2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
37 #include "qom/object.h"
39 /* Fields for FlashPartInfo->flags */
41 /* erase capabilities */
44 /* set to allow the page program command to write 0s back to 1. Useful for
45 * modelling EEPROM with SPI flash command set
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
52 #define SPI_NOR_MAX_ID_LEN 6
54 typedef struct FlashPartInfo
{
55 const char *part_name
;
57 * This array stores the ID bytes.
58 * The first three bytes are the JEDIC ID.
59 * JEDEC ID zero means "no ID" (mostly older chips).
61 uint8_t id
[SPI_NOR_MAX_ID_LEN
];
63 /* there is confusion between manufacturers as to what a sector is. In this
64 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65 * command (opcode 0xd8).
72 * Big sized spi nor are often stacked devices, thus sometime
73 * replace chip erase with die erase.
74 * This field inform how many die is in the chip.
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82 .part_name = _part_name,\
84 ((_jedec_id) >> 16) & 0xff,\
85 ((_jedec_id) >> 8) & 0xff,\
87 ((_ext_id) >> 8) & 0xff,\
90 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91 .sector_size = (_sector_size),\
92 .n_sectors = (_n_sectors),\
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98 .part_name = _part_name,\
100 ((_jedec_id) >> 16) & 0xff,\
101 ((_jedec_id) >> 8) & 0xff,\
103 ((_ext_id) >> 16) & 0xff,\
104 ((_ext_id) >> 8) & 0xff,\
108 .sector_size = (_sector_size),\
109 .n_sectors = (_n_sectors),\
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
116 .part_name = _part_name,\
118 ((_jedec_id) >> 16) & 0xff,\
119 ((_jedec_id) >> 8) & 0xff,\
121 ((_ext_id) >> 8) & 0xff,\
124 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125 .sector_size = (_sector_size),\
126 .n_sectors = (_n_sectors),\
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
167 * Spansion read mode command length in bytes,
168 * the mode is currently not supported.
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
174 static const FlashPartInfo known_devices
[] = {
175 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K
) },
177 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K
) },
179 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K
) },
180 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K
) },
181 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K
) },
183 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K
) },
184 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K
) },
185 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K
) },
186 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K
) },
188 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K
) },
190 /* Atmel EEPROMS - it is assumed, that don't care bit in command
191 * is set to 0. Block protection is not supported.
193 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM
) },
194 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM
) },
197 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K
) },
198 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
199 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
200 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
201 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K
) },
204 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K
) },
205 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K
) },
207 /* Intel/Numonyx -- xxxs33b */
208 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
209 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
210 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
211 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
214 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K
) },
215 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K
) },
216 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K
) },
217 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K
) },
218 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K
) },
219 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K
) },
220 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K
) },
221 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K
) },
222 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K
) },
223 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K
) },
224 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K
) },
227 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K
) },
228 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K
) },
229 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
230 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K
) },
231 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
232 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
233 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
234 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
235 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 0) },
236 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
237 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
238 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
239 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
240 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
243 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K
) },
244 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K
) },
245 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K
) },
246 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K
) },
247 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K
) },
248 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K
) },
249 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K
) },
250 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K
) },
251 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K
) },
252 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
253 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
254 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K
) },
255 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
256 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K
) },
257 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K
| ER_32K
) },
258 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
259 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
260 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
261 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
262 { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K
| ER_32K
, 2) },
263 { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K
| ER_32K
, 2) },
265 /* Spansion -- single (large) sector size only, at least
266 * for the chips listed here (without boot sectors).
268 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K
) },
269 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K
) },
270 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
271 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
272 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
273 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
274 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
275 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
276 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
277 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
278 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
279 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
280 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
281 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
282 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
283 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K
| ER_32K
) },
284 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K
| ER_32K
) },
286 /* Spansion -- boot sectors support */
287 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
288 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
290 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
291 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K
) },
292 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K
) },
293 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K
) },
294 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K
) },
295 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K
) },
296 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K
) },
297 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K
) },
298 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K
) },
299 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K
) },
301 /* ST Microelectronics -- newer production may have feature updates */
302 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
303 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
304 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
305 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
306 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
307 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
308 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
309 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
310 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
311 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
313 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
314 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
315 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
317 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
318 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
319 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K
) },
321 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K
) },
322 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K
) },
323 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K
) },
324 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
326 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
327 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K
) },
328 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K
) },
329 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K
) },
330 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K
) },
331 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K
) },
332 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K
) },
333 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K
) },
334 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K
) },
335 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K
) },
336 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K
) },
337 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K
) },
338 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K
) },
339 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K
) },
340 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K
) },
352 BULK_ERASE_60
= 0x60,
385 ERASE4_SECTOR
= 0xdc,
387 EN_4BYTE_ADDR
= 0xB7,
388 EX_4BYTE_ADDR
= 0xE9,
390 EXTEND_ADDR_READ
= 0xC8,
391 EXTEND_ADDR_WRITE
= 0xC5,
397 * Micron: 0x35 - enable QPI
398 * Spansion: 0x35 - read control register
419 STATE_COLLECTING_DATA
,
420 STATE_COLLECTING_VAR_LEN_DATA
,
440 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
443 SSIPeripheral parent_obj
;
452 uint8_t data
[M25P80_INTERNAL_DATA_BUFFER_SZ
];
456 uint8_t needed_bytes
;
457 uint8_t cmd_in_progress
;
459 uint32_t nonvolatile_cfg
;
460 /* Configuration register for Macronix */
461 uint32_t volatile_cfg
;
462 uint32_t enh_volatile_cfg
;
463 /* Spansion cfg registers. */
464 uint8_t spansion_cr1nv
;
465 uint8_t spansion_cr2nv
;
466 uint8_t spansion_cr3nv
;
467 uint8_t spansion_cr4nv
;
468 uint8_t spansion_cr1v
;
469 uint8_t spansion_cr2v
;
470 uint8_t spansion_cr3v
;
471 uint8_t spansion_cr4v
;
473 bool four_bytes_address_mode
;
481 const FlashPartInfo
*pi
;
486 SSIPeripheralClass parent_class
;
490 #define TYPE_M25P80 "m25p80-generic"
491 OBJECT_DECLARE_TYPE(Flash
, M25P80Class
, M25P80
)
493 static inline Manufacturer
get_man(Flash
*s
)
495 switch (s
->pi
->id
[0]) {
513 static void blk_sync_complete(void *opaque
, int ret
)
515 QEMUIOVector
*iov
= opaque
;
517 qemu_iovec_destroy(iov
);
520 /* do nothing. Masters do not directly interact with the backing store,
521 * only the working copy so no mutexing required.
525 static void flash_sync_page(Flash
*s
, int page
)
529 if (!s
->blk
|| !blk_is_writable(s
->blk
)) {
533 iov
= g_new(QEMUIOVector
, 1);
534 qemu_iovec_init(iov
, 1);
535 qemu_iovec_add(iov
, s
->storage
+ page
* s
->pi
->page_size
,
537 blk_aio_pwritev(s
->blk
, page
* s
->pi
->page_size
, iov
, 0,
538 blk_sync_complete
, iov
);
541 static inline void flash_sync_area(Flash
*s
, int64_t off
, int64_t len
)
545 if (!s
->blk
|| !blk_is_writable(s
->blk
)) {
549 assert(!(len
% BDRV_SECTOR_SIZE
));
550 iov
= g_new(QEMUIOVector
, 1);
551 qemu_iovec_init(iov
, 1);
552 qemu_iovec_add(iov
, s
->storage
+ off
, len
);
553 blk_aio_pwritev(s
->blk
, off
, iov
, 0, blk_sync_complete
, iov
);
556 static void flash_erase(Flash
*s
, int offset
, FlashCMD cmd
)
559 uint8_t capa_to_assert
= 0;
565 capa_to_assert
= ER_4K
;
570 capa_to_assert
= ER_32K
;
574 len
= s
->pi
->sector_size
;
580 if (s
->pi
->die_cnt
) {
581 len
= s
->size
/ s
->pi
->die_cnt
;
582 offset
= offset
& (~(len
- 1));
584 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: die erase is not supported"
593 trace_m25p80_flash_erase(s
, offset
, len
);
595 if ((s
->pi
->flags
& capa_to_assert
) != capa_to_assert
) {
596 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: %d erase size not supported by"
600 if (!s
->write_enable
) {
601 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: erase with write protect!\n");
604 memset(s
->storage
+ offset
, 0xff, len
);
605 flash_sync_area(s
, offset
, len
);
608 static inline void flash_sync_dirty(Flash
*s
, int64_t newpage
)
610 if (s
->dirty_page
>= 0 && s
->dirty_page
!= newpage
) {
611 flash_sync_page(s
, s
->dirty_page
);
612 s
->dirty_page
= newpage
;
617 void flash_write8(Flash
*s
, uint32_t addr
, uint8_t data
)
619 uint32_t page
= addr
/ s
->pi
->page_size
;
620 uint8_t prev
= s
->storage
[s
->cur_addr
];
622 if (!s
->write_enable
) {
623 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: write with write protect!\n");
627 if ((prev
^ data
) & data
) {
628 trace_m25p80_programming_zero_to_one(s
, addr
, prev
, data
);
631 if (s
->pi
->flags
& EEPROM
) {
632 s
->storage
[s
->cur_addr
] = data
;
634 s
->storage
[s
->cur_addr
] &= data
;
637 flash_sync_dirty(s
, page
);
638 s
->dirty_page
= page
;
641 static inline int get_addr_length(Flash
*s
)
643 /* check if eeprom is in use */
644 if (s
->pi
->flags
== EEPROM
) {
648 switch (s
->cmd_in_progress
) {
663 return s
->four_bytes_address_mode
? 4 : 3;
667 static void complete_collecting_data(Flash
*s
)
671 n
= get_addr_length(s
);
672 s
->cur_addr
= (n
== 3 ? s
->ear
: 0);
673 for (i
= 0; i
< n
; ++i
) {
675 s
->cur_addr
|= s
->data
[i
];
678 s
->cur_addr
&= s
->size
- 1;
680 s
->state
= STATE_IDLE
;
682 trace_m25p80_complete_collecting(s
, s
->cmd_in_progress
, n
, s
->ear
,
685 switch (s
->cmd_in_progress
) {
692 s
->state
= STATE_PAGE_PROGRAM
;
695 /* AAI programming starts from the even address */
696 s
->cur_addr
&= ~BIT(0);
697 s
->state
= STATE_PAGE_PROGRAM
;
711 s
->state
= STATE_READ
;
720 flash_erase(s
, s
->cur_addr
, s
->cmd_in_progress
);
723 switch (get_man(s
)) {
725 s
->quad_enable
= !!(s
->data
[1] & 0x02);
728 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
731 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
733 s
->volatile_cfg
= s
->data
[1];
734 s
->four_bytes_address_mode
= extract32(s
->data
[1], 5, 1);
740 if (s
->write_enable
) {
741 s
->write_enable
= false;
745 case EXTEND_ADDR_WRITE
:
749 s
->nonvolatile_cfg
= s
->data
[0] | (s
->data
[1] << 8);
752 s
->volatile_cfg
= s
->data
[0];
755 s
->enh_volatile_cfg
= s
->data
[0];
759 if (get_man(s
) == MAN_SST
) {
760 if (s
->cur_addr
<= 1) {
762 s
->data
[0] = s
->pi
->id
[2];
763 s
->data
[1] = s
->pi
->id
[0];
765 s
->data
[0] = s
->pi
->id
[0];
766 s
->data
[1] = s
->pi
->id
[2];
770 s
->data_read_loop
= true;
771 s
->state
= STATE_READING_DATA
;
773 qemu_log_mask(LOG_GUEST_ERROR
,
774 "M25P80: Invalid read id address\n");
777 qemu_log_mask(LOG_GUEST_ERROR
,
778 "M25P80: Read id (command 0x90/0xAB) is not supported"
787 static void reset_memory(Flash
*s
)
789 s
->cmd_in_progress
= NOP
;
792 s
->four_bytes_address_mode
= false;
796 s
->state
= STATE_IDLE
;
797 s
->write_enable
= false;
798 s
->reset_enable
= false;
799 s
->quad_enable
= false;
800 s
->aai_enable
= false;
802 switch (get_man(s
)) {
805 s
->volatile_cfg
|= VCFG_DUMMY
;
806 s
->volatile_cfg
|= VCFG_WRAP_SEQUENTIAL
;
807 if ((s
->nonvolatile_cfg
& NVCFG_XIP_MODE_MASK
)
808 == NVCFG_XIP_MODE_DISABLED
) {
809 s
->volatile_cfg
|= VCFG_XIP_MODE_DISABLED
;
811 s
->volatile_cfg
|= deposit32(s
->volatile_cfg
,
814 extract32(s
->nonvolatile_cfg
,
819 s
->enh_volatile_cfg
= 0;
820 s
->enh_volatile_cfg
|= EVCFG_OUT_DRIVER_STRENGTH_DEF
;
821 s
->enh_volatile_cfg
|= EVCFG_VPP_ACCELERATOR
;
822 s
->enh_volatile_cfg
|= EVCFG_RESET_HOLD_ENABLED
;
823 if (s
->nonvolatile_cfg
& NVCFG_DUAL_IO_MASK
) {
824 s
->enh_volatile_cfg
|= EVCFG_DUAL_IO_DISABLED
;
826 if (s
->nonvolatile_cfg
& NVCFG_QUAD_IO_MASK
) {
827 s
->enh_volatile_cfg
|= EVCFG_QUAD_IO_DISABLED
;
829 if (!(s
->nonvolatile_cfg
& NVCFG_4BYTE_ADDR_MASK
)) {
830 s
->four_bytes_address_mode
= true;
832 if (!(s
->nonvolatile_cfg
& NVCFG_LOWER_SEGMENT_MASK
)) {
833 s
->ear
= s
->size
/ MAX_3BYTES_SIZE
- 1;
837 s
->volatile_cfg
= 0x7;
840 s
->spansion_cr1v
= s
->spansion_cr1nv
;
841 s
->spansion_cr2v
= s
->spansion_cr2nv
;
842 s
->spansion_cr3v
= s
->spansion_cr3nv
;
843 s
->spansion_cr4v
= s
->spansion_cr4nv
;
844 s
->quad_enable
= extract32(s
->spansion_cr1v
,
845 SPANSION_QUAD_CFG_POS
,
846 SPANSION_QUAD_CFG_LEN
848 s
->four_bytes_address_mode
= extract32(s
->spansion_cr2v
,
849 SPANSION_ADDR_LEN_POS
,
850 SPANSION_ADDR_LEN_LEN
857 trace_m25p80_reset_done(s
);
860 static uint8_t numonyx_mode(Flash
*s
)
862 if (!(s
->enh_volatile_cfg
& EVCFG_QUAD_IO_DISABLED
)) {
864 } else if (!(s
->enh_volatile_cfg
& EVCFG_DUAL_IO_DISABLED
)) {
871 static uint8_t numonyx_extract_cfg_num_dummies(Flash
*s
)
875 assert(get_man(s
) == MAN_NUMONYX
);
877 mode
= numonyx_mode(s
);
878 num_dummies
= extract32(s
->volatile_cfg
, 4, 4);
880 if (num_dummies
== 0x0 || num_dummies
== 0xf) {
881 switch (s
->cmd_in_progress
) {
887 num_dummies
= (mode
== MODE_QIO
) ? 10 : 8;
895 static void decode_fast_read_cmd(Flash
*s
)
897 s
->needed_bytes
= get_addr_length(s
);
898 switch (get_man(s
)) {
899 /* Dummy cycles - modeled with bytes writes instead of bits */
901 s
->needed_bytes
+= 1;
904 s
->needed_bytes
+= 8;
907 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
910 if (extract32(s
->volatile_cfg
, 6, 2) == 1) {
911 s
->needed_bytes
+= 6;
913 s
->needed_bytes
+= 8;
917 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
918 SPANSION_DUMMY_CLK_POS
,
919 SPANSION_DUMMY_CLK_LEN
924 * The Fast Read instruction code is followed by address bytes and
925 * dummy cycles, transmitted via the SI line.
927 * The number of dummy cycles is configurable but this is currently
928 * unmodeled, hence the default value 8 is used.
930 * QPI (Quad Peripheral Interface) mode has different default value
931 * of dummy cycles, but this is unsupported at the time being.
933 s
->needed_bytes
+= 1;
940 s
->state
= STATE_COLLECTING_DATA
;
943 static void decode_dio_read_cmd(Flash
*s
)
945 s
->needed_bytes
= get_addr_length(s
);
946 /* Dummy cycles modeled with bytes writes instead of bits */
947 switch (get_man(s
)) {
949 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
952 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
953 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
954 SPANSION_DUMMY_CLK_POS
,
955 SPANSION_DUMMY_CLK_LEN
959 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
962 switch (extract32(s
->volatile_cfg
, 6, 2)) {
964 s
->needed_bytes
+= 6;
967 s
->needed_bytes
+= 8;
970 s
->needed_bytes
+= 4;
976 * The Fast Read Dual I/O instruction code is followed by address bytes
977 * and dummy cycles, transmitted via the IO1 and IO0 line.
979 * The number of dummy cycles is configurable but this is currently
980 * unmodeled, hence the default value 4 is used.
982 s
->needed_bytes
+= 1;
989 s
->state
= STATE_COLLECTING_DATA
;
992 static void decode_qio_read_cmd(Flash
*s
)
994 s
->needed_bytes
= get_addr_length(s
);
995 /* Dummy cycles modeled with bytes writes instead of bits */
996 switch (get_man(s
)) {
998 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
999 s
->needed_bytes
+= 4;
1002 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
1003 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
1004 SPANSION_DUMMY_CLK_POS
,
1005 SPANSION_DUMMY_CLK_LEN
1009 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
1012 switch (extract32(s
->volatile_cfg
, 6, 2)) {
1014 s
->needed_bytes
+= 4;
1017 s
->needed_bytes
+= 8;
1020 s
->needed_bytes
+= 6;
1026 * The Fast Read Quad I/O instruction code is followed by address bytes
1027 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1029 * The number of dummy cycles is configurable but this is currently
1030 * unmodeled, hence the default value 6 is used.
1032 * QPI (Quad Peripheral Interface) mode has different default value
1033 * of dummy cycles, but this is unsupported at the time being.
1035 s
->needed_bytes
+= 3;
1042 s
->state
= STATE_COLLECTING_DATA
;
1045 static bool is_valid_aai_cmd(uint32_t cmd
)
1047 return cmd
== AAI_WP
|| cmd
== WRDI
|| cmd
== RDSR
;
1050 static void decode_new_cmd(Flash
*s
, uint32_t value
)
1054 s
->cmd_in_progress
= value
;
1055 trace_m25p80_command_decoded(s
, value
);
1057 if (value
!= RESET_MEMORY
) {
1058 s
->reset_enable
= false;
1061 if (get_man(s
) == MAN_SST
&& s
->aai_enable
&& !is_valid_aai_cmd(value
)) {
1062 qemu_log_mask(LOG_GUEST_ERROR
,
1063 "M25P80: Invalid cmd within AAI programming sequence");
1079 s
->needed_bytes
= get_addr_length(s
);
1082 s
->state
= STATE_COLLECTING_DATA
;
1086 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) == MODE_STD
) {
1087 s
->needed_bytes
= get_addr_length(s
);
1090 s
->state
= STATE_COLLECTING_DATA
;
1092 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1093 "DIO or QIO mode\n", s
->cmd_in_progress
);
1097 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1098 s
->needed_bytes
= get_addr_length(s
);
1101 s
->state
= STATE_COLLECTING_DATA
;
1103 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1104 "QIO mode\n", s
->cmd_in_progress
);
1110 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1111 s
->needed_bytes
= get_addr_length(s
);
1114 s
->state
= STATE_COLLECTING_DATA
;
1116 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1117 "DIO mode\n", s
->cmd_in_progress
);
1123 decode_fast_read_cmd(s
);
1127 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1128 decode_fast_read_cmd(s
);
1130 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1131 "QIO mode\n", s
->cmd_in_progress
);
1136 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1137 decode_fast_read_cmd(s
);
1139 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1140 "DIO mode\n", s
->cmd_in_progress
);
1146 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1147 decode_dio_read_cmd(s
);
1149 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1150 "QIO mode\n", s
->cmd_in_progress
);
1156 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1157 decode_qio_read_cmd(s
);
1159 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1160 "DIO mode\n", s
->cmd_in_progress
);
1165 if (s
->write_enable
) {
1166 switch (get_man(s
)) {
1168 s
->needed_bytes
= 2;
1169 s
->state
= STATE_COLLECTING_DATA
;
1172 s
->needed_bytes
= 2;
1173 s
->state
= STATE_COLLECTING_VAR_LEN_DATA
;
1176 s
->needed_bytes
= 1;
1177 s
->state
= STATE_COLLECTING_DATA
;
1184 s
->write_enable
= false;
1185 if (get_man(s
) == MAN_SST
) {
1186 s
->aai_enable
= false;
1190 s
->write_enable
= true;
1194 s
->data
[0] = (!!s
->write_enable
) << 1;
1195 if (get_man(s
) == MAN_MACRONIX
|| get_man(s
) == MAN_ISSI
) {
1196 s
->data
[0] |= (!!s
->quad_enable
) << 6;
1198 if (get_man(s
) == MAN_SST
) {
1199 s
->data
[0] |= (!!s
->aai_enable
) << 6;
1204 s
->data_read_loop
= true;
1205 s
->state
= STATE_READING_DATA
;
1209 s
->data
[0] = FSR_FLASH_READY
;
1210 if (s
->four_bytes_address_mode
) {
1211 s
->data
[0] |= FSR_4BYTE_ADDR_MODE_ENABLED
;
1215 s
->data_read_loop
= true;
1216 s
->state
= STATE_READING_DATA
;
1220 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) == MODE_STD
) {
1221 trace_m25p80_populated_jedec(s
);
1222 for (i
= 0; i
< s
->pi
->id_len
; i
++) {
1223 s
->data
[i
] = s
->pi
->id
[i
];
1225 for (; i
< SPI_NOR_MAX_ID_LEN
; i
++) {
1229 s
->len
= SPI_NOR_MAX_ID_LEN
;
1231 s
->state
= STATE_READING_DATA
;
1233 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute JEDEC read "
1234 "in DIO or QIO mode\n");
1239 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1240 s
->data
[0] |= (!!s
->four_bytes_address_mode
) << 5;
1243 s
->state
= STATE_READING_DATA
;
1248 if (s
->write_enable
) {
1249 trace_m25p80_chip_erase(s
);
1250 flash_erase(s
, 0, BULK_ERASE
);
1252 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: chip erase with write "
1259 s
->four_bytes_address_mode
= true;
1262 s
->four_bytes_address_mode
= false;
1265 case EXTEND_ADDR_READ
:
1266 s
->data
[0] = s
->ear
;
1269 s
->state
= STATE_READING_DATA
;
1272 case EXTEND_ADDR_WRITE
:
1273 if (s
->write_enable
) {
1274 s
->needed_bytes
= 1;
1277 s
->state
= STATE_COLLECTING_DATA
;
1281 s
->data
[0] = s
->nonvolatile_cfg
& 0xFF;
1282 s
->data
[1] = (s
->nonvolatile_cfg
>> 8) & 0xFF;
1285 s
->state
= STATE_READING_DATA
;
1288 if (s
->write_enable
&& get_man(s
) == MAN_NUMONYX
) {
1289 s
->needed_bytes
= 2;
1292 s
->state
= STATE_COLLECTING_DATA
;
1296 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1299 s
->state
= STATE_READING_DATA
;
1302 if (s
->write_enable
) {
1303 s
->needed_bytes
= 1;
1306 s
->state
= STATE_COLLECTING_DATA
;
1310 s
->data
[0] = s
->enh_volatile_cfg
& 0xFF;
1313 s
->state
= STATE_READING_DATA
;
1316 if (s
->write_enable
) {
1317 s
->needed_bytes
= 1;
1320 s
->state
= STATE_COLLECTING_DATA
;
1324 s
->reset_enable
= true;
1327 if (s
->reset_enable
) {
1332 switch (get_man(s
)) {
1334 s
->data
[0] = (!!s
->quad_enable
) << 1;
1337 s
->state
= STATE_READING_DATA
;
1340 s
->quad_enable
= true;
1347 s
->quad_enable
= false;
1350 if (get_man(s
) == MAN_SST
) {
1351 if (s
->write_enable
) {
1352 if (s
->aai_enable
) {
1353 s
->state
= STATE_PAGE_PROGRAM
;
1355 s
->aai_enable
= true;
1356 s
->needed_bytes
= get_addr_length(s
);
1357 s
->state
= STATE_COLLECTING_DATA
;
1360 qemu_log_mask(LOG_GUEST_ERROR
,
1361 "M25P80: AAI_WP with write protect\n");
1364 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1370 s
->state
= STATE_READING_DATA
;
1371 s
->data_read_loop
= true;
1373 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1378 static int m25p80_cs(SSIPeripheral
*ss
, bool select
)
1380 Flash
*s
= M25P80(ss
);
1383 if (s
->state
== STATE_COLLECTING_VAR_LEN_DATA
) {
1384 complete_collecting_data(s
);
1388 s
->state
= STATE_IDLE
;
1389 flash_sync_dirty(s
, -1);
1390 s
->data_read_loop
= false;
1393 trace_m25p80_select(s
, select
? "de" : "");
1398 static uint32_t m25p80_transfer8(SSIPeripheral
*ss
, uint32_t tx
)
1400 Flash
*s
= M25P80(ss
);
1403 trace_m25p80_transfer(s
, s
->state
, s
->len
, s
->needed_bytes
, s
->pos
,
1404 s
->cur_addr
, (uint8_t)tx
);
1408 case STATE_PAGE_PROGRAM
:
1409 trace_m25p80_page_program(s
, s
->cur_addr
, (uint8_t)tx
);
1410 flash_write8(s
, s
->cur_addr
, (uint8_t)tx
);
1411 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1413 if (get_man(s
) == MAN_SST
&& s
->aai_enable
&& s
->cur_addr
== 0) {
1415 * There is no wrap mode during AAI programming once the highest
1416 * unprotected memory address is reached. The Write-Enable-Latch
1417 * bit is automatically reset, and AAI programming mode aborts.
1419 s
->write_enable
= false;
1420 s
->aai_enable
= false;
1426 r
= s
->storage
[s
->cur_addr
];
1427 trace_m25p80_read_byte(s
, s
->cur_addr
, (uint8_t)r
);
1428 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1431 case STATE_COLLECTING_DATA
:
1432 case STATE_COLLECTING_VAR_LEN_DATA
:
1434 if (s
->len
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1435 qemu_log_mask(LOG_GUEST_ERROR
,
1436 "M25P80: Write overrun internal data buffer. "
1437 "SPI controller (QEMU emulator or guest driver) "
1438 "is misbehaving\n");
1439 s
->len
= s
->pos
= 0;
1440 s
->state
= STATE_IDLE
;
1444 s
->data
[s
->len
] = (uint8_t)tx
;
1447 if (s
->len
== s
->needed_bytes
) {
1448 complete_collecting_data(s
);
1452 case STATE_READING_DATA
:
1454 if (s
->pos
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1455 qemu_log_mask(LOG_GUEST_ERROR
,
1456 "M25P80: Read overrun internal data buffer. "
1457 "SPI controller (QEMU emulator or guest driver) "
1458 "is misbehaving\n");
1459 s
->len
= s
->pos
= 0;
1460 s
->state
= STATE_IDLE
;
1464 r
= s
->data
[s
->pos
];
1465 trace_m25p80_read_data(s
, s
->pos
, (uint8_t)r
);
1467 if (s
->pos
== s
->len
) {
1469 if (!s
->data_read_loop
) {
1470 s
->state
= STATE_IDLE
;
1477 decode_new_cmd(s
, (uint8_t)tx
);
1484 static void m25p80_realize(SSIPeripheral
*ss
, Error
**errp
)
1486 Flash
*s
= M25P80(ss
);
1487 M25P80Class
*mc
= M25P80_GET_CLASS(s
);
1492 s
->size
= s
->pi
->sector_size
* s
->pi
->n_sectors
;
1496 uint64_t perm
= BLK_PERM_CONSISTENT_READ
|
1497 (blk_supports_write_perm(s
->blk
) ? BLK_PERM_WRITE
: 0);
1498 ret
= blk_set_perm(s
->blk
, perm
, BLK_PERM_ALL
, errp
);
1503 trace_m25p80_binding(s
);
1504 s
->storage
= blk_blockalign(s
->blk
, s
->size
);
1506 if (blk_pread(s
->blk
, 0, s
->storage
, s
->size
) != s
->size
) {
1507 error_setg(errp
, "failed to read the initial flash content");
1511 trace_m25p80_binding_no_bdrv(s
);
1512 s
->storage
= blk_blockalign(NULL
, s
->size
);
1513 memset(s
->storage
, 0xFF, s
->size
);
1517 static void m25p80_reset(DeviceState
*d
)
1519 Flash
*s
= M25P80(d
);
1524 static int m25p80_pre_save(void *opaque
)
1526 flash_sync_dirty((Flash
*)opaque
, -1);
1531 static Property m25p80_properties
[] = {
1532 /* This is default value for Micron flash */
1533 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash
, nonvolatile_cfg
, 0x8FFF),
1534 DEFINE_PROP_UINT8("spansion-cr1nv", Flash
, spansion_cr1nv
, 0x0),
1535 DEFINE_PROP_UINT8("spansion-cr2nv", Flash
, spansion_cr2nv
, 0x8),
1536 DEFINE_PROP_UINT8("spansion-cr3nv", Flash
, spansion_cr3nv
, 0x2),
1537 DEFINE_PROP_UINT8("spansion-cr4nv", Flash
, spansion_cr4nv
, 0x10),
1538 DEFINE_PROP_DRIVE("drive", Flash
, blk
),
1539 DEFINE_PROP_END_OF_LIST(),
1542 static int m25p80_pre_load(void *opaque
)
1544 Flash
*s
= (Flash
*)opaque
;
1546 s
->data_read_loop
= false;
1550 static bool m25p80_data_read_loop_needed(void *opaque
)
1552 Flash
*s
= (Flash
*)opaque
;
1554 return s
->data_read_loop
;
1557 static const VMStateDescription vmstate_m25p80_data_read_loop
= {
1558 .name
= "m25p80/data_read_loop",
1560 .minimum_version_id
= 1,
1561 .needed
= m25p80_data_read_loop_needed
,
1562 .fields
= (VMStateField
[]) {
1563 VMSTATE_BOOL(data_read_loop
, Flash
),
1564 VMSTATE_END_OF_LIST()
1568 static bool m25p80_aai_enable_needed(void *opaque
)
1570 Flash
*s
= (Flash
*)opaque
;
1572 return s
->aai_enable
;
1575 static const VMStateDescription vmstate_m25p80_aai_enable
= {
1576 .name
= "m25p80/aai_enable",
1578 .minimum_version_id
= 1,
1579 .needed
= m25p80_aai_enable_needed
,
1580 .fields
= (VMStateField
[]) {
1581 VMSTATE_BOOL(aai_enable
, Flash
),
1582 VMSTATE_END_OF_LIST()
1586 static const VMStateDescription vmstate_m25p80
= {
1589 .minimum_version_id
= 0,
1590 .pre_save
= m25p80_pre_save
,
1591 .pre_load
= m25p80_pre_load
,
1592 .fields
= (VMStateField
[]) {
1593 VMSTATE_UINT8(state
, Flash
),
1594 VMSTATE_UINT8_ARRAY(data
, Flash
, M25P80_INTERNAL_DATA_BUFFER_SZ
),
1595 VMSTATE_UINT32(len
, Flash
),
1596 VMSTATE_UINT32(pos
, Flash
),
1597 VMSTATE_UINT8(needed_bytes
, Flash
),
1598 VMSTATE_UINT8(cmd_in_progress
, Flash
),
1599 VMSTATE_UINT32(cur_addr
, Flash
),
1600 VMSTATE_BOOL(write_enable
, Flash
),
1601 VMSTATE_BOOL(reset_enable
, Flash
),
1602 VMSTATE_UINT8(ear
, Flash
),
1603 VMSTATE_BOOL(four_bytes_address_mode
, Flash
),
1604 VMSTATE_UINT32(nonvolatile_cfg
, Flash
),
1605 VMSTATE_UINT32(volatile_cfg
, Flash
),
1606 VMSTATE_UINT32(enh_volatile_cfg
, Flash
),
1607 VMSTATE_BOOL(quad_enable
, Flash
),
1608 VMSTATE_UINT8(spansion_cr1nv
, Flash
),
1609 VMSTATE_UINT8(spansion_cr2nv
, Flash
),
1610 VMSTATE_UINT8(spansion_cr3nv
, Flash
),
1611 VMSTATE_UINT8(spansion_cr4nv
, Flash
),
1612 VMSTATE_END_OF_LIST()
1614 .subsections
= (const VMStateDescription
* []) {
1615 &vmstate_m25p80_data_read_loop
,
1616 &vmstate_m25p80_aai_enable
,
1621 static void m25p80_class_init(ObjectClass
*klass
, void *data
)
1623 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1624 SSIPeripheralClass
*k
= SSI_PERIPHERAL_CLASS(klass
);
1625 M25P80Class
*mc
= M25P80_CLASS(klass
);
1627 k
->realize
= m25p80_realize
;
1628 k
->transfer
= m25p80_transfer8
;
1629 k
->set_cs
= m25p80_cs
;
1630 k
->cs_polarity
= SSI_CS_LOW
;
1631 dc
->vmsd
= &vmstate_m25p80
;
1632 device_class_set_props(dc
, m25p80_properties
);
1633 dc
->reset
= m25p80_reset
;
1637 static const TypeInfo m25p80_info
= {
1638 .name
= TYPE_M25P80
,
1639 .parent
= TYPE_SSI_PERIPHERAL
,
1640 .instance_size
= sizeof(Flash
),
1641 .class_size
= sizeof(M25P80Class
),
1645 static void m25p80_register_types(void)
1649 type_register_static(&m25p80_info
);
1650 for (i
= 0; i
< ARRAY_SIZE(known_devices
); ++i
) {
1652 .name
= known_devices
[i
].part_name
,
1653 .parent
= TYPE_M25P80
,
1654 .class_init
= m25p80_class_init
,
1655 .class_data
= (void *)&known_devices
[i
],
1661 type_init(m25p80_register_types
)