1 #include "qemu/osdep.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/exec-all.h"
12 #include "exec/cpu_ldst.h"
14 #include <zlib.h> /* For crc32 */
15 #include "exec/semihost.h"
16 #include "sysemu/kvm.h"
18 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 #ifndef CONFIG_USER_ONLY
21 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
22 int access_type
, ARMMMUIdx mmu_idx
,
23 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
24 target_ulong
*page_size
, uint32_t *fsr
,
27 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
28 int access_type
, ARMMMUIdx mmu_idx
,
29 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
30 target_ulong
*page_size_ptr
, uint32_t *fsr
,
33 /* Definitions for the PMCCNTR and PMCR registers */
39 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
43 /* VFP data registers are always little-endian. */
44 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
46 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
49 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
50 /* Aliases for Q regs. */
53 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
54 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
58 switch (reg
- nregs
) {
59 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
60 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
61 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
66 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
70 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
72 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
75 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
78 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
79 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
83 switch (reg
- nregs
) {
84 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
85 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
86 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
91 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
95 /* 128 bit FP register */
96 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
97 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
101 stl_p(buf
, vfp_get_fpsr(env
));
105 stl_p(buf
, vfp_get_fpcr(env
));
112 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
116 /* 128 bit FP register */
117 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
118 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
122 vfp_set_fpsr(env
, ldl_p(buf
));
126 vfp_set_fpcr(env
, ldl_p(buf
));
133 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
135 assert(ri
->fieldoffset
);
136 if (cpreg_field_is_64bit(ri
)) {
137 return CPREG_FIELD64(env
, ri
);
139 return CPREG_FIELD32(env
, ri
);
143 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
146 assert(ri
->fieldoffset
);
147 if (cpreg_field_is_64bit(ri
)) {
148 CPREG_FIELD64(env
, ri
) = value
;
150 CPREG_FIELD32(env
, ri
) = value
;
154 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
156 return (char *)env
+ ri
->fieldoffset
;
159 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
161 /* Raw read of a coprocessor register (as needed for migration, etc). */
162 if (ri
->type
& ARM_CP_CONST
) {
163 return ri
->resetvalue
;
164 } else if (ri
->raw_readfn
) {
165 return ri
->raw_readfn(env
, ri
);
166 } else if (ri
->readfn
) {
167 return ri
->readfn(env
, ri
);
169 return raw_read(env
, ri
);
173 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
176 /* Raw write of a coprocessor register (as needed for migration, etc).
177 * Note that constant registers are treated as write-ignored; the
178 * caller should check for success by whether a readback gives the
181 if (ri
->type
& ARM_CP_CONST
) {
183 } else if (ri
->raw_writefn
) {
184 ri
->raw_writefn(env
, ri
, v
);
185 } else if (ri
->writefn
) {
186 ri
->writefn(env
, ri
, v
);
188 raw_write(env
, ri
, v
);
192 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
194 /* Return true if the regdef would cause an assertion if you called
195 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
196 * program bug for it not to have the NO_RAW flag).
197 * NB that returning false here doesn't necessarily mean that calling
198 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
199 * read/write access functions which are safe for raw use" from "has
200 * read/write access functions which have side effects but has forgotten
201 * to provide raw access functions".
202 * The tests here line up with the conditions in read/write_raw_cp_reg()
203 * and assertions in raw_read()/raw_write().
205 if ((ri
->type
& ARM_CP_CONST
) ||
207 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
213 bool write_cpustate_to_list(ARMCPU
*cpu
)
215 /* Write the coprocessor state from cpu->env to the (index,value) list. */
219 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
220 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
221 const ARMCPRegInfo
*ri
;
223 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
228 if (ri
->type
& ARM_CP_NO_RAW
) {
231 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
236 bool write_list_to_cpustate(ARMCPU
*cpu
)
241 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
242 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
243 uint64_t v
= cpu
->cpreg_values
[i
];
244 const ARMCPRegInfo
*ri
;
246 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
251 if (ri
->type
& ARM_CP_NO_RAW
) {
254 /* Write value and confirm it reads back as written
255 * (to catch read-only registers and partially read-only
256 * registers where the incoming migration value doesn't match)
258 write_raw_cp_reg(&cpu
->env
, ri
, v
);
259 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
266 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
268 ARMCPU
*cpu
= opaque
;
270 const ARMCPRegInfo
*ri
;
272 regidx
= *(uint32_t *)key
;
273 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
275 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
276 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
277 /* The value array need not be initialized at this point */
278 cpu
->cpreg_array_len
++;
282 static void count_cpreg(gpointer key
, gpointer opaque
)
284 ARMCPU
*cpu
= opaque
;
286 const ARMCPRegInfo
*ri
;
288 regidx
= *(uint32_t *)key
;
289 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
291 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
292 cpu
->cpreg_array_len
++;
296 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
298 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
299 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
310 void init_cpreg_list(ARMCPU
*cpu
)
312 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
313 * Note that we require cpreg_tuples[] to be sorted by key ID.
318 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
319 keys
= g_list_sort(keys
, cpreg_key_compare
);
321 cpu
->cpreg_array_len
= 0;
323 g_list_foreach(keys
, count_cpreg
, cpu
);
325 arraylen
= cpu
->cpreg_array_len
;
326 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
327 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
328 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
329 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
330 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
331 cpu
->cpreg_array_len
= 0;
333 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
335 assert(cpu
->cpreg_array_len
== arraylen
);
341 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
342 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 * access_el3_aa32ns: Used to check AArch32 register views.
345 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
348 const ARMCPRegInfo
*ri
,
351 bool secure
= arm_is_secure_below_el3(env
);
353 assert(!arm_el_is_aa64(env
, 3));
355 return CP_ACCESS_TRAP_UNCATEGORIZED
;
360 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
361 const ARMCPRegInfo
*ri
,
364 if (!arm_el_is_aa64(env
, 3)) {
365 return access_el3_aa32ns(env
, ri
, isread
);
370 /* Some secure-only AArch32 registers trap to EL3 if used from
371 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
372 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
373 * We assume that the .access field is set to PL1_RW.
375 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
376 const ARMCPRegInfo
*ri
,
379 if (arm_current_el(env
) == 3) {
382 if (arm_is_secure_below_el3(env
)) {
383 return CP_ACCESS_TRAP_EL3
;
385 /* This will be EL1 NS and EL2 NS, which just UNDEF */
386 return CP_ACCESS_TRAP_UNCATEGORIZED
;
389 /* Check for traps to "powerdown debug" registers, which are controlled
392 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
395 int el
= arm_current_el(env
);
397 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDOSA
)
398 && !arm_is_secure_below_el3(env
)) {
399 return CP_ACCESS_TRAP_EL2
;
401 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
402 return CP_ACCESS_TRAP_EL3
;
407 /* Check for traps to "debug ROM" registers, which are controlled
408 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
413 int el
= arm_current_el(env
);
415 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDRA
)
416 && !arm_is_secure_below_el3(env
)) {
417 return CP_ACCESS_TRAP_EL2
;
419 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
420 return CP_ACCESS_TRAP_EL3
;
425 /* Check for traps to general debug registers, which are controlled
426 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
431 int el
= arm_current_el(env
);
433 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDA
)
434 && !arm_is_secure_below_el3(env
)) {
435 return CP_ACCESS_TRAP_EL2
;
437 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
438 return CP_ACCESS_TRAP_EL3
;
443 /* Check for traps to performance monitor registers, which are controlled
444 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
449 int el
= arm_current_el(env
);
451 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
452 && !arm_is_secure_below_el3(env
)) {
453 return CP_ACCESS_TRAP_EL2
;
455 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
456 return CP_ACCESS_TRAP_EL3
;
461 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
463 ARMCPU
*cpu
= arm_env_get_cpu(env
);
465 raw_write(env
, ri
, value
);
466 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
469 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
471 ARMCPU
*cpu
= arm_env_get_cpu(env
);
473 if (raw_read(env
, ri
) != value
) {
474 /* Unlike real hardware the qemu TLB uses virtual addresses,
475 * not modified virtual addresses, so this causes a TLB flush.
477 tlb_flush(CPU(cpu
), 1);
478 raw_write(env
, ri
, value
);
482 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
485 ARMCPU
*cpu
= arm_env_get_cpu(env
);
487 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
488 && !extended_addresses_enabled(env
)) {
489 /* For VMSA (when not using the LPAE long descriptor page table
490 * format) this register includes the ASID, so do a TLB flush.
491 * For PMSA it is purely a process ID and no action is needed.
493 tlb_flush(CPU(cpu
), 1);
495 raw_write(env
, ri
, value
);
498 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
501 /* Invalidate all (TLBIALL) */
502 ARMCPU
*cpu
= arm_env_get_cpu(env
);
504 tlb_flush(CPU(cpu
), 1);
507 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
510 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
511 ARMCPU
*cpu
= arm_env_get_cpu(env
);
513 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
516 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
519 /* Invalidate by ASID (TLBIASID) */
520 ARMCPU
*cpu
= arm_env_get_cpu(env
);
522 tlb_flush(CPU(cpu
), value
== 0);
525 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529 ARMCPU
*cpu
= arm_env_get_cpu(env
);
531 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
534 /* IS variants of TLB operations must affect all cores */
535 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
540 CPU_FOREACH(other_cs
) {
541 tlb_flush(other_cs
, 1);
545 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
550 CPU_FOREACH(other_cs
) {
551 tlb_flush(other_cs
, value
== 0);
555 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
560 CPU_FOREACH(other_cs
) {
561 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
565 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
570 CPU_FOREACH(other_cs
) {
571 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
575 static const ARMCPRegInfo cp_reginfo
[] = {
576 /* Define the secure and non-secure FCSE identifier CP registers
577 * separately because there is no secure bank in V8 (no _EL3). This allows
578 * the secure register to be properly reset and migrated. There is also no
579 * v8 EL1 version of the register so the non-secure instance stands alone.
581 { .name
= "FCSEIDR(NS)",
582 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
583 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
584 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
585 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
586 { .name
= "FCSEIDR(S)",
587 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
588 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
589 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
590 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
591 /* Define the secure and non-secure context identifier CP registers
592 * separately because there is no secure bank in V8 (no _EL3). This allows
593 * the secure register to be properly reset and migrated. In the
594 * non-secure case, the 32-bit register will have reset and migration
595 * disabled during registration as it is handled by the 64-bit instance.
597 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
598 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
599 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
600 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
601 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
602 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
603 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
604 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
605 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
606 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
610 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
611 /* NB: Some of these registers exist in v8 but with more precise
612 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
614 /* MMU Domain access control / MPU write buffer control */
616 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
617 .access
= PL1_RW
, .resetvalue
= 0,
618 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
619 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
620 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
621 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
622 * For v6 and v5, these mappings are overly broad.
624 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
625 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
626 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
627 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
628 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
629 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
630 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
631 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
632 /* Cache maintenance ops; some of this space may be overridden later. */
633 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
634 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
635 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
639 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
640 /* Not all pre-v6 cores implemented this WFI, so this is slightly
643 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
644 .access
= PL1_W
, .type
= ARM_CP_WFI
},
648 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
649 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
650 * is UNPREDICTABLE; we choose to NOP as most implementations do).
652 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
653 .access
= PL1_W
, .type
= ARM_CP_WFI
},
654 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
655 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
656 * OMAPCP will override this space.
658 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
659 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
661 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
662 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
664 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
665 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
666 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
668 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
669 * implementing it as RAZ means the "debug architecture version" bits
670 * will read as a reserved value, which should cause Linux to not try
671 * to use the debug hardware.
673 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
674 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
675 /* MMU TLB control. Note that the wildcarding means we cover not just
676 * the unified TLB ops but also the dside/iside/inner-shareable variants.
678 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
679 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
680 .type
= ARM_CP_NO_RAW
},
681 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
682 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
683 .type
= ARM_CP_NO_RAW
},
684 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
685 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
686 .type
= ARM_CP_NO_RAW
},
687 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
688 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
689 .type
= ARM_CP_NO_RAW
},
690 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
691 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
692 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
693 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
697 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
702 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
703 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
704 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
705 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
706 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
708 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
709 /* VFP coprocessor: cp10 & cp11 [23:20] */
710 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
712 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
713 /* ASEDIS [31] bit is RAO/WI */
717 /* VFPv3 and upwards with NEON implement 32 double precision
718 * registers (D0-D31).
720 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
721 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
722 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
728 env
->cp15
.cpacr_el1
= value
;
731 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
734 if (arm_feature(env
, ARM_FEATURE_V8
)) {
735 /* Check if CPACR accesses are to be trapped to EL2 */
736 if (arm_current_el(env
) == 1 &&
737 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
738 return CP_ACCESS_TRAP_EL2
;
739 /* Check if CPACR accesses are to be trapped to EL3 */
740 } else if (arm_current_el(env
) < 3 &&
741 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
742 return CP_ACCESS_TRAP_EL3
;
749 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
752 /* Check if CPTR accesses are set to trap to EL3 */
753 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
754 return CP_ACCESS_TRAP_EL3
;
760 static const ARMCPRegInfo v6_cp_reginfo
[] = {
761 /* prefetch by MVA in v6, NOP in v7 */
762 { .name
= "MVA_prefetch",
763 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
764 .access
= PL1_W
, .type
= ARM_CP_NOP
},
765 /* We need to break the TB after ISB to execute self-modifying code
766 * correctly and also to take any pending interrupts immediately.
767 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
769 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
770 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
771 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
772 .access
= PL0_W
, .type
= ARM_CP_NOP
},
773 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
774 .access
= PL0_W
, .type
= ARM_CP_NOP
},
775 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
777 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
778 offsetof(CPUARMState
, cp15
.ifar_ns
) },
780 /* Watchpoint Fault Address Register : should actually only be present
781 * for 1136, 1176, 11MPCore.
783 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
784 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
785 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
786 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
787 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
788 .resetvalue
= 0, .writefn
= cpacr_write
},
792 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
795 /* Performance monitor registers user accessibility is controlled
796 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
797 * trapping to EL2 or EL3 for other accesses.
799 int el
= arm_current_el(env
);
801 if (el
== 0 && !env
->cp15
.c9_pmuserenr
) {
802 return CP_ACCESS_TRAP
;
804 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
805 && !arm_is_secure_below_el3(env
)) {
806 return CP_ACCESS_TRAP_EL2
;
808 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
809 return CP_ACCESS_TRAP_EL3
;
815 #ifndef CONFIG_USER_ONLY
817 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
819 /* This does not support checking PMCCFILTR_EL0 register */
821 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
828 void pmccntr_sync(CPUARMState
*env
)
832 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
833 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
835 if (env
->cp15
.c9_pmcr
& PMCRD
) {
836 /* Increment once every 64 processor clock cycles */
840 if (arm_ccnt_enabled(env
)) {
841 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
845 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
851 /* The counter has been reset */
852 env
->cp15
.c15_ccnt
= 0;
855 /* only the DP, X, D and E bits are writable */
856 env
->cp15
.c9_pmcr
&= ~0x39;
857 env
->cp15
.c9_pmcr
|= (value
& 0x39);
862 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
864 uint64_t total_ticks
;
866 if (!arm_ccnt_enabled(env
)) {
867 /* Counter is disabled, do not change value */
868 return env
->cp15
.c15_ccnt
;
871 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
872 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
874 if (env
->cp15
.c9_pmcr
& PMCRD
) {
875 /* Increment once every 64 processor clock cycles */
878 return total_ticks
- env
->cp15
.c15_ccnt
;
881 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
884 uint64_t total_ticks
;
886 if (!arm_ccnt_enabled(env
)) {
887 /* Counter is disabled, set the absolute value */
888 env
->cp15
.c15_ccnt
= value
;
892 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
893 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
895 if (env
->cp15
.c9_pmcr
& PMCRD
) {
896 /* Increment once every 64 processor clock cycles */
899 env
->cp15
.c15_ccnt
= total_ticks
- value
;
902 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
905 uint64_t cur_val
= pmccntr_read(env
, NULL
);
907 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
910 #else /* CONFIG_USER_ONLY */
912 void pmccntr_sync(CPUARMState
*env
)
918 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
922 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
926 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
930 env
->cp15
.c9_pmcnten
|= value
;
933 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
937 env
->cp15
.c9_pmcnten
&= ~value
;
940 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
943 env
->cp15
.c9_pmovsr
&= ~value
;
946 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
949 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
952 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
955 env
->cp15
.c9_pmuserenr
= value
& 1;
958 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
961 /* We have no event counters so only the C bit can be changed */
963 env
->cp15
.c9_pminten
|= value
;
966 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
970 env
->cp15
.c9_pminten
&= ~value
;
973 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
976 /* Note that even though the AArch64 view of this register has bits
977 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
978 * architectural requirements for bits which are RES0 only in some
979 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
980 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
982 raw_write(env
, ri
, value
& ~0x1FULL
);
985 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
987 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
988 * For bits that vary between AArch32/64, code needs to check the
989 * current execution mode before directly using the feature bit.
991 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
993 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
994 valid_mask
&= ~SCR_HCE
;
996 /* On ARMv7, SMD (or SCD as it is called in v7) is only
997 * supported if EL2 exists. The bit is UNK/SBZP when
998 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
999 * when EL2 is unavailable.
1000 * On ARMv8, this bit is always available.
1002 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1003 !arm_feature(env
, ARM_FEATURE_V8
)) {
1004 valid_mask
&= ~SCR_SMD
;
1008 /* Clear all-context RES0 bits. */
1009 value
&= valid_mask
;
1010 raw_write(env
, ri
, value
);
1013 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1015 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1017 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1020 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1021 ri
->secure
& ARM_CP_SECSTATE_S
);
1023 return cpu
->ccsidr
[index
];
1026 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1029 raw_write(env
, ri
, value
& 0xf);
1032 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1034 CPUState
*cs
= ENV_GET_CPU(env
);
1037 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1040 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1043 /* External aborts are not possible in QEMU so A bit is always clear */
1047 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1048 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1049 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1050 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1051 /* Performance monitors are implementation defined in v7,
1052 * but with an ARM recommended set of registers, which we
1053 * follow (although we don't actually implement any counters)
1055 * Performance registers fall into three categories:
1056 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1057 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1058 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1059 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1060 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1062 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1063 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1064 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1065 .writefn
= pmcntenset_write
,
1066 .accessfn
= pmreg_access
,
1067 .raw_writefn
= raw_write
},
1068 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1069 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1070 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1071 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1072 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1073 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1075 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1076 .accessfn
= pmreg_access
,
1077 .writefn
= pmcntenclr_write
,
1078 .type
= ARM_CP_ALIAS
},
1079 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1080 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1081 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1082 .type
= ARM_CP_ALIAS
,
1083 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1084 .writefn
= pmcntenclr_write
},
1085 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1086 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1087 .accessfn
= pmreg_access
,
1088 .writefn
= pmovsr_write
,
1089 .raw_writefn
= raw_write
},
1090 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1091 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1092 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1093 .type
= ARM_CP_ALIAS
,
1094 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1095 .writefn
= pmovsr_write
,
1096 .raw_writefn
= raw_write
},
1097 /* Unimplemented so WI. */
1098 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1099 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
1100 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1101 * We choose to RAZ/WI.
1103 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1104 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1105 .accessfn
= pmreg_access
},
1106 #ifndef CONFIG_USER_ONLY
1107 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1108 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
1109 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1110 .accessfn
= pmreg_access
},
1111 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1112 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1113 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1115 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1117 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1118 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1119 .writefn
= pmccfiltr_write
,
1120 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1122 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1124 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1126 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
1127 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1128 .raw_writefn
= raw_write
},
1129 /* Unimplemented, RAZ/WI. */
1130 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1131 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1132 .accessfn
= pmreg_access
},
1133 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1134 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
1135 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1137 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1138 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
1139 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
1140 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1141 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1143 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1144 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1145 .access
= PL1_RW
, .accessfn
= access_tpm
,
1146 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1148 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1149 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1150 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1151 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1152 .writefn
= pmintenclr_write
, },
1153 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
1154 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
1155 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1156 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1157 .writefn
= pmintenclr_write
},
1158 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1159 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1160 .access
= PL1_RW
, .writefn
= vbar_write
,
1161 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1162 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1164 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1165 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1166 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1167 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1168 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1169 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1170 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1171 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1172 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1173 * just RAZ for all cores:
1175 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1176 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1177 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1178 /* Auxiliary fault status registers: these also are IMPDEF, and we
1179 * choose to RAZ/WI for all cores.
1181 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1182 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1183 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1184 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1185 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1186 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1187 /* MAIR can just read-as-written because we don't implement caches
1188 * and so don't need to care about memory attributes.
1190 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1191 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1192 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1194 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1195 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1196 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1198 /* For non-long-descriptor page tables these are PRRR and NMRR;
1199 * regardless they still act as reads-as-written for QEMU.
1201 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1202 * allows them to assign the correct fieldoffset based on the endianness
1203 * handled in the field definitions.
1205 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1206 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1207 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1208 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1209 .resetfn
= arm_cp_reset_ignore
},
1210 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1211 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1212 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1213 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1214 .resetfn
= arm_cp_reset_ignore
},
1215 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1216 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1217 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1218 /* 32 bit ITLB invalidates */
1219 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1220 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1221 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1222 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1223 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1224 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1225 /* 32 bit DTLB invalidates */
1226 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1227 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1228 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1229 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1230 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1231 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1232 /* 32 bit TLB invalidates */
1233 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1234 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1235 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1236 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1237 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1238 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1239 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1240 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1244 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1245 /* 32 bit TLB invalidates, Inner Shareable */
1246 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1247 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1248 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1249 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1250 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1251 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1252 .writefn
= tlbiasid_is_write
},
1253 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1254 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1255 .writefn
= tlbimvaa_is_write
},
1259 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1266 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1269 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1270 return CP_ACCESS_TRAP
;
1272 return CP_ACCESS_OK
;
1275 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1276 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1277 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1279 .writefn
= teecr_write
},
1280 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1281 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1282 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1286 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1287 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1288 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1290 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1291 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1293 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1294 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1295 .resetfn
= arm_cp_reset_ignore
},
1296 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1297 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1298 .access
= PL0_R
|PL1_W
,
1299 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1301 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1302 .access
= PL0_R
|PL1_W
,
1303 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1304 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1305 .resetfn
= arm_cp_reset_ignore
},
1306 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1307 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1309 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1310 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1312 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1313 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1318 #ifndef CONFIG_USER_ONLY
1320 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1323 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1324 * Writable only at the highest implemented exception level.
1326 int el
= arm_current_el(env
);
1330 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1331 return CP_ACCESS_TRAP
;
1335 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
1336 arm_is_secure_below_el3(env
)) {
1337 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1338 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1346 if (!isread
&& el
< arm_highest_el(env
)) {
1347 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1350 return CP_ACCESS_OK
;
1353 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
1356 unsigned int cur_el
= arm_current_el(env
);
1357 bool secure
= arm_is_secure(env
);
1359 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1361 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1362 return CP_ACCESS_TRAP
;
1365 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1366 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1367 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1368 return CP_ACCESS_TRAP_EL2
;
1370 return CP_ACCESS_OK
;
1373 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
1376 unsigned int cur_el
= arm_current_el(env
);
1377 bool secure
= arm_is_secure(env
);
1379 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1380 * EL0[PV]TEN is zero.
1383 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1384 return CP_ACCESS_TRAP
;
1387 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1388 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1389 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1390 return CP_ACCESS_TRAP_EL2
;
1392 return CP_ACCESS_OK
;
1395 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1396 const ARMCPRegInfo
*ri
,
1399 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
1402 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1403 const ARMCPRegInfo
*ri
,
1406 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
1409 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1412 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
1415 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1418 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
1421 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1422 const ARMCPRegInfo
*ri
,
1425 /* The AArch64 register view of the secure physical timer is
1426 * always accessible from EL3, and configurably accessible from
1429 switch (arm_current_el(env
)) {
1431 if (!arm_is_secure(env
)) {
1432 return CP_ACCESS_TRAP
;
1434 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1435 return CP_ACCESS_TRAP_EL3
;
1437 return CP_ACCESS_OK
;
1440 return CP_ACCESS_TRAP
;
1442 return CP_ACCESS_OK
;
1444 g_assert_not_reached();
1448 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1450 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1453 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1455 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1458 /* Timer enabled: calculate and set current ISTATUS, irq, and
1459 * reset timer to when ISTATUS next has to change
1461 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1462 cpu
->env
.cp15
.cntvoff_el2
: 0;
1463 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1464 /* Note that this must be unsigned 64 bit arithmetic: */
1465 int istatus
= count
- offset
>= gt
->cval
;
1468 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1469 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1470 (istatus
&& !(gt
->ctl
& 2)));
1472 /* Next transition is when count rolls back over to zero */
1473 nexttick
= UINT64_MAX
;
1475 /* Next transition is when we hit cval */
1476 nexttick
= gt
->cval
+ offset
;
1478 /* Note that the desired next expiry time might be beyond the
1479 * signed-64-bit range of a QEMUTimer -- in this case we just
1480 * set the timer for as far in the future as possible. When the
1481 * timer expires we will reset the timer for any remaining period.
1483 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1484 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1486 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1488 /* Timer disabled: ISTATUS and timer output always clear */
1490 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1491 timer_del(cpu
->gt_timer
[timeridx
]);
1495 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1498 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1500 timer_del(cpu
->gt_timer
[timeridx
]);
1503 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1505 return gt_get_countervalue(env
);
1508 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1510 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1513 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1517 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1518 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1521 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1524 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1526 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1527 (gt_get_countervalue(env
) - offset
));
1530 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1534 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1536 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1537 sextract64(value
, 0, 32);
1538 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1541 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1545 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1546 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1548 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1549 if ((oldval
^ value
) & 1) {
1550 /* Enable toggled */
1551 gt_recalc_timer(cpu
, timeridx
);
1552 } else if ((oldval
^ value
) & 2) {
1553 /* IMASK toggled: don't need to recalculate,
1554 * just set the interrupt line based on ISTATUS
1556 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1557 (oldval
& 4) && !(value
& 2));
1561 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1563 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1566 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1569 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1572 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1574 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1577 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1580 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1583 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1586 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1589 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1591 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1594 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1597 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1600 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1602 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1605 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1608 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1611 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1614 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1617 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1620 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1622 raw_write(env
, ri
, value
);
1623 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1626 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1628 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1631 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1634 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1637 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1639 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1642 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1645 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1648 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1651 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1654 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1656 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1659 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1662 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1665 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1667 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1670 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1673 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1676 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1679 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1682 void arm_gt_ptimer_cb(void *opaque
)
1684 ARMCPU
*cpu
= opaque
;
1686 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1689 void arm_gt_vtimer_cb(void *opaque
)
1691 ARMCPU
*cpu
= opaque
;
1693 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1696 void arm_gt_htimer_cb(void *opaque
)
1698 ARMCPU
*cpu
= opaque
;
1700 gt_recalc_timer(cpu
, GTIMER_HYP
);
1703 void arm_gt_stimer_cb(void *opaque
)
1705 ARMCPU
*cpu
= opaque
;
1707 gt_recalc_timer(cpu
, GTIMER_SEC
);
1710 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1711 /* Note that CNTFRQ is purely reads-as-written for the benefit
1712 * of software; writing it doesn't actually change the timer frequency.
1713 * Our reset value matches the fixed frequency we implement the timer at.
1715 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1716 .type
= ARM_CP_ALIAS
,
1717 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1718 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1720 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1721 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1722 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1723 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1724 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1726 /* overall control: mostly access permissions */
1727 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1728 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1730 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1733 /* per-timer control */
1734 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1735 .secure
= ARM_CP_SECSTATE_NS
,
1736 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1737 .accessfn
= gt_ptimer_access
,
1738 .fieldoffset
= offsetoflow32(CPUARMState
,
1739 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1740 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1742 { .name
= "CNTP_CTL(S)",
1743 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1744 .secure
= ARM_CP_SECSTATE_S
,
1745 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1746 .accessfn
= gt_ptimer_access
,
1747 .fieldoffset
= offsetoflow32(CPUARMState
,
1748 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1749 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1751 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1752 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1753 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1754 .accessfn
= gt_ptimer_access
,
1755 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1757 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1759 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1760 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1761 .accessfn
= gt_vtimer_access
,
1762 .fieldoffset
= offsetoflow32(CPUARMState
,
1763 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1764 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1766 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1767 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1768 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1769 .accessfn
= gt_vtimer_access
,
1770 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1772 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1774 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1775 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1776 .secure
= ARM_CP_SECSTATE_NS
,
1777 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1778 .accessfn
= gt_ptimer_access
,
1779 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1781 { .name
= "CNTP_TVAL(S)",
1782 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1783 .secure
= ARM_CP_SECSTATE_S
,
1784 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1785 .accessfn
= gt_ptimer_access
,
1786 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1788 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1789 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1790 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1791 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1792 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1794 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1795 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1796 .accessfn
= gt_vtimer_access
,
1797 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1799 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1800 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1801 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1802 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1803 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1805 /* The counter itself */
1806 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1807 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1808 .accessfn
= gt_pct_access
,
1809 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1811 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1812 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1813 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1814 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1816 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1817 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1818 .accessfn
= gt_vct_access
,
1819 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1821 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1822 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1823 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1824 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1826 /* Comparison value, indicating when the timer goes off */
1827 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1828 .secure
= ARM_CP_SECSTATE_NS
,
1829 .access
= PL1_RW
| PL0_R
,
1830 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1831 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1832 .accessfn
= gt_ptimer_access
,
1833 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1835 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1836 .secure
= ARM_CP_SECSTATE_S
,
1837 .access
= PL1_RW
| PL0_R
,
1838 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1839 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1840 .accessfn
= gt_ptimer_access
,
1841 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1843 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1844 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1845 .access
= PL1_RW
| PL0_R
,
1847 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1848 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1849 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1851 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1852 .access
= PL1_RW
| PL0_R
,
1853 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1854 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1855 .accessfn
= gt_vtimer_access
,
1856 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1858 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1859 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1860 .access
= PL1_RW
| PL0_R
,
1862 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1863 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1864 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1866 /* Secure timer -- this is actually restricted to only EL3
1867 * and configurably Secure-EL1 via the accessfn.
1869 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1870 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1871 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1872 .accessfn
= gt_stimer_access
,
1873 .readfn
= gt_sec_tval_read
,
1874 .writefn
= gt_sec_tval_write
,
1875 .resetfn
= gt_sec_timer_reset
,
1877 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1878 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1879 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1880 .accessfn
= gt_stimer_access
,
1881 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1883 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1885 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1886 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1887 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1888 .accessfn
= gt_stimer_access
,
1889 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1890 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1896 /* In user-mode none of the generic timer registers are accessible,
1897 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1898 * so instead just don't register any of them.
1900 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1906 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1908 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1909 raw_write(env
, ri
, value
);
1910 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1911 raw_write(env
, ri
, value
& 0xfffff6ff);
1913 raw_write(env
, ri
, value
& 0xfffff1ff);
1917 #ifndef CONFIG_USER_ONLY
1918 /* get_phys_addr() isn't present for user-mode-only targets */
1920 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1924 /* The ATS12NSO* operations must trap to EL3 if executed in
1925 * Secure EL1 (which can only happen if EL3 is AArch64).
1926 * They are simply UNDEF if executed from NS EL1.
1927 * They function normally from EL2 or EL3.
1929 if (arm_current_el(env
) == 1) {
1930 if (arm_is_secure_below_el3(env
)) {
1931 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1933 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1936 return CP_ACCESS_OK
;
1939 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1940 int access_type
, ARMMMUIdx mmu_idx
)
1943 target_ulong page_size
;
1948 MemTxAttrs attrs
= {};
1949 ARMMMUFaultInfo fi
= {};
1951 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1952 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
, &fi
);
1953 if (extended_addresses_enabled(env
)) {
1954 /* fsr is a DFSR/IFSR value for the long descriptor
1955 * translation table format, but with WnR always clear.
1956 * Convert it to a 64-bit PAR.
1958 par64
= (1 << 11); /* LPAE bit always set */
1960 par64
|= phys_addr
& ~0xfffULL
;
1961 if (!attrs
.secure
) {
1962 par64
|= (1 << 9); /* NS */
1964 /* We don't set the ATTR or SH fields in the PAR. */
1967 par64
|= (fsr
& 0x3f) << 1; /* FS */
1968 /* Note that S2WLK and FSTAGE are always zero, because we don't
1969 * implement virtualization and therefore there can't be a stage 2
1974 /* fsr is a DFSR/IFSR value for the short descriptor
1975 * translation table format (with WnR always clear).
1976 * Convert it to a 32-bit PAR.
1979 /* We do not set any attribute bits in the PAR */
1980 if (page_size
== (1 << 24)
1981 && arm_feature(env
, ARM_FEATURE_V7
)) {
1982 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1984 par64
= phys_addr
& 0xfffff000;
1986 if (!attrs
.secure
) {
1987 par64
|= (1 << 9); /* NS */
1990 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1991 ((fsr
& 0xf) << 1) | 1;
1997 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1999 int access_type
= ri
->opc2
& 1;
2002 int el
= arm_current_el(env
);
2003 bool secure
= arm_is_secure_below_el3(env
);
2005 switch (ri
->opc2
& 6) {
2007 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2010 mmu_idx
= ARMMMUIdx_S1E3
;
2013 mmu_idx
= ARMMMUIdx_S1NSE1
;
2016 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2019 g_assert_not_reached();
2023 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2026 mmu_idx
= ARMMMUIdx_S1SE0
;
2029 mmu_idx
= ARMMMUIdx_S1NSE0
;
2032 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2035 g_assert_not_reached();
2039 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2040 mmu_idx
= ARMMMUIdx_S12NSE1
;
2043 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2044 mmu_idx
= ARMMMUIdx_S12NSE0
;
2047 g_assert_not_reached();
2050 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
2052 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2055 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2058 int access_type
= ri
->opc2
& 1;
2061 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
2063 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2066 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2069 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
2070 return CP_ACCESS_TRAP
;
2072 return CP_ACCESS_OK
;
2075 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2078 int access_type
= ri
->opc2
& 1;
2080 int secure
= arm_is_secure_below_el3(env
);
2082 switch (ri
->opc2
& 6) {
2085 case 0: /* AT S1E1R, AT S1E1W */
2086 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2088 case 4: /* AT S1E2R, AT S1E2W */
2089 mmu_idx
= ARMMMUIdx_S1E2
;
2091 case 6: /* AT S1E3R, AT S1E3W */
2092 mmu_idx
= ARMMMUIdx_S1E3
;
2095 g_assert_not_reached();
2098 case 2: /* AT S1E0R, AT S1E0W */
2099 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2101 case 4: /* AT S12E1R, AT S12E1W */
2102 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
2104 case 6: /* AT S12E0R, AT S12E0W */
2105 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
2108 g_assert_not_reached();
2111 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
2115 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
2116 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
2117 .access
= PL1_RW
, .resetvalue
= 0,
2118 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
2119 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
2120 .writefn
= par_write
},
2121 #ifndef CONFIG_USER_ONLY
2122 /* This underdecoding is safe because the reginfo is NO_RAW. */
2123 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
2124 .access
= PL1_W
, .accessfn
= ats_access
,
2125 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
2130 /* Return basic MPU access permission bits. */
2131 static uint32_t simple_mpu_ap_bits(uint32_t val
)
2138 for (i
= 0; i
< 16; i
+= 2) {
2139 ret
|= (val
>> i
) & mask
;
2145 /* Pad basic MPU access permission bits to extended format. */
2146 static uint32_t extended_mpu_ap_bits(uint32_t val
)
2153 for (i
= 0; i
< 16; i
+= 2) {
2154 ret
|= (val
& mask
) << i
;
2160 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2163 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2166 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2168 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2171 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2174 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2177 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2179 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2182 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2184 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2190 u32p
+= env
->cp15
.c6_rgnr
;
2194 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2197 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2198 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2204 u32p
+= env
->cp15
.c6_rgnr
;
2205 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2209 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2211 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2212 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2218 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2221 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2224 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2225 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2227 if (value
>= nrgs
) {
2228 qemu_log_mask(LOG_GUEST_ERROR
,
2229 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2230 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2234 raw_write(env
, ri
, value
);
2237 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2238 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2239 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2240 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2241 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2242 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2243 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2244 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2245 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2246 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2247 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2248 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2249 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2250 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2252 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2253 .writefn
= pmsav7_rgnr_write
},
2257 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2258 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2259 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2260 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2261 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2262 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2263 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2264 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2265 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2266 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2268 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2270 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2272 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2274 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2276 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2277 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2279 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2280 /* Protection region base and size registers */
2281 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2282 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2283 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2284 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2285 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2286 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2287 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2288 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2289 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2290 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2291 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2292 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2293 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2294 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2295 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2296 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2297 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2298 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2299 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2300 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2301 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2302 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2303 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2304 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2308 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2311 TCR
*tcr
= raw_ptr(env
, ri
);
2312 int maskshift
= extract32(value
, 0, 3);
2314 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2315 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2316 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2317 * using Long-desciptor translation table format */
2318 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2319 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2320 /* In an implementation that includes the Security Extensions
2321 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2322 * Short-descriptor translation table format.
2324 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2330 /* Update the masks corresponding to the TCR bank being written
2331 * Note that we always calculate mask and base_mask, but
2332 * they are only used for short-descriptor tables (ie if EAE is 0);
2333 * for long-descriptor tables the TCR fields are used differently
2334 * and the mask and base_mask values are meaningless.
2336 tcr
->raw_tcr
= value
;
2337 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2338 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2341 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2344 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2346 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2347 /* With LPAE the TTBCR could result in a change of ASID
2348 * via the TTBCR.A1 bit, so do a TLB flush.
2350 tlb_flush(CPU(cpu
), 1);
2352 vmsa_ttbcr_raw_write(env
, ri
, value
);
2355 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2357 TCR
*tcr
= raw_ptr(env
, ri
);
2359 /* Reset both the TCR as well as the masks corresponding to the bank of
2360 * the TCR being reset.
2364 tcr
->base_mask
= 0xffffc000u
;
2367 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2370 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2371 TCR
*tcr
= raw_ptr(env
, ri
);
2373 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2374 tlb_flush(CPU(cpu
), 1);
2375 tcr
->raw_tcr
= value
;
2378 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2381 /* 64 bit accesses to the TTBRs can change the ASID and so we
2382 * must flush the TLB.
2384 if (cpreg_field_is_64bit(ri
)) {
2385 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2387 tlb_flush(CPU(cpu
), 1);
2389 raw_write(env
, ri
, value
);
2392 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2395 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2396 CPUState
*cs
= CPU(cpu
);
2398 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2399 if (raw_read(env
, ri
) != value
) {
2400 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2401 ARMMMUIdx_S2NS
, -1);
2402 raw_write(env
, ri
, value
);
2406 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2407 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2408 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2409 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2410 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2411 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2412 .access
= PL1_RW
, .resetvalue
= 0,
2413 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2414 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2415 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2416 .access
= PL1_RW
, .resetvalue
= 0,
2417 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2418 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2419 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2420 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2421 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2426 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2427 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2428 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2430 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2431 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2432 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2433 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2434 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2435 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2436 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2437 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2438 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2439 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2440 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2441 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2442 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2443 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2444 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2445 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2446 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2447 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2448 .raw_writefn
= vmsa_ttbcr_raw_write
,
2449 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2450 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2454 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2457 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2458 /* The OS_TYPE bit in this register changes the reported CPUID! */
2459 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2460 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2463 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2466 env
->cp15
.c15_threadid
= value
& 0xffff;
2469 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2472 /* Wait-for-interrupt (deprecated) */
2473 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2476 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2479 /* On OMAP there are registers indicating the max/min index of dcache lines
2480 * containing a dirty line; cache flush operations have to reset these.
2482 env
->cp15
.c15_i_max
= 0x000;
2483 env
->cp15
.c15_i_min
= 0xff0;
2486 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2487 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2488 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2489 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2491 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2492 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2493 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2495 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2496 .writefn
= omap_ticonfig_write
},
2497 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2499 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2500 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2501 .access
= PL1_RW
, .resetvalue
= 0xff0,
2502 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2503 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2505 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2506 .writefn
= omap_threadid_write
},
2507 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2508 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2509 .type
= ARM_CP_NO_RAW
,
2510 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2511 /* TODO: Peripheral port remap register:
2512 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2513 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2516 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2517 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2518 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2519 .writefn
= omap_cachemaint_write
},
2520 { .name
= "C9", .cp
= 15, .crn
= 9,
2521 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2522 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2526 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2529 env
->cp15
.c15_cpar
= value
& 0x3fff;
2532 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2533 { .name
= "XSCALE_CPAR",
2534 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2535 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2536 .writefn
= xscale_cpar_write
, },
2537 { .name
= "XSCALE_AUXCR",
2538 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2539 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2541 /* XScale specific cache-lockdown: since we have no cache we NOP these
2542 * and hope the guest does not really rely on cache behaviour.
2544 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2545 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2546 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2547 { .name
= "XSCALE_UNLOCK_ICACHE",
2548 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2549 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2550 { .name
= "XSCALE_DCACHE_LOCK",
2551 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2552 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2553 { .name
= "XSCALE_UNLOCK_DCACHE",
2554 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2555 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2559 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2560 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2561 * implementation of this implementation-defined space.
2562 * Ideally this should eventually disappear in favour of actually
2563 * implementing the correct behaviour for all cores.
2565 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2566 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2568 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2573 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2574 /* Cache status: RAZ because we have no cache so it's always clean */
2575 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2576 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2581 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2582 /* We never have a a block transfer operation in progress */
2583 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2584 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2586 /* The cache ops themselves: these all NOP for QEMU */
2587 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2588 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2589 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2590 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2591 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2592 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2593 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2594 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2595 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2596 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2597 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2598 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2602 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2603 /* The cache test-and-clean instructions always return (1 << 30)
2604 * to indicate that there are no dirty cache lines.
2606 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2607 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2608 .resetvalue
= (1 << 30) },
2609 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2610 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2611 .resetvalue
= (1 << 30) },
2615 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2616 /* Ignore ReadBuffer accesses */
2617 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2618 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2619 .access
= PL1_RW
, .resetvalue
= 0,
2620 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2624 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2626 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2627 unsigned int cur_el
= arm_current_el(env
);
2628 bool secure
= arm_is_secure(env
);
2630 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2631 return env
->cp15
.vpidr_el2
;
2633 return raw_read(env
, ri
);
2636 static uint64_t mpidr_read_val(CPUARMState
*env
)
2638 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2639 uint64_t mpidr
= cpu
->mp_affinity
;
2641 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2642 mpidr
|= (1U << 31);
2643 /* Cores which are uniprocessor (non-coherent)
2644 * but still implement the MP extensions set
2645 * bit 30. (For instance, Cortex-R5).
2647 if (cpu
->mp_is_up
) {
2648 mpidr
|= (1u << 30);
2654 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2656 unsigned int cur_el
= arm_current_el(env
);
2657 bool secure
= arm_is_secure(env
);
2659 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2660 return env
->cp15
.vmpidr_el2
;
2662 return mpidr_read_val(env
);
2665 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2666 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2667 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2668 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2672 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2674 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2675 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2676 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2678 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2679 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2680 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2682 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2683 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2684 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2685 offsetof(CPUARMState
, cp15
.par_ns
)} },
2686 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2687 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2688 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2689 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2690 .writefn
= vmsa_ttbr_write
, },
2691 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2692 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2693 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2694 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2695 .writefn
= vmsa_ttbr_write
, },
2699 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2701 return vfp_get_fpcr(env
);
2704 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2707 vfp_set_fpcr(env
, value
);
2710 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2712 return vfp_get_fpsr(env
);
2715 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2718 vfp_set_fpsr(env
, value
);
2721 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2724 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2725 return CP_ACCESS_TRAP
;
2727 return CP_ACCESS_OK
;
2730 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2733 env
->daif
= value
& PSTATE_DAIF
;
2736 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2737 const ARMCPRegInfo
*ri
,
2740 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2741 * SCTLR_EL1.UCI is set.
2743 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2744 return CP_ACCESS_TRAP
;
2746 return CP_ACCESS_OK
;
2749 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2750 * Page D4-1736 (DDI0487A.b)
2753 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2756 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2757 CPUState
*cs
= CPU(cpu
);
2759 if (arm_is_secure_below_el3(env
)) {
2760 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2762 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2766 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2769 bool sec
= arm_is_secure_below_el3(env
);
2772 CPU_FOREACH(other_cs
) {
2774 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2776 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2777 ARMMMUIdx_S12NSE0
, -1);
2782 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2785 /* Note that the 'ALL' scope must invalidate both stage 1 and
2786 * stage 2 translations, whereas most other scopes only invalidate
2787 * stage 1 translations.
2789 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2790 CPUState
*cs
= CPU(cpu
);
2792 if (arm_is_secure_below_el3(env
)) {
2793 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2795 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2796 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2797 ARMMMUIdx_S2NS
, -1);
2799 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2804 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2807 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2808 CPUState
*cs
= CPU(cpu
);
2810 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2813 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2816 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2817 CPUState
*cs
= CPU(cpu
);
2819 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2822 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2825 /* Note that the 'ALL' scope must invalidate both stage 1 and
2826 * stage 2 translations, whereas most other scopes only invalidate
2827 * stage 1 translations.
2829 bool sec
= arm_is_secure_below_el3(env
);
2830 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2833 CPU_FOREACH(other_cs
) {
2835 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2836 } else if (has_el2
) {
2837 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2838 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2840 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2841 ARMMMUIdx_S12NSE0
, -1);
2846 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2851 CPU_FOREACH(other_cs
) {
2852 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2856 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2861 CPU_FOREACH(other_cs
) {
2862 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2866 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2869 /* Invalidate by VA, EL1&0 (AArch64 version).
2870 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2871 * since we don't support flush-for-specific-ASID-only or
2872 * flush-last-level-only.
2874 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2875 CPUState
*cs
= CPU(cpu
);
2876 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2878 if (arm_is_secure_below_el3(env
)) {
2879 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2880 ARMMMUIdx_S1SE0
, -1);
2882 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2883 ARMMMUIdx_S12NSE0
, -1);
2887 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2890 /* Invalidate by VA, EL2
2891 * Currently handles both VAE2 and VALE2, since we don't support
2892 * flush-last-level-only.
2894 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2895 CPUState
*cs
= CPU(cpu
);
2896 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2898 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2901 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2904 /* Invalidate by VA, EL3
2905 * Currently handles both VAE3 and VALE3, since we don't support
2906 * flush-last-level-only.
2908 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2909 CPUState
*cs
= CPU(cpu
);
2910 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2912 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2915 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2918 bool sec
= arm_is_secure_below_el3(env
);
2920 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2922 CPU_FOREACH(other_cs
) {
2924 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2925 ARMMMUIdx_S1SE0
, -1);
2927 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2928 ARMMMUIdx_S12NSE0
, -1);
2933 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2937 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2939 CPU_FOREACH(other_cs
) {
2940 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2944 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2948 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2950 CPU_FOREACH(other_cs
) {
2951 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2955 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2958 /* Invalidate by IPA. This has to invalidate any structures that
2959 * contain only stage 2 translation information, but does not need
2960 * to apply to structures that contain combined stage 1 and stage 2
2961 * translation information.
2962 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2964 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2965 CPUState
*cs
= CPU(cpu
);
2968 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2972 pageaddr
= sextract64(value
<< 12, 0, 48);
2974 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2977 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2983 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2987 pageaddr
= sextract64(value
<< 12, 0, 48);
2989 CPU_FOREACH(other_cs
) {
2990 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2994 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2997 /* We don't implement EL2, so the only control on DC ZVA is the
2998 * bit in the SCTLR which can prohibit access for EL0.
3000 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
3001 return CP_ACCESS_TRAP
;
3003 return CP_ACCESS_OK
;
3006 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3008 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3009 int dzp_bit
= 1 << 4;
3011 /* DZP indicates whether DC ZVA access is allowed */
3012 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
3015 return cpu
->dcz_blocksize
| dzp_bit
;
3018 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3021 if (!(env
->pstate
& PSTATE_SP
)) {
3022 /* Access to SP_EL0 is undefined if it's being used as
3023 * the stack pointer.
3025 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3027 return CP_ACCESS_OK
;
3030 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3032 return env
->pstate
& PSTATE_SP
;
3035 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
3037 update_spsel(env
, val
);
3040 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3043 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3045 if (raw_read(env
, ri
) == value
) {
3046 /* Skip the TLB flush if nothing actually changed; Linux likes
3047 * to do a lot of pointless SCTLR writes.
3052 raw_write(env
, ri
, value
);
3053 /* ??? Lots of these bits are not implemented. */
3054 /* This may enable/disable the MMU, so do a TLB flush. */
3055 tlb_flush(CPU(cpu
), 1);
3058 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3061 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
3062 return CP_ACCESS_TRAP_FP_EL2
;
3064 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
3065 return CP_ACCESS_TRAP_FP_EL3
;
3067 return CP_ACCESS_OK
;
3070 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3073 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
3076 static const ARMCPRegInfo v8_cp_reginfo
[] = {
3077 /* Minimal set of EL0-visible registers. This will need to be expanded
3078 * significantly for system emulation of AArch64 CPUs.
3080 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
3081 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
3082 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
3083 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
3084 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
3085 .type
= ARM_CP_NO_RAW
,
3086 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
3087 .fieldoffset
= offsetof(CPUARMState
, daif
),
3088 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
3089 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
3090 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
3091 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
3092 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
3093 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
3094 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
3095 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
3096 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
3097 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
3098 .readfn
= aa64_dczid_read
},
3099 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
3100 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
3101 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
3102 #ifndef CONFIG_USER_ONLY
3103 /* Avoid overhead of an access check that always passes in user-mode */
3104 .accessfn
= aa64_zva_access
,
3107 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
3108 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
3109 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
3110 /* Cache ops: all NOPs since we don't emulate caches */
3111 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
3112 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3113 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3114 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
3115 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3116 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3117 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
3118 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
3119 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3120 .accessfn
= aa64_cacheop_access
},
3121 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
3122 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3123 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3124 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
3125 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3126 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3127 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
3128 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
3129 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3130 .accessfn
= aa64_cacheop_access
},
3131 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
3132 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3133 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3134 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
3135 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
3136 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3137 .accessfn
= aa64_cacheop_access
},
3138 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
3139 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
3140 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3141 .accessfn
= aa64_cacheop_access
},
3142 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
3143 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3144 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3145 /* TLBI operations */
3146 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
3147 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
3148 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3149 .writefn
= tlbi_aa64_vmalle1is_write
},
3150 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
3151 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
3152 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3153 .writefn
= tlbi_aa64_vae1is_write
},
3154 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
3155 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
3156 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3157 .writefn
= tlbi_aa64_vmalle1is_write
},
3158 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
3159 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
3160 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3161 .writefn
= tlbi_aa64_vae1is_write
},
3162 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
3163 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3164 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3165 .writefn
= tlbi_aa64_vae1is_write
},
3166 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
3167 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3168 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3169 .writefn
= tlbi_aa64_vae1is_write
},
3170 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
3171 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
3172 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3173 .writefn
= tlbi_aa64_vmalle1_write
},
3174 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
3175 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
3176 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3177 .writefn
= tlbi_aa64_vae1_write
},
3178 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
3179 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
3180 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3181 .writefn
= tlbi_aa64_vmalle1_write
},
3182 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
3183 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3184 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3185 .writefn
= tlbi_aa64_vae1_write
},
3186 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3187 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3188 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3189 .writefn
= tlbi_aa64_vae1_write
},
3190 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3191 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3192 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3193 .writefn
= tlbi_aa64_vae1_write
},
3194 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3195 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3196 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3197 .writefn
= tlbi_aa64_ipas2e1is_write
},
3198 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3199 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3200 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3201 .writefn
= tlbi_aa64_ipas2e1is_write
},
3202 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3203 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3204 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3205 .writefn
= tlbi_aa64_alle1is_write
},
3206 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3207 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3208 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3209 .writefn
= tlbi_aa64_alle1is_write
},
3210 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3211 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3212 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3213 .writefn
= tlbi_aa64_ipas2e1_write
},
3214 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3215 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3216 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3217 .writefn
= tlbi_aa64_ipas2e1_write
},
3218 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3219 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3220 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3221 .writefn
= tlbi_aa64_alle1_write
},
3222 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3223 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3224 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3225 .writefn
= tlbi_aa64_alle1is_write
},
3226 #ifndef CONFIG_USER_ONLY
3227 /* 64 bit address translation operations */
3228 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3229 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3230 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3231 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3232 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3233 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3234 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3235 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3236 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3237 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3238 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3239 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3240 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3241 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3242 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3243 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3244 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3245 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3246 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3247 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3248 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3249 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3250 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3251 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3252 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3253 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3254 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3255 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3256 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3257 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3258 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3259 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3260 .type
= ARM_CP_ALIAS
,
3261 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3262 .access
= PL1_RW
, .resetvalue
= 0,
3263 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3264 .writefn
= par_write
},
3266 /* TLB invalidate last level of translation table walk */
3267 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3268 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3269 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3270 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3271 .writefn
= tlbimvaa_is_write
},
3272 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3273 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3274 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3275 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3276 /* 32 bit cache operations */
3277 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3278 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3279 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3280 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3281 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3282 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3283 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3284 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3285 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3286 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3287 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3288 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3289 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3290 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3291 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3292 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3293 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3294 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3295 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3296 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3297 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3298 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3299 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3300 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3301 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3302 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3303 /* MMU Domain access control / MPU write buffer control */
3304 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3305 .access
= PL1_RW
, .resetvalue
= 0,
3306 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3307 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3308 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3309 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3310 .type
= ARM_CP_ALIAS
,
3311 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3313 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3314 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3315 .type
= ARM_CP_ALIAS
,
3316 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3318 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
3319 /* We rely on the access checks not allowing the guest to write to the
3320 * state field when SPSel indicates that it's being used as the stack
3323 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3324 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3325 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3326 .type
= ARM_CP_ALIAS
,
3327 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3328 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3329 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3330 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3331 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3332 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3333 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3334 .type
= ARM_CP_NO_RAW
,
3335 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3336 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
3337 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
3338 .type
= ARM_CP_ALIAS
,
3339 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
3340 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
3341 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3342 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3343 .access
= PL2_RW
, .resetvalue
= 0,
3344 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3345 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3346 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3347 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3348 .access
= PL2_RW
, .resetvalue
= 0,
3349 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3350 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3351 .type
= ARM_CP_ALIAS
,
3352 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3354 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
3355 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3356 .type
= ARM_CP_ALIAS
,
3357 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3359 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
3360 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3361 .type
= ARM_CP_ALIAS
,
3362 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3364 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
3365 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3366 .type
= ARM_CP_ALIAS
,
3367 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3369 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
3370 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
3371 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
3373 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
3374 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
3375 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
3376 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3377 .writefn
= sdcr_write
,
3378 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
3382 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3383 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3384 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3385 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3387 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3388 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3389 .type
= ARM_CP_NO_RAW
,
3390 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3392 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3393 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3394 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3395 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3396 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3397 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3398 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3400 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3401 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3402 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3403 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3404 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3405 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3407 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3408 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3409 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3411 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3412 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3413 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3415 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3416 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3417 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3419 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3420 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3421 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3422 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3423 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3424 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3425 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3426 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3427 .cp
= 15, .opc1
= 6, .crm
= 2,
3428 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3429 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3430 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3431 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3432 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3433 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3434 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3435 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3436 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3437 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3438 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3439 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3440 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3441 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3442 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3443 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3445 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3446 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3447 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3448 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3449 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3450 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3451 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3452 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3454 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3455 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3456 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3457 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3458 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3460 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3461 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3462 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3463 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3464 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3465 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3466 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3467 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3468 .access
= PL2_RW
, .accessfn
= access_tda
,
3469 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3470 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3471 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3472 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3473 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3477 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3479 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3480 uint64_t valid_mask
= HCR_MASK
;
3482 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3483 valid_mask
&= ~HCR_HCD
;
3485 valid_mask
&= ~HCR_TSC
;
3488 /* Clear RES0 bits. */
3489 value
&= valid_mask
;
3491 /* These bits change the MMU setup:
3492 * HCR_VM enables stage 2 translation
3493 * HCR_PTW forbids certain page-table setups
3494 * HCR_DC Disables stage1 and enables stage2 translation
3496 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3497 tlb_flush(CPU(cpu
), 1);
3499 raw_write(env
, ri
, value
);
3502 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3503 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3504 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3505 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3506 .writefn
= hcr_write
},
3507 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3508 .type
= ARM_CP_ALIAS
,
3509 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3511 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3512 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3513 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3514 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3515 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3516 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3517 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3518 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3519 .type
= ARM_CP_ALIAS
,
3520 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3522 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
3523 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3524 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3525 .access
= PL2_RW
, .writefn
= vbar_write
,
3526 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3528 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3529 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3530 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3531 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3532 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3533 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3534 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3535 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3536 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3537 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3538 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3540 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3541 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3542 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3543 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3544 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3545 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3546 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3548 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3549 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3550 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3551 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3553 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3554 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3555 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3557 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3558 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3559 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3561 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3562 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3564 /* no .writefn needed as this can't cause an ASID change;
3565 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3567 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3568 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3569 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3570 .type
= ARM_CP_ALIAS
,
3571 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3572 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3573 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3574 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3576 /* no .writefn needed as this can't cause an ASID change;
3577 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3579 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3580 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3581 .cp
= 15, .opc1
= 6, .crm
= 2,
3582 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3583 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3584 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3585 .writefn
= vttbr_write
},
3586 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3587 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3588 .access
= PL2_RW
, .writefn
= vttbr_write
,
3589 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3590 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3591 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3592 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3593 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3594 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3595 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3596 .access
= PL2_RW
, .resetvalue
= 0,
3597 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3598 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3599 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3600 .access
= PL2_RW
, .resetvalue
= 0,
3601 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3602 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3603 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3604 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3605 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3606 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3607 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3608 .writefn
= tlbi_aa64_alle2_write
},
3609 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3610 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3611 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3612 .writefn
= tlbi_aa64_vae2_write
},
3613 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3614 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3615 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3616 .writefn
= tlbi_aa64_vae2_write
},
3617 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3618 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3619 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3620 .writefn
= tlbi_aa64_alle2is_write
},
3621 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3622 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3623 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3624 .writefn
= tlbi_aa64_vae2is_write
},
3625 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3626 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3627 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3628 .writefn
= tlbi_aa64_vae2is_write
},
3629 #ifndef CONFIG_USER_ONLY
3630 /* Unlike the other EL2-related AT operations, these must
3631 * UNDEF from EL3 if EL2 is not implemented, which is why we
3632 * define them here rather than with the rest of the AT ops.
3634 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3635 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3636 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3637 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3638 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3639 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3640 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3641 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3642 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3643 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3644 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3645 * to behave as if SCR.NS was 1.
3647 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3649 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3650 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3652 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3653 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3654 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3655 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3656 * reset values as IMPDEF. We choose to reset to 3 to comply with
3657 * both ARMv7 and ARMv8.
3659 .access
= PL2_RW
, .resetvalue
= 3,
3660 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3661 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3662 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3663 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3664 .writefn
= gt_cntvoff_write
,
3665 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3666 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3667 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3668 .writefn
= gt_cntvoff_write
,
3669 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3670 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3671 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3672 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3673 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3674 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3675 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3676 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3677 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3678 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3679 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3680 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3681 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
3682 .resetfn
= gt_hyp_timer_reset
,
3683 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3684 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3686 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3688 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3690 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3692 /* The only field of MDCR_EL2 that has a defined architectural reset value
3693 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3694 * don't impelment any PMU event counters, so using zero as a reset
3695 * value for MDCR_EL2 is okay
3697 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3698 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3699 .access
= PL2_RW
, .resetvalue
= 0,
3700 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3701 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
3702 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3703 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3704 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3705 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
3706 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3708 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3712 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3715 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3716 * At Secure EL1 it traps to EL3.
3718 if (arm_current_el(env
) == 3) {
3719 return CP_ACCESS_OK
;
3721 if (arm_is_secure_below_el3(env
)) {
3722 return CP_ACCESS_TRAP_EL3
;
3724 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3726 return CP_ACCESS_OK
;
3728 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3731 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3732 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3733 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3734 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3735 .resetvalue
= 0, .writefn
= scr_write
},
3736 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3737 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3738 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3739 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3740 .writefn
= scr_write
},
3741 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3742 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3743 .access
= PL3_RW
, .resetvalue
= 0,
3744 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3746 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3747 .access
= PL3_RW
, .resetvalue
= 0,
3748 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3749 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3750 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3751 .writefn
= vbar_write
, .resetvalue
= 0,
3752 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3753 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3754 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3755 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3756 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3757 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3758 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3760 /* no .writefn needed as this can't cause an ASID change;
3761 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3763 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3764 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3765 .type
= ARM_CP_ALIAS
,
3766 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3768 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3769 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3770 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3771 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3772 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3773 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3774 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3775 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3776 .type
= ARM_CP_ALIAS
,
3777 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3779 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
3780 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3781 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3782 .access
= PL3_RW
, .writefn
= vbar_write
,
3783 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3785 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3786 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3787 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3788 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3789 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3790 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3791 .access
= PL3_RW
, .resetvalue
= 0,
3792 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3793 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3794 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3795 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3797 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3798 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3799 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3801 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3802 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3803 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3805 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3806 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3807 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3808 .writefn
= tlbi_aa64_alle3is_write
},
3809 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3810 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3811 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3812 .writefn
= tlbi_aa64_vae3is_write
},
3813 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3814 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3815 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3816 .writefn
= tlbi_aa64_vae3is_write
},
3817 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3818 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3819 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3820 .writefn
= tlbi_aa64_alle3_write
},
3821 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3822 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3823 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3824 .writefn
= tlbi_aa64_vae3_write
},
3825 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3826 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3827 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3828 .writefn
= tlbi_aa64_vae3_write
},
3832 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3835 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3836 * but the AArch32 CTR has its own reginfo struct)
3838 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3839 return CP_ACCESS_TRAP
;
3841 return CP_ACCESS_OK
;
3844 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3847 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3848 * read via a bit in OSLSR_EL1.
3852 if (ri
->state
== ARM_CP_STATE_AA32
) {
3853 oslock
= (value
== 0xC5ACCE55);
3858 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
3861 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3862 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3863 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3864 * unlike DBGDRAR it is never accessible from EL0.
3865 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3868 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3869 .access
= PL0_R
, .accessfn
= access_tdra
,
3870 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3871 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3872 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3873 .access
= PL1_R
, .accessfn
= access_tdra
,
3874 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3875 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3876 .access
= PL0_R
, .accessfn
= access_tdra
,
3877 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3878 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3879 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3880 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3881 .access
= PL1_RW
, .accessfn
= access_tda
,
3882 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3884 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3885 * We don't implement the configurable EL0 access.
3887 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3888 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3889 .type
= ARM_CP_ALIAS
,
3890 .access
= PL1_R
, .accessfn
= access_tda
,
3891 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3892 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3893 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3894 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3895 .accessfn
= access_tdosa
,
3896 .writefn
= oslar_write
},
3897 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
3898 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
3899 .access
= PL1_R
, .resetvalue
= 10,
3900 .accessfn
= access_tdosa
,
3901 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
3902 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3903 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3904 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3905 .access
= PL1_RW
, .accessfn
= access_tdosa
,
3906 .type
= ARM_CP_NOP
},
3907 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3908 * implement vector catch debug events yet.
3911 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3912 .access
= PL1_RW
, .accessfn
= access_tda
,
3913 .type
= ARM_CP_NOP
},
3917 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3918 /* 64 bit access versions of the (dummy) debug registers */
3919 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3920 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3921 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3922 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3926 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3928 CPUARMState
*env
= &cpu
->env
;
3930 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3931 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3933 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3935 if (env
->cpu_watchpoint
[n
]) {
3936 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3937 env
->cpu_watchpoint
[n
] = NULL
;
3940 if (!extract64(wcr
, 0, 1)) {
3941 /* E bit clear : watchpoint disabled */
3945 switch (extract64(wcr
, 3, 2)) {
3947 /* LSC 00 is reserved and must behave as if the wp is disabled */
3950 flags
|= BP_MEM_READ
;
3953 flags
|= BP_MEM_WRITE
;
3956 flags
|= BP_MEM_ACCESS
;
3960 /* Attempts to use both MASK and BAS fields simultaneously are
3961 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3962 * thus generating a watchpoint for every byte in the masked region.
3964 mask
= extract64(wcr
, 24, 4);
3965 if (mask
== 1 || mask
== 2) {
3966 /* Reserved values of MASK; we must act as if the mask value was
3967 * some non-reserved value, or as if the watchpoint were disabled.
3968 * We choose the latter.
3972 /* Watchpoint covers an aligned area up to 2GB in size */
3974 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3975 * whether the watchpoint fires when the unmasked bits match; we opt
3976 * to generate the exceptions.
3980 /* Watchpoint covers bytes defined by the byte address select bits */
3981 int bas
= extract64(wcr
, 5, 8);
3985 /* This must act as if the watchpoint is disabled */
3989 if (extract64(wvr
, 2, 1)) {
3990 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3991 * ignored, and BAS[3:0] define which bytes to watch.
3995 /* The BAS bits are supposed to be programmed to indicate a contiguous
3996 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3997 * we fire for each byte in the word/doubleword addressed by the WVR.
3998 * We choose to ignore any non-zero bits after the first range of 1s.
4000 basstart
= ctz32(bas
);
4001 len
= cto32(bas
>> basstart
);
4005 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
4006 &env
->cpu_watchpoint
[n
]);
4009 void hw_watchpoint_update_all(ARMCPU
*cpu
)
4012 CPUARMState
*env
= &cpu
->env
;
4014 /* Completely clear out existing QEMU watchpoints and our array, to
4015 * avoid possible stale entries following migration load.
4017 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
4018 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
4020 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
4021 hw_watchpoint_update(cpu
, i
);
4025 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4028 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4031 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4032 * register reads and behaves as if values written are sign extended.
4033 * Bits [1:0] are RES0.
4035 value
= sextract64(value
, 0, 49) & ~3ULL;
4037 raw_write(env
, ri
, value
);
4038 hw_watchpoint_update(cpu
, i
);
4041 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4044 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4047 raw_write(env
, ri
, value
);
4048 hw_watchpoint_update(cpu
, i
);
4051 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
4053 CPUARMState
*env
= &cpu
->env
;
4054 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
4055 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
4060 if (env
->cpu_breakpoint
[n
]) {
4061 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
4062 env
->cpu_breakpoint
[n
] = NULL
;
4065 if (!extract64(bcr
, 0, 1)) {
4066 /* E bit clear : watchpoint disabled */
4070 bt
= extract64(bcr
, 20, 4);
4073 case 4: /* unlinked address mismatch (reserved if AArch64) */
4074 case 5: /* linked address mismatch (reserved if AArch64) */
4075 qemu_log_mask(LOG_UNIMP
,
4076 "arm: address mismatch breakpoint types not implemented");
4078 case 0: /* unlinked address match */
4079 case 1: /* linked address match */
4081 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4082 * we behave as if the register was sign extended. Bits [1:0] are
4083 * RES0. The BAS field is used to allow setting breakpoints on 16
4084 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4085 * a bp will fire if the addresses covered by the bp and the addresses
4086 * covered by the insn overlap but the insn doesn't start at the
4087 * start of the bp address range. We choose to require the insn and
4088 * the bp to have the same address. The constraints on writing to
4089 * BAS enforced in dbgbcr_write mean we have only four cases:
4090 * 0b0000 => no breakpoint
4091 * 0b0011 => breakpoint on addr
4092 * 0b1100 => breakpoint on addr + 2
4093 * 0b1111 => breakpoint on addr
4094 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4096 int bas
= extract64(bcr
, 5, 4);
4097 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
4106 case 2: /* unlinked context ID match */
4107 case 8: /* unlinked VMID match (reserved if no EL2) */
4108 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4109 qemu_log_mask(LOG_UNIMP
,
4110 "arm: unlinked context breakpoint types not implemented");
4112 case 9: /* linked VMID match (reserved if no EL2) */
4113 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4114 case 3: /* linked context ID match */
4116 /* We must generate no events for Linked context matches (unless
4117 * they are linked to by some other bp/wp, which is handled in
4118 * updates for the linking bp/wp). We choose to also generate no events
4119 * for reserved values.
4124 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
4127 void hw_breakpoint_update_all(ARMCPU
*cpu
)
4130 CPUARMState
*env
= &cpu
->env
;
4132 /* Completely clear out existing QEMU breakpoints and our array, to
4133 * avoid possible stale entries following migration load.
4135 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
4136 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
4138 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
4139 hw_breakpoint_update(cpu
, i
);
4143 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4146 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4149 raw_write(env
, ri
, value
);
4150 hw_breakpoint_update(cpu
, i
);
4153 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4156 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4159 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4162 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
4163 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
4165 raw_write(env
, ri
, value
);
4166 hw_breakpoint_update(cpu
, i
);
4169 static void define_debug_regs(ARMCPU
*cpu
)
4171 /* Define v7 and v8 architectural debug registers.
4172 * These are just dummy implementations for now.
4175 int wrps
, brps
, ctx_cmps
;
4176 ARMCPRegInfo dbgdidr
= {
4177 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
4178 .access
= PL0_R
, .accessfn
= access_tda
,
4179 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
4182 /* Note that all these register fields hold "number of Xs minus 1". */
4183 brps
= extract32(cpu
->dbgdidr
, 24, 4);
4184 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
4185 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
4187 assert(ctx_cmps
<= brps
);
4189 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4190 * of the debug registers such as number of breakpoints;
4191 * check that if they both exist then they agree.
4193 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
4194 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
4195 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
4196 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
4199 define_one_arm_cp_reg(cpu
, &dbgdidr
);
4200 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
4202 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
4203 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
4206 for (i
= 0; i
< brps
+ 1; i
++) {
4207 ARMCPRegInfo dbgregs
[] = {
4208 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
4209 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
4210 .access
= PL1_RW
, .accessfn
= access_tda
,
4211 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
4212 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
4214 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
4215 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
4216 .access
= PL1_RW
, .accessfn
= access_tda
,
4217 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
4218 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
4222 define_arm_cp_regs(cpu
, dbgregs
);
4225 for (i
= 0; i
< wrps
+ 1; i
++) {
4226 ARMCPRegInfo dbgregs
[] = {
4227 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
4228 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
4229 .access
= PL1_RW
, .accessfn
= access_tda
,
4230 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
4231 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4233 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4234 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4235 .access
= PL1_RW
, .accessfn
= access_tda
,
4236 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4237 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4241 define_arm_cp_regs(cpu
, dbgregs
);
4245 void register_cp_regs_for_features(ARMCPU
*cpu
)
4247 /* Register all the coprocessor registers based on feature bits */
4248 CPUARMState
*env
= &cpu
->env
;
4249 if (arm_feature(env
, ARM_FEATURE_M
)) {
4250 /* M profile has no coprocessor registers */
4254 define_arm_cp_regs(cpu
, cp_reginfo
);
4255 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
4256 /* Must go early as it is full of wildcards that may be
4257 * overridden by later definitions.
4259 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
4262 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4263 /* The ID registers all have impdef reset values */
4264 ARMCPRegInfo v6_idregs
[] = {
4265 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
4266 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4267 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4268 .resetvalue
= cpu
->id_pfr0
},
4269 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4270 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4271 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4272 .resetvalue
= cpu
->id_pfr1
},
4273 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4274 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4275 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4276 .resetvalue
= cpu
->id_dfr0
},
4277 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4278 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4279 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4280 .resetvalue
= cpu
->id_afr0
},
4281 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4282 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4283 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4284 .resetvalue
= cpu
->id_mmfr0
},
4285 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4286 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4287 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4288 .resetvalue
= cpu
->id_mmfr1
},
4289 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4290 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4291 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4292 .resetvalue
= cpu
->id_mmfr2
},
4293 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4294 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4295 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4296 .resetvalue
= cpu
->id_mmfr3
},
4297 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4298 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4299 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4300 .resetvalue
= cpu
->id_isar0
},
4301 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4302 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4303 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4304 .resetvalue
= cpu
->id_isar1
},
4305 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4306 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4307 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4308 .resetvalue
= cpu
->id_isar2
},
4309 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4310 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4311 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4312 .resetvalue
= cpu
->id_isar3
},
4313 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4314 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4315 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4316 .resetvalue
= cpu
->id_isar4
},
4317 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4318 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4319 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4320 .resetvalue
= cpu
->id_isar5
},
4321 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
4322 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
4323 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4324 .resetvalue
= cpu
->id_mmfr4
},
4325 /* 7 is as yet unallocated and must RAZ */
4326 { .name
= "ID_ISAR7_RESERVED", .state
= ARM_CP_STATE_BOTH
,
4327 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
4328 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4332 define_arm_cp_regs(cpu
, v6_idregs
);
4333 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4335 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4337 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4338 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4340 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4341 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4342 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4344 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4345 /* v7 performance monitor control register: same implementor
4346 * field as main ID register, and we implement only the cycle
4349 #ifndef CONFIG_USER_ONLY
4350 ARMCPRegInfo pmcr
= {
4351 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4353 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4354 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4355 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4356 .raw_writefn
= raw_write
,
4358 ARMCPRegInfo pmcr64
= {
4359 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4360 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4361 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4363 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4364 .resetvalue
= cpu
->midr
& 0xff000000,
4365 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4367 define_one_arm_cp_reg(cpu
, &pmcr
);
4368 define_one_arm_cp_reg(cpu
, &pmcr64
);
4370 ARMCPRegInfo clidr
= {
4371 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4372 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4373 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4375 define_one_arm_cp_reg(cpu
, &clidr
);
4376 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4377 define_debug_regs(cpu
);
4379 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4381 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4382 /* AArch64 ID registers, which all have impdef reset values.
4383 * Note that within the ID register ranges the unused slots
4384 * must all RAZ, not UNDEF; future architecture versions may
4385 * define new registers here.
4387 ARMCPRegInfo v8_idregs
[] = {
4388 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4389 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4390 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4391 .resetvalue
= cpu
->id_aa64pfr0
},
4392 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4393 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4394 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4395 .resetvalue
= cpu
->id_aa64pfr1
},
4396 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4397 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
4398 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4400 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4401 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
4402 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4404 { .name
= "ID_AA64PFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4405 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
4406 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4408 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4409 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
4410 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4412 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4413 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
4414 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4416 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4417 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
4418 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4420 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4421 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4422 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4423 /* We mask out the PMUVer field, because we don't currently
4424 * implement the PMU. Not advertising it prevents the guest
4425 * from trying to use it and getting UNDEFs on registers we
4428 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4429 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4430 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4431 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4432 .resetvalue
= cpu
->id_aa64dfr1
},
4433 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4434 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
4435 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4437 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4438 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
4439 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4441 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4442 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4443 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4444 .resetvalue
= cpu
->id_aa64afr0
},
4445 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4446 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4447 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4448 .resetvalue
= cpu
->id_aa64afr1
},
4449 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4450 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
4451 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4453 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4454 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
4455 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4457 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4458 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4459 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4460 .resetvalue
= cpu
->id_aa64isar0
},
4461 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4462 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4463 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4464 .resetvalue
= cpu
->id_aa64isar1
},
4465 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4466 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
4467 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4469 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4470 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
4471 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4473 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4474 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
4475 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4477 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4478 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
4479 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4481 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4482 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
4483 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4485 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4486 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
4487 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4489 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4490 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4491 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4492 .resetvalue
= cpu
->id_aa64mmfr0
},
4493 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4494 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4495 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4496 .resetvalue
= cpu
->id_aa64mmfr1
},
4497 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4498 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
4499 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4501 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4502 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
4503 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4505 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4506 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
4507 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4509 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4510 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
4511 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4513 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4514 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
4515 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4517 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4518 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
4519 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4521 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4522 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4523 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4524 .resetvalue
= cpu
->mvfr0
},
4525 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4526 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4527 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4528 .resetvalue
= cpu
->mvfr1
},
4529 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4530 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4531 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4532 .resetvalue
= cpu
->mvfr2
},
4533 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4534 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
4535 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4537 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4538 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
4539 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4541 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4542 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
4543 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4545 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4546 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
4547 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4549 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4550 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
4551 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4553 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
4554 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
4555 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4556 .resetvalue
= cpu
->pmceid0
},
4557 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
4558 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
4559 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4560 .resetvalue
= cpu
->pmceid0
},
4561 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
4562 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
4563 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4564 .resetvalue
= cpu
->pmceid1
},
4565 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
4566 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
4567 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4568 .resetvalue
= cpu
->pmceid1
},
4571 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4572 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4573 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4574 ARMCPRegInfo rvbar
= {
4575 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4576 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4577 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4579 define_one_arm_cp_reg(cpu
, &rvbar
);
4581 define_arm_cp_regs(cpu
, v8_idregs
);
4582 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4584 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4585 uint64_t vmpidr_def
= mpidr_read_val(env
);
4586 ARMCPRegInfo vpidr_regs
[] = {
4587 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4588 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4589 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4590 .resetvalue
= cpu
->midr
,
4591 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4592 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4593 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4594 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4595 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4596 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4597 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4598 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4599 .resetvalue
= vmpidr_def
,
4600 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4601 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4602 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4604 .resetvalue
= vmpidr_def
,
4605 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4608 define_arm_cp_regs(cpu
, vpidr_regs
);
4609 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4610 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4611 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4612 ARMCPRegInfo rvbar
= {
4613 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4614 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4615 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4617 define_one_arm_cp_reg(cpu
, &rvbar
);
4620 /* If EL2 is missing but higher ELs are enabled, we need to
4621 * register the no_el2 reginfos.
4623 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4624 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4625 * of MIDR_EL1 and MPIDR_EL1.
4627 ARMCPRegInfo vpidr_regs
[] = {
4628 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4629 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4630 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4631 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4632 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4633 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4634 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4635 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4636 .type
= ARM_CP_NO_RAW
,
4637 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4640 define_arm_cp_regs(cpu
, vpidr_regs
);
4641 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4644 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4645 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4646 ARMCPRegInfo el3_regs
[] = {
4647 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4648 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4649 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
4650 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4651 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
4653 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
4654 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
4655 .resetvalue
= cpu
->reset_sctlr
},
4659 define_arm_cp_regs(cpu
, el3_regs
);
4661 /* The behaviour of NSACR is sufficiently various that we don't
4662 * try to describe it in a single reginfo:
4663 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4664 * reads as constant 0xc00 from NS EL1 and NS EL2
4665 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4666 * if v7 without EL3, register doesn't exist
4667 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4669 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4670 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4671 ARMCPRegInfo nsacr
= {
4672 .name
= "NSACR", .type
= ARM_CP_CONST
,
4673 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4674 .access
= PL1_RW
, .accessfn
= nsacr_access
,
4677 define_one_arm_cp_reg(cpu
, &nsacr
);
4679 ARMCPRegInfo nsacr
= {
4681 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4682 .access
= PL3_RW
| PL1_R
,
4684 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
4686 define_one_arm_cp_reg(cpu
, &nsacr
);
4689 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4690 ARMCPRegInfo nsacr
= {
4691 .name
= "NSACR", .type
= ARM_CP_CONST
,
4692 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4696 define_one_arm_cp_reg(cpu
, &nsacr
);
4700 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4701 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4702 /* PMSAv6 not implemented */
4703 assert(arm_feature(env
, ARM_FEATURE_V7
));
4704 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4705 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4707 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4710 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4711 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4713 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4714 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4716 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4717 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4719 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4720 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4722 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4723 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4725 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4726 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4728 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4729 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4731 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4732 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4734 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4735 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4737 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4738 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4740 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4741 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4743 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4744 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4746 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4747 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4748 * be read-only (ie write causes UNDEF exception).
4751 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4752 /* Pre-v8 MIDR space.
4753 * Note that the MIDR isn't a simple constant register because
4754 * of the TI925 behaviour where writes to another register can
4755 * cause the MIDR value to change.
4757 * Unimplemented registers in the c15 0 0 0 space default to
4758 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4759 * and friends override accordingly.
4762 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4763 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4764 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4765 .readfn
= midr_read
,
4766 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4767 .type
= ARM_CP_OVERRIDE
},
4768 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4770 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4771 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4773 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4774 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4776 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4777 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4779 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4780 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4782 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4783 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4786 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4787 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4788 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4789 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4790 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4791 .readfn
= midr_read
},
4792 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4793 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4794 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4795 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4796 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4797 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4798 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4799 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4800 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4801 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4804 ARMCPRegInfo id_cp_reginfo
[] = {
4805 /* These are common to v8 and pre-v8 */
4807 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4808 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4809 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4810 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4811 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4812 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4813 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4815 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4816 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4819 /* TLBTR is specific to VMSA */
4820 ARMCPRegInfo id_tlbtr_reginfo
= {
4822 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4823 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4825 /* MPUIR is specific to PMSA V6+ */
4826 ARMCPRegInfo id_mpuir_reginfo
= {
4828 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4829 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4830 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4832 ARMCPRegInfo crn0_wi_reginfo
= {
4833 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4834 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4835 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4837 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4838 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4840 /* Register the blanket "writes ignored" value first to cover the
4841 * whole space. Then update the specific ID registers to allow write
4842 * access, so that they ignore writes rather than causing them to
4845 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4846 for (r
= id_pre_v8_midr_cp_reginfo
;
4847 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4850 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4853 id_tlbtr_reginfo
.access
= PL1_RW
;
4854 id_tlbtr_reginfo
.access
= PL1_RW
;
4856 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4857 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4859 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4861 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4862 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4863 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4864 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4865 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4869 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4870 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4873 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4874 ARMCPRegInfo auxcr_reginfo
[] = {
4875 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4876 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4877 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4878 .resetvalue
= cpu
->reset_auxcr
},
4879 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4880 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4881 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4883 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4884 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4885 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4889 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4892 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4893 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4894 /* 32 bit view is [31:18] 0...0 [43:32]. */
4895 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4896 | extract64(cpu
->reset_cbar
, 32, 12);
4897 ARMCPRegInfo cbar_reginfo
[] = {
4899 .type
= ARM_CP_CONST
,
4900 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4901 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4902 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4903 .type
= ARM_CP_CONST
,
4904 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4905 .access
= PL1_R
, .resetvalue
= cbar32
},
4908 /* We don't implement a r/w 64 bit CBAR currently */
4909 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4910 define_arm_cp_regs(cpu
, cbar_reginfo
);
4912 ARMCPRegInfo cbar
= {
4914 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4915 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4916 .fieldoffset
= offsetof(CPUARMState
,
4917 cp15
.c15_config_base_address
)
4919 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4920 cbar
.access
= PL1_R
;
4921 cbar
.fieldoffset
= 0;
4922 cbar
.type
= ARM_CP_CONST
;
4924 define_one_arm_cp_reg(cpu
, &cbar
);
4928 /* Generic registers whose values depend on the implementation */
4930 ARMCPRegInfo sctlr
= {
4931 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4932 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4934 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4935 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4936 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4937 .raw_writefn
= raw_write
,
4939 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4940 /* Normally we would always end the TB on an SCTLR write, but Linux
4941 * arch/arm/mach-pxa/sleep.S expects two instructions following
4942 * an MMU enable to execute from cache. Imitate this behaviour.
4944 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4946 define_one_arm_cp_reg(cpu
, &sctlr
);
4950 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4952 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4955 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4957 CPUState
*cs
= CPU(cpu
);
4958 CPUARMState
*env
= &cpu
->env
;
4960 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4961 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4962 aarch64_fpu_gdb_set_reg
,
4963 34, "aarch64-fpu.xml", 0);
4964 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4965 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4966 51, "arm-neon.xml", 0);
4967 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4968 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4969 35, "arm-vfp3.xml", 0);
4970 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4971 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4972 19, "arm-vfp.xml", 0);
4976 /* Sort alphabetically by type name, except for "any". */
4977 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4979 ObjectClass
*class_a
= (ObjectClass
*)a
;
4980 ObjectClass
*class_b
= (ObjectClass
*)b
;
4981 const char *name_a
, *name_b
;
4983 name_a
= object_class_get_name(class_a
);
4984 name_b
= object_class_get_name(class_b
);
4985 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4987 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4990 return strcmp(name_a
, name_b
);
4994 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4996 ObjectClass
*oc
= data
;
4997 CPUListState
*s
= user_data
;
4998 const char *typename
;
5001 typename
= object_class_get_name(oc
);
5002 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5003 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
5008 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
5012 .cpu_fprintf
= cpu_fprintf
,
5016 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5017 list
= g_slist_sort(list
, arm_cpu_list_compare
);
5018 (*cpu_fprintf
)(f
, "Available CPUs:\n");
5019 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
5022 /* The 'host' CPU type is dynamically registered only if KVM is
5023 * enabled, so we have to special-case it here:
5025 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
5029 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
5031 ObjectClass
*oc
= data
;
5032 CpuDefinitionInfoList
**cpu_list
= user_data
;
5033 CpuDefinitionInfoList
*entry
;
5034 CpuDefinitionInfo
*info
;
5035 const char *typename
;
5037 typename
= object_class_get_name(oc
);
5038 info
= g_malloc0(sizeof(*info
));
5039 info
->name
= g_strndup(typename
,
5040 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5042 entry
= g_malloc0(sizeof(*entry
));
5043 entry
->value
= info
;
5044 entry
->next
= *cpu_list
;
5048 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
5050 CpuDefinitionInfoList
*cpu_list
= NULL
;
5053 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5054 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
5060 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
5061 void *opaque
, int state
, int secstate
,
5062 int crm
, int opc1
, int opc2
)
5064 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5065 * add a single reginfo struct to the hash table.
5067 uint32_t *key
= g_new(uint32_t, 1);
5068 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
5069 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
5070 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
5072 /* Reset the secure state to the specific incoming state. This is
5073 * necessary as the register may have been defined with both states.
5075 r2
->secure
= secstate
;
5077 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5078 /* Register is banked (using both entries in array).
5079 * Overwriting fieldoffset as the array is only used to define
5080 * banked registers but later only fieldoffset is used.
5082 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
5085 if (state
== ARM_CP_STATE_AA32
) {
5086 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5087 /* If the register is banked then we don't need to migrate or
5088 * reset the 32-bit instance in certain cases:
5090 * 1) If the register has both 32-bit and 64-bit instances then we
5091 * can count on the 64-bit instance taking care of the
5093 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5094 * taking care of the secure bank. This requires that separate
5095 * 32 and 64-bit definitions are provided.
5097 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
5098 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
5099 r2
->type
|= ARM_CP_ALIAS
;
5101 } else if ((secstate
!= r
->secure
) && !ns
) {
5102 /* The register is not banked so we only want to allow migration of
5103 * the non-secure instance.
5105 r2
->type
|= ARM_CP_ALIAS
;
5108 if (r
->state
== ARM_CP_STATE_BOTH
) {
5109 /* We assume it is a cp15 register if the .cp field is left unset.
5115 #ifdef HOST_WORDS_BIGENDIAN
5116 if (r2
->fieldoffset
) {
5117 r2
->fieldoffset
+= sizeof(uint32_t);
5122 if (state
== ARM_CP_STATE_AA64
) {
5123 /* To allow abbreviation of ARMCPRegInfo
5124 * definitions, we treat cp == 0 as equivalent to
5125 * the value for "standard guest-visible sysreg".
5126 * STATE_BOTH definitions are also always "standard
5127 * sysreg" in their AArch64 view (the .cp value may
5128 * be non-zero for the benefit of the AArch32 view).
5130 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
5131 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
5133 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
5134 r2
->opc0
, opc1
, opc2
);
5136 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
5139 r2
->opaque
= opaque
;
5141 /* reginfo passed to helpers is correct for the actual access,
5142 * and is never ARM_CP_STATE_BOTH:
5145 /* Make sure reginfo passed to helpers for wildcarded regs
5146 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5151 /* By convention, for wildcarded registers only the first
5152 * entry is used for migration; the others are marked as
5153 * ALIAS so we don't try to transfer the register
5154 * multiple times. Special registers (ie NOP/WFI) are
5155 * never migratable and not even raw-accessible.
5157 if ((r
->type
& ARM_CP_SPECIAL
)) {
5158 r2
->type
|= ARM_CP_NO_RAW
;
5160 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
5161 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
5162 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
5163 r2
->type
|= ARM_CP_ALIAS
;
5166 /* Check that raw accesses are either forbidden or handled. Note that
5167 * we can't assert this earlier because the setup of fieldoffset for
5168 * banked registers has to be done first.
5170 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
5171 assert(!raw_accessors_invalid(r2
));
5174 /* Overriding of an existing definition must be explicitly
5177 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
5178 ARMCPRegInfo
*oldreg
;
5179 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
5180 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
5181 fprintf(stderr
, "Register redefined: cp=%d %d bit "
5182 "crn=%d crm=%d opc1=%d opc2=%d, "
5183 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
5184 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
5185 oldreg
->name
, r2
->name
);
5186 g_assert_not_reached();
5189 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
5193 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
5194 const ARMCPRegInfo
*r
, void *opaque
)
5196 /* Define implementations of coprocessor registers.
5197 * We store these in a hashtable because typically
5198 * there are less than 150 registers in a space which
5199 * is 16*16*16*8*8 = 262144 in size.
5200 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5201 * If a register is defined twice then the second definition is
5202 * used, so this can be used to define some generic registers and
5203 * then override them with implementation specific variations.
5204 * At least one of the original and the second definition should
5205 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5206 * against accidental use.
5208 * The state field defines whether the register is to be
5209 * visible in the AArch32 or AArch64 execution state. If the
5210 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5211 * reginfo structure for the AArch32 view, which sees the lower
5212 * 32 bits of the 64 bit register.
5214 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5215 * be wildcarded. AArch64 registers are always considered to be 64
5216 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5217 * the register, if any.
5219 int crm
, opc1
, opc2
, state
;
5220 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
5221 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
5222 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
5223 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
5224 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
5225 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
5226 /* 64 bit registers have only CRm and Opc1 fields */
5227 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
5228 /* op0 only exists in the AArch64 encodings */
5229 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
5230 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5231 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
5232 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5233 * encodes a minimum access level for the register. We roll this
5234 * runtime check into our general permission check code, so check
5235 * here that the reginfo's specified permissions are strict enough
5236 * to encompass the generic architectural permission check.
5238 if (r
->state
!= ARM_CP_STATE_AA32
) {
5241 case 0: case 1: case 2:
5254 /* unallocated encoding, so not possible */
5262 /* min_EL EL1, secure mode only (we don't check the latter) */
5266 /* broken reginfo with out-of-range opc1 */
5270 /* assert our permissions are not too lax (stricter is fine) */
5271 assert((r
->access
& ~mask
) == 0);
5274 /* Check that the register definition has enough info to handle
5275 * reads and writes if they are permitted.
5277 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
5278 if (r
->access
& PL3_R
) {
5279 assert((r
->fieldoffset
||
5280 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5283 if (r
->access
& PL3_W
) {
5284 assert((r
->fieldoffset
||
5285 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5289 /* Bad type field probably means missing sentinel at end of reg list */
5290 assert(cptype_valid(r
->type
));
5291 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
5292 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
5293 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
5294 for (state
= ARM_CP_STATE_AA32
;
5295 state
<= ARM_CP_STATE_AA64
; state
++) {
5296 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
5299 if (state
== ARM_CP_STATE_AA32
) {
5300 /* Under AArch32 CP registers can be common
5301 * (same for secure and non-secure world) or banked.
5303 switch (r
->secure
) {
5304 case ARM_CP_SECSTATE_S
:
5305 case ARM_CP_SECSTATE_NS
:
5306 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5307 r
->secure
, crm
, opc1
, opc2
);
5310 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5313 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5319 /* AArch64 registers get mapped to non-secure instance
5321 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5331 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
5332 const ARMCPRegInfo
*regs
, void *opaque
)
5334 /* Define a whole list of registers */
5335 const ARMCPRegInfo
*r
;
5336 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5337 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
5341 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
5343 return g_hash_table_lookup(cpregs
, &encoded_cp
);
5346 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5349 /* Helper coprocessor write function for write-ignore registers */
5352 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5354 /* Helper coprocessor write function for read-as-zero registers */
5358 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
5360 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5363 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
5365 /* Return true if it is not valid for us to switch to
5366 * this CPU mode (ie all the UNPREDICTABLE cases in
5367 * the ARM ARM CPSRWriteByInstr pseudocode).
5370 /* Changes to or from Hyp via MSR and CPS are illegal. */
5371 if (write_type
== CPSRWriteByInstr
&&
5372 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
5373 mode
== ARM_CPU_MODE_HYP
)) {
5378 case ARM_CPU_MODE_USR
:
5380 case ARM_CPU_MODE_SYS
:
5381 case ARM_CPU_MODE_SVC
:
5382 case ARM_CPU_MODE_ABT
:
5383 case ARM_CPU_MODE_UND
:
5384 case ARM_CPU_MODE_IRQ
:
5385 case ARM_CPU_MODE_FIQ
:
5386 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5387 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5389 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5390 * and CPS are treated as illegal mode changes.
5392 if (write_type
== CPSRWriteByInstr
&&
5393 (env
->cp15
.hcr_el2
& HCR_TGE
) &&
5394 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
5395 !arm_is_secure_below_el3(env
)) {
5399 case ARM_CPU_MODE_HYP
:
5400 return !arm_feature(env
, ARM_FEATURE_EL2
)
5401 || arm_current_el(env
) < 2 || arm_is_secure(env
);
5402 case ARM_CPU_MODE_MON
:
5403 return arm_current_el(env
) < 3;
5409 uint32_t cpsr_read(CPUARMState
*env
)
5412 ZF
= (env
->ZF
== 0);
5413 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
5414 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
5415 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
5416 | ((env
->condexec_bits
& 0xfc) << 8)
5417 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
5420 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
5421 CPSRWriteType write_type
)
5423 uint32_t changed_daif
;
5425 if (mask
& CPSR_NZCV
) {
5426 env
->ZF
= (~val
) & CPSR_Z
;
5428 env
->CF
= (val
>> 29) & 1;
5429 env
->VF
= (val
<< 3) & 0x80000000;
5432 env
->QF
= ((val
& CPSR_Q
) != 0);
5434 env
->thumb
= ((val
& CPSR_T
) != 0);
5435 if (mask
& CPSR_IT_0_1
) {
5436 env
->condexec_bits
&= ~3;
5437 env
->condexec_bits
|= (val
>> 25) & 3;
5439 if (mask
& CPSR_IT_2_7
) {
5440 env
->condexec_bits
&= 3;
5441 env
->condexec_bits
|= (val
>> 8) & 0xfc;
5443 if (mask
& CPSR_GE
) {
5444 env
->GE
= (val
>> 16) & 0xf;
5447 /* In a V7 implementation that includes the security extensions but does
5448 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5449 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5450 * bits respectively.
5452 * In a V8 implementation, it is permitted for privileged software to
5453 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5455 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
5456 arm_feature(env
, ARM_FEATURE_EL3
) &&
5457 !arm_feature(env
, ARM_FEATURE_EL2
) &&
5458 !arm_is_secure(env
)) {
5460 changed_daif
= (env
->daif
^ val
) & mask
;
5462 if (changed_daif
& CPSR_A
) {
5463 /* Check to see if we are allowed to change the masking of async
5464 * abort exceptions from a non-secure state.
5466 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
5467 qemu_log_mask(LOG_GUEST_ERROR
,
5468 "Ignoring attempt to switch CPSR_A flag from "
5469 "non-secure world with SCR.AW bit clear\n");
5474 if (changed_daif
& CPSR_F
) {
5475 /* Check to see if we are allowed to change the masking of FIQ
5476 * exceptions from a non-secure state.
5478 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5479 qemu_log_mask(LOG_GUEST_ERROR
,
5480 "Ignoring attempt to switch CPSR_F flag from "
5481 "non-secure world with SCR.FW bit clear\n");
5485 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5486 * If this bit is set software is not allowed to mask
5487 * FIQs, but is allowed to set CPSR_F to 0.
5489 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5491 qemu_log_mask(LOG_GUEST_ERROR
,
5492 "Ignoring attempt to enable CPSR_F flag "
5493 "(non-maskable FIQ [NMFI] support enabled)\n");
5499 env
->daif
&= ~(CPSR_AIF
& mask
);
5500 env
->daif
|= val
& CPSR_AIF
& mask
;
5502 if (write_type
!= CPSRWriteRaw
&&
5503 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
5504 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
5505 /* Note that we can only get here in USR mode if this is a
5506 * gdb stub write; for this case we follow the architectural
5507 * behaviour for guest writes in USR mode of ignoring an attempt
5508 * to switch mode. (Those are caught by translate.c for writes
5509 * triggered by guest instructions.)
5512 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
5513 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5514 * v7, and has defined behaviour in v8:
5515 * + leave CPSR.M untouched
5516 * + allow changes to the other CPSR fields
5518 * For user changes via the GDB stub, we don't set PSTATE.IL,
5519 * as this would be unnecessarily harsh for a user error.
5522 if (write_type
!= CPSRWriteByGDBStub
&&
5523 arm_feature(env
, ARM_FEATURE_V8
)) {
5528 switch_mode(env
, val
& CPSR_M
);
5531 mask
&= ~CACHED_CPSR_BITS
;
5532 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5535 /* Sign/zero extend */
5536 uint32_t HELPER(sxtb16
)(uint32_t x
)
5539 res
= (uint16_t)(int8_t)x
;
5540 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5544 uint32_t HELPER(uxtb16
)(uint32_t x
)
5547 res
= (uint16_t)(uint8_t)x
;
5548 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5552 uint32_t HELPER(clz
)(uint32_t x
)
5557 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5561 if (num
== INT_MIN
&& den
== -1)
5566 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5573 uint32_t HELPER(rbit
)(uint32_t x
)
5578 #if defined(CONFIG_USER_ONLY)
5580 /* These should probably raise undefined insn exceptions. */
5581 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5583 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5585 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5588 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5590 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5592 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5596 void switch_mode(CPUARMState
*env
, int mode
)
5598 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5600 if (mode
!= ARM_CPU_MODE_USR
) {
5601 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5605 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5606 uint32_t cur_el
, bool secure
)
5611 void aarch64_sync_64_to_32(CPUARMState
*env
)
5613 g_assert_not_reached();
5618 void switch_mode(CPUARMState
*env
, int mode
)
5623 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5624 if (mode
== old_mode
)
5627 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5628 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5629 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5630 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5631 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5632 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5635 i
= bank_number(old_mode
);
5636 env
->banked_r13
[i
] = env
->regs
[13];
5637 env
->banked_r14
[i
] = env
->regs
[14];
5638 env
->banked_spsr
[i
] = env
->spsr
;
5640 i
= bank_number(mode
);
5641 env
->regs
[13] = env
->banked_r13
[i
];
5642 env
->regs
[14] = env
->banked_r14
[i
];
5643 env
->spsr
= env
->banked_spsr
[i
];
5646 /* Physical Interrupt Target EL Lookup Table
5648 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5650 * The below multi-dimensional table is used for looking up the target
5651 * exception level given numerous condition criteria. Specifically, the
5652 * target EL is based on SCR and HCR routing controls as well as the
5653 * currently executing EL and secure state.
5656 * target_el_table[2][2][2][2][2][4]
5657 * | | | | | +--- Current EL
5658 * | | | | +------ Non-secure(0)/Secure(1)
5659 * | | | +--------- HCR mask override
5660 * | | +------------ SCR exec state control
5661 * | +--------------- SCR mask override
5662 * +------------------ 32-bit(0)/64-bit(1) EL3
5664 * The table values are as such:
5668 * The ARM ARM target EL table includes entries indicating that an "exception
5669 * is not taken". The two cases where this is applicable are:
5670 * 1) An exception is taken from EL3 but the SCR does not have the exception
5672 * 2) An exception is taken from EL2 but the HCR does not have the exception
5674 * In these two cases, the below table contain a target of EL1. This value is
5675 * returned as it is expected that the consumer of the table data will check
5676 * for "target EL >= current EL" to ensure the exception is not taken.
5680 * BIT IRQ IMO Non-secure Secure
5681 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5683 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5684 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5685 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5686 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5687 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5688 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5689 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5690 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5691 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5692 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5693 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5694 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5695 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5696 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5697 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5698 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5699 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5703 * Determine the target EL for physical exceptions
5705 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5706 uint32_t cur_el
, bool secure
)
5708 CPUARMState
*env
= cs
->env_ptr
;
5713 /* Is the highest EL AArch64? */
5714 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5716 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5717 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5719 /* Either EL2 is the highest EL (and so the EL2 register width
5720 * is given by is64); or there is no EL2 or EL3, in which case
5721 * the value of 'rw' does not affect the table lookup anyway.
5728 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5729 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5732 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5733 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5736 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5737 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5741 /* If HCR.TGE is set then HCR is treated as being 1 */
5742 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5744 /* Perform a table-lookup for the target EL given the current state */
5745 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5747 assert(target_el
> 0);
5752 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5754 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5757 stl_phys(cs
->as
, env
->regs
[13], val
);
5760 static uint32_t v7m_pop(CPUARMState
*env
)
5762 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5765 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5770 /* Switch to V7M main or process stack pointer. */
5771 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5774 if (env
->v7m
.current_sp
!= process
) {
5775 tmp
= env
->v7m
.other_sp
;
5776 env
->v7m
.other_sp
= env
->regs
[13];
5777 env
->regs
[13] = tmp
;
5778 env
->v7m
.current_sp
= process
;
5782 static void do_v7m_exception_exit(CPUARMState
*env
)
5787 type
= env
->regs
[15];
5788 if (env
->v7m
.exception
!= 0)
5789 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5791 /* Switch to the target stack. */
5792 switch_v7m_sp(env
, (type
& 4) != 0);
5793 /* Pop registers. */
5794 env
->regs
[0] = v7m_pop(env
);
5795 env
->regs
[1] = v7m_pop(env
);
5796 env
->regs
[2] = v7m_pop(env
);
5797 env
->regs
[3] = v7m_pop(env
);
5798 env
->regs
[12] = v7m_pop(env
);
5799 env
->regs
[14] = v7m_pop(env
);
5800 env
->regs
[15] = v7m_pop(env
);
5801 if (env
->regs
[15] & 1) {
5802 qemu_log_mask(LOG_GUEST_ERROR
,
5803 "M profile return from interrupt with misaligned "
5804 "PC is UNPREDICTABLE\n");
5805 /* Actual hardware seems to ignore the lsbit, and there are several
5806 * RTOSes out there which incorrectly assume the r15 in the stack
5807 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5809 env
->regs
[15] &= ~1U;
5811 xpsr
= v7m_pop(env
);
5812 xpsr_write(env
, xpsr
, 0xfffffdff);
5813 /* Undo stack alignment. */
5816 /* ??? The exception return type specifies Thread/Handler mode. However
5817 this is also implied by the xPSR value. Not sure what to do
5818 if there is a mismatch. */
5819 /* ??? Likewise for mismatches between the CONTROL register and the stack
5823 static void arm_log_exception(int idx
)
5825 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
5826 const char *exc
= NULL
;
5828 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
5829 exc
= excnames
[idx
];
5834 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
5838 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5840 ARMCPU
*cpu
= ARM_CPU(cs
);
5841 CPUARMState
*env
= &cpu
->env
;
5842 uint32_t xpsr
= xpsr_read(env
);
5846 arm_log_exception(cs
->exception_index
);
5849 if (env
->v7m
.current_sp
)
5851 if (env
->v7m
.exception
== 0)
5854 /* For exceptions we just mark as pending on the NVIC, and let that
5856 /* TODO: Need to escalate if the current priority is higher than the
5857 one we're raising. */
5858 switch (cs
->exception_index
) {
5860 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5863 /* The PC already points to the next instruction. */
5864 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5866 case EXCP_PREFETCH_ABORT
:
5867 case EXCP_DATA_ABORT
:
5868 /* TODO: if we implemented the MPU registers, this is where we
5869 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5871 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5874 if (semihosting_enabled()) {
5876 nr
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
)) & 0xff;
5879 qemu_log_mask(CPU_LOG_INT
,
5880 "...handling as semihosting call 0x%x\n",
5882 env
->regs
[0] = do_arm_semihosting(env
);
5886 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5889 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5891 case EXCP_EXCEPTION_EXIT
:
5892 do_v7m_exception_exit(env
);
5895 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5896 return; /* Never happens. Keep compiler happy. */
5899 /* Align stack pointer. */
5900 /* ??? Should only do this if Configuration Control Register
5901 STACKALIGN bit is set. */
5902 if (env
->regs
[13] & 4) {
5906 /* Switch to the handler mode. */
5907 v7m_push(env
, xpsr
);
5908 v7m_push(env
, env
->regs
[15]);
5909 v7m_push(env
, env
->regs
[14]);
5910 v7m_push(env
, env
->regs
[12]);
5911 v7m_push(env
, env
->regs
[3]);
5912 v7m_push(env
, env
->regs
[2]);
5913 v7m_push(env
, env
->regs
[1]);
5914 v7m_push(env
, env
->regs
[0]);
5915 switch_v7m_sp(env
, 0);
5917 env
->condexec_bits
= 0;
5919 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5920 env
->regs
[15] = addr
& 0xfffffffe;
5921 env
->thumb
= addr
& 1;
5924 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5925 * register set. This is necessary when switching between AArch32 and AArch64
5928 void aarch64_sync_32_to_64(CPUARMState
*env
)
5931 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5933 /* We can blanket copy R[0:7] to X[0:7] */
5934 for (i
= 0; i
< 8; i
++) {
5935 env
->xregs
[i
] = env
->regs
[i
];
5938 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5939 * Otherwise, they come from the banked user regs.
5941 if (mode
== ARM_CPU_MODE_FIQ
) {
5942 for (i
= 8; i
< 13; i
++) {
5943 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5946 for (i
= 8; i
< 13; i
++) {
5947 env
->xregs
[i
] = env
->regs
[i
];
5951 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5952 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5953 * from the mode banked register.
5955 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5956 env
->xregs
[13] = env
->regs
[13];
5957 env
->xregs
[14] = env
->regs
[14];
5959 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5960 /* HYP is an exception in that it is copied from r14 */
5961 if (mode
== ARM_CPU_MODE_HYP
) {
5962 env
->xregs
[14] = env
->regs
[14];
5964 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5968 if (mode
== ARM_CPU_MODE_HYP
) {
5969 env
->xregs
[15] = env
->regs
[13];
5971 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5974 if (mode
== ARM_CPU_MODE_IRQ
) {
5975 env
->xregs
[16] = env
->regs
[14];
5976 env
->xregs
[17] = env
->regs
[13];
5978 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5979 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5982 if (mode
== ARM_CPU_MODE_SVC
) {
5983 env
->xregs
[18] = env
->regs
[14];
5984 env
->xregs
[19] = env
->regs
[13];
5986 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5987 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5990 if (mode
== ARM_CPU_MODE_ABT
) {
5991 env
->xregs
[20] = env
->regs
[14];
5992 env
->xregs
[21] = env
->regs
[13];
5994 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5995 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5998 if (mode
== ARM_CPU_MODE_UND
) {
5999 env
->xregs
[22] = env
->regs
[14];
6000 env
->xregs
[23] = env
->regs
[13];
6002 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
6003 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
6006 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6007 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6008 * FIQ bank for r8-r14.
6010 if (mode
== ARM_CPU_MODE_FIQ
) {
6011 for (i
= 24; i
< 31; i
++) {
6012 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
6015 for (i
= 24; i
< 29; i
++) {
6016 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
6018 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
6019 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
6022 env
->pc
= env
->regs
[15];
6025 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6026 * register set. This is necessary when switching between AArch32 and AArch64
6029 void aarch64_sync_64_to_32(CPUARMState
*env
)
6032 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
6034 /* We can blanket copy X[0:7] to R[0:7] */
6035 for (i
= 0; i
< 8; i
++) {
6036 env
->regs
[i
] = env
->xregs
[i
];
6039 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6040 * Otherwise, we copy x8-x12 into the banked user regs.
6042 if (mode
== ARM_CPU_MODE_FIQ
) {
6043 for (i
= 8; i
< 13; i
++) {
6044 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
6047 for (i
= 8; i
< 13; i
++) {
6048 env
->regs
[i
] = env
->xregs
[i
];
6052 /* Registers r13 & r14 depend on the current mode.
6053 * If we are in a given mode, we copy the corresponding x registers to r13
6054 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6057 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
6058 env
->regs
[13] = env
->xregs
[13];
6059 env
->regs
[14] = env
->xregs
[14];
6061 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
6063 /* HYP is an exception in that it does not have its own banked r14 but
6064 * shares the USR r14
6066 if (mode
== ARM_CPU_MODE_HYP
) {
6067 env
->regs
[14] = env
->xregs
[14];
6069 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
6073 if (mode
== ARM_CPU_MODE_HYP
) {
6074 env
->regs
[13] = env
->xregs
[15];
6076 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
6079 if (mode
== ARM_CPU_MODE_IRQ
) {
6080 env
->regs
[14] = env
->xregs
[16];
6081 env
->regs
[13] = env
->xregs
[17];
6083 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
6084 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
6087 if (mode
== ARM_CPU_MODE_SVC
) {
6088 env
->regs
[14] = env
->xregs
[18];
6089 env
->regs
[13] = env
->xregs
[19];
6091 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
6092 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
6095 if (mode
== ARM_CPU_MODE_ABT
) {
6096 env
->regs
[14] = env
->xregs
[20];
6097 env
->regs
[13] = env
->xregs
[21];
6099 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
6100 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
6103 if (mode
== ARM_CPU_MODE_UND
) {
6104 env
->regs
[14] = env
->xregs
[22];
6105 env
->regs
[13] = env
->xregs
[23];
6107 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
6108 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
6111 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6112 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6113 * FIQ bank for r8-r14.
6115 if (mode
== ARM_CPU_MODE_FIQ
) {
6116 for (i
= 24; i
< 31; i
++) {
6117 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
6120 for (i
= 24; i
< 29; i
++) {
6121 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
6123 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
6124 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
6127 env
->regs
[15] = env
->pc
;
6130 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
6132 ARMCPU
*cpu
= ARM_CPU(cs
);
6133 CPUARMState
*env
= &cpu
->env
;
6140 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6141 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
6143 case EC_BREAKPOINT_SAME_EL
:
6147 case EC_WATCHPOINT_SAME_EL
:
6153 case EC_VECTORCATCH
:
6162 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
6165 /* TODO: Vectored interrupt controller. */
6166 switch (cs
->exception_index
) {
6168 new_mode
= ARM_CPU_MODE_UND
;
6177 new_mode
= ARM_CPU_MODE_SVC
;
6180 /* The PC already points to the next instruction. */
6184 env
->exception
.fsr
= 2;
6185 /* Fall through to prefetch abort. */
6186 case EXCP_PREFETCH_ABORT
:
6187 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
6188 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
6189 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
6190 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
6191 new_mode
= ARM_CPU_MODE_ABT
;
6193 mask
= CPSR_A
| CPSR_I
;
6196 case EXCP_DATA_ABORT
:
6197 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
6198 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
6199 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
6201 (uint32_t)env
->exception
.vaddress
);
6202 new_mode
= ARM_CPU_MODE_ABT
;
6204 mask
= CPSR_A
| CPSR_I
;
6208 new_mode
= ARM_CPU_MODE_IRQ
;
6210 /* Disable IRQ and imprecise data aborts. */
6211 mask
= CPSR_A
| CPSR_I
;
6213 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
6214 /* IRQ routed to monitor mode */
6215 new_mode
= ARM_CPU_MODE_MON
;
6220 new_mode
= ARM_CPU_MODE_FIQ
;
6222 /* Disable FIQ, IRQ and imprecise data aborts. */
6223 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6224 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
6225 /* FIQ routed to monitor mode */
6226 new_mode
= ARM_CPU_MODE_MON
;
6231 new_mode
= ARM_CPU_MODE_MON
;
6233 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6237 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6238 return; /* Never happens. Keep compiler happy. */
6241 if (new_mode
== ARM_CPU_MODE_MON
) {
6242 addr
+= env
->cp15
.mvbar
;
6243 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
6244 /* High vectors. When enabled, base address cannot be remapped. */
6247 /* ARM v7 architectures provide a vector base address register to remap
6248 * the interrupt vector table.
6249 * This register is only followed in non-monitor mode, and is banked.
6250 * Note: only bits 31:5 are valid.
6252 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
6255 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
6256 env
->cp15
.scr_el3
&= ~SCR_NS
;
6259 switch_mode (env
, new_mode
);
6260 /* For exceptions taken to AArch32 we must clear the SS bit in both
6261 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6263 env
->uncached_cpsr
&= ~PSTATE_SS
;
6264 env
->spsr
= cpsr_read(env
);
6265 /* Clear IT bits. */
6266 env
->condexec_bits
= 0;
6267 /* Switch to the new mode, and to the correct instruction set. */
6268 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
6269 /* Set new mode endianness */
6270 env
->uncached_cpsr
&= ~CPSR_E
;
6271 if (env
->cp15
.sctlr_el
[arm_current_el(env
)] & SCTLR_EE
) {
6272 env
->uncached_cpsr
|= ~CPSR_E
;
6275 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6276 * and we should just guard the thumb mode on V4 */
6277 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
6278 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
6280 env
->regs
[14] = env
->regs
[15] + offset
;
6281 env
->regs
[15] = addr
;
6284 /* Handle exception entry to a target EL which is using AArch64 */
6285 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
6287 ARMCPU
*cpu
= ARM_CPU(cs
);
6288 CPUARMState
*env
= &cpu
->env
;
6289 unsigned int new_el
= env
->exception
.target_el
;
6290 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
6291 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
6293 if (arm_current_el(env
) < new_el
) {
6294 /* Entry vector offset depends on whether the implemented EL
6295 * immediately lower than the target level is using AArch32 or AArch64
6301 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
6304 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
6307 is_aa64
= is_a64(env
);
6310 g_assert_not_reached();
6318 } else if (pstate_read(env
) & PSTATE_SP
) {
6322 switch (cs
->exception_index
) {
6323 case EXCP_PREFETCH_ABORT
:
6324 case EXCP_DATA_ABORT
:
6325 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
6326 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
6327 env
->cp15
.far_el
[new_el
]);
6335 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
6346 qemu_log_mask(CPU_LOG_INT
,
6347 "...handling as semihosting call 0x%" PRIx64
"\n",
6349 env
->xregs
[0] = do_arm_semihosting(env
);
6352 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6356 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
6357 aarch64_save_sp(env
, arm_current_el(env
));
6358 env
->elr_el
[new_el
] = env
->pc
;
6360 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
6362 env
->cp15
.esr_el
[new_el
] |= 1 << 25;
6364 env
->elr_el
[new_el
] = env
->regs
[15];
6366 aarch64_sync_32_to_64(env
);
6368 env
->condexec_bits
= 0;
6370 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
6371 env
->elr_el
[new_el
]);
6373 pstate_write(env
, PSTATE_DAIF
| new_mode
);
6375 aarch64_restore_sp(env
, new_el
);
6379 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
6380 new_el
, env
->pc
, pstate_read(env
));
6383 static inline bool check_for_semihosting(CPUState
*cs
)
6385 /* Check whether this exception is a semihosting call; if so
6386 * then handle it and return true; otherwise return false.
6388 ARMCPU
*cpu
= ARM_CPU(cs
);
6389 CPUARMState
*env
= &cpu
->env
;
6392 if (cs
->exception_index
== EXCP_SEMIHOST
) {
6393 /* This is always the 64-bit semihosting exception.
6394 * The "is this usermode" and "is semihosting enabled"
6395 * checks have been done at translate time.
6397 qemu_log_mask(CPU_LOG_INT
,
6398 "...handling as semihosting call 0x%" PRIx64
"\n",
6400 env
->xregs
[0] = do_arm_semihosting(env
);
6407 /* Only intercept calls from privileged modes, to provide some
6408 * semblance of security.
6410 if (!semihosting_enabled() ||
6411 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
)) {
6415 switch (cs
->exception_index
) {
6417 /* Check for semihosting interrupt. */
6419 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, arm_sctlr_b(env
))
6425 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, arm_sctlr_b(env
))
6427 if (imm
== 0x123456) {
6433 /* See if this is a semihosting syscall. */
6435 imm
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
))
6447 qemu_log_mask(CPU_LOG_INT
,
6448 "...handling as semihosting call 0x%x\n",
6450 env
->regs
[0] = do_arm_semihosting(env
);
6455 /* Handle a CPU exception for A and R profile CPUs.
6456 * Do any appropriate logging, handle PSCI calls, and then hand off
6457 * to the AArch64-entry or AArch32-entry function depending on the
6458 * target exception level's register width.
6460 void arm_cpu_do_interrupt(CPUState
*cs
)
6462 ARMCPU
*cpu
= ARM_CPU(cs
);
6463 CPUARMState
*env
= &cpu
->env
;
6464 unsigned int new_el
= env
->exception
.target_el
;
6468 arm_log_exception(cs
->exception_index
);
6469 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
6471 if (qemu_loglevel_mask(CPU_LOG_INT
)
6472 && !excp_is_internal(cs
->exception_index
)) {
6473 qemu_log_mask(CPU_LOG_INT
, "...with ESR %x/0x%" PRIx32
"\n",
6474 env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
,
6475 env
->exception
.syndrome
);
6478 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
6479 arm_handle_psci_call(cpu
);
6480 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
6484 /* Semihosting semantics depend on the register width of the
6485 * code that caused the exception, not the target exception level,
6486 * so must be handled here.
6488 if (check_for_semihosting(cs
)) {
6492 assert(!excp_is_internal(cs
->exception_index
));
6493 if (arm_el_is_aa64(env
, new_el
)) {
6494 arm_cpu_do_interrupt_aarch64(cs
);
6496 arm_cpu_do_interrupt_aarch32(cs
);
6499 if (!kvm_enabled()) {
6500 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
6504 /* Return the exception level which controls this address translation regime */
6505 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6508 case ARMMMUIdx_S2NS
:
6509 case ARMMMUIdx_S1E2
:
6511 case ARMMMUIdx_S1E3
:
6513 case ARMMMUIdx_S1SE0
:
6514 return arm_el_is_aa64(env
, 3) ? 1 : 3;
6515 case ARMMMUIdx_S1SE1
:
6516 case ARMMMUIdx_S1NSE0
:
6517 case ARMMMUIdx_S1NSE1
:
6520 g_assert_not_reached();
6524 /* Return true if this address translation regime is secure */
6525 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6528 case ARMMMUIdx_S12NSE0
:
6529 case ARMMMUIdx_S12NSE1
:
6530 case ARMMMUIdx_S1NSE0
:
6531 case ARMMMUIdx_S1NSE1
:
6532 case ARMMMUIdx_S1E2
:
6533 case ARMMMUIdx_S2NS
:
6535 case ARMMMUIdx_S1E3
:
6536 case ARMMMUIdx_S1SE0
:
6537 case ARMMMUIdx_S1SE1
:
6540 g_assert_not_reached();
6544 /* Return the SCTLR value which controls this address translation regime */
6545 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6547 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
6550 /* Return true if the specified stage of address translation is disabled */
6551 static inline bool regime_translation_disabled(CPUARMState
*env
,
6554 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6555 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
6557 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
6560 static inline bool regime_translation_big_endian(CPUARMState
*env
,
6563 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
6566 /* Return the TCR controlling this translation regime */
6567 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6569 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6570 return &env
->cp15
.vtcr_el2
;
6572 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
6575 /* Return the TTBR associated with this translation regime */
6576 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6579 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6580 return env
->cp15
.vttbr_el2
;
6583 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
6585 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
6589 /* Return true if the translation regime is using LPAE format page tables */
6590 static inline bool regime_using_lpae_format(CPUARMState
*env
,
6593 int el
= regime_el(env
, mmu_idx
);
6594 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
6597 if (arm_feature(env
, ARM_FEATURE_LPAE
)
6598 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
6604 /* Returns true if the stage 1 translation regime is using LPAE format page
6605 * tables. Used when raising alignment exceptions, whose FSR changes depending
6606 * on whether the long or short descriptor format is in use. */
6607 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6609 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6610 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6613 return regime_using_lpae_format(env
, mmu_idx
);
6616 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6619 case ARMMMUIdx_S1SE0
:
6620 case ARMMMUIdx_S1NSE0
:
6624 case ARMMMUIdx_S12NSE0
:
6625 case ARMMMUIdx_S12NSE1
:
6626 g_assert_not_reached();
6630 /* Translate section/page access permissions to page
6631 * R/W protection flags
6634 * @mmu_idx: MMU index indicating required translation regime
6635 * @ap: The 3-bit access permissions (AP[2:0])
6636 * @domain_prot: The 2-bit domain access permissions
6638 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6639 int ap
, int domain_prot
)
6641 bool is_user
= regime_is_user(env
, mmu_idx
);
6643 if (domain_prot
== 3) {
6644 return PAGE_READ
| PAGE_WRITE
;
6649 if (arm_feature(env
, ARM_FEATURE_V7
)) {
6652 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
6654 return is_user
? 0 : PAGE_READ
;
6661 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6666 return PAGE_READ
| PAGE_WRITE
;
6669 return PAGE_READ
| PAGE_WRITE
;
6670 case 4: /* Reserved. */
6673 return is_user
? 0 : PAGE_READ
;
6677 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
6682 g_assert_not_reached();
6686 /* Translate section/page access permissions to page
6687 * R/W protection flags.
6689 * @ap: The 2-bit simple AP (AP[2:1])
6690 * @is_user: TRUE if accessing from PL0
6692 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
6696 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6698 return PAGE_READ
| PAGE_WRITE
;
6700 return is_user
? 0 : PAGE_READ
;
6704 g_assert_not_reached();
6709 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6711 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6714 /* Translate S2 section/page access permissions to protection flags
6717 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6718 * @xn: XN (execute-never) bit
6720 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
6731 if (arm_el_is_aa64(env
, 2) || prot
& PAGE_READ
) {
6738 /* Translate section/page access permissions to protection flags
6741 * @mmu_idx: MMU index indicating required translation regime
6742 * @is_aa64: TRUE if AArch64
6743 * @ap: The 2-bit simple AP (AP[2:1])
6744 * @ns: NS (non-secure) bit
6745 * @xn: XN (execute-never) bit
6746 * @pxn: PXN (privileged execute-never) bit
6748 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6749 int ap
, int ns
, int xn
, int pxn
)
6751 bool is_user
= regime_is_user(env
, mmu_idx
);
6752 int prot_rw
, user_rw
;
6756 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6758 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6762 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6765 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6769 /* TODO have_wxn should be replaced with
6770 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6771 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6772 * compatible processors have EL2, which is required for [U]WXN.
6774 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6777 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6781 switch (regime_el(env
, mmu_idx
)) {
6784 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6791 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6792 switch (regime_el(env
, mmu_idx
)) {
6796 xn
= xn
|| !(user_rw
& PAGE_READ
);
6800 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6802 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6803 (uwxn
&& (user_rw
& PAGE_WRITE
));
6813 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6816 return prot_rw
| PAGE_EXEC
;
6819 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6820 uint32_t *table
, uint32_t address
)
6822 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6823 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6825 if (address
& tcr
->mask
) {
6826 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6827 /* Translation table walk disabled for TTBR1 */
6830 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6832 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6833 /* Translation table walk disabled for TTBR0 */
6836 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6838 *table
|= (address
>> 18) & 0x3ffc;
6842 /* Translate a S1 pagetable walk through S2 if needed. */
6843 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6844 hwaddr addr
, MemTxAttrs txattrs
,
6846 ARMMMUFaultInfo
*fi
)
6848 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
6849 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
6850 target_ulong s2size
;
6855 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
6856 &txattrs
, &s2prot
, &s2size
, fsr
, fi
);
6868 /* All loads done in the course of a page table walk go through here.
6869 * TODO: rather than ignoring errors from physical memory reads (which
6870 * are external aborts in ARM terminology) we should propagate this
6871 * error out so that we can turn it into a Data Abort if this walk
6872 * was being done for a CPU load/store or an address translation instruction
6873 * (but not if it was for a debug access).
6875 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6876 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6877 ARMMMUFaultInfo
*fi
)
6879 ARMCPU
*cpu
= ARM_CPU(cs
);
6880 CPUARMState
*env
= &cpu
->env
;
6881 MemTxAttrs attrs
= {};
6884 attrs
.secure
= is_secure
;
6885 as
= arm_addressspace(cs
, attrs
);
6886 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6890 if (regime_translation_big_endian(env
, mmu_idx
)) {
6891 return address_space_ldl_be(as
, addr
, attrs
, NULL
);
6893 return address_space_ldl_le(as
, addr
, attrs
, NULL
);
6897 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6898 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6899 ARMMMUFaultInfo
*fi
)
6901 ARMCPU
*cpu
= ARM_CPU(cs
);
6902 CPUARMState
*env
= &cpu
->env
;
6903 MemTxAttrs attrs
= {};
6906 attrs
.secure
= is_secure
;
6907 as
= arm_addressspace(cs
, attrs
);
6908 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6912 if (regime_translation_big_endian(env
, mmu_idx
)) {
6913 return address_space_ldq_be(as
, addr
, attrs
, NULL
);
6915 return address_space_ldq_le(as
, addr
, attrs
, NULL
);
6919 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6920 int access_type
, ARMMMUIdx mmu_idx
,
6921 hwaddr
*phys_ptr
, int *prot
,
6922 target_ulong
*page_size
, uint32_t *fsr
,
6923 ARMMMUFaultInfo
*fi
)
6925 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6936 /* Pagetable walk. */
6937 /* Lookup l1 descriptor. */
6938 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6939 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6943 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6946 domain
= (desc
>> 5) & 0x0f;
6947 if (regime_el(env
, mmu_idx
) == 1) {
6948 dacr
= env
->cp15
.dacr_ns
;
6950 dacr
= env
->cp15
.dacr_s
;
6952 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6954 /* Section translation fault. */
6958 if (domain_prot
== 0 || domain_prot
== 2) {
6960 code
= 9; /* Section domain fault. */
6962 code
= 11; /* Page domain fault. */
6967 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6968 ap
= (desc
>> 10) & 3;
6970 *page_size
= 1024 * 1024;
6972 /* Lookup l2 entry. */
6974 /* Coarse pagetable. */
6975 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6977 /* Fine pagetable. */
6978 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6980 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6983 case 0: /* Page translation fault. */
6986 case 1: /* 64k page. */
6987 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6988 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6989 *page_size
= 0x10000;
6991 case 2: /* 4k page. */
6992 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6993 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6994 *page_size
= 0x1000;
6996 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6998 /* ARMv6/XScale extended small page format */
6999 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
7000 || arm_feature(env
, ARM_FEATURE_V6
)) {
7001 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7002 *page_size
= 0x1000;
7004 /* UNPREDICTABLE in ARMv5; we choose to take a
7005 * page translation fault.
7011 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
7014 ap
= (desc
>> 4) & 3;
7017 /* Never happens, but compiler isn't smart enough to tell. */
7022 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7023 *prot
|= *prot
? PAGE_EXEC
: 0;
7024 if (!(*prot
& (1 << access_type
))) {
7025 /* Access permission fault. */
7028 *phys_ptr
= phys_addr
;
7031 *fsr
= code
| (domain
<< 4);
7035 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
7036 int access_type
, ARMMMUIdx mmu_idx
,
7037 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7038 target_ulong
*page_size
, uint32_t *fsr
,
7039 ARMMMUFaultInfo
*fi
)
7041 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
7055 /* Pagetable walk. */
7056 /* Lookup l1 descriptor. */
7057 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
7058 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7062 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7065 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
7066 /* Section translation fault, or attempt to use the encoding
7067 * which is Reserved on implementations without PXN.
7072 if ((type
== 1) || !(desc
& (1 << 18))) {
7073 /* Page or Section. */
7074 domain
= (desc
>> 5) & 0x0f;
7076 if (regime_el(env
, mmu_idx
) == 1) {
7077 dacr
= env
->cp15
.dacr_ns
;
7079 dacr
= env
->cp15
.dacr_s
;
7081 domain_prot
= (dacr
>> (domain
* 2)) & 3;
7082 if (domain_prot
== 0 || domain_prot
== 2) {
7084 code
= 9; /* Section domain fault. */
7086 code
= 11; /* Page domain fault. */
7091 if (desc
& (1 << 18)) {
7093 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
7094 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
7095 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
7096 *page_size
= 0x1000000;
7099 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
7100 *page_size
= 0x100000;
7102 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
7103 xn
= desc
& (1 << 4);
7106 ns
= extract32(desc
, 19, 1);
7108 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
7109 pxn
= (desc
>> 2) & 1;
7111 ns
= extract32(desc
, 3, 1);
7112 /* Lookup l2 entry. */
7113 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
7114 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7116 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
7118 case 0: /* Page translation fault. */
7121 case 1: /* 64k page. */
7122 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
7123 xn
= desc
& (1 << 15);
7124 *page_size
= 0x10000;
7126 case 2: case 3: /* 4k page. */
7127 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7129 *page_size
= 0x1000;
7132 /* Never happens, but compiler isn't smart enough to tell. */
7137 if (domain_prot
== 3) {
7138 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7140 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
7143 if (xn
&& access_type
== 2)
7146 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
7147 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
7148 /* The simplified model uses AP[0] as an access control bit. */
7149 if ((ap
& 1) == 0) {
7150 /* Access flag fault. */
7151 code
= (code
== 15) ? 6 : 3;
7154 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
7156 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7161 if (!(*prot
& (1 << access_type
))) {
7162 /* Access permission fault. */
7167 /* The NS bit will (as required by the architecture) have no effect if
7168 * the CPU doesn't support TZ or this is a non-secure translation
7169 * regime, because the attribute will already be non-secure.
7171 attrs
->secure
= false;
7173 *phys_ptr
= phys_addr
;
7176 *fsr
= code
| (domain
<< 4);
7180 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7181 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7184 translation_fault
= 1,
7186 permission_fault
= 3,
7190 * check_s2_mmu_setup
7192 * @is_aa64: True if the translation regime is in AArch64 state
7193 * @startlevel: Suggested starting level
7194 * @inputsize: Bitsize of IPAs
7195 * @stride: Page-table stride (See the ARM ARM)
7197 * Returns true if the suggested S2 translation parameters are OK and
7200 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
7201 int inputsize
, int stride
)
7203 const int grainsize
= stride
+ 3;
7206 /* Negative levels are never allowed. */
7211 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
7212 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
7217 CPUARMState
*env
= &cpu
->env
;
7218 unsigned int pamax
= arm_pamax(cpu
);
7221 case 13: /* 64KB Pages. */
7222 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
7226 case 11: /* 16KB Pages. */
7227 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
7231 case 9: /* 4KB Pages. */
7232 if (level
== 0 && pamax
<= 42) {
7237 g_assert_not_reached();
7240 /* Inputsize checks. */
7241 if (inputsize
> pamax
&&
7242 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
7243 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7247 /* AArch32 only supports 4KB pages. Assert on that. */
7248 assert(stride
== 9);
7257 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
7258 int access_type
, ARMMMUIdx mmu_idx
,
7259 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
7260 target_ulong
*page_size_ptr
, uint32_t *fsr
,
7261 ARMMMUFaultInfo
*fi
)
7263 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7264 CPUState
*cs
= CPU(cpu
);
7265 /* Read an LPAE long-descriptor translation table. */
7266 MMUFaultType fault_type
= translation_fault
;
7273 hwaddr descaddr
, indexmask
, indexmask_grainsize
;
7274 uint32_t tableattrs
;
7275 target_ulong page_size
;
7281 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
7282 int ap
, ns
, xn
, pxn
;
7283 uint32_t el
= regime_el(env
, mmu_idx
);
7284 bool ttbr1_valid
= true;
7285 uint64_t descaddrmask
;
7288 * This code does not handle the different format TCR for VTCR_EL2.
7289 * This code also does not support shareability levels.
7290 * Attribute and permission bit handling should also be checked when adding
7291 * support for those page table walks.
7293 if (arm_el_is_aa64(env
, el
)) {
7297 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7298 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
7301 if (extract64(address
, 55, 1)) {
7302 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
7304 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
7309 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7313 ttbr1_valid
= false;
7318 /* There is no TTBR1 for EL2 */
7320 ttbr1_valid
= false;
7324 /* Determine whether this address is in the region controlled by
7325 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7326 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7327 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7329 if (va_size
== 64) {
7330 /* AArch64 translation. */
7331 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
7332 t0sz
= MIN(t0sz
, 39);
7333 t0sz
= MAX(t0sz
, 16);
7334 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7335 /* AArch32 stage 1 translation. */
7336 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
7338 /* AArch32 stage 2 translation. */
7339 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
7340 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
7341 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4);
7343 /* If the sign-extend bit is not the same as t0sz[3], the result
7344 * is unpredictable. Flag this as a guest error. */
7346 qemu_log_mask(LOG_GUEST_ERROR
,
7347 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7350 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
7351 if (va_size
== 64) {
7352 t1sz
= MIN(t1sz
, 39);
7353 t1sz
= MAX(t1sz
, 16);
7355 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
7356 /* there is a ttbr0 region and we are in it (high bits all zero) */
7358 } else if (ttbr1_valid
&& t1sz
&&
7359 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
7360 /* there is a ttbr1 region and we are in it (high bits all one) */
7363 /* ttbr0 region is "everything not in the ttbr1 region" */
7365 } else if (!t1sz
&& ttbr1_valid
) {
7366 /* ttbr1 region is "everything not in the ttbr0 region" */
7369 /* in the gap between the two regions, this is a Translation fault */
7370 fault_type
= translation_fault
;
7374 /* Note that QEMU ignores shareability and cacheability attributes,
7375 * so we don't need to do anything with the SH, ORGN, IRGN fields
7376 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7377 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7378 * implement any ASID-like capability so we can ignore it (instead
7379 * we will always flush the TLB any time the ASID is changed).
7381 if (ttbr_select
== 0) {
7382 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
7384 epd
= extract32(tcr
->raw_tcr
, 7, 1);
7386 inputsize
= va_size
- t0sz
;
7388 tg
= extract32(tcr
->raw_tcr
, 14, 2);
7389 if (tg
== 1) { /* 64KB pages */
7392 if (tg
== 2) { /* 16KB pages */
7396 /* We should only be here if TTBR1 is valid */
7397 assert(ttbr1_valid
);
7399 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
7400 epd
= extract32(tcr
->raw_tcr
, 23, 1);
7401 inputsize
= va_size
- t1sz
;
7403 tg
= extract32(tcr
->raw_tcr
, 30, 2);
7404 if (tg
== 3) { /* 64KB pages */
7407 if (tg
== 1) { /* 16KB pages */
7412 /* Here we should have set up all the parameters for the translation:
7413 * va_size, inputsize, ttbr, epd, stride, tbi
7417 /* Translation table walk disabled => Translation fault on TLB miss
7418 * Note: This is always 0 on 64-bit EL2 and EL3.
7423 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7424 /* The starting level depends on the virtual address size (which can
7425 * be up to 48 bits) and the translation granule size. It indicates
7426 * the number of strides (stride bits at a time) needed to
7427 * consume the bits of the input address. In the pseudocode this is:
7428 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7429 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7430 * our 'stride + 3' and 'stride' is our 'stride'.
7431 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7432 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7433 * = 4 - (inputsize - 4) / stride;
7435 level
= 4 - (inputsize
- 4) / stride
;
7437 /* For stage 2 translations the starting level is specified by the
7438 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7440 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
7441 uint32_t startlevel
;
7444 if (va_size
== 32 || stride
== 9) {
7445 /* AArch32 or 4KB pages */
7446 startlevel
= 2 - sl0
;
7448 /* 16KB or 64KB pages */
7449 startlevel
= 3 - sl0
;
7452 /* Check that the starting level is valid. */
7453 ok
= check_s2_mmu_setup(cpu
, va_size
== 64, startlevel
,
7456 fault_type
= translation_fault
;
7462 indexmask_grainsize
= (1ULL << (stride
+ 3)) - 1;
7463 indexmask
= (1ULL << (inputsize
- (stride
* (4 - level
)))) - 1;
7465 /* Now we can extract the actual base address from the TTBR */
7466 descaddr
= extract64(ttbr
, 0, 48);
7467 descaddr
&= ~indexmask
;
7469 /* The address field in the descriptor goes up to bit 39 for ARMv7
7470 * but up to bit 47 for ARMv8, but we use the descaddrmask
7471 * up to bit 39 for AArch32, because we don't need other bits in that case
7472 * to construct next descriptor address (anyway they should be all zeroes).
7474 descaddrmask
= ((1ull << (va_size
== 64 ? 48 : 40)) - 1) &
7475 ~indexmask_grainsize
;
7477 /* Secure accesses start with the page table in secure memory and
7478 * can be downgraded to non-secure at any step. Non-secure accesses
7479 * remain non-secure. We implement this by just ORing in the NSTable/NS
7480 * bits at each step.
7482 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
7484 uint64_t descriptor
;
7487 descaddr
|= (address
>> (stride
* (4 - level
))) & indexmask
;
7489 nstable
= extract32(tableattrs
, 4, 1);
7490 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fsr
, fi
);
7495 if (!(descriptor
& 1) ||
7496 (!(descriptor
& 2) && (level
== 3))) {
7497 /* Invalid, or the Reserved level 3 encoding */
7500 descaddr
= descriptor
& descaddrmask
;
7502 if ((descriptor
& 2) && (level
< 3)) {
7503 /* Table entry. The top five bits are attributes which may
7504 * propagate down through lower levels of the table (and
7505 * which are all arranged so that 0 means "no effect", so
7506 * we can gather them up by ORing in the bits at each level).
7508 tableattrs
|= extract64(descriptor
, 59, 5);
7510 indexmask
= indexmask_grainsize
;
7513 /* Block entry at level 1 or 2, or page entry at level 3.
7514 * These are basically the same thing, although the number
7515 * of bits we pull in from the vaddr varies.
7517 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
7518 descaddr
|= (address
& (page_size
- 1));
7519 /* Extract attributes from the descriptor */
7520 attrs
= extract64(descriptor
, 2, 10)
7521 | (extract64(descriptor
, 52, 12) << 10);
7523 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7524 /* Stage 2 table descriptors do not include any attribute fields */
7527 /* Merge in attributes from table descriptors */
7528 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
7529 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
7530 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7531 * means "force PL1 access only", which means forcing AP[1] to 0.
7533 if (extract32(tableattrs
, 2, 1)) {
7536 attrs
|= nstable
<< 3; /* NS */
7539 /* Here descaddr is the final physical address, and attributes
7542 fault_type
= access_fault
;
7543 if ((attrs
& (1 << 8)) == 0) {
7548 ap
= extract32(attrs
, 4, 2);
7549 xn
= extract32(attrs
, 12, 1);
7551 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7553 *prot
= get_S2prot(env
, ap
, xn
);
7555 ns
= extract32(attrs
, 3, 1);
7556 pxn
= extract32(attrs
, 11, 1);
7557 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
7560 fault_type
= permission_fault
;
7561 if (!(*prot
& (1 << access_type
))) {
7566 /* The NS bit will (as required by the architecture) have no effect if
7567 * the CPU doesn't support TZ or this is a non-secure translation
7568 * regime, because the attribute will already be non-secure.
7570 txattrs
->secure
= false;
7572 *phys_ptr
= descaddr
;
7573 *page_size_ptr
= page_size
;
7577 /* Long-descriptor format IFSR/DFSR value */
7578 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
7579 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7580 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
7584 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
7586 int32_t address
, int *prot
)
7588 *prot
= PAGE_READ
| PAGE_WRITE
;
7590 case 0xF0000000 ... 0xFFFFFFFF:
7591 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
7595 case 0x00000000 ... 0x7FFFFFFF:
7602 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
7603 int access_type
, ARMMMUIdx mmu_idx
,
7604 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7606 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7608 bool is_user
= regime_is_user(env
, mmu_idx
);
7610 *phys_ptr
= address
;
7613 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
7614 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7615 } else { /* MPU enabled */
7616 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
7618 uint32_t base
= env
->pmsav7
.drbar
[n
];
7619 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
7623 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
7628 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
7632 rmask
= (1ull << rsize
) - 1;
7635 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
7636 "to DRSR region size, mask = %" PRIx32
,
7641 if (address
< base
|| address
> base
+ rmask
) {
7645 /* Region matched */
7647 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
7649 uint32_t srdis_mask
;
7651 rsize
-= 3; /* sub region size (power of 2) */
7652 snd
= ((address
- base
) >> rsize
) & 0x7;
7653 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
7655 srdis_mask
= srdis
? 0x3 : 0x0;
7656 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
7657 /* This will check in groups of 2, 4 and then 8, whether
7658 * the subregion bits are consistent. rsize is incremented
7659 * back up to give the region size, considering consistent
7660 * adjacent subregions as one region. Stop testing if rsize
7661 * is already big enough for an entire QEMU page.
7663 int snd_rounded
= snd
& ~(i
- 1);
7664 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
7665 snd_rounded
+ 8, i
);
7666 if (srdis_mask
^ srdis_multi
) {
7669 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
7673 if (rsize
< TARGET_PAGE_BITS
) {
7674 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
7675 "alignment of %" PRIu32
" bits. Minimum is %d\n",
7676 rsize
, TARGET_PAGE_BITS
);
7685 if (n
== -1) { /* no hits */
7686 if (cpu
->pmsav7_dregion
&&
7687 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
7688 /* background fault */
7692 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7693 } else { /* a MPU hit! */
7694 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
7696 if (is_user
) { /* User mode AP bit decoding */
7701 break; /* no access */
7703 *prot
|= PAGE_WRITE
;
7707 *prot
|= PAGE_READ
| PAGE_EXEC
;
7710 qemu_log_mask(LOG_GUEST_ERROR
,
7711 "Bad value for AP bits in DRACR %"
7714 } else { /* Priv. mode AP bits decoding */
7717 break; /* no access */
7721 *prot
|= PAGE_WRITE
;
7725 *prot
|= PAGE_READ
| PAGE_EXEC
;
7728 qemu_log_mask(LOG_GUEST_ERROR
,
7729 "Bad value for AP bits in DRACR %"
7735 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
7736 *prot
&= ~PAGE_EXEC
;
7741 *fsr
= 0x00d; /* Permission fault */
7742 return !(*prot
& (1 << access_type
));
7745 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
7746 int access_type
, ARMMMUIdx mmu_idx
,
7747 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7752 bool is_user
= regime_is_user(env
, mmu_idx
);
7754 *phys_ptr
= address
;
7755 for (n
= 7; n
>= 0; n
--) {
7756 base
= env
->cp15
.c6_region
[n
];
7757 if ((base
& 1) == 0) {
7760 mask
= 1 << ((base
>> 1) & 0x1f);
7761 /* Keep this shift separate from the above to avoid an
7762 (undefined) << 32. */
7763 mask
= (mask
<< 1) - 1;
7764 if (((base
^ address
) & ~mask
) == 0) {
7773 if (access_type
== 2) {
7774 mask
= env
->cp15
.pmsav5_insn_ap
;
7776 mask
= env
->cp15
.pmsav5_data_ap
;
7778 mask
= (mask
>> (n
* 4)) & 0xf;
7788 *prot
= PAGE_READ
| PAGE_WRITE
;
7793 *prot
|= PAGE_WRITE
;
7797 *prot
= PAGE_READ
| PAGE_WRITE
;
7810 /* Bad permission. */
7818 /* get_phys_addr - get the physical address for this virtual address
7820 * Find the physical address corresponding to the given virtual address,
7821 * by doing a translation table walk on MMU based systems or using the
7822 * MPU state on MPU based systems.
7824 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7825 * prot and page_size may not be filled in, and the populated fsr value provides
7826 * information on why the translation aborted, in the format of a
7827 * DFSR/IFSR fault register, with the following caveats:
7828 * * we honour the short vs long DFSR format differences.
7829 * * the WnR bit is never set (the caller must do this).
7830 * * for PSMAv5 based systems we don't bother to return a full FSR format
7834 * @address: virtual address to get physical address for
7835 * @access_type: 0 for read, 1 for write, 2 for execute
7836 * @mmu_idx: MMU index indicating required translation regime
7837 * @phys_ptr: set to the physical address corresponding to the virtual address
7838 * @attrs: set to the memory transaction attributes to use
7839 * @prot: set to the permissions for the page containing phys_ptr
7840 * @page_size: set to the size of the page containing phys_ptr
7841 * @fsr: set to the DFSR/IFSR value on failure
7843 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
7844 int access_type
, ARMMMUIdx mmu_idx
,
7845 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7846 target_ulong
*page_size
, uint32_t *fsr
,
7847 ARMMMUFaultInfo
*fi
)
7849 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
7850 /* Call ourselves recursively to do the stage 1 and then stage 2
7853 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
7858 ret
= get_phys_addr(env
, address
, access_type
,
7859 mmu_idx
+ ARMMMUIdx_S1NSE0
, &ipa
, attrs
,
7860 prot
, page_size
, fsr
, fi
);
7862 /* If S1 fails or S2 is disabled, return early. */
7863 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
7868 /* S1 is done. Now do S2 translation. */
7869 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
7870 phys_ptr
, attrs
, &s2_prot
,
7871 page_size
, fsr
, fi
);
7873 /* Combine the S1 and S2 perms. */
7878 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7880 mmu_idx
+= ARMMMUIdx_S1NSE0
;
7884 /* The page table entries may downgrade secure to non-secure, but
7885 * cannot upgrade an non-secure translation regime's attributes
7888 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
7889 attrs
->user
= regime_is_user(env
, mmu_idx
);
7891 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7892 * In v7 and earlier it affects all stage 1 translations.
7894 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
7895 && !arm_feature(env
, ARM_FEATURE_V8
)) {
7896 if (regime_el(env
, mmu_idx
) == 3) {
7897 address
+= env
->cp15
.fcseidr_s
;
7899 address
+= env
->cp15
.fcseidr_ns
;
7903 /* pmsav7 has special handling for when MPU is disabled so call it before
7904 * the common MMU/MPU disabled check below.
7906 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
7907 arm_feature(env
, ARM_FEATURE_V7
)) {
7908 *page_size
= TARGET_PAGE_SIZE
;
7909 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
7910 phys_ptr
, prot
, fsr
);
7913 if (regime_translation_disabled(env
, mmu_idx
)) {
7914 /* MMU/MPU disabled. */
7915 *phys_ptr
= address
;
7916 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7917 *page_size
= TARGET_PAGE_SIZE
;
7921 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
7923 *page_size
= TARGET_PAGE_SIZE
;
7924 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
7925 phys_ptr
, prot
, fsr
);
7928 if (regime_using_lpae_format(env
, mmu_idx
)) {
7929 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7930 attrs
, prot
, page_size
, fsr
, fi
);
7931 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
7932 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7933 attrs
, prot
, page_size
, fsr
, fi
);
7935 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7936 prot
, page_size
, fsr
, fi
);
7940 /* Walk the page table and (if the mapping exists) add the page
7941 * to the TLB. Return false on success, or true on failure. Populate
7942 * fsr with ARM DFSR/IFSR fault register format value on failure.
7944 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
7945 int access_type
, int mmu_idx
, uint32_t *fsr
,
7946 ARMMMUFaultInfo
*fi
)
7948 ARMCPU
*cpu
= ARM_CPU(cs
);
7949 CPUARMState
*env
= &cpu
->env
;
7951 target_ulong page_size
;
7954 MemTxAttrs attrs
= {};
7956 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
7957 &attrs
, &prot
, &page_size
, fsr
, fi
);
7959 /* Map a single [sub]page. */
7960 phys_addr
&= TARGET_PAGE_MASK
;
7961 address
&= TARGET_PAGE_MASK
;
7962 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
7963 prot
, mmu_idx
, page_size
);
7970 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
7973 ARMCPU
*cpu
= ARM_CPU(cs
);
7974 CPUARMState
*env
= &cpu
->env
;
7976 target_ulong page_size
;
7980 ARMMMUFaultInfo fi
= {};
7982 *attrs
= (MemTxAttrs
) {};
7984 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
7985 attrs
, &prot
, &page_size
, &fsr
, &fi
);
7993 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7995 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7999 return xpsr_read(env
) & 0xf8000000;
8001 return xpsr_read(env
) & 0xf80001ff;
8003 return xpsr_read(env
) & 0xff00fc00;
8005 return xpsr_read(env
) & 0xff00fdff;
8007 return xpsr_read(env
) & 0x000001ff;
8009 return xpsr_read(env
) & 0x0700fc00;
8011 return xpsr_read(env
) & 0x0700edff;
8013 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
8015 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
8016 case 16: /* PRIMASK */
8017 return (env
->daif
& PSTATE_I
) != 0;
8018 case 17: /* BASEPRI */
8019 case 18: /* BASEPRI_MAX */
8020 return env
->v7m
.basepri
;
8021 case 19: /* FAULTMASK */
8022 return (env
->daif
& PSTATE_F
) != 0;
8023 case 20: /* CONTROL */
8024 return env
->v7m
.control
;
8026 /* ??? For debugging only. */
8027 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
8032 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
8034 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8038 xpsr_write(env
, val
, 0xf8000000);
8041 xpsr_write(env
, val
, 0xf8000000);
8044 xpsr_write(env
, val
, 0xfe00fc00);
8047 xpsr_write(env
, val
, 0xfe00fc00);
8050 /* IPSR bits are readonly. */
8053 xpsr_write(env
, val
, 0x0600fc00);
8056 xpsr_write(env
, val
, 0x0600fc00);
8059 if (env
->v7m
.current_sp
)
8060 env
->v7m
.other_sp
= val
;
8062 env
->regs
[13] = val
;
8065 if (env
->v7m
.current_sp
)
8066 env
->regs
[13] = val
;
8068 env
->v7m
.other_sp
= val
;
8070 case 16: /* PRIMASK */
8072 env
->daif
|= PSTATE_I
;
8074 env
->daif
&= ~PSTATE_I
;
8077 case 17: /* BASEPRI */
8078 env
->v7m
.basepri
= val
& 0xff;
8080 case 18: /* BASEPRI_MAX */
8082 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
8083 env
->v7m
.basepri
= val
;
8085 case 19: /* FAULTMASK */
8087 env
->daif
|= PSTATE_F
;
8089 env
->daif
&= ~PSTATE_F
;
8092 case 20: /* CONTROL */
8093 env
->v7m
.control
= val
& 3;
8094 switch_v7m_sp(env
, (val
& 2) != 0);
8097 /* ??? For debugging only. */
8098 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
8105 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
8107 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8108 * Note that we do not implement the (architecturally mandated)
8109 * alignment fault for attempts to use this on Device memory
8110 * (which matches the usual QEMU behaviour of not implementing either
8111 * alignment faults or any memory attribute handling).
8114 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8115 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
8116 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
8118 #ifndef CONFIG_USER_ONLY
8120 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8121 * the block size so we might have to do more than one TLB lookup.
8122 * We know that in fact for any v8 CPU the page size is at least 4K
8123 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8124 * 1K as an artefact of legacy v5 subpage support being present in the
8125 * same QEMU executable.
8127 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
8128 void *hostaddr
[maxidx
];
8130 unsigned mmu_idx
= cpu_mmu_index(env
, false);
8131 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
8133 for (try = 0; try < 2; try++) {
8135 for (i
= 0; i
< maxidx
; i
++) {
8136 hostaddr
[i
] = tlb_vaddr_to_host(env
,
8137 vaddr
+ TARGET_PAGE_SIZE
* i
,
8144 /* If it's all in the TLB it's fair game for just writing to;
8145 * we know we don't need to update dirty status, etc.
8147 for (i
= 0; i
< maxidx
- 1; i
++) {
8148 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
8150 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
8153 /* OK, try a store and see if we can populate the tlb. This
8154 * might cause an exception if the memory isn't writable,
8155 * in which case we will longjmp out of here. We must for
8156 * this purpose use the actual register value passed to us
8157 * so that we get the fault address right.
8159 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
8160 /* Now we can populate the other TLB entries, if any */
8161 for (i
= 0; i
< maxidx
; i
++) {
8162 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
8163 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
8164 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
8169 /* Slow path (probably attempt to do this to an I/O device or
8170 * similar, or clearing of a block of code we have translations
8171 * cached for). Just do a series of byte writes as the architecture
8172 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8173 * memset(), unmap() sequence here because:
8174 * + we'd need to account for the blocksize being larger than a page
8175 * + the direct-RAM access case is almost always going to be dealt
8176 * with in the fastpath code above, so there's no speed benefit
8177 * + we would have to deal with the map returning NULL because the
8178 * bounce buffer was in use
8180 for (i
= 0; i
< blocklen
; i
++) {
8181 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
8185 memset(g2h(vaddr
), 0, blocklen
);
8189 /* Note that signed overflow is undefined in C. The following routines are
8190 careful to use unsigned types where modulo arithmetic is required.
8191 Failure to do so _will_ break on newer gcc. */
8193 /* Signed saturating arithmetic. */
8195 /* Perform 16-bit signed saturating addition. */
8196 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
8201 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
8210 /* Perform 8-bit signed saturating addition. */
8211 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
8216 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
8225 /* Perform 16-bit signed saturating subtraction. */
8226 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
8231 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
8240 /* Perform 8-bit signed saturating subtraction. */
8241 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
8246 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
8255 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8256 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8257 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8258 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8261 #include "op_addsub.h"
8263 /* Unsigned saturating arithmetic. */
8264 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
8273 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
8281 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
8290 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
8298 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8299 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8300 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8301 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8304 #include "op_addsub.h"
8306 /* Signed modulo arithmetic. */
8307 #define SARITH16(a, b, n, op) do { \
8309 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8310 RESULT(sum, n, 16); \
8312 ge |= 3 << (n * 2); \
8315 #define SARITH8(a, b, n, op) do { \
8317 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8318 RESULT(sum, n, 8); \
8324 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8325 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8326 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8327 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8331 #include "op_addsub.h"
8333 /* Unsigned modulo arithmetic. */
8334 #define ADD16(a, b, n) do { \
8336 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8337 RESULT(sum, n, 16); \
8338 if ((sum >> 16) == 1) \
8339 ge |= 3 << (n * 2); \
8342 #define ADD8(a, b, n) do { \
8344 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8345 RESULT(sum, n, 8); \
8346 if ((sum >> 8) == 1) \
8350 #define SUB16(a, b, n) do { \
8352 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8353 RESULT(sum, n, 16); \
8354 if ((sum >> 16) == 0) \
8355 ge |= 3 << (n * 2); \
8358 #define SUB8(a, b, n) do { \
8360 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8361 RESULT(sum, n, 8); \
8362 if ((sum >> 8) == 0) \
8369 #include "op_addsub.h"
8371 /* Halved signed arithmetic. */
8372 #define ADD16(a, b, n) \
8373 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8374 #define SUB16(a, b, n) \
8375 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8376 #define ADD8(a, b, n) \
8377 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8378 #define SUB8(a, b, n) \
8379 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8382 #include "op_addsub.h"
8384 /* Halved unsigned arithmetic. */
8385 #define ADD16(a, b, n) \
8386 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8387 #define SUB16(a, b, n) \
8388 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8389 #define ADD8(a, b, n) \
8390 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8391 #define SUB8(a, b, n) \
8392 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8395 #include "op_addsub.h"
8397 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
8405 /* Unsigned sum of absolute byte differences. */
8406 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
8409 sum
= do_usad(a
, b
);
8410 sum
+= do_usad(a
>> 8, b
>> 8);
8411 sum
+= do_usad(a
>> 16, b
>>16);
8412 sum
+= do_usad(a
>> 24, b
>> 24);
8416 /* For ARMv6 SEL instruction. */
8417 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
8430 return (a
& mask
) | (b
& ~mask
);
8433 /* VFP support. We follow the convention used for VFP instructions:
8434 Single precision routines have a "s" suffix, double precision a
8437 /* Convert host exception flags to vfp form. */
8438 static inline int vfp_exceptbits_from_host(int host_bits
)
8440 int target_bits
= 0;
8442 if (host_bits
& float_flag_invalid
)
8444 if (host_bits
& float_flag_divbyzero
)
8446 if (host_bits
& float_flag_overflow
)
8448 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
8450 if (host_bits
& float_flag_inexact
)
8451 target_bits
|= 0x10;
8452 if (host_bits
& float_flag_input_denormal
)
8453 target_bits
|= 0x80;
8457 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
8462 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
8463 | (env
->vfp
.vec_len
<< 16)
8464 | (env
->vfp
.vec_stride
<< 20);
8465 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
8466 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
8467 fpscr
|= vfp_exceptbits_from_host(i
);
8471 uint32_t vfp_get_fpscr(CPUARMState
*env
)
8473 return HELPER(vfp_get_fpscr
)(env
);
8476 /* Convert vfp exception flags to target form. */
8477 static inline int vfp_exceptbits_to_host(int target_bits
)
8481 if (target_bits
& 1)
8482 host_bits
|= float_flag_invalid
;
8483 if (target_bits
& 2)
8484 host_bits
|= float_flag_divbyzero
;
8485 if (target_bits
& 4)
8486 host_bits
|= float_flag_overflow
;
8487 if (target_bits
& 8)
8488 host_bits
|= float_flag_underflow
;
8489 if (target_bits
& 0x10)
8490 host_bits
|= float_flag_inexact
;
8491 if (target_bits
& 0x80)
8492 host_bits
|= float_flag_input_denormal
;
8496 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
8501 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
8502 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
8503 env
->vfp
.vec_len
= (val
>> 16) & 7;
8504 env
->vfp
.vec_stride
= (val
>> 20) & 3;
8507 if (changed
& (3 << 22)) {
8508 i
= (val
>> 22) & 3;
8510 case FPROUNDING_TIEEVEN
:
8511 i
= float_round_nearest_even
;
8513 case FPROUNDING_POSINF
:
8516 case FPROUNDING_NEGINF
:
8517 i
= float_round_down
;
8519 case FPROUNDING_ZERO
:
8520 i
= float_round_to_zero
;
8523 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
8525 if (changed
& (1 << 24)) {
8526 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8527 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8529 if (changed
& (1 << 25))
8530 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
8532 i
= vfp_exceptbits_to_host(val
);
8533 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
8534 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
8537 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
8539 HELPER(vfp_set_fpscr
)(env
, val
);
8542 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8544 #define VFP_BINOP(name) \
8545 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8547 float_status *fpst = fpstp; \
8548 return float32_ ## name(a, b, fpst); \
8550 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8552 float_status *fpst = fpstp; \
8553 return float64_ ## name(a, b, fpst); \
8565 float32
VFP_HELPER(neg
, s
)(float32 a
)
8567 return float32_chs(a
);
8570 float64
VFP_HELPER(neg
, d
)(float64 a
)
8572 return float64_chs(a
);
8575 float32
VFP_HELPER(abs
, s
)(float32 a
)
8577 return float32_abs(a
);
8580 float64
VFP_HELPER(abs
, d
)(float64 a
)
8582 return float64_abs(a
);
8585 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
8587 return float32_sqrt(a
, &env
->vfp
.fp_status
);
8590 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
8592 return float64_sqrt(a
, &env
->vfp
.fp_status
);
8595 /* XXX: check quiet/signaling case */
8596 #define DO_VFP_cmp(p, type) \
8597 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8600 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8601 case 0: flags = 0x6; break; \
8602 case -1: flags = 0x8; break; \
8603 case 1: flags = 0x2; break; \
8604 default: case 2: flags = 0x3; break; \
8606 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8607 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8609 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8612 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8613 case 0: flags = 0x6; break; \
8614 case -1: flags = 0x8; break; \
8615 case 1: flags = 0x2; break; \
8616 default: case 2: flags = 0x3; break; \
8618 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8619 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8621 DO_VFP_cmp(s
, float32
)
8622 DO_VFP_cmp(d
, float64
)
8625 /* Integer to float and float to integer conversions */
8627 #define CONV_ITOF(name, fsz, sign) \
8628 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8630 float_status *fpst = fpstp; \
8631 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8634 #define CONV_FTOI(name, fsz, sign, round) \
8635 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8637 float_status *fpst = fpstp; \
8638 if (float##fsz##_is_any_nan(x)) { \
8639 float_raise(float_flag_invalid, fpst); \
8642 return float##fsz##_to_##sign##int32##round(x, fpst); \
8645 #define FLOAT_CONVS(name, p, fsz, sign) \
8646 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8647 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8648 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8650 FLOAT_CONVS(si
, s
, 32, )
8651 FLOAT_CONVS(si
, d
, 64, )
8652 FLOAT_CONVS(ui
, s
, 32, u
)
8653 FLOAT_CONVS(ui
, d
, 64, u
)
8659 /* floating point conversion */
8660 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
8662 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
8663 /* ARM requires that S<->D conversion of any kind of NaN generates
8664 * a quiet NaN by forcing the most significant frac bit to 1.
8666 return float64_maybe_silence_nan(r
);
8669 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
8671 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
8672 /* ARM requires that S<->D conversion of any kind of NaN generates
8673 * a quiet NaN by forcing the most significant frac bit to 1.
8675 return float32_maybe_silence_nan(r
);
8678 /* VFP3 fixed point conversion. */
8679 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8680 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8683 float_status *fpst = fpstp; \
8685 tmp = itype##_to_##float##fsz(x, fpst); \
8686 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8689 /* Notice that we want only input-denormal exception flags from the
8690 * scalbn operation: the other possible flags (overflow+inexact if
8691 * we overflow to infinity, output-denormal) aren't correct for the
8692 * complete scale-and-convert operation.
8694 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8695 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8699 float_status *fpst = fpstp; \
8700 int old_exc_flags = get_float_exception_flags(fpst); \
8702 if (float##fsz##_is_any_nan(x)) { \
8703 float_raise(float_flag_invalid, fpst); \
8706 tmp = float##fsz##_scalbn(x, shift, fpst); \
8707 old_exc_flags |= get_float_exception_flags(fpst) \
8708 & float_flag_input_denormal; \
8709 set_float_exception_flags(old_exc_flags, fpst); \
8710 return float##fsz##_to_##itype##round(tmp, fpst); \
8713 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8714 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8715 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8716 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8718 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8719 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8720 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8722 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
8723 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
8724 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
8725 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
8726 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
8727 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
8728 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
8729 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
8730 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
8731 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
8732 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
8733 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
8735 #undef VFP_CONV_FIX_FLOAT
8736 #undef VFP_CONV_FLOAT_FIX_ROUND
8738 /* Set the current fp rounding mode and return the old one.
8739 * The argument is a softfloat float_round_ value.
8741 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8743 float_status
*fp_status
= &env
->vfp
.fp_status
;
8745 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8746 set_float_rounding_mode(rmode
, fp_status
);
8751 /* Set the current fp rounding mode in the standard fp status and return
8752 * the old one. This is for NEON instructions that need to change the
8753 * rounding mode but wish to use the standard FPSCR values for everything
8754 * else. Always set the rounding mode back to the correct value after
8756 * The argument is a softfloat float_round_ value.
8758 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8760 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
8762 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8763 set_float_rounding_mode(rmode
, fp_status
);
8768 /* Half precision conversions. */
8769 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
8771 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8772 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
8774 return float32_maybe_silence_nan(r
);
8779 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
8781 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8782 float16 r
= float32_to_float16(a
, ieee
, s
);
8784 r
= float16_maybe_silence_nan(r
);
8786 return float16_val(r
);
8789 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8791 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
8794 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8796 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
8799 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8801 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
8804 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8806 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
8809 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
8811 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8812 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
8814 return float64_maybe_silence_nan(r
);
8819 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
8821 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8822 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
8824 r
= float16_maybe_silence_nan(r
);
8826 return float16_val(r
);
8829 #define float32_two make_float32(0x40000000)
8830 #define float32_three make_float32(0x40400000)
8831 #define float32_one_point_five make_float32(0x3fc00000)
8833 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8835 float_status
*s
= &env
->vfp
.standard_fp_status
;
8836 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8837 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8838 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8839 float_raise(float_flag_input_denormal
, s
);
8843 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
8846 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8848 float_status
*s
= &env
->vfp
.standard_fp_status
;
8850 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8851 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8852 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8853 float_raise(float_flag_input_denormal
, s
);
8855 return float32_one_point_five
;
8857 product
= float32_mul(a
, b
, s
);
8858 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
8863 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8864 * int->float conversions at run-time. */
8865 #define float64_256 make_float64(0x4070000000000000LL)
8866 #define float64_512 make_float64(0x4080000000000000LL)
8867 #define float32_maxnorm make_float32(0x7f7fffff)
8868 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8870 /* Reciprocal functions
8872 * The algorithm that must be used to calculate the estimate
8873 * is specified by the ARM ARM, see FPRecipEstimate()
8876 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
8878 /* These calculations mustn't set any fp exception flags,
8879 * so we use a local copy of the fp_status.
8881 float_status dummy_status
= *real_fp_status
;
8882 float_status
*s
= &dummy_status
;
8883 /* q = (int)(a * 512.0) */
8884 float64 q
= float64_mul(float64_512
, a
, s
);
8885 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8887 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8888 q
= int64_to_float64(q_int
, s
);
8889 q
= float64_add(q
, float64_half
, s
);
8890 q
= float64_div(q
, float64_512
, s
);
8891 q
= float64_div(float64_one
, q
, s
);
8893 /* s = (int)(256.0 * r + 0.5) */
8894 q
= float64_mul(q
, float64_256
, s
);
8895 q
= float64_add(q
, float64_half
, s
);
8896 q_int
= float64_to_int64_round_to_zero(q
, s
);
8898 /* return (double)s / 256.0 */
8899 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8902 /* Common wrapper to call recip_estimate */
8903 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
8905 uint64_t val64
= float64_val(num
);
8906 uint64_t frac
= extract64(val64
, 0, 52);
8907 int64_t exp
= extract64(val64
, 52, 11);
8909 float64 scaled
, estimate
;
8911 /* Generate the scaled number for the estimate function */
8913 if (extract64(frac
, 51, 1) == 0) {
8915 frac
= extract64(frac
, 0, 50) << 2;
8917 frac
= extract64(frac
, 0, 51) << 1;
8921 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8922 scaled
= make_float64((0x3feULL
<< 52)
8923 | extract64(frac
, 44, 8) << 44);
8925 estimate
= recip_estimate(scaled
, fpst
);
8927 /* Build new result */
8928 val64
= float64_val(estimate
);
8929 sbit
= 0x8000000000000000ULL
& val64
;
8931 frac
= extract64(val64
, 0, 52);
8934 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
8935 } else if (exp
== -1) {
8936 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
8940 return make_float64(sbit
| (exp
<< 52) | frac
);
8943 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
8945 switch (fpst
->float_rounding_mode
) {
8946 case float_round_nearest_even
: /* Round to Nearest */
8948 case float_round_up
: /* Round to +Inf */
8950 case float_round_down
: /* Round to -Inf */
8952 case float_round_to_zero
: /* Round to Zero */
8956 g_assert_not_reached();
8959 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
8961 float_status
*fpst
= fpstp
;
8962 float32 f32
= float32_squash_input_denormal(input
, fpst
);
8963 uint32_t f32_val
= float32_val(f32
);
8964 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
8965 int32_t f32_exp
= extract32(f32_val
, 23, 8);
8966 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
8972 if (float32_is_any_nan(f32
)) {
8974 if (float32_is_signaling_nan(f32
)) {
8975 float_raise(float_flag_invalid
, fpst
);
8976 nan
= float32_maybe_silence_nan(f32
);
8978 if (fpst
->default_nan_mode
) {
8979 nan
= float32_default_nan
;
8982 } else if (float32_is_infinity(f32
)) {
8983 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8984 } else if (float32_is_zero(f32
)) {
8985 float_raise(float_flag_divbyzero
, fpst
);
8986 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8987 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
8988 /* Abs(value) < 2.0^-128 */
8989 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8990 if (round_to_inf(fpst
, f32_sbit
)) {
8991 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8993 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
8995 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
8996 float_raise(float_flag_underflow
, fpst
);
8997 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
9001 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
9002 r64
= call_recip_estimate(f64
, 253, fpst
);
9003 r64_val
= float64_val(r64
);
9004 r64_exp
= extract64(r64_val
, 52, 11);
9005 r64_frac
= extract64(r64_val
, 0, 52);
9007 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9008 return make_float32(f32_sbit
|
9009 (r64_exp
& 0xff) << 23 |
9010 extract64(r64_frac
, 29, 24));
9013 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
9015 float_status
*fpst
= fpstp
;
9016 float64 f64
= float64_squash_input_denormal(input
, fpst
);
9017 uint64_t f64_val
= float64_val(f64
);
9018 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
9019 int64_t f64_exp
= extract64(f64_val
, 52, 11);
9025 /* Deal with any special cases */
9026 if (float64_is_any_nan(f64
)) {
9028 if (float64_is_signaling_nan(f64
)) {
9029 float_raise(float_flag_invalid
, fpst
);
9030 nan
= float64_maybe_silence_nan(f64
);
9032 if (fpst
->default_nan_mode
) {
9033 nan
= float64_default_nan
;
9036 } else if (float64_is_infinity(f64
)) {
9037 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9038 } else if (float64_is_zero(f64
)) {
9039 float_raise(float_flag_divbyzero
, fpst
);
9040 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9041 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
9042 /* Abs(value) < 2.0^-1024 */
9043 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
9044 if (round_to_inf(fpst
, f64_sbit
)) {
9045 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9047 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
9049 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
9050 float_raise(float_flag_underflow
, fpst
);
9051 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9054 r64
= call_recip_estimate(f64
, 2045, fpst
);
9055 r64_val
= float64_val(r64
);
9056 r64_exp
= extract64(r64_val
, 52, 11);
9057 r64_frac
= extract64(r64_val
, 0, 52);
9059 /* result = sign : result_exp<10:0> : fraction<51:0> */
9060 return make_float64(f64_sbit
|
9061 ((r64_exp
& 0x7ff) << 52) |
9065 /* The algorithm that must be used to calculate the estimate
9066 * is specified by the ARM ARM.
9068 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
9070 /* These calculations mustn't set any fp exception flags,
9071 * so we use a local copy of the fp_status.
9073 float_status dummy_status
= *real_fp_status
;
9074 float_status
*s
= &dummy_status
;
9078 if (float64_lt(a
, float64_half
, s
)) {
9079 /* range 0.25 <= a < 0.5 */
9081 /* a in units of 1/512 rounded down */
9082 /* q0 = (int)(a * 512.0); */
9083 q
= float64_mul(float64_512
, a
, s
);
9084 q_int
= float64_to_int64_round_to_zero(q
, s
);
9086 /* reciprocal root r */
9087 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9088 q
= int64_to_float64(q_int
, s
);
9089 q
= float64_add(q
, float64_half
, s
);
9090 q
= float64_div(q
, float64_512
, s
);
9091 q
= float64_sqrt(q
, s
);
9092 q
= float64_div(float64_one
, q
, s
);
9094 /* range 0.5 <= a < 1.0 */
9096 /* a in units of 1/256 rounded down */
9097 /* q1 = (int)(a * 256.0); */
9098 q
= float64_mul(float64_256
, a
, s
);
9099 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
9101 /* reciprocal root r */
9102 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9103 q
= int64_to_float64(q_int
, s
);
9104 q
= float64_add(q
, float64_half
, s
);
9105 q
= float64_div(q
, float64_256
, s
);
9106 q
= float64_sqrt(q
, s
);
9107 q
= float64_div(float64_one
, q
, s
);
9109 /* r in units of 1/256 rounded to nearest */
9110 /* s = (int)(256.0 * r + 0.5); */
9112 q
= float64_mul(q
, float64_256
,s
);
9113 q
= float64_add(q
, float64_half
, s
);
9114 q_int
= float64_to_int64_round_to_zero(q
, s
);
9116 /* return (double)s / 256.0;*/
9117 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
9120 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
9122 float_status
*s
= fpstp
;
9123 float32 f32
= float32_squash_input_denormal(input
, s
);
9124 uint32_t val
= float32_val(f32
);
9125 uint32_t f32_sbit
= 0x80000000 & val
;
9126 int32_t f32_exp
= extract32(val
, 23, 8);
9127 uint32_t f32_frac
= extract32(val
, 0, 23);
9133 if (float32_is_any_nan(f32
)) {
9135 if (float32_is_signaling_nan(f32
)) {
9136 float_raise(float_flag_invalid
, s
);
9137 nan
= float32_maybe_silence_nan(f32
);
9139 if (s
->default_nan_mode
) {
9140 nan
= float32_default_nan
;
9143 } else if (float32_is_zero(f32
)) {
9144 float_raise(float_flag_divbyzero
, s
);
9145 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9146 } else if (float32_is_neg(f32
)) {
9147 float_raise(float_flag_invalid
, s
);
9148 return float32_default_nan
;
9149 } else if (float32_is_infinity(f32
)) {
9150 return float32_zero
;
9153 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9154 * preserving the parity of the exponent. */
9156 f64_frac
= ((uint64_t) f32_frac
) << 29;
9158 while (extract64(f64_frac
, 51, 1) == 0) {
9159 f64_frac
= f64_frac
<< 1;
9160 f32_exp
= f32_exp
-1;
9162 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9165 if (extract64(f32_exp
, 0, 1) == 0) {
9166 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9170 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9175 result_exp
= (380 - f32_exp
) / 2;
9177 f64
= recip_sqrt_estimate(f64
, s
);
9179 val64
= float64_val(f64
);
9181 val
= ((result_exp
& 0xff) << 23)
9182 | ((val64
>> 29) & 0x7fffff);
9183 return make_float32(val
);
9186 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
9188 float_status
*s
= fpstp
;
9189 float64 f64
= float64_squash_input_denormal(input
, s
);
9190 uint64_t val
= float64_val(f64
);
9191 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
9192 int64_t f64_exp
= extract64(val
, 52, 11);
9193 uint64_t f64_frac
= extract64(val
, 0, 52);
9195 uint64_t result_frac
;
9197 if (float64_is_any_nan(f64
)) {
9199 if (float64_is_signaling_nan(f64
)) {
9200 float_raise(float_flag_invalid
, s
);
9201 nan
= float64_maybe_silence_nan(f64
);
9203 if (s
->default_nan_mode
) {
9204 nan
= float64_default_nan
;
9207 } else if (float64_is_zero(f64
)) {
9208 float_raise(float_flag_divbyzero
, s
);
9209 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9210 } else if (float64_is_neg(f64
)) {
9211 float_raise(float_flag_invalid
, s
);
9212 return float64_default_nan
;
9213 } else if (float64_is_infinity(f64
)) {
9214 return float64_zero
;
9217 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9218 * preserving the parity of the exponent. */
9221 while (extract64(f64_frac
, 51, 1) == 0) {
9222 f64_frac
= f64_frac
<< 1;
9223 f64_exp
= f64_exp
- 1;
9225 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9228 if (extract64(f64_exp
, 0, 1) == 0) {
9229 f64
= make_float64(f64_sbit
9233 f64
= make_float64(f64_sbit
9238 result_exp
= (3068 - f64_exp
) / 2;
9240 f64
= recip_sqrt_estimate(f64
, s
);
9242 result_frac
= extract64(float64_val(f64
), 0, 52);
9244 return make_float64(f64_sbit
|
9245 ((result_exp
& 0x7ff) << 52) |
9249 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
9251 float_status
*s
= fpstp
;
9254 if ((a
& 0x80000000) == 0) {
9258 f64
= make_float64((0x3feULL
<< 52)
9259 | ((int64_t)(a
& 0x7fffffff) << 21));
9261 f64
= recip_estimate(f64
, s
);
9263 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9266 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
9268 float_status
*fpst
= fpstp
;
9271 if ((a
& 0xc0000000) == 0) {
9275 if (a
& 0x80000000) {
9276 f64
= make_float64((0x3feULL
<< 52)
9277 | ((uint64_t)(a
& 0x7fffffff) << 21));
9278 } else { /* bits 31-30 == '01' */
9279 f64
= make_float64((0x3fdULL
<< 52)
9280 | ((uint64_t)(a
& 0x3fffffff) << 22));
9283 f64
= recip_sqrt_estimate(f64
, fpst
);
9285 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9288 /* VFPv4 fused multiply-accumulate */
9289 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
9291 float_status
*fpst
= fpstp
;
9292 return float32_muladd(a
, b
, c
, 0, fpst
);
9295 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
9297 float_status
*fpst
= fpstp
;
9298 return float64_muladd(a
, b
, c
, 0, fpst
);
9301 /* ARMv8 round to integral */
9302 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
9304 return float32_round_to_int(x
, fp_status
);
9307 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
9309 return float64_round_to_int(x
, fp_status
);
9312 float32
HELPER(rints
)(float32 x
, void *fp_status
)
9314 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9317 ret
= float32_round_to_int(x
, fp_status
);
9319 /* Suppress any inexact exceptions the conversion produced */
9320 if (!(old_flags
& float_flag_inexact
)) {
9321 new_flags
= get_float_exception_flags(fp_status
);
9322 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9328 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
9330 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9333 ret
= float64_round_to_int(x
, fp_status
);
9335 new_flags
= get_float_exception_flags(fp_status
);
9337 /* Suppress any inexact exceptions the conversion produced */
9338 if (!(old_flags
& float_flag_inexact
)) {
9339 new_flags
= get_float_exception_flags(fp_status
);
9340 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9346 /* Convert ARM rounding mode to softfloat */
9347 int arm_rmode_to_sf(int rmode
)
9350 case FPROUNDING_TIEAWAY
:
9351 rmode
= float_round_ties_away
;
9353 case FPROUNDING_ODD
:
9354 /* FIXME: add support for TIEAWAY and ODD */
9355 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
9357 case FPROUNDING_TIEEVEN
:
9359 rmode
= float_round_nearest_even
;
9361 case FPROUNDING_POSINF
:
9362 rmode
= float_round_up
;
9364 case FPROUNDING_NEGINF
:
9365 rmode
= float_round_down
;
9367 case FPROUNDING_ZERO
:
9368 rmode
= float_round_to_zero
;
9375 * The upper bytes of val (above the number specified by 'bytes') must have
9376 * been zeroed out by the caller.
9378 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9384 /* zlib crc32 converts the accumulator and output to one's complement. */
9385 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
9388 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9394 /* Linux crc32c converts the output to one's complement. */
9395 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;