int version_id)
1812 return version_id < 3;
1815 static bool spapr_pending_events_needed(void *opaque)
1817 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1818 return !QTAILQ_EMPTY(&spapr->pending_events);
1821 static const VMStateDescription vmstate_spapr_event_entry = {
1822 .name = "spapr_event_log_entry",
1823 .version_id = 1,
1824 .minimum_version_id = 1,
1825 .fields = (VMStateField[]) {
1826 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1827 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1828 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1829 NULL, extended_length),
1830 VMSTATE_END_OF_LIST()
1834 static const VMStateDescription vmstate_spapr_pending_events = {
1835 .name = "spapr_pending_events",
1836 .version_id = 1,
1837 .minimum_version_id = 1,
1838 .needed = spapr_pending_events_needed,
1839 .fields = (VMStateField[]) {
1840 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1841 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1842 VMSTATE_END_OF_LIST()
1846 static bool spapr_ov5_cas_needed(void *opaque)
1848 SpaprMachineState *spapr = opaque;
1849 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1850 bool cas_needed;
1852 /* Prior to the introduction of SpaprOptionVector, we had two option
1853 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1854 * Both of these options encode machine topology into the device-tree
1855 * in such a way that the now-booted OS should still be able to interact
1856 * appropriately with QEMU regardless of what options were actually
1857 * negotiatied on the source side.
1859 * As such, we can avoid migrating the CAS-negotiated options if these
1860 * are the only options available on the current machine/platform.
1861 * Since these are the only options available for pseries-2.7 and
1862 * earlier, this allows us to maintain old->new/new->old migration
1863 * compatibility.
1865 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1866 * via default pseries-2.8 machines and explicit command-line parameters.
1867 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1868 * of the actual CAS-negotiated values to continue working properly. For
1869 * example, availability of memory unplug depends on knowing whether
1870 * OV5_HP_EVT was negotiated via CAS.
1872 * Thus, for any cases where the set of available CAS-negotiatable
1873 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1874 * include the CAS-negotiated options in the migration stream, unless
1875 * if they affect boot time behaviour only.
1877 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1878 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1879 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1881 /* We need extra information if we have any bits outside the mask
1882 * defined above */
1883 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1885 spapr_ovec_cleanup(ov5_mask);
1887 return cas_needed;
1890 static const VMStateDescription vmstate_spapr_ov5_cas = {
1891 .name = "spapr_option_vector_ov5_cas",
1892 .version_id = 1,
1893 .minimum_version_id = 1,
1894 .needed = spapr_ov5_cas_needed,
1895 .fields = (VMStateField[]) {
1896 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1897 vmstate_spapr_ovec, SpaprOptionVector),
1898 VMSTATE_END_OF_LIST()
1902 static bool spapr_patb_entry_needed(void *opaque)
1904 SpaprMachineState *spapr = opaque;
1906 return !!spapr->patb_entry;
1909 static const VMStateDescription vmstate_spapr_patb_entry = {
1910 .name = "spapr_patb_entry",
1911 .version_id = 1,
1912 .minimum_version_id = 1,
1913 .needed = spapr_patb_entry_needed,
1914 .fields = (VMStateField[]) {
1915 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1916 VMSTATE_END_OF_LIST()
1920 static bool spapr_irq_map_needed(void *opaque)
1922 SpaprMachineState *spapr = opaque;
1924 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1927 static const VMStateDescription vmstate_spapr_irq_map = {
1928 .name = "spapr_irq_map",
1929 .version_id = 1,
1930 .minimum_version_id = 1,
1931 .needed = spapr_irq_map_needed,
1932 .fields = (VMStateField[]) {
1933 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1934 VMSTATE_END_OF_LIST()
1938 static bool spapr_dtb_needed(void *opaque)
1940 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1942 return smc->update_dt_enabled;
1945 static int spapr_dtb_pre_load(void *opaque)
1947 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1949 g_free(spapr->fdt_blob);
1950 spapr->fdt_blob = NULL;
1951 spapr->fdt_size = 0;
1953 return 0;
1956 static const VMStateDescription vmstate_spapr_dtb = {
1957 .name = "spapr_dtb",
1958 .version_id = 1,
1959 .minimum_version_id = 1,
1960 .needed = spapr_dtb_needed,
1961 .pre_load = spapr_dtb_pre_load,
1962 .fields = (VMStateField[]) {
1963 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1964 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1965 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1966 fdt_size),
1967 VMSTATE_END_OF_LIST()
1971 static bool spapr_fwnmi_needed(void *opaque)
1973 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1975 return spapr->guest_machine_check_addr != -1;
1978 static int spapr_fwnmi_pre_save(void *opaque)
1980 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1983 * Check if machine check handling is in progress and print a
1984 * warning message.
1986 if (spapr->mc_status != -1) {
1987 warn_report("A machine check is being handled during migration. The"
1988 "handler may run and log hardware error on the destination");
1991 return 0;
1994 static const VMStateDescription vmstate_spapr_machine_check = {
1995 .name = "spapr_machine_check",
1996 .version_id = 1,
1997 .minimum_version_id = 1,
1998 .needed = spapr_fwnmi_needed,
1999 .pre_save = spapr_fwnmi_pre_save,
2000 .fields = (VMStateField[]) {
2001 VMSTATE_UINT64(guest_machine_check_addr, SpaprMachineState),
2002 VMSTATE_INT32(mc_status, SpaprMachineState),
2003 VMSTATE_END_OF_LIST()
2007 static const VMStateDescription vmstate_spapr = {
2008 .name = "spapr",
2009 .version_id = 3,
2010 .minimum_version_id = 1,
2011 .pre_load = spapr_pre_load,
2012 .post_load = spapr_post_load,
2013 .pre_save = spapr_pre_save,
2014 .fields = (VMStateField[]) {
2015 /* used to be @next_irq */
2016 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2018 /* RTC offset */
2019 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2021 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2022 VMSTATE_END_OF_LIST()
2024 .subsections = (const VMStateDescription*[]) {
2025 &vmstate_spapr_ov5_cas,
2026 &vmstate_spapr_patb_entry,
2027 &vmstate_spapr_pending_events,
2028 &vmstate_spapr_cap_htm,
2029 &vmstate_spapr_cap_vsx,
2030 &vmstate_spapr_cap_dfp,
2031 &vmstate_spapr_cap_cfpc,
2032 &vmstate_spapr_cap_sbbc,
2033 &vmstate_spapr_cap_ibs,
2034 &vmstate_spapr_cap_hpt_maxpagesize,
2035 &vmstate_spapr_irq_map,
2036 &vmstate_spapr_cap_nested_kvm_hv,
2037 &vmstate_spapr_dtb,
2038 &vmstate_spapr_cap_large_decr,
2039 &vmstate_spapr_cap_ccf_assist,
2040 &vmstate_spapr_cap_fwnmi,
2041 &vmstate_spapr_machine_check,
2042 NULL
2046 static int htab_save_setup(QEMUFile *f, void *opaque)
2048 SpaprMachineState *spapr = opaque;
2050 /* "Iteration" header */
2051 if (!spapr->htab_shift) {
2052 qemu_put_be32(f, -1);
2053 } else {
2054 qemu_put_be32(f, spapr->htab_shift);
2057 if (spapr->htab) {
2058 spapr->htab_save_index = 0;
2059 spapr->htab_first_pass = true;
2060 } else {
2061 if (spapr->htab_shift) {
2062 assert(kvm_enabled());
2067 return 0;
2070 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2071 int chunkstart, int n_valid, int n_invalid)
2073 qemu_put_be32(f, chunkstart);
2074 qemu_put_be16(f, n_valid);
2075 qemu_put_be16(f, n_invalid);
2076 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2077 HASH_PTE_SIZE_64 * n_valid);
2080 static void htab_save_end_marker(QEMUFile *f)
2082 qemu_put_be32(f, 0);
2083 qemu_put_be16(f, 0);
2084 qemu_put_be16(f, 0);
2087 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2088 int64_t max_ns)
2090 bool has_timeout = max_ns != -1;
2091 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2092 int index = spapr->htab_save_index;
2093 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2095 assert(spapr->htab_first_pass);
2097 do {
2098 int chunkstart;
2100 /* Consume invalid HPTEs */
2101 while ((index < htabslots)
2102 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2103 CLEAN_HPTE(HPTE(spapr->htab, index));
2104 index++;
2107 /* Consume valid HPTEs */
2108 chunkstart = index;
2109 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2110 && HPTE_VALID(HPTE(spapr->htab, index))) {
2111 CLEAN_HPTE(HPTE(spapr->htab, index));
2112 index++;
2115 if (index > chunkstart) {
2116 int n_valid = index - chunkstart;
2118 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2120 if (has_timeout &&
2121 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2122 break;
2125 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2127 if (index >= htabslots) {
2128 assert(index == htabslots);
2129 index = 0;
2130 spapr->htab_first_pass = false;
2132 spapr->htab_save_index = index;
2135 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2136 int64_t max_ns)
2138 bool final = max_ns < 0;
2139 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2140 int examined = 0, sent = 0;
2141 int index = spapr->htab_save_index;
2142 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2144 assert(!spapr->htab_first_pass);
2146 do {
2147 int chunkstart, invalidstart;
2149 /* Consume non-dirty HPTEs */
2150 while ((index < htabslots)
2151 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2152 index++;
2153 examined++;
2156 chunkstart = index;
2157 /* Consume valid dirty HPTEs */
2158 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2159 && HPTE_DIRTY(HPTE(spapr->htab, index))
2160 && HPTE_VALID(HPTE(spapr->htab, index))) {
2161 CLEAN_HPTE(HPTE(spapr->htab, index));
2162 index++;
2163 examined++;
2166 invalidstart = index;
2167 /* Consume invalid dirty HPTEs */
2168 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2169 && HPTE_DIRTY(HPTE(spapr->htab, index))
2170 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2171 CLEAN_HPTE(HPTE(spapr->htab, index));
2172 index++;
2173 examined++;
2176 if (index > chunkstart) {
2177 int n_valid = invalidstart - chunkstart;
2178 int n_invalid = index - invalidstart;
2180 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2181 sent += index - chunkstart;
2183 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2184 break;
2188 if (examined >= htabslots) {
2189 break;
2192 if (index >= htabslots) {
2193 assert(index == htabslots);
2194 index = 0;
2196 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2198 if (index >= htabslots) {
2199 assert(index == htabslots);
2200 index = 0;
2203 spapr->htab_save_index = index;
2205 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2208 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2209 #define MAX_KVM_BUF_SIZE 2048
2211 static int htab_save_iterate(QEMUFile *f, void *opaque)
2213 SpaprMachineState *spapr = opaque;
2214 int fd;
2215 int rc = 0;
2217 /* Iteration header */
2218 if (!spapr->htab_shift) {
2219 qemu_put_be32(f, -1);
2220 return 1;
2221 } else {
2222 qemu_put_be32(f, 0);
2225 if (!spapr->htab) {
2226 assert(kvm_enabled());
2228 fd = get_htab_fd(spapr);
2229 if (fd < 0) {
2230 return fd;
2233 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2234 if (rc < 0) {
2235 return rc;
2237 } else if (spapr->htab_first_pass) {
2238 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2239 } else {
2240 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2243 htab_save_end_marker(f);
2245 return rc;
2248 static int htab_save_complete(QEMUFile *f, void *opaque)
2250 SpaprMachineState *spapr = opaque;
2251 int fd;
2253 /* Iteration header */
2254 if (!spapr->htab_shift) {
2255 qemu_put_be32(f, -1);
2256 return 0;
2257 } else {
2258 qemu_put_be32(f, 0);
2261 if (!spapr->htab) {
2262 int rc;
2264 assert(kvm_enabled());
2266 fd = get_htab_fd(spapr);
2267 if (fd < 0) {
2268 return fd;
2271 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2272 if (rc < 0) {
2273 return rc;
2275 } else {
2276 if (spapr->htab_first_pass) {
2277 htab_save_first_pass(f, spapr, -1);
2279 htab_save_later_pass(f, spapr, -1);
2282 /* End marker */
2283 htab_save_end_marker(f);
2285 return 0;
2288 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2290 SpaprMachineState *spapr = opaque;
2291 uint32_t section_hdr;
2292 int fd = -1;
2293 Error *local_err = NULL;
2295 if (version_id < 1 || version_id > 1) {
2296 error_report("htab_load() bad version");
2297 return -EINVAL;
2300 section_hdr = qemu_get_be32(f);
2302 if (section_hdr == -1) {
2303 spapr_free_hpt(spapr);
2304 return 0;
2307 if (section_hdr) {
2308 /* First section gives the htab size */
2309 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2310 if (local_err) {
2311 error_report_err(local_err);
2312 return -EINVAL;
2314 return 0;
2317 if (!spapr->htab) {
2318 assert(kvm_enabled());
2320 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2321 if (fd < 0) {
2322 error_report_err(local_err);
2323 return fd;
2327 while (true) {
2328 uint32_t index;
2329 uint16_t n_valid, n_invalid;
2331 index = qemu_get_be32(f);
2332 n_valid = qemu_get_be16(f);
2333 n_invalid = qemu_get_be16(f);
2335 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2336 /* End of Stream */
2337 break;
2340 if ((index + n_valid + n_invalid) >
2341 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2342 /* Bad index in stream */
2343 error_report(
2344 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2345 index, n_valid, n_invalid, spapr->htab_shift);
2346 return -EINVAL;
2349 if (spapr->htab) {
2350 if (n_valid) {
2351 qemu_get_buffer(f, HPTE(spapr->htab, index),
2352 HASH_PTE_SIZE_64 * n_valid);
2354 if (n_invalid) {
2355 memset(HPTE(spapr->htab, index + n_valid), 0,
2356 HASH_PTE_SIZE_64 * n_invalid);
2358 } else {
2359 int rc;
2361 assert(fd >= 0);
2363 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2364 if (rc < 0) {
2365 return rc;
2370 if (!spapr->htab) {
2371 assert(fd >= 0);
2372 close(fd);
2375 return 0;
2378 static void htab_save_cleanup(void *opaque)
2380 SpaprMachineState *spapr = opaque;
2382 close_htab_fd(spapr);
2385 static SaveVMHandlers savevm_htab_handlers = {
2386 .save_setup = htab_save_setup,
2387 .save_live_iterate = htab_save_iterate,
2388 .save_live_complete_precopy = htab_save_complete,
2389 .save_cleanup = htab_save_cleanup,
2390 .load_state = htab_load,
2393 static void spapr_boot_set(void *opaque, const char *boot_device,
2394 Error **errp)
2396 MachineState *machine = MACHINE(opaque);
2397 machine->boot_order = g_strdup(boot_device);
2400 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2402 MachineState *machine = MACHINE(spapr);
2403 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2404 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2405 int i;
2407 for (i = 0; i < nr_lmbs; i++) {
2408 uint64_t addr;
2410 addr = i * lmb_size + machine->device_memory->base;
2411 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2412 addr / lmb_size);
2417 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2418 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2419 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2421 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2423 int i;
2425 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2426 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2427 " is not aligned to %" PRIu64 " MiB",
2428 machine->ram_size,
2429 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2430 return;
2433 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2434 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2435 " is not aligned to %" PRIu64 " MiB",
2436 machine->ram_size,
2437 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2438 return;
2441 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2442 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2443 error_setg(errp,
2444 "Node %d memory size 0x%" PRIx64
2445 " is not aligned to %" PRIu64 " MiB",
2446 i, machine->numa_state->nodes[i].node_mem,
2447 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2448 return;
2453 /* find cpu slot in machine->possible_cpus by core_id */
2454 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2456 int index = id / ms->smp.threads;
2458 if (index >= ms->possible_cpus->len) {
2459 return NULL;
2461 if (idx) {
2462 *idx = index;
2464 return &ms->possible_cpus->cpus[index];
2467 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2469 MachineState *ms = MACHINE(spapr);
2470 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2471 Error *local_err = NULL;
2472 bool vsmt_user = !!spapr->vsmt;
2473 int kvm_smt = kvmppc_smt_threads();
2474 int ret;
2475 unsigned int smp_threads = ms->smp.threads;
2477 if (!kvm_enabled() && (smp_threads > 1)) {
2478 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2479 "on a pseries machine");
2480 goto out;
2482 if (!is_power_of_2(smp_threads)) {
2483 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2484 "machine because it must be a power of 2", smp_threads);
2485 goto out;
2488 /* Detemine the VSMT mode to use: */
2489 if (vsmt_user) {
2490 if (spapr->vsmt < smp_threads) {
2491 error_setg(&local_err, "Cannot support VSMT mode %d"
2492 " because it must be >= threads/core (%d)",
2493 spapr->vsmt, smp_threads);
2494 goto out;
2496 /* In this case, spapr->vsmt has been set by the command line */
2497 } else if (!smc->smp_threads_vsmt) {
2499 * Default VSMT value is tricky, because we need it to be as
2500 * consistent as possible (for migration), but this requires
2501 * changing it for at least some existing cases. We pick 8 as
2502 * the value that we'd get with KVM on POWER8, the
2503 * overwhelmingly common case in production systems.
2505 spapr->vsmt = MAX(8, smp_threads);
2506 } else {
2507 spapr->vsmt = smp_threads;
2510 /* KVM: If necessary, set the SMT mode: */
2511 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2512 ret = kvmppc_set_smt_threads(spapr->vsmt);
2513 if (ret) {
2514 /* Looks like KVM isn't able to change VSMT mode */
2515 error_setg(&local_err,
2516 "Failed to set KVM's VSMT mode to %d (errno %d)",
2517 spapr->vsmt, ret);
2518 /* We can live with that if the default one is big enough
2519 * for the number of threads, and a submultiple of the one
2520 * we want. In this case we'll waste some vcpu ids, but
2521 * behaviour will be correct */
2522 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2523 warn_report_err(local_err);
2524 local_err = NULL;
2525 goto out;
2526 } else {
2527 if (!vsmt_user) {
2528 error_append_hint(&local_err,
2529 "On PPC, a VM with %d threads/core"
2530 " on a host with %d threads/core"
2531 " requires the use of VSMT mode %d.\n",
2532 smp_threads, kvm_smt, spapr->vsmt);
2534 kvmppc_error_append_smt_possible_hint(&local_err);
2535 goto out;
2539 /* else TCG: nothing to do currently */
2540 out:
2541 error_propagate(errp, local_err);
2544 static void spapr_init_cpus(SpaprMachineState *spapr)
2546 MachineState *machine = MACHINE(spapr);
2547 MachineClass *mc = MACHINE_GET_CLASS(machine);
2548 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2549 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2550 const CPUArchIdList *possible_cpus;
2551 unsigned int smp_cpus = machine->smp.cpus;
2552 unsigned int smp_threads = machine->smp.threads;
2553 unsigned int max_cpus = machine->smp.max_cpus;
2554 int boot_cores_nr = smp_cpus / smp_threads;
2555 int i;
2557 possible_cpus = mc->possible_cpu_arch_ids(machine);
2558 if (mc->has_hotpluggable_cpus) {
2559 if (smp_cpus % smp_threads) {
2560 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2561 smp_cpus, smp_threads);
2562 exit(1);
2564 if (max_cpus % smp_threads) {
2565 error_report("max_cpus (%u) must be multiple of threads (%u)",
2566 max_cpus, smp_threads);
2567 exit(1);
2569 } else {
2570 if (max_cpus != smp_cpus) {
2571 error_report("This machine version does not support CPU hotplug");
2572 exit(1);
2574 boot_cores_nr = possible_cpus->len;
2577 if (smc->pre_2_10_has_unused_icps) {
2578 int i;
2580 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2581 /* Dummy entries get deregistered when real ICPState objects
2582 * are registered during CPU core hotplug.
2584 pre_2_10_vmstate_register_dummy_icp(i);
2588 for (i = 0; i < possible_cpus->len; i++) {
2589 int core_id = i * smp_threads;
2591 if (mc->has_hotpluggable_cpus) {
2592 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2593 spapr_vcpu_id(spapr, core_id));
2596 if (i < boot_cores_nr) {
2597 Object *core = object_new(type);
2598 int nr_threads = smp_threads;
2600 /* Handle the partially filled core for older machine types */
2601 if ((i + 1) * smp_threads >= smp_cpus) {
2602 nr_threads = smp_cpus - i * smp_threads;
2605 object_property_set_int(core, nr_threads, "nr-threads",
2606 &error_fatal);
2607 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2608 &error_fatal);
2609 object_property_set_bool(core, true, "realized", &error_fatal);
2611 object_unref(core);
2616 static PCIHostState *spapr_create_default_phb(void)
2618 DeviceState *dev;
2620 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2621 qdev_prop_set_uint32(dev, "index", 0);
2622 qdev_init_nofail(dev);
2624 return PCI_HOST_BRIDGE(dev);
2627 /* pSeries LPAR / sPAPR hardware init */
2628 static void spapr_machine_init(MachineState *machine)
2630 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2631 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2632 const char *kernel_filename = machine->kernel_filename;
2633 const char *initrd_filename = machine->initrd_filename;
2634 PCIHostState *phb;
2635 int i;
2636 MemoryRegion *sysmem = get_system_memory();
2637 MemoryRegion *ram = g_new(MemoryRegion, 1);
2638 hwaddr node0_size = spapr_node0_size(machine);
2639 long load_limit, fw_size;
2640 char *filename;
2641 Error *resize_hpt_err = NULL;
2643 msi_nonbroken = true;
2645 QLIST_INIT(&spapr->phbs);
2646 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2648 /* Determine capabilities to run with */
2649 spapr_caps_init(spapr);
2651 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2652 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2654 * If the user explicitly requested a mode we should either
2655 * supply it, or fail completely (which we do below). But if
2656 * it's not set explicitly, we reset our mode to something
2657 * that works
2659 if (resize_hpt_err) {
2660 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2661 error_free(resize_hpt_err);
2662 resize_hpt_err = NULL;
2663 } else {
2664 spapr->resize_hpt = smc->resize_hpt_default;
2668 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2670 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2672 * User requested HPT resize, but this host can't supply it. Bail out
2674 error_report_err(resize_hpt_err);
2675 exit(1);
2678 spapr->rma_size = node0_size;
2680 /* With KVM, we don't actually know whether KVM supports an
2681 * unbounded RMA (PR KVM) or is limited by the hash table size
2682 * (HV KVM using VRMA), so we always assume the latter
2684 * In that case, we also limit the initial allocations for RTAS
2685 * etc... to 256M since we have no way to know what the VRMA size
2686 * is going to be as it depends on the size of the hash table
2687 * which isn't determined yet.
2689 if (kvm_enabled()) {
2690 spapr->vrma_adjust = 1;
2691 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2694 /* Actually we don't support unbounded RMA anymore since we added
2695 * proper emulation of HV mode. The max we can get is 16G which
2696 * also happens to be what we configure for PAPR mode so make sure
2697 * we don't do anything bigger than that
2699 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2701 if (spapr->rma_size > node0_size) {
2702 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2703 spapr->rma_size);
2704 exit(1);
2707 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2708 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2711 * VSMT must be set in order to be able to compute VCPU ids, ie to
2712 * call spapr_max_server_number() or spapr_vcpu_id().
2714 spapr_set_vsmt_mode(spapr, &error_fatal);
2716 /* Set up Interrupt Controller before we create the VCPUs */
2717 spapr_irq_init(spapr, &error_fatal);
2719 /* Set up containers for ibm,client-architecture-support negotiated options
2721 spapr->ov5 = spapr_ovec_new();
2722 spapr->ov5_cas = spapr_ovec_new();
2724 if (smc->dr_lmb_enabled) {
2725 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2726 spapr_validate_node_memory(machine, &error_fatal);
2729 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2731 /* advertise support for dedicated HP event source to guests */
2732 if (spapr->use_hotplug_event_source) {
2733 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2736 /* advertise support for HPT resizing */
2737 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2738 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2741 /* advertise support for ibm,dyamic-memory-v2 */
2742 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2744 /* advertise XIVE on POWER9 machines */
2745 if (spapr->irq->xive) {
2746 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2749 /* init CPUs */
2750 spapr_init_cpus(spapr);
2753 * check we don't have a memory-less/cpu-less NUMA node
2754 * Firmware relies on the existing memory/cpu topology to provide the
2755 * NUMA topology to the kernel.
2756 * And the linux kernel needs to know the NUMA topology at start
2757 * to be able to hotplug CPUs later.
2759 if (machine->numa_state->num_nodes) {
2760 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2761 /* check for memory-less node */
2762 if (machine->numa_state->nodes[i].node_mem == 0) {
2763 CPUState *cs;
2764 int found = 0;
2765 /* check for cpu-less node */
2766 CPU_FOREACH(cs) {
2767 PowerPCCPU *cpu = POWERPC_CPU(cs);
2768 if (cpu->node_id == i) {
2769 found = 1;
2770 break;
2773 /* memory-less and cpu-less node */
2774 if (!found) {
2775 error_report(
2776 "Memory-less/cpu-less nodes are not supported (node %d)",
2778 exit(1);
2786 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2787 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2788 * called from vPHB reset handler so we initialize the counter here.
2789 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2790 * must be equally distant from any other node.
2791 * The final value of spapr->gpu_numa_id is going to be written to
2792 * max-associativity-domains in spapr_build_fdt().
2794 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2796 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2797 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2798 spapr->max_compat_pvr)) {
2799 /* KVM and TCG always allow GTSE with radix... */
2800 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2802 /* ... but not with hash (currently). */
2804 if (kvm_enabled()) {
2805 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2806 kvmppc_enable_logical_ci_hcalls();
2807 kvmppc_enable_set_mode_hcall();
2809 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2810 kvmppc_enable_clear_ref_mod_hcalls();
2812 /* Enable H_PAGE_INIT */
2813 kvmppc_enable_h_page_init();
2816 /* allocate RAM */
2817 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2818 machine->ram_size);
2819 memory_region_add_subregion(sysmem, 0, ram);
2821 /* always allocate the device memory information */
2822 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2824 /* initialize hotplug memory address space */
2825 if (machine->ram_size < machine->maxram_size) {
2826 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2828 * Limit the number of hotpluggable memory slots to half the number
2829 * slots that KVM supports, leaving the other half for PCI and other
2830 * devices. However ensure that number of slots doesn't drop below 32.
2832 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2833 SPAPR_MAX_RAM_SLOTS;
2835 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2836 max_memslots = SPAPR_MAX_RAM_SLOTS;
2838 if (machine->ram_slots > max_memslots) {
2839 error_report("Specified number of memory slots %"
2840 PRIu64" exceeds max supported %d",
2841 machine->ram_slots, max_memslots);
2842 exit(1);
2845 machine->device_memory->base = ROUND_UP(machine->ram_size,
2846 SPAPR_DEVICE_MEM_ALIGN);
2847 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2848 "device-memory", device_mem_size);
2849 memory_region_add_subregion(sysmem, machine->device_memory->base,
2850 &machine->device_memory->mr);
2853 if (smc->dr_lmb_enabled) {
2854 spapr_create_lmb_dr_connectors(spapr);
2857 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI_MCE) == SPAPR_CAP_ON) {
2858 /* Create the error string for live migration blocker */
2859 error_setg(&spapr->fwnmi_migration_blocker,
2860 "A machine check is being handled during migration. The handler"
2861 "may run and log hardware error on the destination");
2864 /* Set up RTAS event infrastructure */
2865 spapr_events_init(spapr);
2867 /* Set up the RTC RTAS interfaces */
2868 spapr_rtc_create(spapr);
2870 /* Set up VIO bus */
2871 spapr->vio_bus = spapr_vio_bus_init();
2873 for (i = 0; i < serial_max_hds(); i++) {
2874 if (serial_hd(i)) {
2875 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2879 /* We always have at least the nvram device on VIO */
2880 spapr_create_nvram(spapr);
2883 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2884 * connectors (described in root DT node's "ibm,drc-types" property)
2885 * are pre-initialized here. additional child connectors (such as
2886 * connectors for a PHBs PCI slots) are added as needed during their
2887 * parent's realization.
2889 if (smc->dr_phb_enabled) {
2890 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2891 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2895 /* Set up PCI */
2896 spapr_pci_rtas_init();
2898 phb = spapr_create_default_phb();
2900 for (i = 0; i < nb_nics; i++) {
2901 NICInfo *nd = &nd_table[i];
2903 if (!nd->model) {
2904 nd->model = g_strdup("spapr-vlan");
2907 if (g_str_equal(nd->model, "spapr-vlan") ||
2908 g_str_equal(nd->model, "ibmveth")) {
2909 spapr_vlan_create(spapr->vio_bus, nd);
2910 } else {
2911 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2915 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2916 spapr_vscsi_create(spapr->vio_bus);
2919 /* Graphics */
2920 if (spapr_vga_init(phb->bus, &error_fatal)) {
2921 spapr->has_graphics = true;
2922 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2925 if (machine->usb) {
2926 if (smc->use_ohci_by_default) {
2927 pci_create_simple(phb->bus, -1, "pci-ohci");
2928 } else {
2929 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2932 if (spapr->has_graphics) {
2933 USBBus *usb_bus = usb_bus_find(-1);
2935 usb_create_simple(usb_bus, "usb-kbd");
2936 usb_create_simple(usb_bus, "usb-mouse");
2940 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2941 error_report(
2942 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2943 MIN_RMA_SLOF);
2944 exit(1);
2947 if (kernel_filename) {
2948 uint64_t lowaddr = 0;
2950 spapr->kernel_size = load_elf(kernel_filename, NULL,
2951 translate_kernel_address, NULL,
2952 NULL, &lowaddr, NULL, NULL, 1,
2953 PPC_ELF_MACHINE, 0, 0);
2954 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2955 spapr->kernel_size = load_elf(kernel_filename, NULL,
2956 translate_kernel_address, NULL, NULL,
2957 &lowaddr, NULL, NULL, 0,
2958 PPC_ELF_MACHINE, 0, 0);
2959 spapr->kernel_le = spapr->kernel_size > 0;
2961 if (spapr->kernel_size < 0) {
2962 error_report("error loading %s: %s", kernel_filename,
2963 load_elf_strerror(spapr->kernel_size));
2964 exit(1);
2967 /* load initrd */
2968 if (initrd_filename) {
2969 /* Try to locate the initrd in the gap between the kernel
2970 * and the firmware. Add a bit of space just in case
2972 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2973 + 0x1ffff) & ~0xffff;
2974 spapr->initrd_size = load_image_targphys(initrd_filename,
2975 spapr->initrd_base,
2976 load_limit
2977 - spapr->initrd_base);
2978 if (spapr->initrd_size < 0) {
2979 error_report("could not load initial ram disk '%s'",
2980 initrd_filename);
2981 exit(1);
2986 if (bios_name == NULL) {
2987 bios_name = FW_FILE_NAME;
2989 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2990 if (!filename) {
2991 error_report("Could not find LPAR firmware '%s'", bios_name);
2992 exit(1);
2994 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2995 if (fw_size <= 0) {
2996 error_report("Could not load LPAR firmware '%s'", filename);
2997 exit(1);
2999 g_free(filename);
3001 /* FIXME: Should register things through the MachineState's qdev
3002 * interface, this is a legacy from the sPAPREnvironment structure
3003 * which predated MachineState but had a similar function */
3004 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3005 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3006 &savevm_htab_handlers, spapr);
3008 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3009 &error_fatal);
3011 qemu_register_boot_set(spapr_boot_set, spapr);
3014 * Nothing needs to be done to resume a suspended guest because
3015 * suspending does not change the machine state, so no need for
3016 * a ->wakeup method.
3018 qemu_register_wakeup_support();
3020 if (kvm_enabled()) {
3021 /* to stop and start vmclock */
3022 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3023 &spapr->tb);
3025 kvmppc_spapr_enable_inkernel_multitce();
3028 qemu_cond_init(&spapr->mc_delivery_cond);
3031 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3033 if (!vm_type) {
3034 return 0;
3037 if (!strcmp(vm_type, "HV")) {
3038 return 1;
3041 if (!strcmp(vm_type, "PR")) {
3042 return 2;
3045 error_report("Unknown kvm-type specified '%s'", vm_type);
3046 exit(1);
3050 * Implementation of an interface to adjust firmware path
3051 * for the bootindex property handling.
3053 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3054 DeviceState *dev)
3056 #define CAST(type, obj, name) \
3057 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3058 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3059 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3060 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3062 if (d) {
3063 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3064 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3065 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3067 if (spapr) {
3069 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3070 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3071 * 0x8000 | (target << 8) | (bus << 5) | lun
3072 * (see the "Logical unit addressing format" table in SAM5)
3074 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3075 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3076 (uint64_t)id << 48);
3077 } else if (virtio) {
3079 * We use SRP luns of the form 01000000 | (target << 8) | lun
3080 * in the top 32 bits of the 64-bit LUN
3081 * Note: the quote above is from SLOF and it is wrong,
3082 * the actual binding is:
3083 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3085 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3086 if (d->lun >= 256) {
3087 /* Use the LUN "flat space addressing method" */
3088 id |= 0x4000;
3090 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3091 (uint64_t)id << 32);
3092 } else if (usb) {
3094 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3095 * in the top 32 bits of the 64-bit LUN
3097 unsigned usb_port = atoi(usb->port->path);
3098 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3099 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3100 (uint64_t)id << 32);
3105 * SLOF probes the USB devices, and if it recognizes that the device is a
3106 * storage device, it changes its name to "storage" instead of "usb-host",
3107 * and additionally adds a child node for the SCSI LUN, so the correct
3108 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3110 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3111 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3112 if (usb_host_dev_is_scsi_storage(usbdev)) {
3113 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3117 if (phb) {
3118 /* Replace "pci" with "pci@800000020000000" */
3119 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3122 if (vsc) {
3123 /* Same logic as virtio above */
3124 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3125 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3128 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3129 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3130 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3131 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3134 return NULL;
3137 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3139 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3141 return g_strdup(spapr->kvm_type);
3144 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3146 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3148 g_free(spapr->kvm_type);
3149 spapr->kvm_type = g_strdup(value);
3152 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3154 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3156 return spapr->use_hotplug_event_source;
3159 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3160 Error **errp)
3162 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3164 spapr->use_hotplug_event_source = value;
3167 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3169 return true;
3172 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3174 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3176 switch (spapr->resize_hpt) {
3177 case SPAPR_RESIZE_HPT_DEFAULT:
3178 return g_strdup("default");
3179 case SPAPR_RESIZE_HPT_DISABLED:
3180 return g_strdup("disabled");
3181 case SPAPR_RESIZE_HPT_ENABLED:
3182 return g_strdup("enabled");
3183 case SPAPR_RESIZE_HPT_REQUIRED:
3184 return g_strdup("required");
3186 g_assert_not_reached();
3189 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3191 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3193 if (strcmp(value, "default") == 0) {
3194 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3195 } else if (strcmp(value, "disabled") == 0) {
3196 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3197 } else if (strcmp(value, "enabled") == 0) {
3198 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3199 } else if (strcmp(value, "required") == 0) {
3200 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3201 } else {
3202 error_setg(errp, "Bad value for \"resize-hpt\" property");
3206 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3207 void *opaque, Error **errp)
3209 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3212 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3213 void *opaque, Error **errp)
3215 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3218 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3222 if (spapr->irq == &spapr_irq_xics_legacy) {
3223 return g_strdup("legacy");
3224 } else if (spapr->irq == &spapr_irq_xics) {
3225 return g_strdup("xics");
3226 } else if (spapr->irq == &spapr_irq_xive) {
3227 return g_strdup("xive");
3228 } else if (spapr->irq == &spapr_irq_dual) {
3229 return g_strdup("dual");
3231 g_assert_not_reached();
3234 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3238 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3239 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3240 return;
3243 /* The legacy IRQ backend can not be set */
3244 if (strcmp(value, "xics") == 0) {
3245 spapr->irq = &spapr_irq_xics;
3246 } else if (strcmp(value, "xive") == 0) {
3247 spapr->irq = &spapr_irq_xive;
3248 } else if (strcmp(value, "dual") == 0) {
3249 spapr->irq = &spapr_irq_dual;
3250 } else {
3251 error_setg(errp, "Bad value for \"ic-mode\" property");
3255 static char *spapr_get_host_model(Object *obj, Error **errp)
3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 return g_strdup(spapr->host_model);
3262 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3264 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3266 g_free(spapr->host_model);
3267 spapr->host_model = g_strdup(value);
3270 static char *spapr_get_host_serial(Object *obj, Error **errp)
3272 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3274 return g_strdup(spapr->host_serial);
3277 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3279 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3281 g_free(spapr->host_serial);
3282 spapr->host_serial = g_strdup(value);
3285 static void spapr_instance_init(Object *obj)
3287 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3288 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3290 spapr->htab_fd = -1;
3291 spapr->use_hotplug_event_source = true;
3292 object_property_add_str(obj, "kvm-type",
3293 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3294 object_property_set_description(obj, "kvm-type",
3295 "Specifies the KVM virtualization mode (HV, PR)",
3296 NULL);
3297 object_property_add_bool(obj, "modern-hotplug-events",
3298 spapr_get_modern_hotplug_events,
3299 spapr_set_modern_hotplug_events,
3300 NULL);
3301 object_property_set_description(obj, "modern-hotplug-events",
3302 "Use dedicated hotplug event mechanism in"
3303 " place of standard EPOW events when possible"
3304 " (required for memory hot-unplug support)",
3305 NULL);
3306 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3307 "Maximum permitted CPU compatibility mode",
3308 &error_fatal);
3310 object_property_add_str(obj, "resize-hpt",
3311 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3312 object_property_set_description(obj, "resize-hpt",
3313 "Resizing of the Hash Page Table (enabled, disabled, required)",
3314 NULL);
3315 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3316 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3317 object_property_set_description(obj, "vsmt",
3318 "Virtual SMT: KVM behaves as if this were"
3319 " the host's SMT mode", &error_abort);
3320 object_property_add_bool(obj, "vfio-no-msix-emulation",
3321 spapr_get_msix_emulation, NULL, NULL);
3323 /* The machine class defines the default interrupt controller mode */
3324 spapr->irq = smc->irq;
3325 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3326 spapr_set_ic_mode, NULL);
3327 object_property_set_description(obj, "ic-mode",
3328 "Specifies the interrupt controller mode (xics, xive, dual)",
3329 NULL);
3331 object_property_add_str(obj, "host-model",
3332 spapr_get_host_model, spapr_set_host_model,
3333 &error_abort);
3334 object_property_set_description(obj, "host-model",
3335 "Host model to advertise in guest device tree", &error_abort);
3336 object_property_add_str(obj, "host-serial",
3337 spapr_get_host_serial, spapr_set_host_serial,
3338 &error_abort);
3339 object_property_set_description(obj, "host-serial",
3340 "Host serial number to advertise in guest device tree", &error_abort);
3343 static void spapr_machine_finalizefn(Object *obj)
3345 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3347 g_free(spapr->kvm_type);
3350 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3352 cpu_synchronize_state(cs);
3353 ppc_cpu_do_system_reset(cs);
3356 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3358 CPUState *cs;
3360 CPU_FOREACH(cs) {
3361 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3365 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3366 void *fdt, int *fdt_start_offset, Error **errp)
3368 uint64_t addr;
3369 uint32_t node;
3371 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3372 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3373 &error_abort);
3374 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3375 SPAPR_MEMORY_BLOCK_SIZE);
3376 return 0;
3379 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3380 bool dedicated_hp_event_source, Error **errp)
3382 SpaprDrc *drc;
3383 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3384 int i;
3385 uint64_t addr = addr_start;
3386 bool hotplugged = spapr_drc_hotplugged(dev);
3387 Error *local_err = NULL;
3389 for (i = 0; i < nr_lmbs; i++) {
3390 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3391 addr / SPAPR_MEMORY_BLOCK_SIZE);
3392 g_assert(drc);
3394 spapr_drc_attach(drc, dev, &local_err);
3395 if (local_err) {
3396 while (addr > addr_start) {
3397 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3398 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3399 addr / SPAPR_MEMORY_BLOCK_SIZE);
3400 spapr_drc_detach(drc);
3402 error_propagate(errp, local_err);
3403 return;
3405 if (!hotplugged) {
3406 spapr_drc_reset(drc);
3408 addr += SPAPR_MEMORY_BLOCK_SIZE;
3410 /* send hotplug notification to the
3411 * guest only in case of hotplugged memory
3413 if (hotplugged) {
3414 if (dedicated_hp_event_source) {
3415 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3416 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3417 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3418 nr_lmbs,
3419 spapr_drc_index(drc));
3420 } else {
3421 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3422 nr_lmbs);
3427 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3428 Error **errp)
3430 Error *local_err = NULL;
3431 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3432 PCDIMMDevice *dimm = PC_DIMM(dev);
3433 uint64_t size, addr;
3435 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3437 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3438 if (local_err) {
3439 goto out;
3442 addr = object_property_get_uint(OBJECT(dimm),
3443 PC_DIMM_ADDR_PROP, &local_err);
3444 if (local_err) {
3445 goto out_unplug;
3448 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3449 &local_err);
3450 if (local_err) {
3451 goto out_unplug;
3454 return;
3456 out_unplug:
3457 pc_dimm_unplug(dimm, MACHINE(ms));
3458 out:
3459 error_propagate(errp, local_err);
3462 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3463 Error **errp)
3465 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3466 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3467 PCDIMMDevice *dimm = PC_DIMM(dev);
3468 Error *local_err = NULL;
3469 uint64_t size;
3470 Object *memdev;
3471 hwaddr pagesize;
3473 if (!smc->dr_lmb_enabled) {
3474 error_setg(errp, "Memory hotplug not supported for this machine");
3475 return;
3478 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3479 if (local_err) {
3480 error_propagate(errp, local_err);
3481 return;
3484 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3485 error_setg(errp, "Hotplugged memory size must be a multiple of "
3486 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3487 return;
3490 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3491 &error_abort);
3492 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3493 spapr_check_pagesize(spapr, pagesize, &local_err);
3494 if (local_err) {
3495 error_propagate(errp, local_err);
3496 return;
3499 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3502 struct SpaprDimmState {
3503 PCDIMMDevice *dimm;
3504 uint32_t nr_lmbs;
3505 QTAILQ_ENTRY(SpaprDimmState) next;
3508 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3509 PCDIMMDevice *dimm)
3511 SpaprDimmState *dimm_state = NULL;
3513 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3514 if (dimm_state->dimm == dimm) {
3515 break;
3518 return dimm_state;
3521 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3522 uint32_t nr_lmbs,
3523 PCDIMMDevice *dimm)
3525 SpaprDimmState *ds = NULL;
3528 * If this request is for a DIMM whose removal had failed earlier
3529 * (due to guest's refusal to remove the LMBs), we would have this
3530 * dimm already in the pending_dimm_unplugs list. In that
3531 * case don't add again.
3533 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3534 if (!ds) {
3535 ds = g_malloc0(sizeof(SpaprDimmState));
3536 ds->nr_lmbs = nr_lmbs;
3537 ds->dimm = dimm;
3538 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3540 return ds;
3543 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3544 SpaprDimmState *dimm_state)
3546 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3547 g_free(dimm_state);
3550 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3551 PCDIMMDevice *dimm)
3553 SpaprDrc *drc;
3554 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3555 &error_abort);
3556 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3557 uint32_t avail_lmbs = 0;
3558 uint64_t addr_start, addr;
3559 int i;
3561 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3562 &error_abort);
3564 addr = addr_start;
3565 for (i = 0; i < nr_lmbs; i++) {
3566 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3567 addr / SPAPR_MEMORY_BLOCK_SIZE);
3568 g_assert(drc);
3569 if (drc->dev) {
3570 avail_lmbs++;
3572 addr += SPAPR_MEMORY_BLOCK_SIZE;
3575 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3578 /* Callback to be called during DRC release. */
3579 void spapr_lmb_release(DeviceState *dev)
3581 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3582 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3583 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3585 /* This information will get lost if a migration occurs
3586 * during the unplug process. In this case recover it. */
3587 if (ds == NULL) {
3588 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3589 g_assert(ds);
3590 /* The DRC being examined by the caller at least must be counted */
3591 g_assert(ds->nr_lmbs);
3594 if (--ds->nr_lmbs) {
3595 return;
3599 * Now that all the LMBs have been removed by the guest, call the
3600 * unplug handler chain. This can never fail.
3602 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3603 object_unparent(OBJECT(dev));
3606 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3608 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3609 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3611 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3612 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3613 spapr_pending_dimm_unplugs_remove(spapr, ds);
3616 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3617 DeviceState *dev, Error **errp)
3619 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3620 Error *local_err = NULL;
3621 PCDIMMDevice *dimm = PC_DIMM(dev);
3622 uint32_t nr_lmbs;
3623 uint64_t size, addr_start, addr;
3624 int i;
3625 SpaprDrc *drc;
3627 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3628 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3630 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3631 &local_err);
3632 if (local_err) {
3633 goto out;
3637 * An existing pending dimm state for this DIMM means that there is an
3638 * unplug operation in progress, waiting for the spapr_lmb_release
3639 * callback to complete the job (BQL can't cover that far). In this case,
3640 * bail out to avoid detaching DRCs that were already released.
3642 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3643 error_setg(&local_err,
3644 "Memory unplug already in progress for device %s",
3645 dev->id);
3646 goto out;
3649 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3651 addr = addr_start;
3652 for (i = 0; i < nr_lmbs; i++) {
3653 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3654 addr / SPAPR_MEMORY_BLOCK_SIZE);
3655 g_assert(drc);
3657 spapr_drc_detach(drc);
3658 addr += SPAPR_MEMORY_BLOCK_SIZE;
3661 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3662 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3663 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3664 nr_lmbs, spapr_drc_index(drc));
3665 out:
3666 error_propagate(errp, local_err);
3669 /* Callback to be called during DRC release. */
3670 void spapr_core_release(DeviceState *dev)
3672 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3674 /* Call the unplug handler chain. This can never fail. */
3675 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3676 object_unparent(OBJECT(dev));
3679 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3681 MachineState *ms = MACHINE(hotplug_dev);
3682 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3683 CPUCore *cc = CPU_CORE(dev);
3684 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3686 if (smc->pre_2_10_has_unused_icps) {
3687 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3688 int i;
3690 for (i = 0; i < cc->nr_threads; i++) {
3691 CPUState *cs = CPU(sc->threads[i]);
3693 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3697 assert(core_slot);
3698 core_slot->cpu = NULL;
3699 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3702 static
3703 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3704 Error **errp)
3706 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3707 int index;
3708 SpaprDrc *drc;
3709 CPUCore *cc = CPU_CORE(dev);
3711 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3712 error_setg(errp, "Unable to find CPU core with core-id: %d",
3713 cc->core_id);
3714 return;
3716 if (index == 0) {
3717 error_setg(errp, "Boot CPU core may not be unplugged");
3718 return;
3721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3722 spapr_vcpu_id(spapr, cc->core_id));
3723 g_assert(drc);
3725 if (!spapr_drc_unplug_requested(drc)) {
3726 spapr_drc_detach(drc);
3727 spapr_hotplug_req_remove_by_index(drc);
3731 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3732 void *fdt, int *fdt_start_offset, Error **errp)
3734 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3735 CPUState *cs = CPU(core->threads[0]);
3736 PowerPCCPU *cpu = POWERPC_CPU(cs);
3737 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3738 int id = spapr_get_vcpu_id(cpu);
3739 char *nodename;
3740 int offset;
3742 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3743 offset = fdt_add_subnode(fdt, 0, nodename);
3744 g_free(nodename);
3746 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3748 *fdt_start_offset = offset;
3749 return 0;
3752 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3753 Error **errp)
3755 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3756 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3757 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3758 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3759 CPUCore *cc = CPU_CORE(dev);
3760 CPUState *cs;
3761 SpaprDrc *drc;
3762 Error *local_err = NULL;
3763 CPUArchId *core_slot;
3764 int index;
3765 bool hotplugged = spapr_drc_hotplugged(dev);
3766 int i;
3768 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3769 if (!core_slot) {
3770 error_setg(errp, "Unable to find CPU core with core-id: %d",
3771 cc->core_id);
3772 return;
3774 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3775 spapr_vcpu_id(spapr, cc->core_id));
3777 g_assert(drc || !mc->has_hotpluggable_cpus);
3779 if (drc) {
3780 spapr_drc_attach(drc, dev, &local_err);
3781 if (local_err) {
3782 error_propagate(errp, local_err);
3783 return;
3786 if (hotplugged) {
3788 * Send hotplug notification interrupt to the guest only
3789 * in case of hotplugged CPUs.
3791 spapr_hotplug_req_add_by_index(drc);
3792 } else {
3793 spapr_drc_reset(drc);
3797 core_slot->cpu = OBJECT(dev);
3799 if (smc->pre_2_10_has_unused_icps) {
3800 for (i = 0; i < cc->nr_threads; i++) {
3801 cs = CPU(core->threads[i]);
3802 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3807 * Set compatibility mode to match the boot CPU, which was either set
3808 * by the machine reset code or by CAS.
3810 if (hotplugged) {
3811 for (i = 0; i < cc->nr_threads; i++) {
3812 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3813 &local_err);
3814 if (local_err) {
3815 error_propagate(errp, local_err);
3816 return;
3822 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3823 Error **errp)
3825 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3826 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3827 Error *local_err = NULL;
3828 CPUCore *cc = CPU_CORE(dev);
3829 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3830 const char *type = object_get_typename(OBJECT(dev));
3831 CPUArchId *core_slot;
3832 int index;
3833 unsigned int smp_threads = machine->smp.threads;
3835 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3836 error_setg(&local_err, "CPU hotplug not supported for this machine");
3837 goto out;
3840 if (strcmp(base_core_type, type)) {
3841 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3842 goto out;
3845 if (cc->core_id % smp_threads) {
3846 error_setg(&local_err, "invalid core id %d", cc->core_id);
3847 goto out;
3851 * In general we should have homogeneous threads-per-core, but old
3852 * (pre hotplug support) machine types allow the last core to have
3853 * reduced threads as a compatibility hack for when we allowed
3854 * total vcpus not a multiple of threads-per-core.
3856 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3857 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3858 cc->nr_threads, smp_threads);
3859 goto out;
3862 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3863 if (!core_slot) {
3864 error_setg(&local_err, "core id %d out of range", cc->core_id);
3865 goto out;
3868 if (core_slot->cpu) {
3869 error_setg(&local_err, "core %d already populated", cc->core_id);
3870 goto out;
3873 numa_cpu_pre_plug(core_slot, dev, &local_err);
3875 out:
3876 error_propagate(errp, local_err);
3879 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3880 void *fdt, int *fdt_start_offset, Error **errp)
3882 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3883 int intc_phandle;
3885 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3886 if (intc_phandle <= 0) {
3887 return -1;
3890 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3891 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3892 return -1;
3895 /* generally SLOF creates these, for hotplug it's up to QEMU */
3896 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3898 return 0;
3901 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3902 Error **errp)
3904 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3905 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3906 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3907 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3909 if (dev->hotplugged && !smc->dr_phb_enabled) {
3910 error_setg(errp, "PHB hotplug not supported for this machine");
3911 return;
3914 if (sphb->index == (uint32_t)-1) {
3915 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3916 return;
3920 * This will check that sphb->index doesn't exceed the maximum number of
3921 * PHBs for the current machine type.
3923 smc->phb_placement(spapr, sphb->index,
3924 &sphb->buid, &sphb->io_win_addr,
3925 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3926 windows_supported, sphb->dma_liobn,
3927 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3928 errp);
3931 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3932 Error **errp)
3934 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3935 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3936 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3937 SpaprDrc *drc;
3938 bool hotplugged = spapr_drc_hotplugged(dev);
3939 Error *local_err = NULL;
3941 if (!smc->dr_phb_enabled) {
3942 return;
3945 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3946 /* hotplug hooks should check it's enabled before getting this far */
3947 assert(drc);
3949 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3950 if (local_err) {
3951 error_propagate(errp, local_err);
3952 return;
3955 if (hotplugged) {
3956 spapr_hotplug_req_add_by_index(drc);
3957 } else {
3958 spapr_drc_reset(drc);
3962 void spapr_phb_release(DeviceState *dev)
3964 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3966 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3967 object_unparent(OBJECT(dev));
3970 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3972 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3975 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3976 DeviceState *dev, Error **errp)
3978 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3979 SpaprDrc *drc;
3981 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3982 assert(drc);
3984 if (!spapr_drc_unplug_requested(drc)) {
3985 spapr_drc_detach(drc);
3986 spapr_hotplug_req_remove_by_index(drc);
3990 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3991 Error **errp)
3993 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3994 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3996 if (spapr->tpm_proxy != NULL) {
3997 error_setg(errp, "Only one TPM proxy can be specified for this machine");
3998 return;
4001 spapr->tpm_proxy = tpm_proxy;
4004 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4006 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4008 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4009 object_unparent(OBJECT(dev));
4010 spapr->tpm_proxy = NULL;
4013 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4014 DeviceState *dev, Error **errp)
4016 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4017 spapr_memory_plug(hotplug_dev, dev, errp);
4018 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4019 spapr_core_plug(hotplug_dev, dev, errp);
4020 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4021 spapr_phb_plug(hotplug_dev, dev, errp);
4022 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4023 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4027 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4028 DeviceState *dev, Error **errp)
4030 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4031 spapr_memory_unplug(hotplug_dev, dev);
4032 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4033 spapr_core_unplug(hotplug_dev, dev);
4034 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4035 spapr_phb_unplug(hotplug_dev, dev);
4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4037 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4041 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4042 DeviceState *dev, Error **errp)
4044 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4045 MachineClass *mc = MACHINE_GET_CLASS(sms);
4046 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4048 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4049 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4050 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4051 } else {
4052 /* NOTE: this means there is a window after guest reset, prior to
4053 * CAS negotiation, where unplug requests will fail due to the
4054 * capability not being detected yet. This is a bit different than
4055 * the case with PCI unplug, where the events will be queued and
4056 * eventually handled by the guest after boot
4058 error_setg(errp, "Memory hot unplug not supported for this guest");
4060 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4061 if (!mc->has_hotpluggable_cpus) {
4062 error_setg(errp, "CPU hot unplug not supported on this machine");
4063 return;
4065 spapr_core_unplug_request(hotplug_dev, dev, errp);
4066 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4067 if (!smc->dr_phb_enabled) {
4068 error_setg(errp, "PHB hot unplug not supported on this machine");
4069 return;
4071 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4072 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4073 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4077 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4078 DeviceState *dev, Error **errp)
4080 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4081 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4083 spapr_core_pre_plug(hotplug_dev, dev, errp);
4084 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4085 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4089 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4090 DeviceState *dev)
4092 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4093 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4094 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4095 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4096 return HOTPLUG_HANDLER(machine);
4098 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4099 PCIDevice *pcidev = PCI_DEVICE(dev);
4100 PCIBus *root = pci_device_root_bus(pcidev);
4101 SpaprPhbState *phb =
4102 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4103 TYPE_SPAPR_PCI_HOST_BRIDGE);
4105 if (phb) {
4106 return HOTPLUG_HANDLER(phb);
4109 return NULL;
4112 static CpuInstanceProperties
4113 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4115 CPUArchId *core_slot;
4116 MachineClass *mc = MACHINE_GET_CLASS(machine);
4118 /* make sure possible_cpu are intialized */
4119 mc->possible_cpu_arch_ids(machine);
4120 /* get CPU core slot containing thread that matches cpu_index */
4121 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4122 assert(core_slot);
4123 return core_slot->props;
4126 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4128 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4131 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4133 int i;
4134 unsigned int smp_threads = machine->smp.threads;
4135 unsigned int smp_cpus = machine->smp.cpus;
4136 const char *core_type;
4137 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4138 MachineClass *mc = MACHINE_GET_CLASS(machine);
4140 if (!mc->has_hotpluggable_cpus) {
4141 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4143 if (machine->possible_cpus) {
4144 assert(machine->possible_cpus->len == spapr_max_cores);
4145 return machine->possible_cpus;
4148 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4149 if (!core_type) {
4150 error_report("Unable to find sPAPR CPU Core definition");
4151 exit(1);
4154 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4155 sizeof(CPUArchId) * spapr_max_cores);
4156 machine->possible_cpus->len = spapr_max_cores;
4157 for (i = 0; i < machine->possible_cpus->len; i++) {
4158 int core_id = i * smp_threads;
4160 machine->possible_cpus->cpus[i].type = core_type;
4161 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4162 machine->possible_cpus->cpus[i].arch_id = core_id;
4163 machine->possible_cpus->cpus[i].props.has_core_id = true;
4164 machine->possible_cpus->cpus[i].props.core_id = core_id;
4166 return machine->possible_cpus;
4169 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4170 uint64_t *buid, hwaddr *pio,
4171 hwaddr *mmio32, hwaddr *mmio64,
4172 unsigned n_dma, uint32_t *liobns,
4173 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4176 * New-style PHB window placement.
4178 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4179 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4180 * windows.
4182 * Some guest kernels can't work with MMIO windows above 1<<46
4183 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4185 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4186 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4187 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4188 * 1TiB 64-bit MMIO windows for each PHB.
4190 const uint64_t base_buid = 0x800000020000000ULL;
4191 int i;
4193 /* Sanity check natural alignments */
4194 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4195 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4196 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4197 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4198 /* Sanity check bounds */
4199 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4200 SPAPR_PCI_MEM32_WIN_SIZE);
4201 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4202 SPAPR_PCI_MEM64_WIN_SIZE);
4204 if (index >= SPAPR_MAX_PHBS) {
4205 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4206 SPAPR_MAX_PHBS - 1);
4207 return;
4210 *buid = base_buid + index;
4211 for (i = 0; i < n_dma; ++i) {
4212 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4215 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4216 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4217 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4219 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4220 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4223 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4225 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4227 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4230 static void spapr_ics_resend(XICSFabric *dev)
4232 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4234 ics_resend(spapr->ics);
4237 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4239 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4241 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4244 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4245 Monitor *mon)
4247 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4249 spapr_irq_print_info(spapr, mon);
4250 monitor_printf(mon, "irqchip: %s\n",
4251 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4255 * This is a XIVE only operation
4257 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4258 uint8_t nvt_blk, uint32_t nvt_idx,
4259 bool cam_ignore, uint8_t priority,
4260 uint32_t logic_serv, XiveTCTXMatch *match)
4262 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4263 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4264 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4265 int count;
4267 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4268 priority, logic_serv, match);
4269 if (count < 0) {
4270 return count;
4274 * When we implement the save and restore of the thread interrupt
4275 * contexts in the enter/exit CPU handlers of the machine and the
4276 * escalations in QEMU, we should be able to handle non dispatched
4277 * vCPUs.
4279 * Until this is done, the sPAPR machine should find at least one
4280 * matching context always.
4282 if (count == 0) {
4283 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4284 nvt_blk, nvt_idx);
4287 return count;
4290 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4292 return cpu->vcpu_id;
4295 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4297 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4298 MachineState *ms = MACHINE(spapr);
4299 int vcpu_id;
4301 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4303 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4304 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4305 error_append_hint(errp, "Adjust the number of cpus to %d "
4306 "or try to raise the number of threads per core\n",
4307 vcpu_id * ms->smp.threads / spapr->vsmt);
4308 return;
4311 cpu->vcpu_id = vcpu_id;
4314 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4316 CPUState *cs;
4318 CPU_FOREACH(cs) {
4319 PowerPCCPU *cpu = POWERPC_CPU(cs);
4321 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4322 return cpu;
4326 return NULL;
4329 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4331 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4333 /* These are only called by TCG, KVM maintains dispatch state */
4335 spapr_cpu->prod = false;
4336 if (spapr_cpu->vpa_addr) {
4337 CPUState *cs = CPU(cpu);
4338 uint32_t dispatch;
4340 dispatch = ldl_be_phys(cs->as,
4341 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4342 dispatch++;
4343 if ((dispatch & 1) != 0) {
4344 qemu_log_mask(LOG_GUEST_ERROR,
4345 "VPA: incorrect dispatch counter value for "
4346 "dispatched partition %u, correcting.\n", dispatch);
4347 dispatch++;
4349 stl_be_phys(cs->as,
4350 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4354 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4356 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4358 if (spapr_cpu->vpa_addr) {
4359 CPUState *cs = CPU(cpu);
4360 uint32_t dispatch;
4362 dispatch = ldl_be_phys(cs->as,
4363 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4364 dispatch++;
4365 if ((dispatch & 1) != 1) {
4366 qemu_log_mask(LOG_GUEST_ERROR,
4367 "VPA: incorrect dispatch counter value for "
4368 "preempted partition %u, correcting.\n", dispatch);
4369 dispatch++;
4371 stl_be_phys(cs->as,
4372 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4376 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4378 MachineClass *mc = MACHINE_CLASS(oc);
4379 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4380 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4381 NMIClass *nc = NMI_CLASS(oc);
4382 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4383 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4384 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4385 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4386 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4388 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4389 mc->ignore_boot_device_suffixes = true;
4392 * We set up the default / latest behaviour here. The class_init
4393 * functions for the specific versioned machine types can override
4394 * these details for backwards compatibility
4396 mc->init = spapr_machine_init;
4397 mc->reset = spapr_machine_reset;
4398 mc->block_default_type = IF_SCSI;
4399 mc->max_cpus = 1024;
4400 mc->no_parallel = 1;
4401 mc->default_boot_order = "";
4402 mc->default_ram_size = 512 * MiB;
4403 mc->default_display = "std";
4404 mc->kvm_type = spapr_kvm_type;
4405 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4406 mc->pci_allow_0_address = true;
4407 assert(!mc->get_hotplug_handler);
4408 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4409 hc->pre_plug = spapr_machine_device_pre_plug;
4410 hc->plug = spapr_machine_device_plug;
4411 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4412 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4413 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4414 hc->unplug_request = spapr_machine_device_unplug_request;
4415 hc->unplug = spapr_machine_device_unplug;
4417 smc->dr_lmb_enabled = true;
4418 smc->update_dt_enabled = true;
4419 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4420 mc->has_hotpluggable_cpus = true;
4421 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4422 fwc->get_dev_path = spapr_get_fw_dev_path;
4423 nc->nmi_monitor_handler = spapr_nmi;
4424 smc->phb_placement = spapr_phb_placement;
4425 vhc->hypercall = emulate_spapr_hypercall;
4426 vhc->hpt_mask = spapr_hpt_mask;
4427 vhc->map_hptes = spapr_map_hptes;
4428 vhc->unmap_hptes = spapr_unmap_hptes;
4429 vhc->hpte_set_c = spapr_hpte_set_c;
4430 vhc->hpte_set_r = spapr_hpte_set_r;
4431 vhc->get_pate = spapr_get_pate;
4432 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4433 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4434 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4435 xic->ics_get = spapr_ics_get;
4436 xic->ics_resend = spapr_ics_resend;
4437 xic->icp_get = spapr_icp_get;
4438 ispc->print_info = spapr_pic_print_info;
4439 /* Force NUMA node memory size to be a multiple of
4440 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4441 * in which LMBs are represented and hot-added
4443 mc->numa_mem_align_shift = 28;
4444 mc->numa_mem_supported = true;
4445 mc->auto_enable_numa = true;
4447 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4448 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4449 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4450 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4451 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4452 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4453 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4454 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4455 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4456 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4457 smc->default_caps.caps[SPAPR_CAP_FWNMI_MCE] = SPAPR_CAP_ON;
4458 spapr_caps_add_properties(smc, &error_abort);
4459 smc->irq = &spapr_irq_dual;
4460 smc->dr_phb_enabled = true;
4461 smc->linux_pci_probe = true;
4462 smc->smp_threads_vsmt = true;
4463 smc->nr_xirqs = SPAPR_NR_XIRQS;
4464 xfc->match_nvt = spapr_match_nvt;
4467 static const TypeInfo spapr_machine_info = {
4468 .name = TYPE_SPAPR_MACHINE,
4469 .parent = TYPE_MACHINE,
4470 .abstract = true,
4471 .instance_size = sizeof(SpaprMachineState),
4472 .instance_init = spapr_instance_init,
4473 .instance_finalize = spapr_machine_finalizefn,
4474 .class_size = sizeof(SpaprMachineClass),
4475 .class_init = spapr_machine_class_init,
4476 .interfaces = (InterfaceInfo[]) {
4477 { TYPE_FW_PATH_PROVIDER },
4478 { TYPE_NMI },
4479 { TYPE_HOTPLUG_HANDLER },
4480 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4481 { TYPE_XICS_FABRIC },
4482 { TYPE_INTERRUPT_STATS_PROVIDER },
4483 { TYPE_XIVE_FABRIC },
4488 static void spapr_machine_latest_class_options(MachineClass *mc)
4490 mc->alias = "pseries";
4491 mc->is_default = 1;
4494 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4495 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4496 void *data) \
4498 MachineClass *mc = MACHINE_CLASS(oc); \
4499 spapr_machine_##suffix##_class_options(mc); \
4500 if (latest) { \
4501 spapr_machine_latest_class_options(mc); \
4504 static const TypeInfo spapr_machine_##suffix##_info = { \
4505 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4506 .parent = TYPE_SPAPR_MACHINE, \
4507 .class_init = spapr_machine_##suffix##_class_init, \
4508 }; \
4509 static void spapr_machine_register_##suffix(void) \
4511 type_register(&spapr_machine_##suffix##_info); \
4513 type_init(spapr_machine_register_##suffix)
4516 * pseries-5.0
4518 static void spapr_machine_5_0_class_options(MachineClass *mc)
4520 /* Defaults for the latest behaviour inherited from the base class */
4523 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4526 * pseries-4.2
4528 static void spapr_machine_4_2_class_options(MachineClass *mc)
4530 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4532 spapr_machine_5_0_class_options(mc);
4533 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4534 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4535 smc->default_caps.caps[SPAPR_CAP_FWNMI_MCE] = SPAPR_CAP_OFF;
4538 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4541 * pseries-4.1
4543 static void spapr_machine_4_1_class_options(MachineClass *mc)
4545 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4546 static GlobalProperty compat[] = {
4547 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4548 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4551 spapr_machine_4_2_class_options(mc);
4552 smc->linux_pci_probe = false;
4553 smc->smp_threads_vsmt = false;
4554 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4555 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4558 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4561 * pseries-4.0
4563 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4564 uint64_t *buid, hwaddr *pio,
4565 hwaddr *mmio32, hwaddr *mmio64,
4566 unsigned n_dma, uint32_t *liobns,
4567 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4569 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4570 nv2gpa, nv2atsd, errp);
4571 *nv2gpa = 0;
4572 *nv2atsd = 0;
4575 static void spapr_machine_4_0_class_options(MachineClass *mc)
4577 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4579 spapr_machine_4_1_class_options(mc);
4580 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4581 smc->phb_placement = phb_placement_4_0;
4582 smc->irq = &spapr_irq_xics;
4583 smc->pre_4_1_migration = true;
4586 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4589 * pseries-3.1
4591 static void spapr_machine_3_1_class_options(MachineClass *mc)
4593 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4595 spapr_machine_4_0_class_options(mc);
4596 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4598 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4599 smc->update_dt_enabled = false;
4600 smc->dr_phb_enabled = false;
4601 smc->broken_host_serial_model = true;
4602 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4603 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4604 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4605 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4608 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4611 * pseries-3.0
4614 static void spapr_machine_3_0_class_options(MachineClass *mc)
4616 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4618 spapr_machine_3_1_class_options(mc);
4619 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4621 smc->legacy_irq_allocation = true;
4622 smc->nr_xirqs = 0x400;
4623 smc->irq = &spapr_irq_xics_legacy;
4626 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4629 * pseries-2.12
4631 static void spapr_machine_2_12_class_options(MachineClass *mc)
4633 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4634 static GlobalProperty compat[] = {
4635 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4636 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4639 spapr_machine_3_0_class_options(mc);
4640 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4641 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4643 /* We depend on kvm_enabled() to choose a default value for the
4644 * hpt-max-page-size capability. Of course we can't do it here
4645 * because this is too early and the HW accelerator isn't initialzed
4646 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4648 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4651 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4653 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4655 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4657 spapr_machine_2_12_class_options(mc);
4658 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4659 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4660 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4663 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4666 * pseries-2.11
4669 static void spapr_machine_2_11_class_options(MachineClass *mc)
4671 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4673 spapr_machine_2_12_class_options(mc);
4674 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4675 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4678 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4681 * pseries-2.10
4684 static void spapr_machine_2_10_class_options(MachineClass *mc)
4686 spapr_machine_2_11_class_options(mc);
4687 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4690 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4693 * pseries-2.9
4696 static void spapr_machine_2_9_class_options(MachineClass *mc)
4698 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4699 static GlobalProperty compat[] = {
4700 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4703 spapr_machine_2_10_class_options(mc);
4704 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4705 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4706 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4707 smc->pre_2_10_has_unused_icps = true;
4708 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4711 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4714 * pseries-2.8
4717 static void spapr_machine_2_8_class_options(MachineClass *mc)
4719 static GlobalProperty compat[] = {
4720 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4723 spapr_machine_2_9_class_options(mc);
4724 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4725 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4726 mc->numa_mem_align_shift = 23;
4729 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4732 * pseries-2.7
4735 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4736 uint64_t *buid, hwaddr *pio,
4737 hwaddr *mmio32, hwaddr *mmio64,
4738 unsigned n_dma, uint32_t *liobns,
4739 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4741 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4742 const uint64_t base_buid = 0x800000020000000ULL;
4743 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4744 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4745 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4746 const uint32_t max_index = 255;
4747 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4749 uint64_t ram_top = MACHINE(spapr)->ram_size;
4750 hwaddr phb0_base, phb_base;
4751 int i;
4753 /* Do we have device memory? */
4754 if (MACHINE(spapr)->maxram_size > ram_top) {
4755 /* Can't just use maxram_size, because there may be an
4756 * alignment gap between normal and device memory regions
4758 ram_top = MACHINE(spapr)->device_memory->base +
4759 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4762 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4764 if (index > max_index) {
4765 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4766 max_index);
4767 return;
4770 *buid = base_buid + index;
4771 for (i = 0; i < n_dma; ++i) {
4772 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4775 phb_base = phb0_base + index * phb_spacing;
4776 *pio = phb_base + pio_offset;
4777 *mmio32 = phb_base + mmio_offset;
4779 * We don't set the 64-bit MMIO window, relying on the PHB's
4780 * fallback behaviour of automatically splitting a large "32-bit"
4781 * window into contiguous 32-bit and 64-bit windows
4784 *nv2gpa = 0;
4785 *nv2atsd = 0;
4788 static void spapr_machine_2_7_class_options(MachineClass *mc)
4790 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4791 static GlobalProperty compat[] = {
4792 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4793 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4794 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4795 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4798 spapr_machine_2_8_class_options(mc);
4799 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4800 mc->default_machine_opts = "modern-hotplug-events=off";
4801 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4802 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4803 smc->phb_placement = phb_placement_2_7;
4806 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4809 * pseries-2.6
4812 static void spapr_machine_2_6_class_options(MachineClass *mc)
4814 static GlobalProperty compat[] = {
4815 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4818 spapr_machine_2_7_class_options(mc);
4819 mc->has_hotpluggable_cpus = false;
4820 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4821 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4824 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4827 * pseries-2.5
4830 static void spapr_machine_2_5_class_options(MachineClass *mc)
4832 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4833 static GlobalProperty compat[] = {
4834 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4837 spapr_machine_2_6_class_options(mc);
4838 smc->use_ohci_by_default = true;
4839 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4840 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4843 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4846 * pseries-2.4
4849 static void spapr_machine_2_4_class_options(MachineClass *mc)
4851 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4853 spapr_machine_2_5_class_options(mc);
4854 smc->dr_lmb_enabled = false;
4855 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4858 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4861 * pseries-2.3
4864 static void spapr_machine_2_3_class_options(MachineClass *mc)
4866 static GlobalProperty compat[] = {
4867 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4869 spapr_machine_2_4_class_options(mc);
4870 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4871 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4873 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4876 * pseries-2.2
4879 static void spapr_machine_2_2_class_options(MachineClass *mc)
4881 static GlobalProperty compat[] = {
4882 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4885 spapr_machine_2_3_class_options(mc);
4886 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4887 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4888 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4890 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4893 * pseries-2.1
4896 static void spapr_machine_2_1_class_options(MachineClass *mc)
4898 spapr_machine_2_2_class_options(mc);
4899 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4901 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4903 static void spapr_machine_register_types(void)
4905 type_register_static(&spapr_machine_info);
4908 type_init(spapr_machine_register_types)